CINXE.COM
Search results for: least support orthogonal matching pursuit
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: least support orthogonal matching pursuit</title> <meta name="description" content="Search results for: least support orthogonal matching pursuit"> <meta name="keywords" content="least support orthogonal matching pursuit"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="least support orthogonal matching pursuit" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="least support orthogonal matching pursuit"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7973</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: least support orthogonal matching pursuit</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7973</span> Least Support Orthogonal Matching Pursuit (LS-OMP) Recovery Method for Invisible Watermarking Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Israa%20Sh.%20Tawfic">Israa Sh. Tawfic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Koc%20Kayhan"> Sema Koc Kayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, first, we propose least support orthogonal matching pursuit (LS-OMP) algorithm to improve the performance, of the OMP (orthogonal matching pursuit) algorithm. LS-OMP algorithm adaptively chooses optimum L (least part of support), at each iteration. This modification helps to reduce the computational complexity significantly and performs better than OMP algorithm. Second, we give the procedure for the invisible image watermarking in the presence of compressive sampling. The image reconstruction based on a set of watermarked measurements is performed using LS-OMP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20matching%20pursuit" title=" orthogonal matching pursuit"> orthogonal matching pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20isometry%20property" title=" restricted isometry property"> restricted isometry property</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20reconstruction" title=" signal reconstruction"> signal reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit" title=" least support orthogonal matching pursuit"> least support orthogonal matching pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=watermark" title=" watermark"> watermark</a> </p> <a href="https://publications.waset.org/abstracts/15820/least-support-orthogonal-matching-pursuit-ls-omp-recovery-method-for-invisible-watermarking-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7972</span> Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Israa%20Sh.%20Tawfic">Israa Sh. Tawfic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Koc%20Kayhan"> Sema Koc Kayhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=lest%20support%20orthogonal%20matching%20pursuit" title=" lest support orthogonal matching pursuit"> lest support orthogonal matching pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20knowing%20support" title=" partial knowing support"> partial knowing support</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20isometry%20property" title=" restricted isometry property"> restricted isometry property</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20reconstruction" title=" signal reconstruction"> signal reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/16008/partially-knowing-of-least-support-orthogonal-matching-pursuit-pkls-omp-for-recovering-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7971</span> Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulong%20Wang">Yulong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuiming%20Zou"> Cuiming Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Yang"> Lina Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correntropy%20induced%20metric" title="correntropy induced metric">correntropy induced metric</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20pursuit" title=" matching pursuit"> matching pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20classification" title=" pattern classification"> pattern classification</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/63135/robust-pattern-recognition-via-correntropy-generalized-orthogonal-matching-pursuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7970</span> Wavelet Coefficients Based on Orthogonal Matching Pursuit (OMP) Based Filtering for Remotely Sensed Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramandeep%20Kaur">Ramandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaljit%20Kaur"> Kamaljit Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the technology of the remote sensing is growing rapidly. Image enhancement is one of most commonly used of image processing operations. Noise reduction plays very important role in digital image processing and various technologies have been located ahead to reduce the noise of the remote sensing images. The noise reduction using wavelet coefficients based on Orthogonal Matching Pursuit (OMP) has less consequences on the edges than available methods but this is not as establish in edge preservation techniques. So in this paper we provide a new technique minimum patch based noise reduction OMP which reduce the noise from an image and used edge preservation patch which preserve the edges of the image and presents the superior results than existing OMP technique. Experimental results show that the proposed minimum patch approach outperforms over existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title="image denoising">image denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20patch" title=" minimum patch"> minimum patch</a>, <a href="https://publications.waset.org/abstracts/search?q=OMP" title=" OMP"> OMP</a>, <a href="https://publications.waset.org/abstracts/search?q=WCOMP" title=" WCOMP"> WCOMP</a> </p> <a href="https://publications.waset.org/abstracts/59831/wavelet-coefficients-based-on-orthogonal-matching-pursuit-omp-based-filtering-for-remotely-sensed-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7969</span> A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qianhua%20He">Qianhua He</a>, <a href="https://publications.waset.org/abstracts/search?q=Weili%20Zhou"> Weili Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiwu%20Chen"> Aiwu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20denoising" title="speech denoising">speech denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-singular%20value%20decomposition" title=" k-singular value decomposition"> k-singular value decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20matching%20pursuit" title=" orthogonal matching pursuit"> orthogonal matching pursuit</a> </p> <a href="https://publications.waset.org/abstracts/66670/a-sparse-representation-speech-denoising-method-based-on-adapted-stopping-residue-error" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7968</span> A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Bryan">Thomas Bryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Veton%20Kepuska"> Veton Kepuska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivica%20Kostanic"> Ivica Kostanic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30dB SNR as a reference for voice activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20decomposition" title="atomic decomposition">atomic decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=gabor" title=" gabor"> gabor</a>, <a href="https://publications.waset.org/abstracts/search?q=gammatone" title=" gammatone"> gammatone</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20pursuit" title=" matching pursuit"> matching pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20activity%20detection" title=" voice activity detection"> voice activity detection</a> </p> <a href="https://publications.waset.org/abstracts/27613/a-simple-adaptive-atomic-decomposition-voice-activity-detector-implemented-by-matching-pursuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7967</span> Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zin%20Mar%20Lwin">Zin Mar Lwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BCI" title="BCI">BCI</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=ICA" title=" ICA"> ICA</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/19307/analysis-of-matching-pursuit-features-of-eeg-signal-for-mental-tasks-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7966</span> Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang">Linyu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Furui%20Huo"> Furui Huo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang"> Jianhong Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDM" title="OFDM">OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20selective" title=" doubly selective"> doubly selective</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title=" channel estimation"> channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a> </p> <a href="https://publications.waset.org/abstracts/162873/channel-estimation-for-orthogonal-frequency-division-multiplexing-systems-over-doubly-selective-channels-base-on-dcs-dcsomp-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7965</span> The Scattering in Flexible Reactive Silencer Containing Rigid Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Afzal">Muhammad Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Uzair%20Satti"> Junaid Uzair Satti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The noise emanating from the ducting of heating, ventilation, and air-conditioning (HVAC) system is often attenuated by using the dissipative silencers. Such devices work well for the high-frequency noise but are less operative in the low-frequency noise range. The present study analyzes a reactive silencer comprising expansion chamber of the elastic membranes partitioned symmetrically by a rigid plate. The Mode-Matching scheme has been developed to solve the governing boundary value problem. The orthogonal and non-orthogonal duct modes of acoustic pressures and normal velocities are matched at interfaces. It enables to recast the differential system into the infinite system of linear algebraic of equations, which is, then truncated and inverted for the solution. The truncated solution is validated through the conservation of energy and reconstruction of matching conditions. The results for scattering energy flux and transmission loss are shown against frequency and the dimensions of the chamber. It is seen that the stop-band of the silencer can be shifted to the broadband by changing the dimensions of the chamber and the properties of the elastic membranes. The modeled reactive silencer is more efficient in low frequency regime where the passive devices are least effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20scattering" title="acoustic scattering">acoustic scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20membranes%20mode-matching" title=" elastic membranes mode-matching"> elastic membranes mode-matching</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20silencer" title=" reactive silencer"> reactive silencer</a> </p> <a href="https://publications.waset.org/abstracts/93009/the-scattering-in-flexible-reactive-silencer-containing-rigid-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7964</span> Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Minapoor">Sh. Minapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajeli"> S. Ajeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-crimp%203D%20orthogonal%20weave" title="non-crimp 3D orthogonal weave">non-crimp 3D orthogonal weave</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20composite%20reinforcement" title=" carbon composite reinforcement"> carbon composite reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behavior" title=" flexural behavior"> flexural behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a> </p> <a href="https://publications.waset.org/abstracts/50505/investigation-on-flexural-behavior-of-non-crimp-3d-orthogonal-weave-carbon-composite-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7963</span> BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gianna%20Zou">Gianna Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BART" title="BART">BART</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=matching" title=" matching"> matching</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/149989/bart-matching-method-using-bayesian-additive-regression-tree-for-data-matching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7962</span> Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Huang">Eric Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Coleman%20DeLude"> Coleman DeLude</a>, <a href="https://publications.waset.org/abstracts/search?q=Justin%20Romberg"> Justin Romberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Saibal%20Mukhopadhyay"> Saibal Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhavan%20Swaminathan"> Madhavan Swaminathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from electromagnetic (EM) simulations is often times cumbersome leading to large storage requirement. This paper proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. This paper solves this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RADAR" title="RADAR">RADAR</a>, <a href="https://publications.waset.org/abstracts/search?q=RCS" title=" RCS"> RCS</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20computing" title=" high performance computing"> high performance computing</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20scatterer%20model" title=" point scatterer model"> point scatterer model</a> </p> <a href="https://publications.waset.org/abstracts/134722/spherical-harmonic-based-monostatic-anisotropic-point-scatterer-model-for-radar-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7961</span> K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shao-Tzu%20Huang">Shao-Tzu Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Chien%20Hsu"> Chen-Chien Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Yen%20Wang"> Wei-Yen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20matching" title="feature matching">feature matching</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20clustering" title=" k-means clustering"> k-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a>, <a href="https://publications.waset.org/abstracts/search?q=RANSAC" title=" RANSAC"> RANSAC</a> </p> <a href="https://publications.waset.org/abstracts/73493/k-means-based-matching-algorithm-for-multi-resolution-feature-descriptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7960</span> Impedance Matching of Axial Mode Helical Antennas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Mardani">Hossein Mardani</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Buchanan"> Neil Buchanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Cahill"> Robert Cahill</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Fusco"> Vincent Fusco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=helix" title=" helix"> helix</a>, <a href="https://publications.waset.org/abstracts/search?q=helical" title=" helical"> helical</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20mode" title=" axial mode"> axial mode</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20matching" title=" impedance matching"> impedance matching</a> </p> <a href="https://publications.waset.org/abstracts/134308/impedance-matching-of-axial-mode-helical-antennas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7959</span> Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Gupta">Swapnil Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pandu%20Rangan"> C. Pandu Rangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uniquely%20restricted%20matching" title="uniquely restricted matching">uniquely restricted matching</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20graph" title=" interval graph"> interval graph</a>, <a href="https://publications.waset.org/abstracts/search?q=matching" title=" matching"> matching</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20matching" title=" induced matching"> induced matching</a>, <a href="https://publications.waset.org/abstracts/search?q=witness%20counting" title=" witness counting"> witness counting</a> </p> <a href="https://publications.waset.org/abstracts/45203/computing-maximum-uniquely-restricted-matchings-in-restricted-interval-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7958</span> An Approximation Algorithm for the Non Orthogonal Cutting Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ouafi">R. Ouafi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ouafi"> F. Ouafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title="combinatorial optimization">combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20problem" title=" cutting problem"> cutting problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic" title=" heuristic"> heuristic</a> </p> <a href="https://publications.waset.org/abstracts/19497/an-approximation-algorithm-for-the-non-orthogonal-cutting-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7957</span> A Developmental Survey of Local Stereo Matching Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Smith">André Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Abdel-Dayem"> Amr Abdel-Dayem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an overview of the history and development of stereo matching algorithms. Details from its inception, up to relatively recent techniques are described, noting challenges that have been surmounted across these past decades. Different components of these are explored, though focus is directed towards the local matching techniques. While global approaches have existed for some time, and demonstrated greater accuracy than their counterparts, they are generally quite slow. Many strides have been made more recently, allowing local methods to catch up in terms of accuracy, without sacrificing the overall performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=developmental%20survey" title="developmental survey">developmental survey</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20stereo%20matching" title=" local stereo matching"> local stereo matching</a>, <a href="https://publications.waset.org/abstracts/search?q=rectification" title=" rectification"> rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20correspondence" title=" stereo correspondence"> stereo correspondence</a> </p> <a href="https://publications.waset.org/abstracts/49461/a-developmental-survey-of-local-stereo-matching-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7956</span> A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Koo%20Kim">Hyun-Koo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonghun%20Kim"> Yonghun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Hoon%20Kim"> Yong-Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Hee%20Lee"> Ju Hee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myungho%20Song"> Myungho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20system" title="advanced driver assistance system">advanced driver assistance system</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title=" pedestrian detection"> pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20matching%20method" title=" stereo matching method"> stereo matching method</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20long-wave%20IR%20camera" title=" stereo long-wave IR camera"> stereo long-wave IR camera</a> </p> <a href="https://publications.waset.org/abstracts/58413/a-study-of-effective-stereo-matching-method-for-long-wave-infrared-camera-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7955</span> Nazca: A Context-Based Matching Method for Searching Heterogeneous Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karine%20B.%20de%20Oliveira">Karine B. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Carina%20F.%20Dorneles"> Carina F. Dorneles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structure level matching is the problem of combining elements of a structure, which can be represented as entities, classes, XML elements, web forms, and so on. This is a challenge due to large number of distinct representations of semantically similar structures. This paper describes a structure-based matching method applied to search for different representations in data sources, considering the similarity between elements of two structures and the data source context. Using real data sources, we have conducted an experimental study comparing our approach with our baseline implementation and with another important schema matching approach. We demonstrate that our proposal reaches higher precision than the baseline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=context" title="context">context</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20source" title=" data source"> data source</a>, <a href="https://publications.waset.org/abstracts/search?q=index" title=" index"> index</a>, <a href="https://publications.waset.org/abstracts/search?q=matching" title=" matching"> matching</a>, <a href="https://publications.waset.org/abstracts/search?q=search" title=" search"> search</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity" title=" similarity"> similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/4417/nazca-a-context-based-matching-method-for-searching-heterogeneous-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7954</span> The Hospitals Residents Problem with Bounded Length Preference List under Social Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Shrivastava">Ashish Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pandu%20Rangan"> C. Pandu Rangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider The Hospitals Residents problem with Social Stability (HRSS), where hospitals and residents can communicate only through the underlying social network. Those residents and hospitals which don not have any social connection between them can not communicate and hence they cannot be a social blocking pair with respect to a socially stable matching in an instance of hospitals residents problem with social stability. In large scale matching like NRMP or Scottish medical matching scheme etc. where set of agents, as well as length of preference lists, are very large, social stability is a useful notion in which members of a blocking pair could block a matching if and only if they know the existence of each other. Thus the notion of social stability in hospitals residents problem allows us to increase the cardinality of the matching without taking care of those blocking pairs which are not socially connected to each other. We know that finding a maximum cardinality socially stable matching, in an instance, of HRSS is NP-hard. This motivates us to solve this problem with bounded length preference lists on one side. In this paper, we have presented a polynomial time algorithm to compute maximum cardinality socially stable matching in a HRSS instance where residents can give at most two length and hospitals can give unbounded length preference list. Preference lists of residents and hospitals will be strict in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matching%20under%20preference" title="matching under preference">matching under preference</a>, <a href="https://publications.waset.org/abstracts/search?q=socially%20stable%20matching" title=" socially stable matching"> socially stable matching</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20hospital%20residents%20problem" title=" the hospital residents problem"> the hospital residents problem</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20stable%20marriage%20problem" title=" the stable marriage problem"> the stable marriage problem</a> </p> <a href="https://publications.waset.org/abstracts/57888/the-hospitals-residents-problem-with-bounded-length-preference-list-under-social-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7953</span> Constructing Orthogonal De Bruijn and Kautz Sequences and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaw-Ling%20Lin">Yaw-Ling Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20sequence%20synthesis" title="biomolecular sequence synthesis">biomolecular sequence synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20Bruijn%20sequences" title=" de Bruijn sequences"> de Bruijn sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian%20cycle" title=" Eulerian cycle"> Eulerian cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20cycle" title=" Hamiltonian cycle"> Hamiltonian cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Kautz%20sequences" title=" Kautz sequences"> Kautz sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20sequences" title=" orthogonal sequences"> orthogonal sequences</a> </p> <a href="https://publications.waset.org/abstracts/121912/constructing-orthogonal-de-bruijn-and-kautz-sequences-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7952</span> Orthogonal Basis Extreme Learning Algorithm and Function Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Li">Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Li"> Yan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20basis%20extreme%20learning" title=" orthogonal basis extreme learning"> orthogonal basis extreme learning</a>, <a href="https://publications.waset.org/abstracts/search?q=function%20approximation" title=" function approximation"> function approximation</a> </p> <a href="https://publications.waset.org/abstracts/15129/orthogonal-basis-extreme-learning-algorithm-and-function-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7951</span> Generation of Photo-Mosaic Images through Block Matching and Color Adjustment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hae-Yeoun%20Lee">Hae-Yeoun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photomosaic" title="photomosaic">photomosaic</a>, <a href="https://publications.waset.org/abstracts/search?q=Euclidean%20distance" title=" Euclidean distance"> Euclidean distance</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20matching" title=" block matching"> block matching</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity%20adjustment" title=" intensity adjustment"> intensity adjustment</a> </p> <a href="https://publications.waset.org/abstracts/7022/generation-of-photo-mosaic-images-through-block-matching-and-color-adjustment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7950</span> Video Text Information Detection and Localization in Lecture Videos Using Moments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Soundes">Belkacem Soundes</a>, <a href="https://publications.waset.org/abstracts/search?q=Guezouli%20Larbi"> Guezouli Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20detection" title="text detection">text detection</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20localization" title=" text localization"> text localization</a>, <a href="https://publications.waset.org/abstracts/search?q=lecture%20videos" title=" lecture videos"> lecture videos</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20zernike%20moments" title=" pseudo zernike moments"> pseudo zernike moments</a> </p> <a href="https://publications.waset.org/abstracts/109549/video-text-information-detection-and-localization-in-lecture-videos-using-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7949</span> Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Bryan">T. Bryan </a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kepuska"> V. Kepuska</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Kostnaic"> I. Kostnaic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sparse%20dictionary%20learning" title="sparse dictionary learning">sparse dictionary learning</a>, <a href="https://publications.waset.org/abstracts/search?q=autoencoder" title=" autoencoder"> autoencoder</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20autoencoder" title=" sparse autoencoder"> sparse autoencoder</a>, <a href="https://publications.waset.org/abstracts/search?q=basis%20vectors" title=" basis vectors"> basis vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20decomposition" title=" atomic decomposition"> atomic decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20sampling" title=" envelope sampling"> envelope sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20samples" title=" envelope samples"> envelope samples</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabor" title=" Gabor"> Gabor</a>, <a href="https://publications.waset.org/abstracts/search?q=gammatone" title=" gammatone"> gammatone</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20pursuit" title=" matching pursuit"> matching pursuit</a> </p> <a href="https://publications.waset.org/abstracts/42586/atomic-decomposition-audio-data-compression-and-denoising-using-sparse-dictionary-feature-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7948</span> A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wang">Bo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZY-3%20satellite%20imagery" title="ZY-3 satellite imagery">ZY-3 satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SRTM" title=" SRTM"> SRTM</a>, <a href="https://publications.waset.org/abstracts/search?q=refinement" title=" refinement"> refinement</a> </p> <a href="https://publications.waset.org/abstracts/76112/a-study-of-zy3-satellite-digital-elevation-model-verification-and-refinement-with-shuttle-radar-topography-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7947</span> Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elrewainy">Ahmed Elrewainy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The <em>l<sub>1</sub></em>-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The <em>l<sub>1</sub></em>-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basis%20pursuit" title="basis pursuit">basis pursuit</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20source%20separation" title=" blind source separation"> blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20imaging" title=" hyperspectral imaging"> hyperspectral imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20unmixing" title=" spectral unmixing"> spectral unmixing</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/74582/sparsity-based-unsupervised-unmixing-of-hyperspectral-imaging-data-using-basis-pursuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7946</span> Evaluation of the Matching Optimization of Human-Machine Interface Matching in the Cab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Ma">Yanhua Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zhai"> Lu Zhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinchen%20Wang"> Xinchen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyu%20Liang"> Hongyu Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, by understanding the development status of the human-machine interface in today's automobile cab, a subjective and objective evaluation system for evaluating the optimization of human-machine interface matching in automobile cab was established. The man-machine interface of the car cab was divided into a software interface and a hard interface. Objective evaluation method of software human factor analysis is used to evaluate the hard interface matching; The analytic hierarchy process is used to establish the evaluation index system for the software interface matching optimization, and the multi-level fuzzy comprehensive evaluation method is used to evaluate hard interface machine. This article takes Dongfeng Sokon (DFSK) C37 model automobile as an example. The evaluation method given in the paper is used to carry out relevant analysis and evaluation, and corresponding optimization suggestions are given, which have certain reference value for designers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title="analytic hierarchy process">analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20comprehension%20evaluation%20method" title=" fuzzy comprehension evaluation method"> fuzzy comprehension evaluation method</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interface" title=" human-machine interface"> human-machine interface</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20optimization" title=" matching optimization"> matching optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20human%20factor%20analysis" title=" software human factor analysis"> software human factor analysis</a> </p> <a href="https://publications.waset.org/abstracts/131104/evaluation-of-the-matching-optimization-of-human-machine-interface-matching-in-the-cab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7945</span> Hybrid Approximate Structural-Semantic Frequent Subgraph Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Montaceur%20Zaghdoud">Montaceur Zaghdoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moussaoui"> Mohamed Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Akaichi"> Jalel Akaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20graph%20matching" title="approximate graph matching">approximate graph matching</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20frequent%20subgraph%20mining" title=" hybrid frequent subgraph mining"> hybrid frequent subgraph mining</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20mining" title=" graph mining"> graph mining</a>, <a href="https://publications.waset.org/abstracts/search?q=possibility%20theory" title=" possibility theory"> possibility theory</a> </p> <a href="https://publications.waset.org/abstracts/34195/hybrid-approximate-structural-semantic-frequent-subgraph-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7944</span> Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Jung">H. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kim"> N. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kang"> B. Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Choe"> J. Choe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=history%20matching" title="history matching">history matching</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20modelling" title=" reservoir modelling"> reservoir modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/76990/regeneration-of-geological-models-using-support-vector-machine-assisted-by-principal-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=265">265</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=266">266</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=least%20support%20orthogonal%20matching%20pursuit&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>