CINXE.COM
Dräiäck - Alemannische Wikipedia
<!doctype html> <html class="client-nojs mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="gsw" dir="ltr"> <head> <base href="https://als.m.wikipedia.org/wiki/Dreieck"> <meta charset="UTF-8"> <title>Dräiäck - Alemannische Wikipedia</title> <script>(function(){var className="client-js mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )alswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Jänner","Februar","März","April","Mai","Juni","Juli","Augschte","Septämber","Oktober","Novämber","Dezämber"],"wgRequestId":"e233c97e-15e8-4c11-8ffb-54cb8c13b709","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Dreieck","wgTitle":"Dreieck","wgCurRevisionId":1041790,"wgRevisionId":1041790,"wgArticleId":88354,"wgIsArticle":true,"wgIsRedirect": false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"gsw","wgPageContentLanguage":"gsw","wgPageContentModel":"wikitext","wgRelevantPageName":"Dreieck","wgRelevantArticleId":88354,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgStableRevisionId":1041790,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"gsw","pageLanguageDir":"ltr","pageVariantFallbacks":"gsw"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":7000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym": "ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang": "ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hyw","autonym": "Արեւմտահայերէն","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"lad","autonym": "Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym": "閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang": "rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"tay", "autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang": "vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur", "guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve", "vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q19821","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":false},"wgMinervaDownloadNamespaces":[0], "wgSiteNoticeId":"2.0"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.editMenus","ext.gadget.WikiMiniAtlas","ext.gadget.CommonsDirekt","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=gsw&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async src="/w/load.php?lang=gsw&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/1200px-Dreieck.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="561"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/800px-Dreieck.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="374"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/640px-Dreieck.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="299"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Dräiäck - Alemannische Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Syte bearbeite" href="/w/index.php?title=Dreieck&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (gsw)"> <link rel="EditURI" type="application/rsd+xml" href="//als.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://als.wikipedia.org/wiki/Dreieck"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.als"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=corsproxy" data-sourceurl="https://als.m.wikipedia.org/wiki/Dreieck"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://als.m.wikipedia.org/wiki/Dreieck"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Dreieck rootpage-Dreieck stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=navigationui" data-environment="prod" data-proxy-url="https://als-m-wikipedia-org.translate.goog" data-proxy-full-url="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-source-url="https://als.m.wikipedia.org/wiki/Dreieck" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="it" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://als.m.wikipedia.org/wiki/Dreieck&anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://als-m-wikipedia-org.translate.goog/wiki/Wikipedia:Houptsyte?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Start</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://als-m-wikipedia-org.translate.goog/wiki/Spezial:Zuefelligi_Syte?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Zuefall</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://als-m-wikipedia-org.translate.goog/wiki/Spezial:In_der_N%C3%A4he?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">In de Nööchi</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Spezial:Am%C3%A4lde&returnto=Dreieck&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Aamälde</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Spezial:Mobile_Optionen&returnto=Dreieck&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Yystellige</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_als.wikipedia.org%26uselang%3Dgsw%26wmf_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Finanzielli Hilf</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://als-m-wikipedia-org.translate.goog/wiki/Wikipedia:Iber_Wikipedia?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Iber Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://als-m-wikipedia-org.translate.goog/wiki/Wikipedia:Impressum?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Impressum</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Wikipedia:Houptsyte?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Alemannische Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Spezial:Suech"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Suechi (uf Hochdütsch)" aria-label="Suechi (uf Hochdütsch)" autocapitalize="sentences" title="Dürchsuech Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Suech</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Weitere Navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading">Dräiäck</h1> <div class="tagline"></div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Sproch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Sproch</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Spezial:Am%C3%A4lde&returnto=Dreieck&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>beobachte</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Ändere</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="gsw" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p>A <b>Dräiäck</b> ìsch a <a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Polygon&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Polygon (Syte nid vorhande)">Vììläck</a> un a <a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Figur_(Geometrie)&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Figur (Geometrie) (Syte nid vorhande)">geomeetrisch Gebìld</a>. Ìn dr <a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Euklidische_Geometrie&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Euklidische Geometrie (Syte nid vorhande)">eukliidischa Geometrii</a> ìsch’s d’ aifàchschta Figüür ìn dr <a href="https://als-m-wikipedia-org.translate.goog/wiki/Ebene_(Mathematik)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Ebene (Mathematik)">Eewana</a>, wo vu grààda <a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Strecke_(Geometrie)&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Strecke (Geometrie) (Syte nid vorhande)">Liinia</a> begranzt wìrd. Siina Begranzungsliinia nänna m’r „Sitta“. Ìm Ìnnera vum Dräiäck schpànna sìch dräi <a href="https://als-m-wikipedia-org.translate.goog/wiki/Winkel?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Winkel">Wìnkel</a> uff, wo „<a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Innenwinkel&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Innenwinkel (Syte nid vorhande)">Ìnnawìnkel</a>“ haissa. D’ Schaitel vu dana Wìnkel nännt maa „<a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Eckpunkt&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Eckpunkt (Syte nid vorhande)">Äckpìnkt</a>“ vum Dräiäck. Ìn dr <a href="https://als-m-wikipedia-org.translate.goog/wiki/Nichteuklidische_Geometrie?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Nichteuklidische Geometrie">nìt-eukliidischa Geometrii</a> fìnda m’r àui Dräiäcka; ìn dam Fàll mian àwwer d’ Begrazungsliinia <a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Geod%C3%A4te&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Geodäte (Syte nid vorhande)">Geodääta</a> sìì.</p> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://als-m-wikipedia-org.translate.goog/wiki/Datei:Dreieck.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/290px-Dreieck.svg.png" decoding="async" width="290" height="135" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/435px-Dreieck.svg.png 1.5x,https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Dreieck.svg/580px-Dreieck.svg.png 2x" data-file-width="456" data-file-height="213"></a> <figcaption> a àllgmain Dräiäck </figcaption> </figure> <table style="float:right; margin:0ex 0ex 0.5ex 1ex; background-color:#FCFCFC; border:1px solid #4A708B;" title="Vo do aweg isch'es uf Milhüserisch"> <tbody> <tr> <td></td> <td>Dialäkt: <a href="https://als-m-wikipedia-org.translate.goog/wiki/Els%C3%A4ssisch?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Elsässisch">Mìlhüüserdiitsch</a></td> </tr> </tbody> </table> <p>Ìn dr <a href="https://als-m-wikipedia-org.translate.goog/wiki/Trigonometrie?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Trigonometrie">Trigonometrii</a>, a Tailgebiat vu dr <a href="https://als-m-wikipedia-org.translate.goog/wiki/Mathematik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Mathematik">Màthemàtik</a>, schpììla Dräiäcka-n-a waasentliga Rolla.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="gsw" dir="ltr"> <h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#d%E2%80%99_versch%C3%AC%C3%ACdana_Dr%C3%A4i%C3%A4cka,_wo_%E2%80%99s_g%C3%ACtt"><span class="tocnumber">1</span> <span class="toctext">d’ verschììdana Dräiäcka, wo ’s gìtt</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#nooh_Sittal%C3%A4nga"><span class="tocnumber">1.1</span> <span class="toctext">nooh Sittalänga</span></a></li> <li class="toclevel-2 tocsection-3"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#nooh_W%C3%ACnkel"><span class="tocnumber">1.2</span> <span class="toctext">nooh Wìnkel</span></a></li> </ul></li> <li class="toclevel-1 tocsection-4"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#s%E2%80%99_%C3%A0llgmaina_Dr%C3%A4i%C3%A4ck"><span class="tocnumber">2</span> <span class="toctext">s’ àllgmaina Dräiäck</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Formla"><span class="tocnumber">2.1</span> <span class="toctext">Formla</span></a></li> </ul></li> <li class="toclevel-1 tocsection-6"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#L%C3%ACter%C3%A0t%C3%BC%C3%BCr"><span class="tocnumber">3</span> <span class="toctext">Lìteràtüür</span></a></li> <li class="toclevel-1 tocsection-7"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Webl%C3%ACnks"><span class="tocnumber">4</span> <span class="toctext">Weblìnks</span></a></li> <li class="toclevel-1 tocsection-8"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Ainzelnoohwiisa"><span class="tocnumber">5</span> <span class="toctext">Ainzelnoohwiisa</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="d’_verschììdana_Dräiäcka,_wo_’s_gìtt"><span id="d.E2.80.99_versch.C3.AC.C3.ACdana_Dr.C3.A4i.C3.A4cka.2C_wo_.E2.80.99s_g.C3.ACtt"></span>d’ verschììdana Dräiäcka, wo ’s gìtt</h2><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: d’ verschììdana Dräiäcka, wo ’s gìtt" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://als-m-wikipedia-org.translate.goog/wiki/Datei:Hierarchie.Dreiecke.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Hierarchie.Dreiecke.png/440px-Hierarchie.Dreiecke.png" decoding="async" width="440" height="375" class="mw-file-element" data-file-width="1200" data-file-height="1024"> </noscript><span class="lazy-image-placeholder" style="width: 440px;height: 375px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Hierarchie.Dreiecke.png/440px-Hierarchie.Dreiecke.png" data-width="440" data-height="375" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Hierarchie.Dreiecke.png/660px-Hierarchie.Dreiecke.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Hierarchie.Dreiecke.png/880px-Hierarchie.Dreiecke.png 2x" data-class="mw-file-element"> </span></a> <figcaption> d’ verschììdana Dräiäcka:<br> Vu lìnks noh rachts: schpìtzwìnklig, <a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Rechtwinkliges_Dreieck&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Rechtwinkliges Dreieck (Syte nid vorhande)">rachtwìnklig</a>, schtumpfwìnklig<br> Vun oowa bis unta: unreegelmaasig, <a href="https://als-m-wikipedia-org.translate.goog/wiki/Gleichschenkliges_Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Gleichschenkliges Dreieck">gliichschanklig</a>, <a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Gleichseitiges_Dreieck&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Gleichseitiges Dreieck (Syte nid vorhande)">gliichsittig</a> </figcaption> </figure> <div class="mw-heading mw-heading3"> <h3 id="nooh_Sittalänga"><span id="nooh_Sittal.C3.A4nga"></span>nooh Sittalänga</h3><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=2&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: nooh Sittalänga" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <ul> <li><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Unregelm%C3%A4%C3%9Fige_Dreiecke">Unreegelmaasig Dräiäck</a></li> <li><a href="https://als-m-wikipedia-org.translate.goog/wiki/Gleichschenkliges_Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Gleichschenkliges Dreieck">Gliichschanklig Dräiäck</a></li> <li><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Gleichseitiges_Dreieck&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Gleichseitiges Dreieck (Syte nid vorhande)">Gliichsittig Dräiäck</a></li> </ul> <div class="mw-heading mw-heading3"> <h3 id="nooh_Wìnkel"><span id="nooh_W.C3.ACnkel"></span>nooh Wìnkel</h3><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=3&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: nooh Wìnkel" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <ul> <li><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Spitzwinkliges_Dreieck&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Spitzwinkliges Dreieck (Syte nid vorhande)">Schpìtzwìnklig Dräiäck</a></li> <li><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Rechtwinkliges_Dreieck&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Rechtwinkliges Dreieck (Syte nid vorhande)">Rachtwìnklig Dräiäck</a></li> <li><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Stumpfwinkliges_Dreieck&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Stumpfwinkliges Dreieck (Syte nid vorhande)">Schtumpfwìnklig Dräiäck</a></li> </ul> <p>D’ Schpìtz- un schumpfwìnkliga Dräiäcka känna m’r àui unter’m Nàmma <i>schiafwìnklig Dräiäck</i> zammafàssa.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="s’_àllgmaina_Dräiäck"><span id="s.E2.80.99_.C3.A0llgmaina_Dr.C3.A4i.C3.A4ck"></span>s’ àllgmaina Dräiäck</h2><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=4&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: s’ àllgmaina Dräiäck" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <div class="mw-heading mw-heading3"> <h3 id="Formla">Formla</h3><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: Formla" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <table class="wikitable"> <tbody> <tr> <th colspan="3" style="background:#C0C0FF">Màthemààtischa Formla zem àllgmaina Dräiäck</th> </tr> <tr> <td rowspan="2"><b><a href="https://als-m-wikipedia-org.translate.goog/wiki/Fl%C3%A4cheninhalt?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Flächeninhalt">Flächa-n-ìnhàlt</a></b> <p>(lüag <a href="https://als-m-wikipedia-org.translate.goog/wiki/Satz_des_Heron?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Satz des Heron">Sàtz vum Heron</a>)</p></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {a\cdot h_{a}}{2}}={\frac {b\cdot h_{b}}{2}}={\frac {c\cdot h_{c}}{2}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> a </mi> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> b </mi> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> b </mi> </mrow> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> c </mi> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> c </mi> </mrow> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A={\frac {a\cdot h_{a}}{2}}={\frac {b\cdot h_{b}}{2}}={\frac {c\cdot h_{c}}{2}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57bc63d35aacd9c5699a9558804d780e07d28e99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.819ex; height:5.343ex;" alt="{\displaystyle A={\frac {a\cdot h_{a}}{2}}={\frac {b\cdot h_{b}}{2}}={\frac {c\cdot h_{c}}{2}}}"> </noscript><span class="lazy-image-placeholder" style="width: 28.819ex;height: 5.343ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57bc63d35aacd9c5699a9558804d780e07d28e99" data-alt="{\displaystyle A={\frac {a\cdot h_{a}}{2}}={\frac {b\cdot h_{b}}{2}}={\frac {c\cdot h_{c}}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {b\cdot c\cdot \sin(\alpha )}{2}}={\frac {a\cdot c\cdot \sin(\beta )}{2}}={\frac {a\cdot b\cdot \sin(\gamma )}{2}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> b </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> c </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> a </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> c </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> a </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> b </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> γ<!-- γ --> </mi> <mo stretchy="false"> ) </mo> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A={\frac {b\cdot c\cdot \sin(\alpha )}{2}}={\frac {a\cdot c\cdot \sin(\beta )}{2}}={\frac {a\cdot b\cdot \sin(\gamma )}{2}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9d2ca63ab6132f6bd5ca2144628c113ed6b31f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:48.167ex; height:5.676ex;" alt="{\displaystyle A={\frac {b\cdot c\cdot \sin(\alpha )}{2}}={\frac {a\cdot c\cdot \sin(\beta )}{2}}={\frac {a\cdot b\cdot \sin(\gamma )}{2}}}"> </noscript><span class="lazy-image-placeholder" style="width: 48.167ex;height: 5.676ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9d2ca63ab6132f6bd5ca2144628c113ed6b31f8" data-alt="{\displaystyle A={\frac {b\cdot c\cdot \sin(\alpha )}{2}}={\frac {a\cdot c\cdot \sin(\beta )}{2}}={\frac {a\cdot b\cdot \sin(\gamma )}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p></td> <td rowspan="22"><p><span typeof="mw:File"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Datei:01-Dreieck,_spitzwinklig.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description" title="Dräiäck mìt da Greessa vu dr Tàball doo dràà"> <noscript> <img alt="Dräiäck mìt da Greessa vu dr Tàball doo dràà" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/01-Dreieck%2C_spitzwinklig.svg/500px-01-Dreieck%2C_spitzwinklig.svg.png" decoding="async" width="500" height="499" class="mw-file-element" data-file-width="474" data-file-height="473"> </noscript><span class="lazy-image-placeholder" style="width: 500px;height: 499px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/01-Dreieck%2C_spitzwinklig.svg/500px-01-Dreieck%2C_spitzwinklig.svg.png" data-alt="Dräiäck mìt da Greessa vu dr Tàball doo dràà" data-width="500" data-height="499" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/01-Dreieck%2C_spitzwinklig.svg/750px-01-Dreieck%2C_spitzwinklig.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/01-Dreieck%2C_spitzwinklig.svg/1000px-01-Dreieck%2C_spitzwinklig.svg.png 2x" data-class="mw-file-element"> </span></a></span></p></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}};\;\;s={\frac {U}{2}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> s </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> </msqrt> </mrow> <mo> ; </mo> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mi> s </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> U </mi> <mn> 2 </mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A={\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}};\;\;s={\frac {U}{2}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e9c35f1f17c9d0bf2aa58827d1cfc37221c6468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:42.88ex; height:5.176ex;" alt="{\displaystyle A={\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}};\;\;s={\frac {U}{2}}}"> </noscript><span class="lazy-image-placeholder" style="width: 42.88ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e9c35f1f17c9d0bf2aa58827d1cfc37221c6468" data-alt="{\displaystyle A={\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}};\;\;s={\frac {U}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Umfang_(Geometrie)&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Umfang (Geometrie) (Syte nid vorhande)">Umfàng</a></b></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=a+b+c=8\cdot r\cdot \cos \left({\frac {\alpha }{2}}\right)\cdot \cos \left({\frac {\beta }{2}}\right)\cdot \cos \left({\frac {\gamma }{2}}\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> U </mi> <mo> = </mo> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> = </mo> <mn> 8 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> r </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> cos </mi> <mo> <!-- --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> α<!-- α --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> cos </mi> <mo> <!-- --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> β<!-- β --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> cos </mi> <mo> <!-- --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> γ<!-- γ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle U=a+b+c=8\cdot r\cdot \cos \left({\frac {\alpha }{2}}\right)\cdot \cos \left({\frac {\beta }{2}}\right)\cdot \cos \left({\frac {\gamma }{2}}\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567c568608f8323adfe0f48fdc2f1a99fb97a3d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.718ex; height:6.176ex;" alt="{\displaystyle U=a+b+c=8\cdot r\cdot \cos \left({\frac {\alpha }{2}}\right)\cdot \cos \left({\frac {\beta }{2}}\right)\cdot \cos \left({\frac {\gamma }{2}}\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 50.718ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567c568608f8323adfe0f48fdc2f1a99fb97a3d3" data-alt="{\displaystyle U=a+b+c=8\cdot r\cdot \cos \left({\frac {\alpha }{2}}\right)\cdot \cos \left({\frac {\beta }{2}}\right)\cdot \cos \left({\frac {\gamma }{2}}\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td rowspan="3"><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=H%C3%B6he_(Geometrie)&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Höhe (Geometrie) (Syte nid vorhande)">Heecha</a></b> üss da Sittalänga<br> (mìttels Sàtz vum Heron)</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{a}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{a}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> s </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> </msqrt> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h_{a}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{a}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ae17d23ac604d5058a45570b7c36506876fa97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.123ex; height:6.176ex;" alt="{\displaystyle h_{a}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{a}}}"> </noscript><span class="lazy-image-placeholder" style="width: 38.123ex;height: 6.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ae17d23ac604d5058a45570b7c36506876fa97" data-alt="{\displaystyle h_{a}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{a}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{b}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{b}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> b </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> s </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> </msqrt> </mrow> </mrow> <mi> b </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h_{b}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{b}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa379205ffa1acd0d1d02be540809c4bc2c20442" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:37.959ex; height:6.343ex;" alt="{\displaystyle h_{b}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{b}}}"> </noscript><span class="lazy-image-placeholder" style="width: 37.959ex;height: 6.343ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa379205ffa1acd0d1d02be540809c4bc2c20442" data-alt="{\displaystyle h_{b}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{b}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{c}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{c}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> c </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> s </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> b </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> s </mi> <mo> −<!-- − --> </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> </msqrt> </mrow> </mrow> <mi> c </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h_{c}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{c}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22b484e6ceca64bf10cd84d5304652bc4d8cc213" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.965ex; height:6.176ex;" alt="{\displaystyle h_{c}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{c}}}"> </noscript><span class="lazy-image-placeholder" style="width: 37.965ex;height: 6.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22b484e6ceca64bf10cd84d5304652bc4d8cc213" data-alt="{\displaystyle h_{c}={\frac {2\cdot {\sqrt {s\cdot (s-a)\cdot (s-b)\cdot (s-c)}}}{c}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td rowspan="3"><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=H%C3%B6he_(Geometrie)&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Höhe (Geometrie) (Syte nid vorhande)">Heecha</a></b></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{a}=c\cdot \sin(\beta )=b\cdot \sin(\gamma )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo> = </mo> <mi> c </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> b </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> γ<!-- γ --> </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h_{a}=c\cdot \sin(\beta )=b\cdot \sin(\gamma )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff602d08053cdd00ba63224685b7b2eb88df4dec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.925ex; height:2.843ex;" alt="{\displaystyle h_{a}=c\cdot \sin(\beta )=b\cdot \sin(\gamma )}"> </noscript><span class="lazy-image-placeholder" style="width: 25.925ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff602d08053cdd00ba63224685b7b2eb88df4dec" data-alt="{\displaystyle h_{a}=c\cdot \sin(\beta )=b\cdot \sin(\gamma )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{b}=a\cdot \sin(\gamma )=c\cdot \sin(\alpha )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> b </mi> </mrow> </msub> <mo> = </mo> <mi> a </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> γ<!-- γ --> </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> c </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h_{b}=a\cdot \sin(\gamma )=c\cdot \sin(\alpha )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57adc4deedbf01ebb4ba09738835d6e9998170fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.148ex; height:2.843ex;" alt="{\displaystyle h_{b}=a\cdot \sin(\gamma )=c\cdot \sin(\alpha )}"> </noscript><span class="lazy-image-placeholder" style="width: 26.148ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57adc4deedbf01ebb4ba09738835d6e9998170fa" data-alt="{\displaystyle h_{b}=a\cdot \sin(\gamma )=c\cdot \sin(\alpha )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{c}=b\cdot \sin(\alpha )=a\cdot \sin(\beta )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> h </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> c </mi> </mrow> </msub> <mo> = </mo> <mi> b </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> a </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h_{c}=b\cdot \sin(\alpha )=a\cdot \sin(\beta )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cc91f440328b80e485c6e5640bc93aeb088c85b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.215ex; height:2.843ex;" alt="{\displaystyle h_{c}=b\cdot \sin(\alpha )=a\cdot \sin(\beta )}"> </noscript><span class="lazy-image-placeholder" style="width: 26.215ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cc91f440328b80e485c6e5640bc93aeb088c85b" data-alt="{\displaystyle h_{c}=b\cdot \sin(\alpha )=a\cdot \sin(\beta )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Inkreis&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Inkreis (Syte nid vorhande)">Ìnkraisradiüs</a></b></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho =4\cdot r\cdot \sin \left({\frac {\alpha }{2}}\right)\cdot \sin \left({\frac {\beta }{2}}\right)\cdot \sin \left({\frac {\gamma }{2}}\right)={\frac {2\cdot A}{U}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> <mo> = </mo> <mn> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> r </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> α<!-- α --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> β<!-- β --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> γ<!-- γ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> A </mi> </mrow> <mi> U </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho =4\cdot r\cdot \sin \left({\frac {\alpha }{2}}\right)\cdot \sin \left({\frac {\beta }{2}}\right)\cdot \sin \left({\frac {\gamma }{2}}\right)={\frac {2\cdot A}{U}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f12d1027674703a89dcdbe20e6543d41af40ab8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.877ex; height:6.176ex;" alt="{\displaystyle \rho =4\cdot r\cdot \sin \left({\frac {\alpha }{2}}\right)\cdot \sin \left({\frac {\beta }{2}}\right)\cdot \sin \left({\frac {\gamma }{2}}\right)={\frac {2\cdot A}{U}}}"> </noscript><span class="lazy-image-placeholder" style="width: 45.877ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f12d1027674703a89dcdbe20e6543d41af40ab8f" data-alt="{\displaystyle \rho =4\cdot r\cdot \sin \left({\frac {\alpha }{2}}\right)\cdot \sin \left({\frac {\beta }{2}}\right)\cdot \sin \left({\frac {\gamma }{2}}\right)={\frac {2\cdot A}{U}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Umkreis&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Umkreis (Syte nid vorhande)">Umkraisradiüs</a></b> <p>(mìttels <a href="https://als-m-wikipedia-org.translate.goog/wiki/Sinussatz?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Sinussatz">Sinüssàtz</a>)</p></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r={\frac {a}{2\cdot \sin(\alpha )}}={\frac {b}{2\cdot \sin(\beta )}}={\frac {c}{2\cdot \sin(\gamma )}}={\frac {a\cdot b\cdot c}{4\cdot A}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> a </mi> <mrow> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> c </mi> <mrow> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> sin </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mi> γ<!-- γ --> </mi> <mo stretchy="false"> ) </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> a </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> b </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> c </mi> </mrow> <mrow> <mn> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> A </mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r={\frac {a}{2\cdot \sin(\alpha )}}={\frac {b}{2\cdot \sin(\beta )}}={\frac {c}{2\cdot \sin(\gamma )}}={\frac {a\cdot b\cdot c}{4\cdot A}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9169adac0a8b51e343b89ee7c887a4b84f077db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:49.981ex; height:6.176ex;" alt="{\displaystyle r={\frac {a}{2\cdot \sin(\alpha )}}={\frac {b}{2\cdot \sin(\beta )}}={\frac {c}{2\cdot \sin(\gamma )}}={\frac {a\cdot b\cdot c}{4\cdot A}}}"> </noscript><span class="lazy-image-placeholder" style="width: 49.981ex;height: 6.176ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9169adac0a8b51e343b89ee7c887a4b84f077db" data-alt="{\displaystyle r={\frac {a}{2\cdot \sin(\alpha )}}={\frac {b}{2\cdot \sin(\beta )}}={\frac {c}{2\cdot \sin(\gamma )}}={\frac {a\cdot b\cdot c}{4\cdot A}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td rowspan="3">Länga vu da <b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Winkelhalbierende&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Winkelhalbierende (Syte nid vorhande)">Wìnkelhàlwiaranda</a></b><sup id="cite_ref-1" class="reference"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{\alpha }={\sqrt {bc\left(1-{\frac {a^{2}}{\left(b+c\right)^{2}}}\right)}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> b </mi> <mi> c </mi> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle w_{\alpha }={\sqrt {bc\left(1-{\frac {a^{2}}{\left(b+c\right)^{2}}}\right)}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7e05e8bb7991691fdf1982b79a19c22db99a72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.121ex; height:8.176ex;" alt="{\displaystyle w_{\alpha }={\sqrt {bc\left(1-{\frac {a^{2}}{\left(b+c\right)^{2}}}\right)}}}"> </noscript><span class="lazy-image-placeholder" style="width: 27.121ex;height: 8.176ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a7e05e8bb7991691fdf1982b79a19c22db99a72" data-alt="{\displaystyle w_{\alpha }={\sqrt {bc\left(1-{\frac {a^{2}}{\left(b+c\right)^{2}}}\right)}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{\beta }={\sqrt {ac\left(1-{\frac {b^{2}}{\left(a+c\right)^{2}}}\right)}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> β<!-- β --> </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> a </mi> <mi> c </mi> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle w_{\beta }={\sqrt {ac\left(1-{\frac {b^{2}}{\left(a+c\right)^{2}}}\right)}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/569dd9b11b65b4458d019e35515d574cc0c5ad5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.475ex; height:8.176ex;" alt="{\displaystyle w_{\beta }={\sqrt {ac\left(1-{\frac {b^{2}}{\left(a+c\right)^{2}}}\right)}}}"> </noscript><span class="lazy-image-placeholder" style="width: 27.475ex;height: 8.176ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/569dd9b11b65b4458d019e35515d574cc0c5ad5e" data-alt="{\displaystyle w_{\beta }={\sqrt {ac\left(1-{\frac {b^{2}}{\left(a+c\right)^{2}}}\right)}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{\gamma }={\sqrt {ab\left(1-{\frac {c^{2}}{\left(a+b\right)^{2}}}\right)}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> γ<!-- γ --> </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> a </mi> <mi> b </mi> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle w_{\gamma }={\sqrt {ab\left(1-{\frac {c^{2}}{\left(a+b\right)^{2}}}\right)}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f04897d63be5479ffe7d9aa95e0510057939585d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.407ex; height:8.176ex;" alt="{\displaystyle w_{\gamma }={\sqrt {ab\left(1-{\frac {c^{2}}{\left(a+b\right)^{2}}}\right)}}}"> </noscript><span class="lazy-image-placeholder" style="width: 27.407ex;height: 8.176ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f04897d63be5479ffe7d9aa95e0510057939585d" data-alt="{\displaystyle w_{\gamma }={\sqrt {ab\left(1-{\frac {c^{2}}{\left(a+b\right)^{2}}}\right)}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td rowspan="3">Länga vu da <b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Seitenhalbierende&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Seitenhalbierende (Syte nid vorhande)">Sittahàlwiaranda</a></b></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{a}={\frac {1}{2}}\cdot {\sqrt {2\cdot b^{2}+2\cdot c^{2}-a^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s_{a}={\frac {1}{2}}\cdot {\sqrt {2\cdot b^{2}+2\cdot c^{2}-a^{2}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec143958a573ef7762300e3af2bd3e4505a15b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.053ex; height:5.176ex;" alt="{\displaystyle s_{a}={\frac {1}{2}}\cdot {\sqrt {2\cdot b^{2}+2\cdot c^{2}-a^{2}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 29.053ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec143958a573ef7762300e3af2bd3e4505a15b5b" data-alt="{\displaystyle s_{a}={\frac {1}{2}}\cdot {\sqrt {2\cdot b^{2}+2\cdot c^{2}-a^{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{b}={\frac {1}{2}}\cdot {\sqrt {2\cdot c^{2}+2\cdot a^{2}-b^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> b </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s_{b}={\frac {1}{2}}\cdot {\sqrt {2\cdot c^{2}+2\cdot a^{2}-b^{2}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15f13def891ad254d7522ed55c11cfa2a27cd5f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.889ex; height:5.176ex;" alt="{\displaystyle s_{b}={\frac {1}{2}}\cdot {\sqrt {2\cdot c^{2}+2\cdot a^{2}-b^{2}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 28.889ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15f13def891ad254d7522ed55c11cfa2a27cd5f3" data-alt="{\displaystyle s_{b}={\frac {1}{2}}\cdot {\sqrt {2\cdot c^{2}+2\cdot a^{2}-b^{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{c}={\frac {1}{2}}\cdot {\sqrt {2\cdot a^{2}+2\cdot b^{2}-c^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> c </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s_{c}={\frac {1}{2}}\cdot {\sqrt {2\cdot a^{2}+2\cdot b^{2}-c^{2}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248d93d3dbc3b6a8e7b77233945cb711e3fca049" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.895ex; height:5.176ex;" alt="{\displaystyle s_{c}={\frac {1}{2}}\cdot {\sqrt {2\cdot a^{2}+2\cdot b^{2}-c^{2}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 28.895ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248d93d3dbc3b6a8e7b77233945cb711e3fca049" data-alt="{\displaystyle s_{c}={\frac {1}{2}}\cdot {\sqrt {2\cdot a^{2}+2\cdot b^{2}-c^{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Inkreismittelpunkt&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Inkreismittelpunkt (Syte nid vorhande)">Ìnkraismìttelpunkt</a></b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;I}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace"></mspace> <mi> I </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \;I} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab6a827e2bb22f0abfa7b91911c8d64fcc4c95a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.817ex; height:2.176ex;" alt="{\displaystyle \;I}"> </noscript><span class="lazy-image-placeholder" style="width: 1.817ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab6a827e2bb22f0abfa7b91911c8d64fcc4c95a1" data-alt="{\displaystyle \;I}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <p>(<a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Baryzentrische_Koordinaten&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Baryzentrische Koordinaten (Syte nid vorhande)">bàryzäntrischa Koordinààta</a>)</p></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a:b:c)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> : </mo> <mi> b </mi> <mo> : </mo> <mi> c </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (a:b:c)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8632e22a05145224ef6e5a8d85fa6003843c5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.918ex; height:2.843ex;" alt="{\displaystyle (a:b:c)}"> </noscript><span class="lazy-image-placeholder" style="width: 8.918ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8632e22a05145224ef6e5a8d85fa6003843c5a" data-alt="{\displaystyle (a:b:c)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Umkreismittelpunkt&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Umkreismittelpunkt (Syte nid vorhande)">Umkraismìttelpunkt</a></b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;U}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace"></mspace> <mi> U </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \;U} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f2772dbab44eedc9ed314f16f0c57395fff0720" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.428ex; height:2.176ex;" alt="{\displaystyle \;U}"> </noscript><span class="lazy-image-placeholder" style="width: 2.428ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f2772dbab44eedc9ed314f16f0c57395fff0720" data-alt="{\displaystyle \;U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <p>(bàryzäntrischa Koordinààta)</p></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\big (}a^{2}\cdot (-a^{2}+b^{2}+c^{2}):\\&b^{2}\cdot (a^{2}-b^{2}+c^{2}):\\&c^{2}\cdot (a^{2}+b^{2}-c^{2}){\big )}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd></mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> : </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> : </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}&{\big (}a^{2}\cdot (-a^{2}+b^{2}+c^{2}):\\&b^{2}\cdot (a^{2}-b^{2}+c^{2}):\\&c^{2}\cdot (a^{2}+b^{2}-c^{2}){\big )}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8505e15ccb3c4bffb658a1d803cfb79d47070471" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.303ex; margin-bottom: -0.201ex; width:22.767ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}&{\big (}a^{2}\cdot (-a^{2}+b^{2}+c^{2}):\\&b^{2}\cdot (a^{2}-b^{2}+c^{2}):\\&c^{2}\cdot (a^{2}+b^{2}-c^{2}){\big )}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 22.767ex;height: 10.176ex;vertical-align: -4.303ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8505e15ccb3c4bffb658a1d803cfb79d47070471" data-alt="{\displaystyle {\begin{aligned}&{\big (}a^{2}\cdot (-a^{2}+b^{2}+c^{2}):\\&b^{2}\cdot (a^{2}-b^{2}+c^{2}):\\&c^{2}\cdot (a^{2}+b^{2}-c^{2}){\big )}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=H%C3%B6henschnittpunkt&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Höhenschnittpunkt (Syte nid vorhande)">Heechaschnìttpunkt</a></b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;H}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace"></mspace> <mi> H </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \;H} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6692593ab5f22795f445c705c5c1493f53d40561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.709ex; height:2.176ex;" alt="{\displaystyle \;H}"> </noscript><span class="lazy-image-placeholder" style="width: 2.709ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6692593ab5f22795f445c705c5c1493f53d40561" data-alt="{\displaystyle \;H}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <p>(bàryzäntrischa Koordinààta)</p></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\big (}(a^{2}-b^{2}+c^{2})\cdot (a^{2}+b^{2}-c^{2}):\\&(a^{2}+b^{2}-c^{2})\cdot (-a^{2}+b^{2}+c^{2}):\\&(-a^{2}+b^{2}+c^{2})\cdot (a^{2}-b^{2}+c^{2}){\big )}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd></mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mo stretchy="false"> ( </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> : </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo stretchy="false"> ( </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> : </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}&{\big (}(a^{2}-b^{2}+c^{2})\cdot (a^{2}+b^{2}-c^{2}):\\&(a^{2}+b^{2}-c^{2})\cdot (-a^{2}+b^{2}+c^{2}):\\&(-a^{2}+b^{2}+c^{2})\cdot (a^{2}-b^{2}+c^{2}){\big )}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38022a45b649b852bb29a83798b959c8bc6d9b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.303ex; margin-bottom: -0.201ex; width:33.305ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}&{\big (}(a^{2}-b^{2}+c^{2})\cdot (a^{2}+b^{2}-c^{2}):\\&(a^{2}+b^{2}-c^{2})\cdot (-a^{2}+b^{2}+c^{2}):\\&(-a^{2}+b^{2}+c^{2})\cdot (a^{2}-b^{2}+c^{2}){\big )}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 33.305ex;height: 10.176ex;vertical-align: -4.303ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38022a45b649b852bb29a83798b959c8bc6d9b9f" data-alt="{\displaystyle {\begin{aligned}&{\big (}(a^{2}-b^{2}+c^{2})\cdot (a^{2}+b^{2}-c^{2}):\\&(a^{2}+b^{2}-c^{2})\cdot (-a^{2}+b^{2}+c^{2}):\\&(-a^{2}+b^{2}+c^{2})\cdot (a^{2}-b^{2}+c^{2}){\big )}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> <tr> <td rowspan="2"><b><a href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Geometrischer_Schwerpunkt&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Geometrischer Schwerpunkt (Syte nid vorhande)">Geomeetrischer Schwaarpunkt</a></b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;S}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace"></mspace> <mi> S </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \;S} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b5feda37acd8c5e5f9c3f5c4ff87af157346b54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.144ex; height:2.176ex;" alt="{\displaystyle \;S}"> </noscript><span class="lazy-image-placeholder" style="width: 2.144ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b5feda37acd8c5e5f9c3f5c4ff87af157346b54" data-alt="{\displaystyle \;S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> <td><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{s}={\frac {1}{3}}\cdot (x_{A}+x_{B}+x_{C})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x_{s}={\frac {1}{3}}\cdot (x_{A}+x_{B}+x_{C})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc5b2725d4dc37fe5418f6d04961c4e4e3767397" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.014ex; height:5.176ex;" alt="{\displaystyle x_{s}={\frac {1}{3}}\cdot (x_{A}+x_{B}+x_{C})}"> </noscript><span class="lazy-image-placeholder" style="width: 25.014ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc5b2725d4dc37fe5418f6d04961c4e4e3767397" data-alt="{\displaystyle x_{s}={\frac {1}{3}}\cdot (x_{A}+x_{B}+x_{C})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p></td> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{s}={\frac {1}{3}}\cdot (y_{A}+y_{B}+y_{C})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{s}={\frac {1}{3}}\cdot (y_{A}+y_{B}+y_{C})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4364588a2f4a72cc91753e4241088374c9e1f9fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.252ex; height:5.176ex;" alt="{\displaystyle y_{s}={\frac {1}{3}}\cdot (y_{A}+y_{B}+y_{C})}"> </noscript><span class="lazy-image-placeholder" style="width: 24.252ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4364588a2f4a72cc91753e4241088374c9e1f9fd" data-alt="{\displaystyle y_{s}={\frac {1}{3}}\cdot (y_{A}+y_{B}+y_{C})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></td> </tr> </tbody> </table> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Lìteràtüür"><span id="L.C3.ACter.C3.A0t.C3.BC.C3.BCr"></span>Lìteràtüür</h2><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=6&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: Lìteràtüür" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <ul> <li>Max Koecher, Aloys Krieg: <cite style="font-style:italic">Ebene Geometrie</cite>. 3. Auflage. Springer, Berlin 2007, <a href="https://als-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suech/9783540493273?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-3-540-49327-3</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>71–91, 108–135, 143–197</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/als.wikipedia.org:Dreieck&rft.au=Max+Koecher%2C+Aloys+Krieg&rft.btitle=Ebene+Geometrie&rft.date=2007&rft.edition=3.&rft.genre=book&rft.isbn=9783540493273&rft.pages=71-91%2C+108-135%2C+143-197&rft.place=Berlin&rft.pub=Springer" style="display:none"> </span></li> <li>Joseph von Radowitz: <cite style="font-style:italic">Die Formeln der Geometrie und Trigonometrie</cite>. Ferdinand Dümmler, Berlin 1827 (<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://books.google.de/books?id%3DafU2AAAAMAAJ">Iigschränkti Vorschau</a> uf books.google.de).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/als.wikipedia.org:Dreieck&rft.au=Joseph+von+Radowitz&rft.btitle=Die+Formeln+der+Geometrie+und+Trigonometrie&rft.date=1827&rft.genre=book&rft.place=Berlin&rft.pub=Ferdinand+D%C3%BCmmler" style="display:none"> </span></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Weblìnks"><span id="Webl.C3.ACnks"></span>Weblìnks</h2><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=7&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: Weblìnks" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <div class="sisterproject" style="margin:0.1em 0 0 0;"> <span class="mw-default-size" typeof="mw:File"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://commons.wikimedia.org/wiki/Houptsyte" title="Commons"> <noscript> <img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" data-file-width="1024" data-file-height="1376"> </noscript><span class="lazy-image-placeholder" style="width: 12px;height: 16px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" data-alt="" data-width="12" data-height="16" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-class="mw-file-element"> </span></a></span> <b><span class="plainlinks"><a class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://commons.wikimedia.org/wiki/Category:Triangles?uselang%3Dals">Commons: Dräiäcka</a></span></b> – Sammlig vo Multimediadateie </div> <ul> <li>Eric W. Weisstein: <i><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://mathworld.wolfram.com/Triangle.html">Triangle</a>.</i> In: <i>MathWorld</i> (änglisch).</li> <li>Steve Phelps: <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://www.geogebra.org/m/yUNsGaZV"><i>A Tour of Triangle Geometry</i></a> bii GeoGebra (änglisch)</li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Ainzelnoohwiisa">Ainzelnoohwiisa</h2><span class="mw-editsection"> <a role="button" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=edit&section=8&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt ändere: Ainzelnoohwiisa" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>ändere</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Dreieck?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-1">↑</a></span> <span class="reference-text">Victor Oxman: <cite class="lang" lang="en-US" dir="auto" style="font-style:italic">On the existence of triangles with given lengths of one side and two adjacent angle bisectors</cite>. In: <cite class="lang" lang="en-US" dir="auto" style="font-style:italic">Forum Geometricorum</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em"> </span>4</span>. Florida Atlantic University, 2004, <a href="https://als-m-wikipedia-org.translate.goog/wiki/Internationale_Standardnummer_f%C3%BCr_fortlaufende_Sammelwerke?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Internationale Standardnummer für fortlaufende Sammelwerke">ISSN</a> <span style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zdb-katalog.de/list.xhtml?t%3Diss%253D%25221534-1178%2522%26key%3Dcql">1534-1178</a></span>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>215</span> (amerikanisches Englisch, <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://web.archive.org/web/20230322221821/https://forumgeom.fau.edu/FG2004volume4/FG200425.pdf">archive.org</a> [PDF; abgerufen am 14. Juni 2022]).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rfr_id=info:sid/als.wikipedia.org:Dreieck&rft.atitle=On+the+existence+of+triangles+with+given+lengths+of+one+side+and+two+adjacent+angle+bisectors&rft.au=Victor+Oxman&rft.date=2004&rft.genre=journal&rft.issn=1534-1178&rft.jtitle=Forum+Geometricorum&rft.pages=215&rft.pub=Florida+Atlantic+University&rft.volume=4" style="display:none"> </span></span></li> </ol> </div> <table cellspacing="8" cellpadding="0" class="hintergrundfarbe1 rahmenfarbe1" style="width: 100%; font-size: 95%; border-top-style: solid; margin-top: 1em; clear: both; position:relative;"> <tbody> <tr> <td><span class="noviewer" typeof="mw:File"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Datei:Information_icon.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Information_icon.svg/30px-Information_icon.svg.png" decoding="async" width="30" height="30" class="mw-file-element" data-file-width="620" data-file-height="620"> </noscript><span class="lazy-image-placeholder" style="width: 30px;height: 30px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Information_icon.svg/30px-Information_icon.svg.png" data-width="30" data-height="30" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Information_icon.svg/45px-Information_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/35/Information_icon.svg/60px-Information_icon.svg.png 2x" data-class="mw-file-element"> </span></a></span></td> <td>Dä Artikel basiert uff ere fräie Übersetzig vu <a class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/w/index.php?title%3DDreieck%26oldid%3D231333783">dere Version</a> vum Artikel „<a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/wiki/Dreieck" class="extiw" title="de:Dreieck">Dreieck</a>“ vu de hochdütsche Wikipedia. E Liste vu de Autore un Versione isch <a class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/w/index.php?title%3DDreieck%26action%3Dhistory">do</a> z finde.</td> </tr> </tbody> </table> </section> </div><!-- MobileFormatter took 0.018 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=mobile" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Vun "<a dir="ltr" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://als.wikipedia.org/w/index.php?title%3DDreieck%26oldid%3D1041790">https://als.wikipedia.org/w/index.php?title=Dreieck&oldid=1041790</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://als-m-wikipedia-org.translate.goog/w/index.php?title=Dreieck&action=history&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Holder" data-user-gender="male" data-timestamp="1696823709"> <span>Zuletzt bearbeitet am 9. Oktober 2023 um 04:55</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Sprachen</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ab mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ab.wikipedia.org/wiki/%25D0%2590%25D1%2585%25D0%25BA%25D3%2599%25D0%25B0%25D0%25BA%25D1%258C" title="Ахкәакь – Abchasisch" lang="ab" hreflang="ab" data-title="Ахкәакь" data-language-autonym="Аԥсшәа" data-language-local-name="Abchasisch" class="interlanguage-link-target"><span>Аԥсшәа</span></a></li> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://af.wikipedia.org/wiki/Driehoek" title="Driehoek – Afrikaans" lang="af" hreflang="af" data-title="Driehoek" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li> <li class="interlanguage-link interwiki-am mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://am.wikipedia.org/wiki/%25E1%2588%25B6%25E1%2588%25B5%25E1%2589%25B5_%25E1%2588%259B%25E1%258A%25A5%25E1%258B%2598%25E1%258A%2595" title="ሶስት ማእዘን – Amharisch" lang="am" hreflang="am" data-title="ሶስት ማእዘን" data-language-autonym="አማርኛ" data-language-local-name="Amharisch" class="interlanguage-link-target"><span>አማርኛ</span></a></li> <li class="interlanguage-link interwiki-an mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://an.wikipedia.org/wiki/Trianglo" title="Trianglo – Aragonesisch" lang="an" hreflang="an" data-title="Trianglo" data-language-autonym="Aragonés" data-language-local-name="Aragonesisch" class="interlanguage-link-target"><span>Aragonés</span></a></li> <li class="interlanguage-link interwiki-ang mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ang.wikipedia.org/wiki/%25C3%259Er%25C4%25ABecge" title="Þrīecge – Altänglisch" lang="ang" hreflang="ang" data-title="Þrīecge" data-language-autonym="Ænglisc" data-language-local-name="Altänglisch" class="interlanguage-link-target"><span>Ænglisc</span></a></li> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ar.wikipedia.org/wiki/%25D9%2585%25D8%25AB%25D9%2584%25D8%25AB" title="مثلث – Arabisch" lang="ar" hreflang="ar" data-title="مثلث" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-arc mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arc.wikipedia.org/wiki/%25DC%25A1%25DC%25AC%25DC%25A0%25DC%25AC%25DC%2590" title="ܡܬܠܬܐ – Aramääisch" lang="arc" hreflang="arc" data-title="ܡܬܠܬܐ" data-language-autonym="ܐܪܡܝܐ" data-language-local-name="Aramääisch" class="interlanguage-link-target"><span>ܐܪܡܝܐ</span></a></li> <li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ary.wikipedia.org/wiki/%25D9%2585%25D8%25AA%25D9%2584%25D8%25AA" title="متلت – Marokkanisches Arabisch" lang="ary" hreflang="ary" data-title="متلت" data-language-autonym="الدارجة" data-language-local-name="Marokkanisches Arabisch" class="interlanguage-link-target"><span>الدارجة</span></a></li> <li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arz.wikipedia.org/wiki/%25D9%2585%25D8%25AB%25D9%2584%25D8%25AB" title="مثلث – Ägyptisches Arabisch" lang="arz" hreflang="arz" data-title="مثلث" data-language-autonym="مصرى" data-language-local-name="Ägyptisches Arabisch" class="interlanguage-link-target"><span>مصرى</span></a></li> <li class="interlanguage-link interwiki-as mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://as.wikipedia.org/wiki/%25E0%25A6%25A4%25E0%25A7%258D%25E0%25A7%25B0%25E0%25A6%25BF%25E0%25A6%25AD%25E0%25A7%2581%25E0%25A6%259C" title="ত্ৰিভুজ – Assamesisch" lang="as" hreflang="as" data-title="ত্ৰিভুজ" data-language-autonym="অসমীয়া" data-language-local-name="Assamesisch" class="interlanguage-link-target"><span>অসমীয়া</span></a></li> <li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ast.wikipedia.org/wiki/Tri%25C3%25A1ngulu" title="Triángulu – Aschturianisch" lang="ast" hreflang="ast" data-title="Triángulu" data-language-autonym="Asturianu" data-language-local-name="Aschturianisch" class="interlanguage-link-target"><span>Asturianu</span></a></li> <li class="interlanguage-link interwiki-ay mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ay.wikipedia.org/wiki/Mujina" title="Mujina – Aymara" lang="ay" hreflang="ay" data-title="Mujina" data-language-autonym="Aymar aru" data-language-local-name="Aymara" class="interlanguage-link-target"><span>Aymar aru</span></a></li> <li class="interlanguage-link interwiki-az mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://az.wikipedia.org/wiki/%25C3%259C%25C3%25A7bucaq" title="Üçbucaq – Aserbaidschanisch" lang="az" hreflang="az" data-title="Üçbucaq" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaidschanisch" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li> <li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://azb.wikipedia.org/wiki/%25D8%25A7%25D9%2588%25DA%2586%25E2%2580%258C%25D8%25A8%25D9%2588%25D8%25AC%25D8%25A7%25D9%2582" title="اوچبوجاق – Südaserbaidschanisch" lang="azb" hreflang="azb" data-title="اوچبوجاق" data-language-autonym="تۆرکجه" data-language-local-name="Südaserbaidschanisch" class="interlanguage-link-target"><span>تۆرکجه</span></a></li> <li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ba.wikipedia.org/wiki/%25D3%25A8%25D1%2581%25D0%25BC%25D3%25A9%25D0%25B9%25D3%25A9%25D1%2588" title="Өсмөйөш – Baschkirisch" lang="ba" hreflang="ba" data-title="Өсмөйөш" data-language-autonym="Башҡортса" data-language-local-name="Baschkirisch" class="interlanguage-link-target"><span>Башҡортса</span></a></li> <li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bar.wikipedia.org/wiki/Dreieck" title="Dreieck – Bairisch" lang="bar" hreflang="bar" data-title="Dreieck" data-language-autonym="Boarisch" data-language-local-name="Bairisch" class="interlanguage-link-target"><span>Boarisch</span></a></li> <li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bat-smg.wikipedia.org/wiki/Tr%25C4%2597kompis" title="Trėkompis – Samogitisch" lang="sgs" hreflang="sgs" data-title="Trėkompis" data-language-autonym="Žemaitėška" data-language-local-name="Samogitisch" class="interlanguage-link-target"><span>Žemaitėška</span></a></li> <li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bcl.wikipedia.org/wiki/Trianggulo" title="Trianggulo – Zentralbikolano" lang="bcl" hreflang="bcl" data-title="Trianggulo" data-language-autonym="Bikol Central" data-language-local-name="Zentralbikolano" class="interlanguage-link-target"><span>Bikol Central</span></a></li> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://be.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D0%25BE%25D1%2585%25D0%25B2%25D1%2583%25D0%25B3%25D0%25BE%25D0%25BB%25D1%258C%25D0%25BD%25D1%2596%25D0%25BA" title="Трохвугольнік – Wiissrussisch" lang="be" hreflang="be" data-title="Трохвугольнік" data-language-autonym="Беларуская" data-language-local-name="Wiissrussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li> <li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://be-tarask.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D1%258B%25D0%25BA%25D1%2583%25D1%2582%25D0%25BD%25D1%2596%25D0%25BA" title="Трыкутнік – Weißrussisch (Taraschkewiza)" lang="be-tarask" hreflang="be-tarask" data-title="Трыкутнік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Weißrussisch (Taraschkewiza)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bg.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D0%25B8%25D1%258A%25D0%25B3%25D1%258A%25D0%25BB%25D0%25BD%25D0%25B8%25D0%25BA" title="Триъгълник – Bulgaarisch" lang="bg" hreflang="bg" data-title="Триъгълник" data-language-autonym="Български" data-language-local-name="Bulgaarisch" class="interlanguage-link-target"><span>Български</span></a></li> <li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bh.wikipedia.org/wiki/%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B0%25E0%25A4%25BF%25E0%25A4%25AD%25E0%25A5%2581%25E0%25A4%259C" title="त्रिभुज – Bhojpuri" lang="bh" hreflang="bh" data-title="त्रिभुज" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li> <li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bn.wikipedia.org/wiki/%25E0%25A6%25A4%25E0%25A7%258D%25E0%25A6%25B0%25E0%25A6%25BF%25E0%25A6%25AD%25E0%25A7%2581%25E0%25A6%259C" title="ত্রিভুজ – Bengalisch" lang="bn" hreflang="bn" data-title="ত্রিভুজ" data-language-autonym="বাংলা" data-language-local-name="Bengalisch" class="interlanguage-link-target"><span>বাংলা</span></a></li> <li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bo.wikipedia.org/wiki/%25E0%25BD%25A6%25E0%25BD%259F%25E0%25BD%25B4%25E0%25BD%25A2%25E0%25BC%258B%25E0%25BD%2582%25E0%25BD%25A6%25E0%25BD%25B4%25E0%25BD%2598%25E0%25BC%258B%25E0%25BD%2591%25E0%25BD%2596%25E0%25BD%2596%25E0%25BE%25B1%25E0%25BD%25B2%25E0%25BC%258D" title="སཟུར་གསུམ་དབབྱི། – Tibeetisch" lang="bo" hreflang="bo" data-title="སཟུར་གསུམ་དབབྱི།" data-language-autonym="བོད་ཡིག" data-language-local-name="Tibeetisch" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li> <li class="interlanguage-link interwiki-br mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://br.wikipedia.org/wiki/Tric%2527horn" title="Tric'horn – Brötoonisch" lang="br" hreflang="br" data-title="Tric'horn" data-language-autonym="Brezhoneg" data-language-local-name="Brötoonisch" class="interlanguage-link-target"><span>Brezhoneg</span></a></li> <li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bs.wikipedia.org/wiki/Trougao" title="Trougao – Bosnisch" lang="bs" hreflang="bs" data-title="Trougao" data-language-autonym="Bosanski" data-language-local-name="Bosnisch" class="interlanguage-link-target"><span>Bosanski</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ca.wikipedia.org/wiki/Triangle" title="Triangle – Katalaanisch" lang="ca" hreflang="ca" data-title="Triangle" data-language-autonym="Català" data-language-local-name="Katalaanisch" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cdo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cdo.wikipedia.org/wiki/S%25C4%2583ng-g%25C3%25A1e%25CC%25A4k-h%25C3%25ACng" title="Săng-gáe̤k-hìng – Min Dong" lang="cdo" hreflang="cdo" data-title="Săng-gáe̤k-hìng" data-language-autonym="閩東語 / Mìng-dĕ̤ng-ngṳ̄" data-language-local-name="Min Dong" class="interlanguage-link-target"><span>閩東語 / Mìng-dĕ̤ng-ngṳ̄</span></a></li> <li class="interlanguage-link interwiki-chr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://chr.wikipedia.org/wiki/%25E1%258F%25A6%25E1%258E%25A2_%25E1%258F%25A7%25E1%258F%2585%25E1%258F%258F%25E1%258F%25AF_%25E1%258E%25A4%25E1%258F%2583%25E1%258F%25B4%25E1%258E%25A9" title="ᏦᎢ ᏧᏅᏏᏯ ᎤᏃᏴᎩ – Cherokee" lang="chr" hreflang="chr" data-title="ᏦᎢ ᏧᏅᏏᏯ ᎤᏃᏴᎩ" data-language-autonym="ᏣᎳᎩ" data-language-local-name="Cherokee" class="interlanguage-link-target"><span>ᏣᎳᎩ</span></a></li> <li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ckb.wikipedia.org/wiki/%25D8%25B3%25DB%258E%25DA%25AF%25DB%2586%25D8%25B4%25DB%2595" title="سێگۆشە – Zentralkurdisch" lang="ckb" hreflang="ckb" data-title="سێگۆشە" data-language-autonym="کوردی" data-language-local-name="Zentralkurdisch" class="interlanguage-link-target"><span>کوردی</span></a></li> <li class="interlanguage-link interwiki-co mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://co.wikipedia.org/wiki/Triangulu" title="Triangulu – Korsisch" lang="co" hreflang="co" data-title="Triangulu" data-language-autonym="Corsu" data-language-local-name="Korsisch" class="interlanguage-link-target"><span>Corsu</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cs.wikipedia.org/wiki/Troj%25C3%25BAheln%25C3%25ADk" title="Trojúhelník – Tschechisch" lang="cs" hreflang="cs" data-title="Trojúhelník" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-csb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://csb.wikipedia.org/wiki/Trz%25C3%25ABn%25C3%25B3rt" title="Trzënórt – Kaschubisch" lang="csb" hreflang="csb" data-title="Trzënórt" data-language-autonym="Kaszëbsczi" data-language-local-name="Kaschubisch" class="interlanguage-link-target"><span>Kaszëbsczi</span></a></li> <li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cv.wikipedia.org/wiki/%25D0%2592%25D0%25B8%25C3%25A7%25D0%25BA%25C4%2595%25D1%2582%25D0%25B5%25D1%2581%25D0%25BB%25C4%2595%25D1%2585" title="Виçкĕтеслĕх – Tschuwaschisch" lang="cv" hreflang="cv" data-title="Виçкĕтеслĕх" data-language-autonym="Чӑвашла" data-language-local-name="Tschuwaschisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li> <li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cy.wikipedia.org/wiki/Triongl" title="Triongl – Walisisch" lang="cy" hreflang="cy" data-title="Triongl" data-language-autonym="Cymraeg" data-language-local-name="Walisisch" class="interlanguage-link-target"><span>Cymraeg</span></a></li> <li class="interlanguage-link interwiki-da mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://da.wikipedia.org/wiki/Trekant" title="Trekant – Tänisch" lang="da" hreflang="da" data-title="Trekant" data-language-autonym="Dansk" data-language-local-name="Tänisch" class="interlanguage-link-target"><span>Dansk</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/wiki/Dreieck" title="Dreieck – Tüütsch" lang="de" hreflang="de" data-title="Dreieck" data-language-autonym="Deutsch" data-language-local-name="Tüütsch" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://diq.wikipedia.org/wiki/Hir%25C3%25AAk%25C4%25B1nari" title="Hirêkınari – Zazaki" lang="diq" hreflang="diq" data-title="Hirêkınari" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li> <li class="interlanguage-link interwiki-dsb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://dsb.wikipedia.org/wiki/T%25C5%259Biro%25C5%25BEk" title="Tśirožk – Nidersorbisch" lang="dsb" hreflang="dsb" data-title="Tśirožk" data-language-autonym="Dolnoserbski" data-language-local-name="Nidersorbisch" class="interlanguage-link-target"><span>Dolnoserbski</span></a></li> <li class="interlanguage-link interwiki-el mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://el.wikipedia.org/wiki/%25CE%25A4%25CF%2581%25CE%25AF%25CE%25B3%25CF%2589%25CE%25BD%25CE%25BF" title="Τρίγωνο – Griechisch" lang="el" hreflang="el" data-title="Τρίγωνο" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/Triangle" title="Triangle – Änglisch" lang="en" hreflang="en" data-title="Triangle" data-language-autonym="English" data-language-local-name="Änglisch" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://eo.wikipedia.org/wiki/Triangulo" title="Triangulo – Eschperanto" lang="eo" hreflang="eo" data-title="Triangulo" data-language-autonym="Esperanto" data-language-local-name="Eschperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://es.wikipedia.org/wiki/Tri%25C3%25A1ngulo" title="Triángulo – Schpanisch" lang="es" hreflang="es" data-title="Triángulo" data-language-autonym="Español" data-language-local-name="Schpanisch" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://et.wikipedia.org/wiki/Kolmnurk" title="Kolmnurk – Eestnisch" lang="et" hreflang="et" data-title="Kolmnurk" data-language-autonym="Eesti" data-language-local-name="Eestnisch" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://eu.wikipedia.org/wiki/Triangelu" title="Triangelu – Baskisch" lang="eu" hreflang="eu" data-title="Triangelu" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fa.wikipedia.org/wiki/%25D9%2585%25D8%25AB%25D9%2584%25D8%25AB" title="مثلث – Persisch" lang="fa" hreflang="fa" data-title="مثلث" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fi.wikipedia.org/wiki/Kolmio" title="Kolmio – Finnisch" lang="fi" hreflang="fi" data-title="Kolmio" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fiu-vro.wikipedia.org/wiki/Kolmnukk" title="Kolmnukk – Võro" lang="vro" hreflang="vro" data-title="Kolmnukk" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li> <li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fj.wikipedia.org/wiki/Tututolu" title="Tututolu – Fidschianisch" lang="fj" hreflang="fj" data-title="Tututolu" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="Fidschianisch" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li> <li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fo.wikipedia.org/wiki/Tr%25C3%25ADkantur" title="Tríkantur – Färöisch" lang="fo" hreflang="fo" data-title="Tríkantur" data-language-autonym="Føroyskt" data-language-local-name="Färöisch" class="interlanguage-link-target"><span>Føroyskt</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fr.wikipedia.org/wiki/Triangle" title="Triangle – Französisch" lang="fr" hreflang="fr" data-title="Triangle" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://frr.wikipedia.org/wiki/Triihuk" title="Triihuk – Nordfriesisch" lang="frr" hreflang="frr" data-title="Triihuk" data-language-autonym="Nordfriisk" data-language-local-name="Nordfriesisch" class="interlanguage-link-target"><span>Nordfriisk</span></a></li> <li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ga.wikipedia.org/wiki/Triant%25C3%25A1n_(c%25C3%25A9imseata)" title="Triantán (céimseata) – Iirisch" lang="ga" hreflang="ga" data-title="Triantán (céimseata)" data-language-autonym="Gaeilge" data-language-local-name="Iirisch" class="interlanguage-link-target"><span>Gaeilge</span></a></li> <li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gan.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E5%25BD%25A2" title="三角形 – Gan" lang="gan" hreflang="gan" data-title="三角形" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li> <li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gcr.wikipedia.org/wiki/Triyang" title="Triyang – Französisch-Guayana Kreolisch" lang="gcr" hreflang="gcr" data-title="Triyang" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Französisch-Guayana Kreolisch" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li> <li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gl.wikipedia.org/wiki/Tri%25C3%25A1ngulo" title="Triángulo – Galizisch" lang="gl" hreflang="gl" data-title="Triángulo" data-language-autonym="Galego" data-language-local-name="Galizisch" class="interlanguage-link-target"><span>Galego</span></a></li> <li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gu.wikipedia.org/wiki/%25E0%25AA%25A4%25E0%25AB%258D%25E0%25AA%25B0%25E0%25AA%25BF%25E0%25AA%2595%25E0%25AB%258B%25E0%25AA%25A3" title="ત્રિકોણ – Gujarati" lang="gu" hreflang="gu" data-title="ત્રિકોણ" data-language-autonym="ગુજરાતી" data-language-local-name="Gujarati" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li> <li class="interlanguage-link interwiki-guc mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://guc.wikipedia.org/wiki/Ap%25C3%25BCn%25C3%25BCinsheke%2527einr%25C3%25BC" title="Apünüinsheke'einrü – Wayúu" lang="guc" hreflang="guc" data-title="Apünüinsheke'einrü" data-language-autonym="Wayuunaiki" data-language-local-name="Wayúu" class="interlanguage-link-target"><span>Wayuunaiki</span></a></li> <li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gv.wikipedia.org/wiki/Troorane" title="Troorane – Manx-Gäälisch" lang="gv" hreflang="gv" data-title="Troorane" data-language-autonym="Gaelg" data-language-local-name="Manx-Gäälisch" class="interlanguage-link-target"><span>Gaelg</span></a></li> <li class="interlanguage-link interwiki-hak mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hak.wikipedia.org/wiki/S%25C3%25A2m-kok-h%25C3%25ACn" title="Sâm-kok-hìn – Hakka" lang="hak" hreflang="hak" data-title="Sâm-kok-hìn" data-language-autonym="客家語 / Hak-kâ-ngî" data-language-local-name="Hakka" class="interlanguage-link-target"><span>客家語 / Hak-kâ-ngî</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://he.wikipedia.org/wiki/%25D7%259E%25D7%25A9%25D7%2595%25D7%259C%25D7%25A9" title="משולש – Hebräisch" lang="he" hreflang="he" data-title="משולש" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hi.wikipedia.org/wiki/%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B0%25E0%25A4%25BF%25E0%25A4%25AD%25E0%25A5%2581%25E0%25A4%259C" title="त्रिभुज – Hindi" lang="hi" hreflang="hi" data-title="त्रिभुज" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hr.wikipedia.org/wiki/Trokut" title="Trokut – Kroazisch" lang="hr" hreflang="hr" data-title="Trokut" data-language-autonym="Hrvatski" data-language-local-name="Kroazisch" class="interlanguage-link-target"><span>Hrvatski</span></a></li> <li class="interlanguage-link interwiki-hsb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hsb.wikipedia.org/wiki/T%25C5%2599ir%25C3%25B3%25C5%25BEk" title="Třiróžk – Obersorbisch" lang="hsb" hreflang="hsb" data-title="Třiróžk" data-language-autonym="Hornjoserbsce" data-language-local-name="Obersorbisch" class="interlanguage-link-target"><span>Hornjoserbsce</span></a></li> <li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ht.wikipedia.org/wiki/Triyang" title="Triyang – Haitisch" lang="ht" hreflang="ht" data-title="Triyang" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitisch" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hu.wikipedia.org/wiki/H%25C3%25A1romsz%25C3%25B6g" title="Háromszög – Ungarisch" lang="hu" hreflang="hu" data-title="Háromszög" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hy.wikipedia.org/wiki/%25D4%25B5%25D5%25BC%25D5%25A1%25D5%25B6%25D5%25AF%25D5%25B5%25D5%25B8%25D6%2582%25D5%25B6" title="Եռանկյուն – Armenisch" lang="hy" hreflang="hy" data-title="Եռանկյուն" data-language-autonym="Հայերեն" data-language-local-name="Armenisch" class="interlanguage-link-target"><span>Հայերեն</span></a></li> <li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ia.wikipedia.org/wiki/Triangulo" title="Triangulo – Interlingua" lang="ia" hreflang="ia" data-title="Triangulo" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://id.wikipedia.org/wiki/Segitiga" title="Segitiga – Indonesisch" lang="id" hreflang="id" data-title="Segitiga" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-io mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://io.wikipedia.org/wiki/Triangulo" title="Triangulo – Ido" lang="io" hreflang="io" data-title="Triangulo" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li> <li class="interlanguage-link interwiki-is mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://is.wikipedia.org/wiki/%25C3%259Er%25C3%25ADhyrningur" title="Þríhyrningur – Iisländisch" lang="is" hreflang="is" data-title="Þríhyrningur" data-language-autonym="Íslenska" data-language-local-name="Iisländisch" class="interlanguage-link-target"><span>Íslenska</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://it.wikipedia.org/wiki/Triangolo" title="Triangolo – Italiänisch" lang="it" hreflang="it" data-title="Triangolo" data-language-autonym="Italiano" data-language-local-name="Italiänisch" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E5%25BD%25A2" title="三角形 – Japanisch" lang="ja" hreflang="ja" data-title="三角形" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://jam.wikipedia.org/wiki/Chrayanggl" title="Chrayanggl – Jamaikanisch-Kreolisch" lang="jam" hreflang="jam" data-title="Chrayanggl" data-language-autonym="Patois" data-language-local-name="Jamaikanisch-Kreolisch" class="interlanguage-link-target"><span>Patois</span></a></li> <li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://jv.wikipedia.org/wiki/Pasagi_telu" title="Pasagi telu – Javanisch" lang="jv" hreflang="jv" data-title="Pasagi telu" data-language-autonym="Jawa" data-language-local-name="Javanisch" class="interlanguage-link-target"><span>Jawa</span></a></li> <li class="interlanguage-link interwiki-ka badge-Q17437796 badge-featuredarticle mw-list-item" title="bsundersch glungene Artikel"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ka.wikipedia.org/wiki/%25E1%2583%25A1%25E1%2583%2590%25E1%2583%259B%25E1%2583%2599%25E1%2583%25A3%25E1%2583%2597%25E1%2583%25AE%25E1%2583%2594%25E1%2583%2593%25E1%2583%2598" title="სამკუთხედი – Georgisch" lang="ka" hreflang="ka" data-title="სამკუთხედი" data-language-autonym="ქართული" data-language-local-name="Georgisch" class="interlanguage-link-target"><span>ქართული</span></a></li> <li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://kaa.wikipedia.org/wiki/%25C3%259Ashm%25C3%25BAyeshlik" title="Úshmúyeshlik – Karakalpakisch" lang="kaa" hreflang="kaa" data-title="Úshmúyeshlik" data-language-autonym="Qaraqalpaqsha" data-language-local-name="Karakalpakisch" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li> <li class="interlanguage-link interwiki-kbd mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://kbd.wikipedia.org/wiki/%25D0%25A9%25D0%25B8%25D0%25BC%25D1%258D" title="Щимэ – Kabardinisch" lang="kbd" hreflang="kbd" data-title="Щимэ" data-language-autonym="Адыгэбзэ" data-language-local-name="Kabardinisch" class="interlanguage-link-target"><span>Адыгэбзэ</span></a></li> <li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://kk.wikipedia.org/wiki/%25D2%25AE%25D1%2588%25D0%25B1%25D2%25B1%25D1%2580%25D1%258B%25D1%2588" title="Үшбұрыш – Kasachisch" lang="kk" hreflang="kk" data-title="Үшбұрыш" data-language-autonym="Қазақша" data-language-local-name="Kasachisch" class="interlanguage-link-target"><span>Қазақша</span></a></li> <li class="interlanguage-link interwiki-km badge-Q17437796 badge-featuredarticle mw-list-item" title="bsundersch glungene Artikel"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://km.wikipedia.org/wiki/%25E1%259E%258F%25E1%259F%2592%25E1%259E%259A%25E1%259E%25B8%25E1%259E%2580%25E1%259F%2584%25E1%259E%258E" title="ត្រីកោណ – Kambodschanisch" lang="km" hreflang="km" data-title="ត្រីកោណ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Kambodschanisch" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li> <li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://kn.wikipedia.org/wiki/%25E0%25B2%25A4%25E0%25B3%258D%25E0%25B2%25B0%25E0%25B2%25BF%25E0%25B2%2595%25E0%25B3%258B%25E0%25B2%25A8" title="ತ್ರಿಕೋನ – Kannada" lang="kn" hreflang="kn" data-title="ತ್ರಿಕೋನ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ko.wikipedia.org/wiki/%25EC%2582%25BC%25EA%25B0%2581%25ED%2598%2595" title="삼각형 – Koreaanisch" lang="ko" hreflang="ko" data-title="삼각형" data-language-autonym="한국어" data-language-local-name="Koreaanisch" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ku.wikipedia.org/wiki/S%25C3%25AAgo%25C5%259Fe" title="Sêgoşe – Kurdisch" lang="ku" hreflang="ku" data-title="Sêgoşe" data-language-autonym="Kurdî" data-language-local-name="Kurdisch" class="interlanguage-link-target"><span>Kurdî</span></a></li> <li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://kw.wikipedia.org/wiki/Trihorn" title="Trihorn – Kornisch" lang="kw" hreflang="kw" data-title="Trihorn" data-language-autonym="Kernowek" data-language-local-name="Kornisch" class="interlanguage-link-target"><span>Kernowek</span></a></li> <li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ky.wikipedia.org/wiki/%25D2%25AE%25D1%2587_%25D0%25B1%25D1%2583%25D1%2580%25D1%2587%25D1%2582%25D1%2583%25D0%25BA" title="Үч бурчтук – Kirgiisisch" lang="ky" hreflang="ky" data-title="Үч бурчтук" data-language-autonym="Кыргызча" data-language-local-name="Kirgiisisch" class="interlanguage-link-target"><span>Кыргызча</span></a></li> <li class="interlanguage-link interwiki-la mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://la.wikipedia.org/wiki/Triangulum" title="Triangulum – Latiin" lang="la" hreflang="la" data-title="Triangulum" data-language-autonym="Latina" data-language-local-name="Latiin" class="interlanguage-link-target"><span>Latina</span></a></li> <li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lfn.wikipedia.org/wiki/Triangulo" title="Triangulo – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Triangulo" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li> <li class="interlanguage-link interwiki-li mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://li.wikipedia.org/wiki/Driehook" title="Driehook – Limburgisch" lang="li" hreflang="li" data-title="Driehook" data-language-autonym="Limburgs" data-language-local-name="Limburgisch" class="interlanguage-link-target"><span>Limburgs</span></a></li> <li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lij.wikipedia.org/wiki/Triangolo" title="Triangolo – Ligurisch" lang="lij" hreflang="lij" data-title="Triangolo" data-language-autonym="Ligure" data-language-local-name="Ligurisch" class="interlanguage-link-target"><span>Ligure</span></a></li> <li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lmo.wikipedia.org/wiki/Tri%25C3%25A0ngol" title="Triàngol – Lombardisch" lang="lmo" hreflang="lmo" data-title="Triàngol" data-language-autonym="Lombard" data-language-local-name="Lombardisch" class="interlanguage-link-target"><span>Lombard</span></a></li> <li class="interlanguage-link interwiki-ln mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ln.wikipedia.org/wiki/Mpanzi-mis%25C3%25A1to" title="Mpanzi-misáto – Lingala" lang="ln" hreflang="ln" data-title="Mpanzi-misáto" data-language-autonym="Lingála" data-language-local-name="Lingala" class="interlanguage-link-target"><span>Lingála</span></a></li> <li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lo.wikipedia.org/wiki/%25E0%25BA%25AE%25E0%25BA%25B9%25E0%25BA%259A%25E0%25BA%25AA%25E0%25BA%25B2%25E0%25BA%25A1%25E0%25BB%2581%25E0%25BA%2588" title="ຮູບສາມແຈ – Laozisch" lang="lo" hreflang="lo" data-title="ຮູບສາມແຈ" data-language-autonym="ລາວ" data-language-local-name="Laozisch" class="interlanguage-link-target"><span>ລາວ</span></a></li> <li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lt.wikipedia.org/wiki/Trikampis" title="Trikampis – Litauisch" lang="lt" hreflang="lt" data-title="Trikampis" data-language-autonym="Lietuvių" data-language-local-name="Litauisch" class="interlanguage-link-target"><span>Lietuvių</span></a></li> <li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lv.wikipedia.org/wiki/Trijst%25C5%25ABris" title="Trijstūris – Lettisch" lang="lv" hreflang="lv" data-title="Trijstūris" data-language-autonym="Latviešu" data-language-local-name="Lettisch" class="interlanguage-link-target"><span>Latviešu</span></a></li> <li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mg.wikipedia.org/wiki/Telolafy" title="Telolafy – Madagassisch" lang="mg" hreflang="mg" data-title="Telolafy" data-language-autonym="Malagasy" data-language-local-name="Madagassisch" class="interlanguage-link-target"><span>Malagasy</span></a></li> <li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mhr.wikipedia.org/wiki/%25D0%259A%25D1%2583%25D0%25BC%25D0%25BB%25D1%2583%25D0%25BA" title="Кумлук – Ostmari" lang="mhr" hreflang="mhr" data-title="Кумлук" data-language-autonym="Олык марий" data-language-local-name="Ostmari" class="interlanguage-link-target"><span>Олык марий</span></a></li> <li class="interlanguage-link interwiki-min mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://min.wikipedia.org/wiki/Sagitigo" title="Sagitigo – Minangkabau-Schpraach" lang="min" hreflang="min" data-title="Sagitigo" data-language-autonym="Minangkabau" data-language-local-name="Minangkabau-Schpraach" class="interlanguage-link-target"><span>Minangkabau</span></a></li> <li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mk.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D0%25B8%25D0%25B0%25D0%25B3%25D0%25BE%25D0%25BB%25D0%25BD%25D0%25B8%25D0%25BA" title="Триаголник – Mazedonisch" lang="mk" hreflang="mk" data-title="Триаголник" data-language-autonym="Македонски" data-language-local-name="Mazedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li> <li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ml.wikipedia.org/wiki/%25E0%25B4%25A4%25E0%25B5%258D%25E0%25B4%25B0%25E0%25B4%25BF%25E0%25B4%2595%25E0%25B5%258B%25E0%25B4%25A3%25E0%25B4%2582" title="ത്രികോണം – Malayalam" lang="ml" hreflang="ml" data-title="ത്രികോണം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li> <li class="interlanguage-link interwiki-mn badge-Q17437796 badge-featuredarticle mw-list-item" title="bsundersch glungene Artikel"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mn.wikipedia.org/wiki/%25D0%2593%25D1%2583%25D1%2580%25D0%25B2%25D0%25B0%25D0%25BB%25D0%25B6%25D0%25B8%25D0%25BD" title="Гурвалжин – Mongolisch" lang="mn" hreflang="mn" data-title="Гурвалжин" data-language-autonym="Монгол" data-language-local-name="Mongolisch" class="interlanguage-link-target"><span>Монгол</span></a></li> <li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mr.wikipedia.org/wiki/%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B0%25E0%25A4%25BF%25E0%25A4%2595%25E0%25A5%258B%25E0%25A4%25A3" title="त्रिकोण – Marathi" lang="mr" hreflang="mr" data-title="त्रिकोण" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li> <li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ms.wikipedia.org/wiki/Segi_tiga" title="Segi tiga – Malaiisch" lang="ms" hreflang="ms" data-title="Segi tiga" data-language-autonym="Bahasa Melayu" data-language-local-name="Malaiisch" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li> <li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mt.wikipedia.org/wiki/Trijangolu" title="Trijangolu – Maltesisch" lang="mt" hreflang="mt" data-title="Trijangolu" data-language-autonym="Malti" data-language-local-name="Maltesisch" class="interlanguage-link-target"><span>Malti</span></a></li> <li class="interlanguage-link interwiki-my mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://my.wikipedia.org/wiki/%25E1%2580%2590%25E1%2580%25BC%25E1%2580%25AD%25E1%2580%2582%25E1%2580%25B6" title="တြိဂံ – Birmanisch" lang="my" hreflang="my" data-title="တြိဂံ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Birmanisch" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li> <li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ne.wikipedia.org/wiki/%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B0%25E0%25A4%25BF%25E0%25A4%25AD%25E0%25A5%2581%25E0%25A4%259C" title="त्रिभुज – Nepalesisch" lang="ne" hreflang="ne" data-title="त्रिभुज" data-language-autonym="नेपाली" data-language-local-name="Nepalesisch" class="interlanguage-link-target"><span>नेपाली</span></a></li> <li class="interlanguage-link interwiki-new mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://new.wikipedia.org/wiki/%25E0%25A4%25B8%25E0%25A5%258D%25E0%25A4%25B5%25E0%25A4%2595%25E0%25A5%2581%25E0%25A4%2582" title="स्वकुं – Newarisch" lang="new" hreflang="new" data-title="स्वकुं" data-language-autonym="नेपाल भाषा" data-language-local-name="Newarisch" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nl.wikipedia.org/wiki/Driehoek_(meetkunde)" title="Driehoek (meetkunde) – Niderländisch" lang="nl" hreflang="nl" data-title="Driehoek (meetkunde)" data-language-autonym="Nederlands" data-language-local-name="Niderländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nn.wikipedia.org/wiki/Trekant" title="Trekant – Norwegisch Nynorsk" lang="nn" hreflang="nn" data-title="Trekant" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegisch Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-no mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://no.wikipedia.org/wiki/Trekant" title="Trekant – Norwegisch Bokmål" lang="nb" hreflang="nb" data-title="Trekant" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegisch Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li> <li class="interlanguage-link interwiki-nrm mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nrm.wikipedia.org/wiki/Trian" title="Trian – Normannisch" lang="nrf" hreflang="nrf" data-title="Trian" data-language-autonym="Nouormand" data-language-local-name="Normannisch" class="interlanguage-link-target"><span>Nouormand</span></a></li> <li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://oc.wikipedia.org/wiki/Triangle" title="Triangle – Okzitanisch" lang="oc" hreflang="oc" data-title="Triangle" data-language-autonym="Occitan" data-language-local-name="Okzitanisch" class="interlanguage-link-target"><span>Occitan</span></a></li> <li class="interlanguage-link interwiki-or mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://or.wikipedia.org/wiki/%25E0%25AC%25A4%25E0%25AD%258D%25E0%25AC%25B0%25E0%25AC%25BF%25E0%25AC%25AD%25E0%25AD%2581%25E0%25AC%259C" title="ତ୍ରିଭୁଜ – Orija" lang="or" hreflang="or" data-title="ତ୍ରିଭୁଜ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Orija" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li> <li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pa.wikipedia.org/wiki/%25E0%25A8%25A4%25E0%25A8%25BF%25E0%25A8%2595%25E0%25A9%258B%25E0%25A8%25A8" title="ਤਿਕੋਨ – Pandschabisch" lang="pa" hreflang="pa" data-title="ਤਿਕੋਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Pandschabisch" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li> <li class="interlanguage-link interwiki-pfl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pfl.wikipedia.org/wiki/Dreieck" title="Dreieck – Pfälzisch" lang="pfl" hreflang="pfl" data-title="Dreieck" data-language-autonym="Pälzisch" data-language-local-name="Pfälzisch" class="interlanguage-link-target"><span>Pälzisch</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pl.wikipedia.org/wiki/Tr%25C3%25B3jk%25C4%2585t" title="Trójkąt – Polnisch" lang="pl" hreflang="pl" data-title="Trójkąt" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pnb.wikipedia.org/wiki/%25D8%25AA%25DA%25A9%25D9%2588%25D9%2586" title="تکون – Westliches Panjabi" lang="pnb" hreflang="pnb" data-title="تکون" data-language-autonym="پنجابی" data-language-local-name="Westliches Panjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li> <li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ps.wikipedia.org/wiki/%25D8%25AF%25D8%25B1%25DB%2590%25DA%2585%25D9%2586%25DA%2589%25DB%258C" title="درېڅنډی – Paschtu" lang="ps" hreflang="ps" data-title="درېڅنډی" data-language-autonym="پښتو" data-language-local-name="Paschtu" class="interlanguage-link-target"><span>پښتو</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pt.wikipedia.org/wiki/Tri%25C3%25A2ngulo" title="Triângulo – Portugiisisch" lang="pt" hreflang="pt" data-title="Triângulo" data-language-autonym="Português" data-language-local-name="Portugiisisch" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://qu.wikipedia.org/wiki/Kimsak%2527uchu" title="Kimsak'uchu – Quechua" lang="qu" hreflang="qu" data-title="Kimsak'uchu" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ro.wikipedia.org/wiki/Triunghi" title="Triunghi – Rumänisch" lang="ro" hreflang="ro" data-title="Triunghi" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ru.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D0%25B5%25D1%2583%25D0%25B3%25D0%25BE%25D0%25BB%25D1%258C%25D0%25BD%25D0%25B8%25D0%25BA" title="Треугольник – Russisch" lang="ru" hreflang="ru" data-title="Треугольник" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://rue.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D0%25B8%25D1%2583%25D0%25B3%25D0%25BE%25D0%25BB%25D0%25BD%25D0%25B8%25D0%25BA" title="Триуголник – Russinisch" lang="rue" hreflang="rue" data-title="Триуголник" data-language-autonym="Русиньскый" data-language-local-name="Russinisch" class="interlanguage-link-target"><span>Русиньскый</span></a></li> <li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://scn.wikipedia.org/wiki/Tri%25C3%25A0nculu" title="Triànculu – Sizilianisch" lang="scn" hreflang="scn" data-title="Triànculu" data-language-autonym="Sicilianu" data-language-local-name="Sizilianisch" class="interlanguage-link-target"><span>Sicilianu</span></a></li> <li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sco.wikipedia.org/wiki/Triangle" title="Triangle – Schottisch" lang="sco" hreflang="sco" data-title="Triangle" data-language-autonym="Scots" data-language-local-name="Schottisch" class="interlanguage-link-target"><span>Scots</span></a></li> <li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sd.wikipedia.org/wiki/%25D9%25BD%25DA%25AA%25D9%2586%25DA%258A%25D9%2588" title="ٽڪنڊو – Sindhi" lang="sd" hreflang="sd" data-title="ٽڪنڊو" data-language-autonym="سنڌي" data-language-local-name="Sindhi" class="interlanguage-link-target"><span>سنڌي</span></a></li> <li class="interlanguage-link interwiki-se mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://se.wikipedia.org/wiki/Golmma%25C4%258Diegat" title="Golmmačiegat – Nord-Samisch" lang="se" hreflang="se" data-title="Golmmačiegat" data-language-autonym="Davvisámegiella" data-language-local-name="Nord-Samisch" class="interlanguage-link-target"><span>Davvisámegiella</span></a></li> <li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sh.wikipedia.org/wiki/Trokut" title="Trokut – Serbo-Kroatisch" lang="sh" hreflang="sh" data-title="Trokut" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Kroatisch" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li> <li class="interlanguage-link interwiki-si mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://si.wikipedia.org/wiki/%25E0%25B6%25AD%25E0%25B7%258A%25E2%2580%258D%25E0%25B6%25BB%25E0%25B7%2592%25E0%25B6%259A%25E0%25B7%259D%25E0%25B6%25AB" title="ත්රිකෝණ – Singhalesisch" lang="si" hreflang="si" data-title="ත්රිකෝණ" data-language-autonym="සිංහල" data-language-local-name="Singhalesisch" class="interlanguage-link-target"><span>සිංහල</span></a></li> <li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://simple.wikipedia.org/wiki/Triangle" title="Triangle – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Triangle" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li> <li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sk.wikipedia.org/wiki/Trojuholn%25C3%25ADk" title="Trojuholník – Slowakisch" lang="sk" hreflang="sk" data-title="Trojuholník" data-language-autonym="Slovenčina" data-language-local-name="Slowakisch" class="interlanguage-link-target"><span>Slovenčina</span></a></li> <li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sl.wikipedia.org/wiki/Trikotnik" title="Trikotnik – Slowenisch" lang="sl" hreflang="sl" data-title="Trikotnik" data-language-autonym="Slovenščina" data-language-local-name="Slowenisch" class="interlanguage-link-target"><span>Slovenščina</span></a></li> <li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://smn.wikipedia.org/wiki/Kulm%25C3%25A2h%25C3%25A2%25C5%25A1" title="Kulmâhâš – Inari-Samisch" lang="smn" hreflang="smn" data-title="Kulmâhâš" data-language-autonym="Anarâškielâ" data-language-local-name="Inari-Samisch" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li> <li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sn.wikipedia.org/wiki/Gonyonhatu" title="Gonyonhatu – Schhona" lang="sn" hreflang="sn" data-title="Gonyonhatu" data-language-autonym="ChiShona" data-language-local-name="Schhona" class="interlanguage-link-target"><span>ChiShona</span></a></li> <li class="interlanguage-link interwiki-so mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://so.wikipedia.org/wiki/Saddexagal" title="Saddexagal – Somali" lang="so" hreflang="so" data-title="Saddexagal" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li> <li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sq.wikipedia.org/wiki/Trek%25C3%25ABnd%25C3%25ABshi" title="Trekëndëshi – Albanisch" lang="sq" hreflang="sq" data-title="Trekëndëshi" data-language-autonym="Shqip" data-language-local-name="Albanisch" class="interlanguage-link-target"><span>Shqip</span></a></li> <li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sr.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D0%25BE%25D1%2583%25D0%25B3%25D0%25B0%25D0%25BE" title="Троугао – Serbisch" lang="sr" hreflang="sr" data-title="Троугао" data-language-autonym="Српски / srpski" data-language-local-name="Serbisch" class="interlanguage-link-target"><span>Српски / srpski</span></a></li> <li class="interlanguage-link interwiki-su mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://su.wikipedia.org/wiki/Juru_tilu" title="Juru tilu – Sundanesisch" lang="su" hreflang="su" data-title="Juru tilu" data-language-autonym="Sunda" data-language-local-name="Sundanesisch" class="interlanguage-link-target"><span>Sunda</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sv.wikipedia.org/wiki/Triangel" title="Triangel – Schwedisch" lang="sv" hreflang="sv" data-title="Triangel" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sw.wikipedia.org/wiki/Pembetatu" title="Pembetatu – Suaheli" lang="sw" hreflang="sw" data-title="Pembetatu" data-language-autonym="Kiswahili" data-language-local-name="Suaheli" class="interlanguage-link-target"><span>Kiswahili</span></a></li> <li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://szl.wikipedia.org/wiki/Trziek" title="Trziek – Schlesisch (Wasserpolnisch)" lang="szl" hreflang="szl" data-title="Trziek" data-language-autonym="Ślůnski" data-language-local-name="Schlesisch (Wasserpolnisch)" class="interlanguage-link-target"><span>Ślůnski</span></a></li> <li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ta.wikipedia.org/wiki/%25E0%25AE%25AE%25E0%25AF%2581%25E0%25AE%2595%25E0%25AF%258D%25E0%25AE%2595%25E0%25AF%258B%25E0%25AE%25A3%25E0%25AE%25AE%25E0%25AF%258D" title="முக்கோணம் – Tamilisch" lang="ta" hreflang="ta" data-title="முக்கோணம்" data-language-autonym="தமிழ்" data-language-local-name="Tamilisch" class="interlanguage-link-target"><span>தமிழ்</span></a></li> <li class="interlanguage-link interwiki-te mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://te.wikipedia.org/wiki/%25E0%25B0%25A4%25E0%25B1%258D%25E0%25B0%25B0%25E0%25B0%25BF%25E0%25B0%25AD%25E0%25B1%2581%25E0%25B0%259C%25E0%25B0%2582" title="త్రిభుజం – Telugu" lang="te" hreflang="te" data-title="త్రిభుజం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li> <li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://tg.wikipedia.org/wiki/%25D0%25A1%25D0%25B5%25D0%25BA%25D1%2583%25D0%25BD%25D2%25B7%25D0%25B0" title="Секунҷа – Tadschikisch" lang="tg" hreflang="tg" data-title="Секунҷа" data-language-autonym="Тоҷикӣ" data-language-local-name="Tadschikisch" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li> <li class="interlanguage-link interwiki-th mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://th.wikipedia.org/wiki/%25E0%25B8%25A3%25E0%25B8%25B9%25E0%25B8%259B%25E0%25B8%25AA%25E0%25B8%25B2%25E0%25B8%25A1%25E0%25B9%2580%25E0%25B8%25AB%25E0%25B8%25A5%25E0%25B8%25B5%25E0%25B9%2588%25E0%25B8%25A2%25E0%25B8%25A1" title="รูปสามเหลี่ยม – Thailändisch" lang="th" hreflang="th" data-title="รูปสามเหลี่ยม" data-language-autonym="ไทย" data-language-local-name="Thailändisch" class="interlanguage-link-target"><span>ไทย</span></a></li> <li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://tl.wikipedia.org/wiki/Tatsulok" title="Tatsulok – Tagalog" lang="tl" hreflang="tl" data-title="Tatsulok" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://tr.wikipedia.org/wiki/%25C3%259C%25C3%25A7gen" title="Üçgen – Türkisch" lang="tr" hreflang="tr" data-title="Üçgen" data-language-autonym="Türkçe" data-language-local-name="Türkisch" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://tt.wikipedia.org/wiki/%25D3%25A8%25D1%2587%25D0%25BF%25D0%25BE%25D1%2587%25D0%25BC%25D0%25B0%25D0%25BA" title="Өчпочмак – Tatarisch" lang="tt" hreflang="tt" data-title="Өчпочмак" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatarisch" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uk.wikipedia.org/wiki/%25D0%25A2%25D1%2580%25D0%25B8%25D0%25BA%25D1%2583%25D1%2582%25D0%25BD%25D0%25B8%25D0%25BA" title="Трикутник – Ukrainisch" lang="uk" hreflang="uk" data-title="Трикутник" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ur.wikipedia.org/wiki/%25D9%2585%25D8%25AB%25D9%2584%25D8%25AB" title="مثلث – Urdu" lang="ur" hreflang="ur" data-title="مثلث" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li> <li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uz.wikipedia.org/wiki/Uchburchak" title="Uchburchak – Usbekisch" lang="uz" hreflang="uz" data-title="Uchburchak" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Usbekisch" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li> <li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vec.wikipedia.org/wiki/Triango%25C5%2582o" title="Triangoło – Venetisch" lang="vec" hreflang="vec" data-title="Triangoło" data-language-autonym="Vèneto" data-language-local-name="Venetisch" class="interlanguage-link-target"><span>Vèneto</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vi.wikipedia.org/wiki/Tam_gi%25C3%25A1c" title="Tam giác – Vietnamesisch" lang="vi" hreflang="vi" data-title="Tam giác" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vls.wikipedia.org/wiki/Drieoek" title="Drieoek – Westflämisch" lang="vls" hreflang="vls" data-title="Drieoek" data-language-autonym="West-Vlams" data-language-local-name="Westflämisch" class="interlanguage-link-target"><span>West-Vlams</span></a></li> <li class="interlanguage-link interwiki-war mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://war.wikipedia.org/wiki/Trayanggulo" title="Trayanggulo – Waray" lang="war" hreflang="war" data-title="Trayanggulo" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li> <li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://wuu.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E5%25BD%25A2" title="三角形 – Wu" lang="wuu" hreflang="wuu" data-title="三角形" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li> <li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://yi.wikipedia.org/wiki/%25D7%2593%25D7%25A8%25D7%2599%25D7%2599%25D7%25A2%25D7%25A7" title="דרייעק – Jiddisch" lang="yi" hreflang="yi" data-title="דרייעק" data-language-autonym="ייִדיש" data-language-local-name="Jiddisch" class="interlanguage-link-target"><span>ייִדיש</span></a></li> <li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://yo.wikipedia.org/wiki/An%25C3%25ADgunm%25E1%25BA%25B9%25CC%2581ta" title="Anígunmẹ́ta – Yoruba" lang="yo" hreflang="yo" data-title="Anígunmẹ́ta" data-language-autonym="Yorùbá" data-language-local-name="Yoruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li> <li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zgh.wikipedia.org/wiki/%25E2%25B4%25B0%25E2%25B5%258E%25E2%25B4%25BD%25E2%25B5%2595%25E2%25B4%25B0%25E2%25B4%25B9" title="ⴰⵎⴽⵕⴰⴹ – Tamazight" lang="zgh" hreflang="zgh" data-title="ⴰⵎⴽⵕⴰⴹ" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="Tamazight" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E5%25BD%25A2" title="三角形 – Chineesisch" lang="zh" hreflang="zh" data-title="三角形" data-language-autonym="中文" data-language-local-name="Chineesisch" class="interlanguage-link-target"><span>中文</span></a></li> <li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh-classical.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E5%25BD%25A2" title="三角形 – Klassisches Chinesisch" lang="lzh" hreflang="lzh" data-title="三角形" data-language-autonym="文言" data-language-local-name="Klassisches Chinesisch" class="interlanguage-link-target"><span>文言</span></a></li> <li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh-min-nan.wikipedia.org/wiki/Sa%25E2%2581%25BF-kak-h%25C3%25AAng" title="Saⁿ-kak-hêng – Min Nan" lang="nan" hreflang="nan" data-title="Saⁿ-kak-hêng" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Min Nan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh-yue.wikipedia.org/wiki/%25E4%25B8%2589%25E8%25A7%2592%25E5%25BD%25A2" title="三角形 – Kantonesisch" lang="yue" hreflang="yue" data-title="三角形" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Alemannische Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">Letschti Bearbeitig vo dere Syte: 04:55, 9. Oktober 2023</li> <li id="footer-info-copyright">Dr Inhalt isch verfiegbar unter <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://creativecommons.org/licenses/by-sa/4.0/deed.als">CC BY-SA 4.0</a>, wänn nyt andersch aagee isch.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Daateschutz</a></li> <li id="footer-places-about"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Wikipedia:Iber_Wikipedia?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Iber Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://als-m-wikipedia-org.translate.goog/wiki/Wikipedia:Impressum?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://developer.wikimedia.org">Softwareentwickler</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://stats.wikimedia.org/%23/als.wikipedia.org">Statischtike</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellignahm zue Cookie</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/de">Nutzigsbedingige</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://als.wikipedia.org/w/index.php?title%3DDreieck%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Arbetsflechi</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-f5zsm","wgBackendResponseTime":220,"wgPageParseReport":{"limitreport":{"cputime":"0.131","walltime":"0.369","ppvisitednodes":{"value":434,"limit":1000000},"postexpandincludesize":{"value":7470,"limit":2097152},"templateargumentsize":{"value":296,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":2771,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 150.554 1 -total"," 77.55% 116.762 3 Vorlage:Literatur"," 4.92% 7.408 1 Vorlage:Dialekt"," 4.20% 6.327 1 Vorlage:Titel"," 3.03% 4.558 1 Vorlage:Übersetzungshinweis"," 2.97% 4.466 1 Vorlage:Commonscat"," 2.94% 4.429 1 Vorlage:Google_Buch"," 2.93% 4.417 1 Vorlage:MathWorld"," 2.47% 3.719 2 Vorlage:Gliichheitszeiche"," 1.67% 2.518 1 Vorlage:Commons"]},"scribunto":{"limitreport-timeusage":{"value":"0.049","limit":"10.000"},"limitreport-memusage":{"value":2390841,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-684ff6bbf5-tmzll","timestamp":"20241125220754","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Dreieck","url":"https:\/\/als.wikipedia.org\/wiki\/Dreieck","sameAs":"http:\/\/www.wikidata.org\/entity\/Q19821","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q19821","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2023-10-09T03:54:04Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/dd\/Dreieck.svg"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('it', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&hl=en-GB&client=wt" type="text/javascript"></script> </body> </html>