CINXE.COM

Search results for: sweep excitation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sweep excitation</title> <meta name="description" content="Search results for: sweep excitation"> <meta name="keywords" content="sweep excitation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sweep excitation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sweep excitation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 515</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sweep excitation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hu">Y. Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Zhao"> X. Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi"> T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Koike"> Y. Koike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anechoic%20room" title="anechoic room">anechoic room</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20hammer" title=" impulse hammer"> impulse hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=loudspeaker" title=" loudspeaker"> loudspeaker</a>, <a href="https://publications.waset.org/abstracts/search?q=reverberation%20room" title=" reverberation room"> reverberation room</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20signal" title=" sweep signal"> sweep signal</a> </p> <a href="https://publications.waset.org/abstracts/39427/excitation-experiments-of-a-cone-loudspeaker-and-vibration-acoustic-analysis-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Vibration and Parametric Instability Analysis of Delaminated Composite Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Szekr%C3%A9nyes">A. Szekrényes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delamination" title="delamination">delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20excitation" title=" parametric excitation"> parametric excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20excitation" title=" sweep excitation"> sweep excitation</a> </p> <a href="https://publications.waset.org/abstracts/47603/vibration-and-parametric-instability-analysis-of-delaminated-composite-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kiran%20Reddy">M. Kiran Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sreenivasa%20Rao"> K. Sreenivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excitation%20modeling" title="excitation modeling">excitation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20models" title=" hidden Markov models"> hidden Markov models</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch-synchronous%20frames" title=" pitch-synchronous frames"> pitch-synchronous frames</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20synthesis" title=" speech synthesis"> speech synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20coefficients" title=" wavelet coefficients"> wavelet coefficients</a> </p> <a href="https://publications.waset.org/abstracts/102457/excitation-modeling-for-hidden-markov-model-based-speech-synthesis-based-on-wavelet-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement-type%20excitation" title="displacement-type excitation">displacement-type excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=inerter" title=" inerter"> inerter</a>, <a href="https://publications.waset.org/abstracts/search?q=load-type%20excitation" title=" load-type excitation"> load-type excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20degree%20of%20freedom%20vibration" title=" one degree of freedom vibration"> one degree of freedom vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20connection" title=" parallel connection"> parallel connection</a> </p> <a href="https://publications.waset.org/abstracts/90102/theoretical-study-on-the-forced-vibration-of-one-degree-of-freedom-system-equipped-with-inerter-under-load-type-or-displacement-type-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Mixed Frequency Excitation of an Electrostatically Actuated Resonator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20H.%20Ramini">Abdallah H. Ramini</a>, <a href="https://publications.waset.org/abstracts/search?q=Alwathiqbellah%20I.%20Ibrahim"> Alwathiqbellah I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20I.%20Younis"> Mohammad I. Younis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler Vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatically%20actuated%20resonator" title="electrostatically actuated resonator">electrostatically actuated resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-frequency%20excitation" title=" multi-frequency excitation"> multi-frequency excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20harmonic%20signals" title=" AC harmonic signals"> AC harmonic signals</a> </p> <a href="https://publications.waset.org/abstracts/22118/mixed-frequency-excitation-of-an-electrostatically-actuated-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> The Analysis of Loss-of-Excitation Algorithm for Synchronous Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavle%20Daki%C4%87">Pavle Dakić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrije%20Kotur"> Dimitrije Kotur</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Stojanovi%C4%87"> Zoran Stojanović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the study in which the excitation system fault of synchronous generator is simulated. In a case of excitation system fault (loss of field), distance relay is used to prevent further damage. Loss-of-field relay calculates complex impedance using measured voltage and current at the generator terminals. In order to obtain phasors from sampled measured values, discrete Fourier transform is used. All simulations are conducted using Matlab and Simulink software package. The analysis is conducted on the two machine system which supplies equivalent load. While simulating loss of excitation on one generator in different conditions (at idle operation, weakly loaded, and fully loaded), diagrams of active power, reactive power, and measured impedance are analyzed and monitored. Moreover, in the simulations, the effect of generator load on relay tripping time is investigated. In conclusion, the performed tests confirm that the fault in the excitation system can be detected by measuring the impedance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loss-of-excitation" title="loss-of-excitation">loss-of-excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20protection" title=" distance protection"> distance protection</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transformation" title=" Fourier transformation"> Fourier transformation</a> </p> <a href="https://publications.waset.org/abstracts/64811/the-analysis-of-loss-of-excitation-algorithm-for-synchronous-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> A Comprehensive Review of Foam Assisted Water Alternating Gas (FAWAG) Technique: Foam Applications and Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shabib-Asl">A. Shabib-Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdalla%20Ayoub%20Mohammed"> M. Abdalla Ayoub Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Alta%E2%80%99ee"> A. F. Alta’ee</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bin%20Mohd%20Saaid"> I. Bin Mohd Saaid</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Paulo%20Jose%20Valentim"> P. Paulo Jose Valentim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few decades, much focus has been placed on enhancing oil recovery from existing fields. This is accomplished by the study and application of various methods. As for recent cases, the study of fluid mobility control and sweep efficiency in gas injection process as well as water alternating gas (WAG) method have demonstrated positive results on oil recovery and thus gained wide interest in petroleum industry. WAG injection application results in an increased oil recovery. Its mechanism consists in reduction of gas oil ratio (GOR). However, there are some problems associated with this which includes poor volumetric sweep efficiency due to its low density and high mobility when compared with oil. This has led to the introduction of foam assisted water alternating gas (FAWAG) technique, which in contrast with WAG injection, acts in improving the sweep efficiency and reducing the gas oil ration therefore maximizing the production rate from the producer wells. This paper presents a comprehensive review of FAWAG process from perspective of Snorre field experience. In addition, some comparative results between FAWAG and the other EOR methods are presented including their setbacks. The main aim is to provide a solid background for future laboratory research and successful field application-extend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GOR" title="GOR">GOR</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20ratio" title=" mobility ratio"> mobility ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20efficiency" title=" sweep efficiency"> sweep efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=WAG" title=" WAG "> WAG </a> </p> <a href="https://publications.waset.org/abstracts/14396/a-comprehensive-review-of-foam-assisted-water-alternating-gas-fawag-technique-foam-applications-and-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">508</span> Vibration Absorption Strategy for Multi-Frequency Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Der%20Chyan%20Lin">Der Chyan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bessel%20function" title="Bessel function">Bessel function</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20excitation" title=" frequency modulated excitation"> frequency modulated excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorber" title=" vibration absorber"> vibration absorber</a> </p> <a href="https://publications.waset.org/abstracts/132303/vibration-absorption-strategy-for-multi-frequency-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">507</span> CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sakhaei">Ehsan Sakhaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Taherabadi"> Ali Taherabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aft%20sweep%20wing" title="aft sweep wing">aft sweep wing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20method" title=" CFD method"> CFD method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=Roskam" title=" Roskam"> Roskam</a>, <a href="https://publications.waset.org/abstracts/search?q=Spalart-Allmaras%20model" title=" Spalart-Allmaras model"> Spalart-Allmaras model</a> </p> <a href="https://publications.waset.org/abstracts/33671/cfd-analysis-of-an-aft-sweep-wing-in-subsonic-flow-and-making-analogy-with-roskam-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Dominant Correlation Effects in Atomic Spectra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Klar">Hubert Klar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=resonances" title=" resonances"> resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20ionization" title=" threshold ionization"> threshold ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=Cooper%20pair" title=" Cooper pair"> Cooper pair</a> </p> <a href="https://publications.waset.org/abstracts/42435/dominant-correlation-effects-in-atomic-spectra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Suitable Tuning Method Selection for PID Controller Used in Digital Excitation System of Brushless Synchronous Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak%20M.%20Sajnekar">Deepak M. Sajnekar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Deshpande"> S. B. Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Mohril"> R. M. Mohril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present many rotary excitation control system are using analog type of Automatic Voltage Regulator which now started to replace with the digital automatic voltage regulator which is provided with PID controller and tuning of PID controller is a challenging task. The cases where digital excitation control system is used tuning of PID controller are still carried out by pole placement method. Tuning of PID controller used for static excitation control system is not challenging because it does not involve exciter time constant. This paper discusses two methods of tuning PID controller i.e. Pole placement method and pole zero cancellation method. GUI prepared for both the methods on the platform of MATLAB. Using this GUI, performance results and time required for tuning for both the methods are compared. Sensitivity of the methods is also presented with parameter variation like loop gain ‘K’ and exciter time constant ‘te’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20excitation%20system" title="digital excitation system">digital excitation system</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20voltage%20regulator" title=" automatic voltage regulator"> automatic voltage regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=pole%20placement%20method" title=" pole placement method"> pole placement method</a>, <a href="https://publications.waset.org/abstracts/search?q=pole%20zero%20cancellation%20method" title=" pole zero cancellation method"> pole zero cancellation method</a> </p> <a href="https://publications.waset.org/abstracts/12214/suitable-tuning-method-selection-for-pid-controller-used-in-digital-excitation-system-of-brushless-synchronous-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">678</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> A One Dimensional Particle in Cell Model for Excimer Lamps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali">W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belasri"> A. Belasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we study a planar lamp filled with neon-xenon gas. We use a one-dimensional particle in a cell with Monte Carlo simulation (PIC-MCC) to investigate the effect xenon concentration on the energy deposited on excitation, ionization and ions. A Xe-Ne discharge is studied for a gas pressure of 400 torr. The results show an efficient Xe20-Ne mixture with an applied voltage of 1.2KV; the xenon excitation energy represents 65% form total energy dissipated in the discharge. We have also studied electrical properties and the energy balance a discharge for Xe50-Ne which needs a voltage of 2kv; the xenon energy is than more important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge" title="dielectric barrier discharge">dielectric barrier discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation" title=" excitation"> excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=lamps" title=" lamps"> lamps</a> </p> <a href="https://publications.waset.org/abstracts/93201/a-one-dimensional-particle-in-cell-model-for-excimer-lamps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Cecrdle">Jiri Cecrdle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title="aeroelasticity">aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=whirl%20flutter" title=" whirl flutter"> whirl flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=W%20WING%20demonstrator" title=" W WING demonstrator"> W WING demonstrator</a> </p> <a href="https://publications.waset.org/abstracts/159787/w-wing-aeroelastic-demonstrator-for-experimental-investigation-into-whirl-flutter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chong%20Zhang">Chong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Xuan%20Tao"> Mu-Xuan Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biaxial%20bending%20moment%20capacity" title="biaxial bending moment capacity">biaxial bending moment capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial%20seismic%20excitation" title=" biaxial seismic excitation"> biaxial seismic excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20beam%20model" title=" fiber beam model"> fiber beam model</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20contour%20method" title=" load contour method"> load contour method</a>, <a href="https://publications.waset.org/abstracts/search?q=strong-column-weak-beam" title=" strong-column-weak-beam"> strong-column-weak-beam</a> </p> <a href="https://publications.waset.org/abstracts/125740/research-of-strong-column-weak-beam-criteria-of-reinforced-concrete-frames-subjected-to-biaxial-seismic-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> A Study on Diversity of the Family Encyrtidae (Hymenoptera: Chalcidoidea) in Forest Habitat of Doon Valley, Uttarakhand, India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Nautiyal">Rashmi Nautiyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Singh"> Sudhir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encyrtidae is the largest family of superfamily Chalcidoidea of parasitic Hymenoptera group. They are endoparasitoids or hyperparasitoids of other arthropods and have the greatest impact on maintaining diversity. It not only forms a major component of diversity itself but also is very important in sustaining diversity in other groups. They are used as efficient biological control agents against key insect pests world over. The present study is based on the collection of Encyrtidae (Chalcidoidea: Hymenoptera) made during a survey in Doon Valley from 2008 to 2011 in all the five seasons (Spring, Summer cum Pre-monsoon, Monsoon, Post-monsoon, Winter) for each year. The collections were made from forest habitat in different localities of the Valley using sweep net and yellow pan trap methods. A total of 1346 specimens of encyrtids were collected and identified from the forest habitat (745 with a sweep net and 601with yellow pan trap).Of these, season-wise (post monsoon, spring, summer, monsoon, and winter) represented Encyrtids were 30.46%, 19.31%, 17.16%, 16.64% and 16.41%, respectively. A total of 161 species of Encyrtids belonging to 43 genera under 2 subfamilies were recorded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Encyrtidae" title=" Encyrtidae"> Encyrtidae</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20net" title=" sweep net"> sweep net</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20pan" title=" yellow pan"> yellow pan</a> </p> <a href="https://publications.waset.org/abstracts/69600/a-study-on-diversity-of-the-family-encyrtidae-hymenoptera-chalcidoidea-in-forest-habitat-of-doon-valley-uttarakhand-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulikyan%20Azatuhi"> Ulikyan Azatuhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.&nbsp; Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude&ndash;phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transition%20process" title="transition process">transition process</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20motor" title=" synchronous motor"> synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20mode" title=" excitation mode"> excitation mode</a>, <a href="https://publications.waset.org/abstracts/search?q=regulator" title=" regulator"> regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a> </p> <a href="https://publications.waset.org/abstracts/108125/investigating-the-regulation-system-of-the-synchronous-motor-excitation-mode-serving-as-a-reactive-power-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Reduction Study of As(III)-Cysteine Complex through Linear Sweep Voltammetry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Mittal">Sunil Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhpreet%20Singh"> Sukhpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardeep%20Kaur"> Hardeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple voltammetric technique for on-line analysis of arsenite [As (III)] is reported. Owing to the affinity of As (III) with thiol group of proteins and enzymes, cysteine has been employed as reducing agent. The reduction study of As(III)-cysteine complex on indium tin oxide (ITO) electrode has been explored. The experimental parameters such as scan rate, cysteine concentration, pH etc. were optimized to achieve As (III) determination. The developed method provided dynamic linear range of detection from 0.1 to 1 mM with a detection limit of 0.1 mM. The method is applicable to environmental monitoring of As (III) from highly contaminated sources such as industrial effluents, wastewater sludge etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenite" title="arsenite">arsenite</a>, <a href="https://publications.waset.org/abstracts/search?q=cysteine" title=" cysteine"> cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20sweep%20voltammetry" title=" linear sweep voltammetry"> linear sweep voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a> </p> <a href="https://publications.waset.org/abstracts/84523/reduction-study-of-asiii-cysteine-complex-through-linear-sweep-voltammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Aerodynamic Optimization of Oblique Biplane by Using Supercritical Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Abdullah">Asma Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Awais%20Khan"> Awais Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20Al-Ghumlasi"> Reem Al-Ghumlasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Kumari"> Pritam Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nawaz"> Yasir Nawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: This study verified the potential applications of two Oblique Wing configurations that were initiated by the Germans Aerodynamicists during the WWII. Due to the end of the war, this project was not completed and in this research is targeting the revival of German Oblique biplane configuration. The research draws upon the use of two Oblique wings mounted on the top and bottom of the fuselage through a single pivot. The wings are capable of sweeping at different angles ranging from 0° at takeoff to 60° at cruising Altitude. The top wing, right half, behaves like a forward swept wing and the left half, behaves like a backward swept wing. Vice Versa applies to the lower wing. This opposite deflection of the top and lower wing cancel out the rotary moment created by each wing and the aircraft remains stable. Problem to better understand or solve: The purpose of this research is to investigate the potential of achieving improved aerodynamic performance and efficiency of flight at a wide range of sweep angles. This will help examine the most accurate value for the sweep angle at which the aircraft will possess both stability and better aerodynamics. Explaining the methods used: The Aircraft configuration is designed using Solidworks after which a series of Aerodynamic prediction are conducted, both in the subsonic and the supersonic flow regime. Computations are carried on Ansys Fluent. The results are then compared to theoretical and flight data of different Supersonic fighter aircraft of the same category (AD-1) and with the Wind tunnel testing model at subsonic speed. Results: At zero sweep angle, the aircraft has an excellent lift coefficient value with almost double that found for fighter jets. In acquiring of supersonic speed the sweep angle is increased to maximum 60 degrees depending on the mission profile. General findings: Oblique biplane can be the future fighter jet aircraft because of its high value performance in terms of aerodynamics, cost, structural design and weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biplane" title="biplane">biplane</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20wing" title=" oblique wing"> oblique wing</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20angle" title=" sweep angle"> sweep angle</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20airfoil" title=" supercritical airfoil"> supercritical airfoil</a> </p> <a href="https://publications.waset.org/abstracts/72045/aerodynamic-optimization-of-oblique-biplane-by-using-supercritical-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Interpretation of Sweep Frequency Response Analysis (SFRA) Traces for the Earth Fault Damage Practically Simulated on the Power Transformer Specially Developed for Performing Sweep Frequency Response Analysis for Various Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshay%20A.%20Pandya">Akshay A. Pandya</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Parekh"> B. R. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents how earth fault damage in the transformer can be detected by Sweep Frequency Response Analysis (SFRA). The test methods used by the authors for presenting the results are described. The power transformer of rating 10 KVA, 11000 V/440 V, 3-phase, 50 Hz, Dyn11 has been specially developed in-house for carrying out SFRA testing by practically simulated various transformer damages on it. Earth fault has been practically simulated on HV “U” phase winding and LV “W” phase winding separately. The result of these simulated faults are presented and discussed. The motivation of this presented work is to extend the guideline approach; there are ideas to organize database containing collected measurement results. Since the SFRA interpretation is based on experience, such databases are thought to be of great importance when interpreting SFRA response. The evaluation of the SFRA responses against guidelines and experience have to be performed and conclusions regarding usefulness of each simulation has been drawn and at last overall conclusion has also been drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20fault%20damage" title="earth fault damage">earth fault damage</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title=" power transformer"> power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=practical%20simulation" title=" practical simulation"> practical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRA%20traces" title=" SFRA traces"> SFRA traces</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20damages" title=" transformer damages"> transformer damages</a> </p> <a href="https://publications.waset.org/abstracts/7095/interpretation-of-sweep-frequency-response-analysis-sfra-traces-for-the-earth-fault-damage-practically-simulated-on-the-power-transformer-specially-developed-for-performing-sweep-frequency-response-analysis-for-various-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Melouah">A. Melouah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Diaf"> M. Diaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title="photoluminescence">photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Erbium" title=" Erbium"> Erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=GaN" title=" GaN"> GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20%20materials" title=" semiconductor materials"> semiconductor materials</a> </p> <a href="https://publications.waset.org/abstracts/46060/a-spectroscopic-study-by-photoluminescence-of-erbium-in-gallium-nitride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> Performance Analysis of a 6-Phase PMG Exciter with Rotating Thyristor-Controlled Rectification Topologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Kristiansen%20N%C3%B8land">Jonas Kristiansen Nøland</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Hjelmervik"> Karina Hjelmervik</a>, <a href="https://publications.waset.org/abstracts/search?q=Urban%20Lundin"> Urban Lundin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thyristor bridge rectifier is often used for control of excitation equipment for synchronous generators. However, on the rotating shaft of brushless exciters, the diode bridge rectifier is mostly used. The step response of a conventional brushless rotating excitation system is slow compared to static excitation systems. This paper investigates the performance of different thyristor-controlled rectification topologies applied on the shaft of a 6-phase PMG exciter connected to a synchronous generator. One of the important issues is the steady-state torque ripple produced by the thyristor bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brushless%20exciters" title="brushless exciters">brushless exciters</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20exciters" title=" rotating exciters"> rotating exciters</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machines" title=" permanent magnet machines"> permanent magnet machines</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generators" title=" synchronous generators"> synchronous generators</a> </p> <a href="https://publications.waset.org/abstracts/35257/performance-analysis-of-a-6-phase-pmg-exciter-with-rotating-thyristor-controlled-rectification-topologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> Insect Diversity Assessment of Maize Crop (Zea mays L.) by Using Sweep Net, Pitfall Trap and Plant Inspection Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem%20Mushtaq">Muhammad Naeem Mushtaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Majeed"> Shahid Majeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize is known as queen of cereals because of its highest genetic yield potential and multipurpose characteristics in human being and animal diet. Maize crop visited by many major, minor, visitors and sporadic insect pests. This study was conducted during 2014 to evaluate the richness and evenness of these insect pests and their interaction with metrological conditions at University of Agriculture, Faisalabad. In this experiment, two localities were selected; one was treated with pesticide and second was untreated. Maize field visited by many insect pests. Those insect pests were collected by using three collection method: sweep net, pitfall trap and plant inspection. The data was collected weekly interval from August to October and statistically analyzed by using Shannon Index which showed the results of insect pest richness and evenness. The value of Shannon Index was higher with the increase in number of species and abundance of insects. Camponotus nearcticus was most abundant in sweep net and pitfall trap method while Rhopalosiphum maidis was abundant in plant inspection method. Temperature was negatively co-relate with the insect population in all three collection methods while the relative humidity and rainfall had varying results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=evenness" title=" evenness"> evenness</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=richness" title=" richness"> richness</a> </p> <a href="https://publications.waset.org/abstracts/99026/insect-diversity-assessment-of-maize-crop-zea-mays-l-by-using-sweep-net-pitfall-trap-and-plant-inspection-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gigih%20Priyandoko">Gigih Priyandoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fairusham%20Ghazali"> Mohd Fairusham Ghazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Siew%20Fun"> Tan Siew Fun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20pipe" title="plastic pipe">plastic pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20acoustic%20modulation" title=" nonlinear acoustic modulation"> nonlinear acoustic modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation" title=" excitation"> excitation</a> </p> <a href="https://publications.waset.org/abstracts/16837/plastic-pipe-defect-detection-using-nonlinear-acoustic-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Rheological Evaluation of Wall Materials and β-Carotene Loaded Microencapsules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Ghoshal">Gargi Ghoshal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashay%20Jain"> Ashay Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Thakur"> Deepika Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Shivhare"> U. S. Shivhare</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Katare"> O. P. Katare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objectives of this work were the rheological characterization of dispersions, emulsions at different pH used in the microcapsules preparation and the microcapsules obtain from gum arabic (A), guar gum (G), casein (C) and whey protein isolate (W) to keep β-carotene protected from degradation using the complex coacervation microencapsulation technique (CCM). The evaluation of rheological properties of dispersions, emulsions of different pH and so obtained microencapsules manifest the changes occur in the molecular structure of wall materials during the encapsulation process of β-carotene. These dispersions, emulsions of different pH and formulated microencapsules were subjected to go through various conducted experiments (flow curve test, amplitude sweep, and frequency sweep test) using controlled stress dynamic rheometer. Flow properties were evaluated as a function of apparent viscosity under steady shear rate ranging from 0.1 to 100 s-1. The frequency sweep test was conducted to determine the extent of viscosity and elasticity present in the samples at constant strain under changing angular frequency range from 0.1 to 100 rad/s at 25ºC. The dispersions and emulsion exhibited a shear thinning non-Newtonian behavior whereas microencapsules are considered as shear-thickening respectively. The apparent viscosity for dispersion, emulsions were decreased at low shear rates 20 s-1 and for microencapsules, it decreases up to ~50 s-1 besides these value, it has shown constant pattern. Oscillatory shear experiments showed a predominant viscous liquid behavior up to crossover frequencies of dispersions of C, W, A at 49.47 rad/s, 57.60 rad/s and 21.45 rad/s emulsion sample of AW at pH 5.0 it was 17.85 rad/s and GW microencapsules 61.40 rad/s respectively whereas no such crossover was found in G dispersion, emulsion with C and microencapsules still it showed more viscous behavior. Storage and loss modulus decreases with time also a shift of the crossover towards lower frequencies for A, W and C was observed respectively. However, their microencapsules showed more viscous behavior as compared to samples prior to blending. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscosity" title="viscosity">viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=gums" title=" gums"> gums</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20sweep%20test" title=" frequency sweep test"> frequency sweep test</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20viscosity" title=" apparent viscosity"> apparent viscosity</a> </p> <a href="https://publications.waset.org/abstracts/46739/rheological-evaluation-of-wall-materials-and-v-carotene-loaded-microencapsules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambuj%20Kumar">Ambuj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Singh"> Sunil Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Singh"> Shrikant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakir%20Husain"> Zakir Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Jarial"> R. K. Jarial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sweep frequency response analysis has been turning out a powerful tool for investigation of mechanical as well as electrical integration of transformers. In this paper various aspect of practical application of SFRA has been studied. Open circuit and short circuit measurement were done on different phases of high voltage and low voltage winding. A case study was presented for the transformer of rating 31.5 MVA for various frequency ranges. A clear picture was presented for sub- frequency ranges for HV as well as LV winding. The main motive of work is to investigate high voltage short circuit response. The theoretical concept about SFRA responses is validated with expert system software results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transformer%20winding" title="transformer winding">transformer winding</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRA" title=" SFRA"> SFRA</a>, <a href="https://publications.waset.org/abstracts/search?q=OCT%20%26%20SCT" title=" OCT &amp; SCT"> OCT &amp; SCT</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20deviation" title=" frequency deviation"> frequency deviation</a> </p> <a href="https://publications.waset.org/abstracts/27973/field-experience-with-sweep-frequency-response-analysis-for-power-transformer-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">957</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> Silver Grating for Strong and Reproducible SERS Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kalachyova">Y. Kalachyova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Lyutakov"> O. Lyutakov</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Svorcik"> V. Svorcik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most significant obstacles for the application of surface enhanced Raman spectroscopy (SERS) is the poor reproducibility of SERS active substrates: SERS intensity can be varied from one substrate to another and moreover along the one substrate surface. High enhancement of the near-field intensity is the key factor for ultrasensitive SERS realization. SERS substrate can be prepared through introduction of highly ordered metal array, where light focusing is achieved through excitation of surface plasmon-polaritons (SPPs). In this work, we report the preparation of silver nanostructures with plasmon absorption peaks tuned by the metal arrangement. Excimer laser modification of poly(methyl methacrylate) followed by silver evaporation is proposed as an effective way for the creation of reproducible and effective surface plasmon-polaritons (SPP)-based SERS substrate. Theoretical and experimental studies were performed to optimize structure parameter for effective SPP excitation. It was found that the narrow range of grating periodicity and metal thickness exist, where SPPs can be most efficiently excited. In spite of the fact, that SERS response was almost always achieved, the enhancement factor was found to vary more with the effectivity of SPP excitation. When the real structure parameters were set to optimal for SPP excitation, a SERS enhancement factor was achieved up to four times. Theoretical and experimental investigation of SPP excitation on the two-dimensional periodical silver array was performed with the aim to make SERS response as high as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grating" title="grating">grating</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon-polaritons" title=" plasmon-polaritons"> plasmon-polaritons</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a> </p> <a href="https://publications.waset.org/abstracts/32916/silver-grating-for-strong-and-reproducible-sers-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> Study on Impact of Road Loads on Full Vehicle Squeak and Rattle Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Praveen">R. Praveen</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Chandan%20Ravi"> B. R. Chandan Ravi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Harikrishna"> M. Harikrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Squeak and rattle noises are the most annoying transient vehicle noises produced due to different terrain conditions. Interpretation and prohibition of squeak and rattle noises are the dominant aspects of a vehicle refinement. This paper describes the computer-aided engineering (CAE) approach to evaluating the full vehicle squeak and rattle performance with the measured road surface profile as enforced excitation at the tire patch points. The E-Line methodology has been used to predict the relative displacement at the interface points and the risk areas were identified. Squeak and rattle performance has been evaluated at different speeds and at different road conditions to understand the vehicle characteristics. The competence of the process in predicting the risk and root cause of the problems showcased us a pleasing conformity between the physical testing and CAE simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-line" title="e-line">e-line</a>, <a href="https://publications.waset.org/abstracts/search?q=enforced%20excitation" title=" enforced excitation"> enforced excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20vehicle" title=" full vehicle"> full vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=squeak%20and%20rattle" title=" squeak and rattle"> squeak and rattle</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20excitation" title=" road excitation"> road excitation</a> </p> <a href="https://publications.waset.org/abstracts/85644/study-on-impact-of-road-loads-on-full-vehicle-squeak-and-rattle-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Cao">Guohua Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Dong"> Xu Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20imaging" title="molecular imaging">molecular imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20fluorescence" title=" X-ray fluorescence"> X-ray fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensitivity" title=" chemical sensitivity"> chemical sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20scattering" title=" X-ray scattering"> X-ray scattering</a> </p> <a href="https://publications.waset.org/abstracts/94803/x-ray-fluorescence-molecular-imaging-with-improved-sensitivity-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Kaya">Burcu Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Martin%20Kaiser"> Jan-Martin Kaiser</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl-Friedrich%20Becker"> Karl-Friedrich Becker</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanja%20Braun"> Tanja Braun</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus-Dieter%20Lang"> Klaus-Dieter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20analysis" title="dielectric analysis">dielectric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20packages" title=" electronic packages"> electronic packages</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20molding%20compounds" title=" epoxy molding compounds"> epoxy molding compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20molding%20process" title=" transfer molding process"> transfer molding process</a> </p> <a href="https://publications.waset.org/abstracts/46904/optimization-of-the-transfer-molding-process-by-implementation-of-online-monitoring-techniques-for-electronic-packages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Selective Excitation of Circular Helical Modes in Graded Index Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Al-Sowayan">S. Al-Sowayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of selective excitation of circular helical modes of graded-index fibers on its capacity is analyzed using a model for propagation delay variation with launch offset and angle that resulted from misalignment of source and fiber axis. Results show that promising technique to improve graded-index fiber capacities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20measurements" title="fiber measurements">fiber measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic" title=" fiber optic"> fiber optic</a>, <a href="https://publications.waset.org/abstracts/search?q=communications" title=" communications"> communications</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20helical%20modes" title=" circular helical modes"> circular helical modes</a> </p> <a href="https://publications.waset.org/abstracts/3070/selective-excitation-of-circular-helical-modes-in-graded-index-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">789</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sweep%20excitation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10