CINXE.COM

Poisson bracket - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Poisson bracket - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"d0d1725a-c844-4bdc-8dd9-af47b9de1a35","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Poisson_bracket","wgTitle":"Poisson bracket","wgCurRevisionId":1251072793,"wgRevisionId":1251072793,"wgArticleId":294340,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Symplectic geometry","Hamiltonian mechanics","Bilinear maps","Concepts in physics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Poisson_bracket","wgRelevantArticleId":294340,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1052775","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1408"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Simeon_Poisson.jpg/800px-Simeon_Poisson.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="938"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Simeon_Poisson.jpg/640px-Simeon_Poisson.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="751"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Poisson bracket - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Poisson_bracket"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Poisson_bracket&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Poisson_bracket"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Poisson_bracket rootpage-Poisson_bracket skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Poisson+bracket" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Poisson+bracket" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Poisson+bracket" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Poisson+bracket" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition_in_canonical_coordinates" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition_in_canonical_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition in canonical coordinates</span> </div> </a> <ul id="toc-Definition_in_canonical_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hamilton&#039;s_equations_of_motion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Hamilton&#039;s_equations_of_motion"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Hamilton's equations of motion</span> </div> </a> <ul id="toc-Hamilton&#039;s_equations_of_motion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_matrix_in_canonical_transformations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Poisson_matrix_in_canonical_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Poisson matrix in canonical transformations</span> </div> </a> <ul id="toc-Poisson_matrix_in_canonical_transformations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Constants_of_motion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Constants_of_motion"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Constants of motion</span> </div> </a> <ul id="toc-Constants_of_motion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Poisson_bracket_in_coordinate-free_language" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_Poisson_bracket_in_coordinate-free_language"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>The Poisson bracket in coordinate-free language</span> </div> </a> <ul id="toc-The_Poisson_bracket_in_coordinate-free_language-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_result_on_conjugate_momenta" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_result_on_conjugate_momenta"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>A result on conjugate momenta</span> </div> </a> <ul id="toc-A_result_on_conjugate_momenta-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantization"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Quantization</span> </div> </a> <ul id="toc-Quantization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Remarks" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Remarks"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Remarks</span> </div> </a> <ul id="toc-Remarks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Poisson bracket</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 19 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D9%88%D8%B3_%D8%A8%D9%88%D8%A7%D8%B3%D9%88%D9%86" title="قوس بواسون – Arabic" lang="ar" hreflang="ar" data-title="قوس بواسون" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%BA%D0%BE%D0%B1%D0%BA%D0%B8_%D0%BD%D0%B0_%D0%9F%D0%BE%D0%B0%D1%81%D0%BE%D0%BD" title="Скобки на Поасон – Bulgarian" lang="bg" hreflang="bg" data-title="Скобки на Поасон" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Claud%C3%A0tor_de_Poisson" title="Claudàtor de Poisson – Catalan" lang="ca" hreflang="ca" data-title="Claudàtor de Poisson" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Poissonova_z%C3%A1vorka" title="Poissonova závorka – Czech" lang="cs" hreflang="cs" data-title="Poissonova závorka" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Poisson-Klammer" title="Poisson-Klammer – German" lang="de" hreflang="de" data-title="Poisson-Klammer" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Corchete_de_Poisson" title="Corchete de Poisson – Spanish" lang="es" hreflang="es" data-title="Corchete de Poisson" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%A9%D8%B1%D9%88%D8%B4%D9%87_%D9%BE%D9%88%D8%A7%D8%B3%D9%88%D9%86" title="کروشه پواسون – Persian" lang="fa" hreflang="fa" data-title="کروشه پواسون" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Crochet_de_Poisson" title="Crochet de Poisson – French" lang="fr" hreflang="fr" data-title="Crochet de Poisson" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%91%B8%EC%95%84%EC%86%A1_%EA%B4%84%ED%98%B8" title="푸아송 괄호 – Korean" lang="ko" hreflang="ko" data-title="푸아송 괄호" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Parentesi_di_Poisson" title="Parentesi di Poisson – Italian" lang="it" hreflang="it" data-title="Parentesi di Poisson" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%95%D7%92%D7%A8%D7%99_%D7%A4%D7%95%D7%90%D7%A1%D7%95%D7%9F" title="סוגרי פואסון – Hebrew" lang="he" hreflang="he" data-title="סוגרי פואסון" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Poisson-haak" title="Poisson-haak – Dutch" lang="nl" hreflang="nl" data-title="Poisson-haak" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9D%E3%82%A2%E3%82%BD%E3%83%B3%E6%8B%AC%E5%BC%A7" title="ポアソン括弧 – Japanese" lang="ja" hreflang="ja" data-title="ポアソン括弧" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Nawias_Poissona" title="Nawias Poissona – Polish" lang="pl" hreflang="pl" data-title="Nawias Poissona" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Par%C3%AAnteses_de_Poisson" title="Parênteses de Poisson – Portuguese" lang="pt" hreflang="pt" data-title="Parênteses de Poisson" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Paranteza_lui_Poisson" title="Paranteza lui Poisson – Romanian" lang="ro" hreflang="ro" data-title="Paranteza lui Poisson" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BA%D0%BE%D0%B1%D0%BA%D0%B0_%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD%D0%B0" title="Скобка Пуассона – Russian" lang="ru" hreflang="ru" data-title="Скобка Пуассона" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D1%83%D0%B6%D0%BA%D0%B8_%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD%D0%B0" title="Дужки Пуассона – Ukrainian" lang="uk" hreflang="uk" data-title="Дужки Пуассона" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E6%8B%AC%E8%99%9F" title="泊松括號 – Chinese" lang="zh" hreflang="zh" data-title="泊松括號" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1052775#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Poisson_bracket" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Poisson_bracket" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Poisson_bracket"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Poisson_bracket&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Poisson_bracket&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Poisson_bracket"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Poisson_bracket&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Poisson_bracket&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Poisson_bracket" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Poisson_bracket" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Poisson_bracket&amp;oldid=1251072793" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Poisson_bracket&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Poisson_bracket&amp;id=1251072793&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoisson_bracket"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoisson_bracket"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Poisson_bracket&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Poisson_bracket&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1052775" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Operation in Hamiltonian mechanics</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Simeon_Poisson.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Simeon_Poisson.jpg/220px-Simeon_Poisson.jpg" decoding="async" width="220" height="258" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Simeon_Poisson.jpg/330px-Simeon_Poisson.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Simeon_Poisson.jpg/440px-Simeon_Poisson.jpg 2x" data-file-width="1000" data-file-height="1173" /></a><figcaption>Siméon Denis Poisson</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle" style="padding-left:0.9em;padding-right:0.9em;"><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></th></tr><tr><td class="sidebar-image"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">F</mtext> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ad0a6d6780c3abc5247abd82bd8a2249d56ff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.318ex; height:5.509ex;" alt="{\displaystyle {\textbf {F}}={\frac {d\mathbf {p} }{dt}}}"></span><div class="sidebar-caption" style="font-size:90%;padding:0.6em 0;font-style:italic;"><a href="/wiki/Second_law_of_motion" class="mw-redirect" title="Second law of motion">Second law of motion</a></div></td></tr><tr><th class="sidebar-heading" style="font-weight: bold; display:block;margin-bottom:1.0em;"> <div class="hlist"> <ul><li><a href="/wiki/History_of_classical_mechanics" title="History of classical mechanics">History</a></li> <li><a href="/wiki/Timeline_of_classical_mechanics" title="Timeline of classical mechanics">Timeline</a></li> <li><a href="/wiki/List_of_textbooks_on_classical_mechanics_and_quantum_mechanics" title="List of textbooks on classical mechanics and quantum mechanics">Textbooks</a></li></ul> </div></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Branches</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Applied_mechanics" title="Applied mechanics">Applied</a></li> <li><a href="/wiki/Celestial_mechanics" title="Celestial mechanics">Celestial</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum</a></li> <li><a href="/wiki/Analytical_dynamics" class="mw-redirect" title="Analytical dynamics">Dynamics</a></li> <li><a href="/wiki/Classical_field_theory" title="Classical field theory">Field theory</a></li> <li><a href="/wiki/Kinematics" title="Kinematics">Kinematics</a></li> <li><a href="/wiki/Kinetics_(physics)" title="Kinetics (physics)">Kinetics</a></li> <li><a href="/wiki/Statics" title="Statics">Statics</a></li> <li><a href="/wiki/Statistical_mechanics" title="Statistical mechanics">Statistical mechanics</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Fundamentals</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Acceleration" title="Acceleration">Acceleration</a></li> <li><a href="/wiki/Angular_momentum" title="Angular momentum">Angular momentum</a></li> <li><a href="/wiki/Couple_(mechanics)" title="Couple (mechanics)">Couple</a></li> <li><a href="/wiki/D%27Alembert%27s_principle" title="D&#39;Alembert&#39;s principle">D'Alembert's principle</a></li> <li><a href="/wiki/Energy" title="Energy">Energy</a> <ul><li><a href="/wiki/Kinetic_energy#Newtonian_kinetic_energy" title="Kinetic energy">kinetic</a></li> <li><a href="/wiki/Potential_energy" title="Potential energy">potential</a></li></ul></li> <li><a href="/wiki/Force" title="Force">Force</a></li> <li><a href="/wiki/Frame_of_reference" title="Frame of reference">Frame of reference</a></li> <li><a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">Inertial frame of reference</a></li> <li><a href="/wiki/Impulse_(physics)" title="Impulse (physics)">Impulse</a></li> <li><span class="nowrap"><a href="/wiki/Inertia" title="Inertia">Inertia</a>&#160;/&#32;<a href="/wiki/Moment_of_inertia" title="Moment of inertia">Moment of inertia</a></span></li> <li><a href="/wiki/Mass" title="Mass">Mass</a></li> <li><br /><a href="/wiki/Mechanical_power_(physics)" class="mw-redirect" title="Mechanical power (physics)">Mechanical power</a></li> <li><a href="/wiki/Work_(physics)" title="Work (physics)">Mechanical work</a></li> <li><br /><a href="/wiki/Moment_(physics)" title="Moment (physics)">Moment</a></li> <li><a href="/wiki/Momentum" title="Momentum">Momentum</a></li> <li><a href="/wiki/Space" title="Space">Space</a></li> <li><a href="/wiki/Speed" title="Speed">Speed</a></li> <li><a href="/wiki/Time" title="Time">Time</a></li> <li><a href="/wiki/Torque" title="Torque">Torque</a></li> <li><a href="/wiki/Velocity" title="Velocity">Velocity</a></li> <li><a href="/wiki/Virtual_work" title="Virtual work">Virtual work</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Formulations</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"> <ul><li><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><b><a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's laws of motion</a></b></div></li> <li><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><b><a href="/wiki/Analytical_mechanics" title="Analytical mechanics">Analytical mechanics</a></b> <div class="plainlist"><ul><li><a href="/wiki/Lagrangian_mechanics" title="Lagrangian mechanics">Lagrangian mechanics</a></li><li><a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian mechanics</a></li><li><a href="/wiki/Routhian_mechanics" title="Routhian mechanics">Routhian mechanics</a></li><li><a href="/wiki/Hamilton%E2%80%93Jacobi_equation" title="Hamilton–Jacobi equation">Hamilton–Jacobi equation</a></li><li><a href="/wiki/Appell%27s_equation_of_motion" title="Appell&#39;s equation of motion">Appell's equation of motion</a></li><li><a href="/wiki/Koopman%E2%80%93von_Neumann_classical_mechanics" title="Koopman–von Neumann classical mechanics">Koopman–von Neumann mechanics</a></li></ul></div></div></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Core topics</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Damping" title="Damping">Damping</a></li> <li><a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">Displacement</a></li> <li><a href="/wiki/Equations_of_motion" title="Equations of motion">Equations of motion</a></li> <li><a href="/wiki/Euler%27s_laws_of_motion" title="Euler&#39;s laws of motion"><span class="wrap">Euler's laws of motion</span></a></li> <li><a href="/wiki/Fictitious_force" title="Fictitious force">Fictitious force</a></li> <li><a href="/wiki/Friction" title="Friction">Friction</a></li> <li><a href="/wiki/Harmonic_oscillator" title="Harmonic oscillator">Harmonic oscillator</a></li></ul> </div> <ul><li><span class="nowrap"><a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">Inertial</a>&#160;/&#32;<a href="/wiki/Non-inertial_reference_frame" title="Non-inertial reference frame">Non-inertial reference frame</a></span></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Motion" title="Motion">Motion</a>&#160;(<a href="/wiki/Linear_motion" title="Linear motion">linear</a>)</li> <li><a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton&#39;s law of universal gravitation"><span class="wrap">Newton's law of universal gravitation</span></a></li> <li><a href="/wiki/Newton%27s_laws_of_motion" title="Newton&#39;s laws of motion">Newton's laws of motion</a></li> <li><a href="/wiki/Relative_velocity" title="Relative velocity">Relative velocity</a></li> <li><a href="/wiki/Rigid_body" title="Rigid body">Rigid body</a> <ul><li><a href="/wiki/Rigid_body_dynamics" title="Rigid body dynamics">dynamics</a></li> <li><a href="/wiki/Euler%27s_equations_(rigid_body_dynamics)" title="Euler&#39;s equations (rigid body dynamics)">Euler's equations</a></li></ul></li> <li><a href="/wiki/Simple_harmonic_motion" title="Simple harmonic motion">Simple harmonic motion</a></li> <li><a href="/wiki/Vibration" title="Vibration">Vibration</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)"><a href="/wiki/Rotation_around_a_fixed_axis" title="Rotation around a fixed axis">Rotation</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Circular_motion" title="Circular motion">Circular motion</a></li> <li><a href="/wiki/Rotating_reference_frame" title="Rotating reference frame">Rotating reference frame</a></li> <li><a href="/wiki/Centripetal_force" title="Centripetal force">Centripetal force</a></li> <li><a href="/wiki/Centrifugal_force" title="Centrifugal force">Centrifugal force</a> <ul><li><a href="/wiki/Reactive_centrifugal_force" title="Reactive centrifugal force">reactive</a></li></ul></li> <li><a href="/wiki/Coriolis_force" title="Coriolis force">Coriolis force</a></li> <li><a href="/wiki/Pendulum_(mechanics)" title="Pendulum (mechanics)">Pendulum</a></li> <li><a href="/wiki/Tangential_speed" title="Tangential speed">Tangential speed</a></li> <li><a href="/wiki/Rotational_frequency" title="Rotational frequency">Rotational frequency</a></li></ul> </div> <ul><li><a href="/wiki/Angular_acceleration" title="Angular acceleration">Angular acceleration</a>&#160;/&#32;<a href="/wiki/Angular_displacement" title="Angular displacement">displacement</a>&#160;/&#32;<a href="/wiki/Angular_frequency" title="Angular frequency">frequency</a>&#160;/&#32;<a href="/wiki/Angular_velocity" title="Angular velocity">velocity</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="border-bottom: 1px solid black;text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0.35em;"><div class="hlist"> <ul><li><a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Kepler</a></li> <li><a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galileo</a></li> <li><a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Huygens</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a></li> <li><a href="/wiki/Jeremiah_Horrocks" title="Jeremiah Horrocks">Horrocks</a></li> <li><a href="/wiki/Edmond_Halley" title="Edmond Halley">Halley</a></li> <li><a href="/wiki/Pierre_Louis_Maupertuis" title="Pierre Louis Maupertuis">Maupertuis</a></li> <li><a href="/wiki/Daniel_Bernoulli" title="Daniel Bernoulli">Daniel Bernoulli</a></li> <li><a href="/wiki/Johann_Bernoulli" title="Johann Bernoulli">Johann Bernoulli</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li> <li><a href="/wiki/Jean_le_Rond_d%27Alembert" title="Jean le Rond d&#39;Alembert">d'Alembert</a></li> <li><a href="/wiki/Alexis_Clairaut" title="Alexis Clairaut">Clairaut</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Lagrange</a></li> <li><a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Laplace</a></li> <li><a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Poisson</a></li> <li><a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton</a></li> <li><a href="/wiki/Carl_Gustav_Jacob_Jacobi" title="Carl Gustav Jacob Jacobi">Jacobi</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Cauchy</a></li> <li><a href="/wiki/Edward_Routh" title="Edward Routh">Routh</a></li> <li><a href="/wiki/Joseph_Liouville" title="Joseph Liouville">Liouville</a></li> <li><a href="/wiki/Paul_%C3%89mile_Appell" title="Paul Émile Appell">Appell</a></li> <li><a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Gibbs</a></li> <li><a href="/wiki/Bernard_Koopman" title="Bernard Koopman">Koopman</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: transparent; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/14px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="14" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/21px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/28px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics&#32;portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/wiki/Category:Classical_mechanics" title="Category:Classical mechanics">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Classical_mechanics" title="Template:Classical mechanics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Classical_mechanics" title="Template talk:Classical mechanics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Classical_mechanics" title="Special:EditPage/Template:Classical mechanics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> and <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>, the <b>Poisson bracket</b> is an important <a href="/wiki/Binary_operation" title="Binary operation">binary operation</a> in <a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian mechanics</a>, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical system</a>. The Poisson bracket also distinguishes a certain class of coordinate transformations, called <i><a href="/wiki/Canonical_transformations" class="mw-redirect" title="Canonical transformations">canonical transformations</a></i>, which map <a href="/wiki/Canonical_coordinates" title="Canonical coordinates">canonical coordinate systems</a> into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2752dcbff884354069fe332b8e51eb0a70a531b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.837ex; height:2.009ex;" alt="{\displaystyle q_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bab39399bf5424f25d957cdc57c84a0622626d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.059ex; height:2.009ex;" alt="{\displaystyle p_{i}}"></span>, respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H=H(q,p,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H=H(q,p,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21c0c634b0399be02ea5bb87aa05e3e1f064e22b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.181ex; height:2.843ex;" alt="{\displaystyle H=H(q,p,t)}"></span> as one of the new canonical momentum coordinates. </p><p>In a more general sense, the Poisson bracket is used to define a <a href="/wiki/Poisson_algebra" title="Poisson algebra">Poisson algebra</a>, of which the algebra of functions on a <a href="/wiki/Poisson_manifold" title="Poisson manifold">Poisson manifold</a> is a special case. There are other general examples, as well: it occurs in the theory of <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a>, where the <a href="/wiki/Tensor_algebra" title="Tensor algebra">tensor algebra</a> of a Lie algebra forms a Poisson algebra; a detailed construction of how this comes about is given in the <a href="/wiki/Universal_enveloping_algebra" title="Universal enveloping algebra">universal enveloping algebra</a> article. Quantum deformations of the universal enveloping algebra lead to the notion of <a href="/wiki/Quantum_group" title="Quantum group">quantum groups</a>. </p><p>All of these objects are named in honor of <a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Siméon Denis Poisson</a>. He introduced the Poisson bracket in his 1809 treatise on mechanics.<sup id="cite_ref-Poisson1809_1-0" class="reference"><a href="#cite_note-Poisson1809-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Marle2009_2-0" class="reference"><a href="#cite_note-Marle2009-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=1" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given two functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> that depend on <a href="/wiki/Phase_space" title="Phase space">phase space</a> and time, their Poisson bracket <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,g\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,g\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/342713616a282b5a224271900f5cb0464f880c1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.753ex; height:2.843ex;" alt="{\displaystyle \{f,g\}}"></span> is another function that depends on phase space and time. The following rules hold for any three functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,\,g,\,h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,\,g,\,h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1b1973006bcbcc0d3d1a2a302e640c5bb5e184d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.576ex; height:2.509ex;" alt="{\displaystyle f,\,g,\,h}"></span> of phase space and time: </p> <dl><dt><a href="/wiki/Anticommutativity" class="mw-redirect" title="Anticommutativity">Anticommutativity</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,g\}=-\{g,f\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,g\}=-\{g,f\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff1f1f4a7eef368856844d55a700e559463abe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.413ex; height:2.843ex;" alt="{\displaystyle \{f,g\}=-\{g,f\}}"></span></dd> <dt><a href="/wiki/Bilinearity" class="mw-redirect" title="Bilinearity">Bilinearity</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{af+bg,h\}=a\{f,h\}+b\{g,h\},\quad \{h,af+bg\}=a\{h,f\}+b\{h,g\},\quad a,b\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>a</mi> <mi>f</mi> <mo>+</mo> <mi>b</mi> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>a</mi> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mi>b</mi> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mspace width="1em" /> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>,</mo> <mi>a</mi> <mi>f</mi> <mo>+</mo> <mi>b</mi> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>a</mi> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mi>b</mi> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mspace width="1em" /> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{af+bg,h\}=a\{f,h\}+b\{g,h\},\quad \{h,af+bg\}=a\{h,f\}+b\{h,g\},\quad a,b\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90081ce49beea361cb78167059f62a66ce970c3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:78.726ex; height:2.843ex;" alt="{\displaystyle \{af+bg,h\}=a\{f,h\}+b\{g,h\},\quad \{h,af+bg\}=a\{h,f\}+b\{h,g\},\quad a,b\in \mathbb {R} }"></span></dd> <dt><a href="/wiki/Product_rule" title="Product rule">Leibniz's rule</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{fg,h\}=\{f,h\}g+f\{g,h\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mi>g</mi> <mo>+</mo> <mi>f</mi> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{fg,h\}=\{f,h\}g+f\{g,h\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2b6f742232f680ffab1030dba8f89aee85a0f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.216ex; height:2.843ex;" alt="{\displaystyle \{fg,h\}=\{f,h\}g+f\{g,h\}}"></span></dd> <dt><a href="/wiki/Jacobi_identity" title="Jacobi identity">Jacobi identity</a></dt> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/022941efe73a03dbf8e90d3ca46fa4aba6bce0bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.296ex; height:2.843ex;" alt="{\displaystyle \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0}"></span></dd></dl> <p>Also, if a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is constant over phase space (but may depend on time), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,\,k\}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>k</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,\,k\}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc30f577986578a814ca01de1017f36b41fdce67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.497ex; height:2.843ex;" alt="{\displaystyle \{f,\,k\}=0}"></span> for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Definition_in_canonical_coordinates">Definition in canonical coordinates</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=2" title="Edit section: Definition in canonical coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Canonical_coordinates" title="Canonical coordinates">canonical coordinates</a> (also known as <a href="/wiki/Darboux_coordinates" class="mw-redirect" title="Darboux coordinates">Darboux coordinates</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q_{i},\,p_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q_{i},\,p_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27dfbd6039581e4e28bdb488ac4d5a42b87d9d37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.036ex; height:2.843ex;" alt="{\displaystyle (q_{i},\,p_{i})}"></span> on the <a href="/wiki/Phase_space" title="Phase space">phase space</a>, given two functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(p_{i},\,q_{i},t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(p_{i},\,q_{i},t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19a19a89fc0cf08c17a834e8445df162e33f4675" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.188ex; height:2.843ex;" alt="{\displaystyle f(p_{i},\,q_{i},t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(p_{i},\,q_{i},t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(p_{i},\,q_{i},t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca5c55349fa472f9956fa3a4a6ade1fdff6622e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.026ex; height:2.843ex;" alt="{\displaystyle g(p_{i},\,q_{i},t)}"></span>,<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>Note 1<span class="cite-bracket">&#93;</span></a></sup> the Poisson bracket takes the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,g\}=\sum _{i=1}^{N}\left({\frac {\partial f}{\partial q_{i}}}{\frac {\partial g}{\partial p_{i}}}-{\frac {\partial f}{\partial p_{i}}}{\frac {\partial g}{\partial q_{i}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>g</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>g</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,g\}=\sum _{i=1}^{N}\left({\frac {\partial f}{\partial q_{i}}}{\frac {\partial g}{\partial p_{i}}}-{\frac {\partial f}{\partial p_{i}}}{\frac {\partial g}{\partial q_{i}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/128afd79204da793f6c8ffad51d751dea0f6117d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.118ex; height:7.343ex;" alt="{\displaystyle \{f,g\}=\sum _{i=1}^{N}\left({\frac {\partial f}{\partial q_{i}}}{\frac {\partial g}{\partial p_{i}}}-{\frac {\partial f}{\partial p_{i}}}{\frac {\partial g}{\partial q_{i}}}\right).}"></span> </p><p>The Poisson brackets of the canonical coordinates are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\{q_{k},q_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial q_{k}}{\partial q_{i}}}{\frac {\partial q_{l}}{\partial p_{i}}}-{\frac {\partial q_{k}}{\partial p_{i}}}{\frac {\partial q_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(\delta _{ki}\cdot 0-0\cdot \delta _{li}\right)=0,\\\{p_{k},p_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial p_{k}}{\partial q_{i}}}{\frac {\partial p_{l}}{\partial p_{i}}}-{\frac {\partial p_{k}}{\partial p_{i}}}{\frac {\partial p_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(0\cdot \delta _{li}-\delta _{ki}\cdot 0\right)=0,\\\{q_{k},p_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial q_{k}}{\partial q_{i}}}{\frac {\partial p_{l}}{\partial p_{i}}}-{\frac {\partial q_{k}}{\partial p_{i}}}{\frac {\partial p_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(\delta _{ki}\cdot \delta _{li}-0\cdot 0\right)=\delta _{kl},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>i</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\{q_{k},q_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial q_{k}}{\partial q_{i}}}{\frac {\partial q_{l}}{\partial p_{i}}}-{\frac {\partial q_{k}}{\partial p_{i}}}{\frac {\partial q_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(\delta _{ki}\cdot 0-0\cdot \delta _{li}\right)=0,\\\{p_{k},p_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial p_{k}}{\partial q_{i}}}{\frac {\partial p_{l}}{\partial p_{i}}}-{\frac {\partial p_{k}}{\partial p_{i}}}{\frac {\partial p_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(0\cdot \delta _{li}-\delta _{ki}\cdot 0\right)=0,\\\{q_{k},p_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial q_{k}}{\partial q_{i}}}{\frac {\partial p_{l}}{\partial p_{i}}}-{\frac {\partial q_{k}}{\partial p_{i}}}{\frac {\partial p_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(\delta _{ki}\cdot \delta _{li}-0\cdot 0\right)=\delta _{kl},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27dbb37bccd94910174acd53587294c4339100d9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:66.633ex; height:22.176ex;" alt="{\displaystyle {\begin{aligned}\{q_{k},q_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial q_{k}}{\partial q_{i}}}{\frac {\partial q_{l}}{\partial p_{i}}}-{\frac {\partial q_{k}}{\partial p_{i}}}{\frac {\partial q_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(\delta _{ki}\cdot 0-0\cdot \delta _{li}\right)=0,\\\{p_{k},p_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial p_{k}}{\partial q_{i}}}{\frac {\partial p_{l}}{\partial p_{i}}}-{\frac {\partial p_{k}}{\partial p_{i}}}{\frac {\partial p_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(0\cdot \delta _{li}-\delta _{ki}\cdot 0\right)=0,\\\{q_{k},p_{l}\}&amp;=\sum _{i=1}^{N}\left({\frac {\partial q_{k}}{\partial q_{i}}}{\frac {\partial p_{l}}{\partial p_{i}}}-{\frac {\partial q_{k}}{\partial p_{i}}}{\frac {\partial p_{l}}{\partial q_{i}}}\right)=\sum _{i=1}^{N}\left(\delta _{ki}\cdot \delta _{li}-0\cdot 0\right)=\delta _{kl},\end{aligned}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa75d04c11480d976e1396951e02cbb3c4f71568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.51ex; height:3.009ex;" alt="{\displaystyle \delta _{ij}}"></span> is the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Hamilton's_equations_of_motion"><span id="Hamilton.27s_equations_of_motion"></span>Hamilton's equations of motion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=3" title="Edit section: Hamilton&#039;s equations of motion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Hamilton%27s_equations_of_motion" class="mw-redirect" title="Hamilton&#39;s equations of motion">Hamilton's equations of motion</a> have an equivalent expression in terms of the Poisson bracket. This may be most directly demonstrated in an explicit coordinate frame. Suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(p,q,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(p,q,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/800ae2372ac6e8a7cdedb6b66225bab8c516f685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.234ex; height:2.843ex;" alt="{\displaystyle f(p,q,t)}"></span> is a function on the solution's trajectory-manifold. Then from the multivariable <a href="/wiki/Chain_rule" title="Chain rule">chain rule</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}f(p,q,t)={\frac {\partial f}{\partial q}}{\frac {dq}{dt}}+{\frac {\partial f}{\partial p}}{\frac {dp}{dt}}+{\frac {\partial f}{\partial t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>q</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>p</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>p</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}f(p,q,t)={\frac {\partial f}{\partial q}}{\frac {dq}{dt}}+{\frac {\partial f}{\partial p}}{\frac {dp}{dt}}+{\frac {\partial f}{\partial t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac4c7161e83844fa4ec2893c36369ff754c5af1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.193ex; height:6.009ex;" alt="{\displaystyle {\frac {d}{dt}}f(p,q,t)={\frac {\partial f}{\partial q}}{\frac {dq}{dt}}+{\frac {\partial f}{\partial p}}{\frac {dp}{dt}}+{\frac {\partial f}{\partial t}}.}"></span> </p><p>Further, one may take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=p(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=p(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8126309e9692644f4f2bb23f7f76211e1f80ae30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.176ex; height:2.843ex;" alt="{\displaystyle p=p(t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=q(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=q(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bccff540f4b254e8998503162fe3a42f1c3bdc53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.886ex; height:2.843ex;" alt="{\displaystyle q=q(t)}"></span> to be solutions to <a href="/wiki/Hamilton%27s_equations" class="mw-redirect" title="Hamilton&#39;s equations">Hamilton's equations</a>; that is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {dq}{dt}}&amp;={\frac {\partial H}{\partial p}}=\{q,H\},\\{\frac {dp}{dt}}&amp;=-{\frac {\partial H}{\partial q}}=\{p,H\}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>q</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>H</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>q</mi> <mo>,</mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>p</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>H</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>p</mi> <mo>,</mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {dq}{dt}}&amp;={\frac {\partial H}{\partial p}}=\{q,H\},\\{\frac {dp}{dt}}&amp;=-{\frac {\partial H}{\partial q}}=\{p,H\}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8d4e2df1cce65b46161c352133d6c909ea3381" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:23.435ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {dq}{dt}}&amp;={\frac {\partial H}{\partial p}}=\{q,H\},\\{\frac {dp}{dt}}&amp;=-{\frac {\partial H}{\partial q}}=\{p,H\}.\end{aligned}}}"></span> </p><p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {d}{dt}}f(p,q,t)&amp;={\frac {\partial f}{\partial q}}{\frac {\partial H}{\partial p}}-{\frac {\partial f}{\partial p}}{\frac {\partial H}{\partial q}}+{\frac {\partial f}{\partial t}}\\&amp;=\{f,H\}+{\frac {\partial f}{\partial t}}~.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>H</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>p</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>H</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {d}{dt}}f(p,q,t)&amp;={\frac {\partial f}{\partial q}}{\frac {\partial H}{\partial p}}-{\frac {\partial f}{\partial p}}{\frac {\partial H}{\partial q}}+{\frac {\partial f}{\partial t}}\\&amp;=\{f,H\}+{\frac {\partial f}{\partial t}}~.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba42d501ec54c8384a662bf87b5c428af22e4b32" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:39.391ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}{\frac {d}{dt}}f(p,q,t)&amp;={\frac {\partial f}{\partial q}}{\frac {\partial H}{\partial p}}-{\frac {\partial f}{\partial p}}{\frac {\partial H}{\partial q}}+{\frac {\partial f}{\partial t}}\\&amp;=\{f,H\}+{\frac {\partial f}{\partial t}}~.\end{aligned}}}"></span> </p><p>Thus, the time evolution of a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> on a <a href="/wiki/Symplectic_manifold" title="Symplectic manifold">symplectic manifold</a> can be given as a <a href="/wiki/Flow_(mathematics)" title="Flow (mathematics)">one-parameter family</a> of <a href="/wiki/Symplectomorphism" title="Symplectomorphism">symplectomorphisms</a> (i.e., <a href="/wiki/Canonical_transformations" class="mw-redirect" title="Canonical transformations">canonical transformations</a>, area-preserving diffeomorphisms), with the time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian. That is, Poisson brackets are preserved in it, so that <i>any time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span></i> in the solution to Hamilton's equations, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(t)=\exp(-t\{H,\cdot \})q(0),\quad p(t)=\exp(-t\{H,\cdot \})p(0),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo fence="false" stretchy="false">{</mo> <mi>H</mi> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>p</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo fence="false" stretchy="false">{</mo> <mi>H</mi> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(t)=\exp(-t\{H,\cdot \})q(0),\quad p(t)=\exp(-t\{H,\cdot \})p(0),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9171b11c425379cb010b2c07c8d3ce4ac9abce8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:54.077ex; height:2.843ex;" alt="{\displaystyle q(t)=\exp(-t\{H,\cdot \})q(0),\quad p(t)=\exp(-t\{H,\cdot \})p(0),}"></span> can serve as the bracket coordinates. <i>Poisson brackets are <a href="/wiki/Canonical_transformation" title="Canonical transformation">canonical invariants</a></i>. </p><p>Dropping the coordinates, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}f=\left({\frac {\partial }{\partial t}}-\{H,\cdot \}\right)f.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">{</mo> <mi>H</mi> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">}</mo> </mrow> <mo>)</mo> </mrow> <mi>f</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}f=\left({\frac {\partial }{\partial t}}-\{H,\cdot \}\right)f.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edc0dcf17a2e27e5ec2da1f80a70cdfa9196c5b5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.906ex; height:6.176ex;" alt="{\displaystyle {\frac {d}{dt}}f=\left({\frac {\partial }{\partial t}}-\{H,\cdot \}\right)f.}"></span> </p><p>The operator in the convective part of the derivative, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i{\hat {L}}=-\{H,\cdot \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>L</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">{</mo> <mi>H</mi> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i{\hat {L}}=-\{H,\cdot \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce04e80c73229451f5643344664e0259852aecc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.361ex; height:3.343ex;" alt="{\displaystyle i{\hat {L}}=-\{H,\cdot \}}"></span>, is sometimes referred to as the Liouvillian (see <a href="/wiki/Liouville%27s_theorem_(Hamiltonian)" title="Liouville&#39;s theorem (Hamiltonian)">Liouville's theorem (Hamiltonian)</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Poisson_matrix_in_canonical_transformations">Poisson matrix in canonical transformations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=4" title="Edit section: Poisson matrix in canonical transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Canonical_transformation" title="Canonical transformation">Canonical transformation</a></div> <p>The concept of Poisson brackets can be expanded to that of matrices by defining the Poisson matrix. </p><p>Consider the following canonical transformation:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta ={\begin{bmatrix}q_{1}\\\vdots \\q_{N}\\p_{1}\\\vdots \\p_{N}\\\end{bmatrix}}\quad \rightarrow \quad \varepsilon ={\begin{bmatrix}Q_{1}\\\vdots \\Q_{N}\\P_{1}\\\vdots \\P_{N}\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mspace width="1em" /> <mo stretchy="false">&#x2192;<!-- → --></mo> <mspace width="1em" /> <mi>&#x03B5;<!-- ε --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta ={\begin{bmatrix}q_{1}\\\vdots \\q_{N}\\p_{1}\\\vdots \\p_{N}\\\end{bmatrix}}\quad \rightarrow \quad \varepsilon ={\begin{bmatrix}Q_{1}\\\vdots \\Q_{N}\\P_{1}\\\vdots \\P_{N}\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/490b9d1acdb0e3ae77af89c5831b5aff230313b3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.171ex; width:30.804ex; height:21.509ex;" alt="{\displaystyle \eta ={\begin{bmatrix}q_{1}\\\vdots \\q_{N}\\p_{1}\\\vdots \\p_{N}\\\end{bmatrix}}\quad \rightarrow \quad \varepsilon ={\begin{bmatrix}Q_{1}\\\vdots \\Q_{N}\\P_{1}\\\vdots \\P_{N}\\\end{bmatrix}}}"></span>Defining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle M:={\frac {\partial (\mathbf {Q} ,\mathbf {P} )}{\partial (\mathbf {q} ,\mathbf {p} )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">q</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle M:={\frac {\partial (\mathbf {Q} ,\mathbf {P} )}{\partial (\mathbf {q} ,\mathbf {p} )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/049891c97cd0b9c16a5383ce84ee604db8b234a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.404ex; height:4.843ex;" alt="{\textstyle M:={\frac {\partial (\mathbf {Q} ,\mathbf {P} )}{\partial (\mathbf {q} ,\mathbf {p} )}}}"></span>, the Poisson matrix is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\mathcal {P}}(\varepsilon )=MJM^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>M</mi> <mi>J</mi> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\mathcal {P}}(\varepsilon )=MJM^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8047559802051ca86f12d5eaa9a3c95c62d18475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.496ex; height:3.009ex;" alt="{\textstyle {\mathcal {P}}(\varepsilon )=MJM^{T}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/359e4f407b49910e02c27c2f52e87a36cd74c053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.471ex; height:2.176ex;" alt="{\displaystyle J}"></span> is the symplectic matrix under the same conventions used to order the set of coordinates. It follows from the definition that:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}_{ij}(\varepsilon )=[MJM^{T}]_{ij}=\sum _{k=1}^{N}\left({\frac {\partial \varepsilon _{i}}{\partial \eta _{k}}}{\frac {\partial \varepsilon _{j}}{\partial \eta _{N+k}}}-{\frac {\partial \varepsilon _{i}}{\partial \eta _{N+k}}}{\frac {\partial \varepsilon _{j}}{\partial \eta _{k}}}\right)=\sum _{k=1}^{N}\left({\frac {\partial \varepsilon _{i}}{\partial q_{k}}}{\frac {\partial \varepsilon _{j}}{\partial p_{k}}}-{\frac {\partial \varepsilon _{i}}{\partial p_{k}}}{\frac {\partial \varepsilon _{j}}{\partial q_{k}}}\right)=\{\varepsilon _{i},\varepsilon _{j}\}_{\eta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>M</mi> <mi>J</mi> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B7;<!-- η --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}_{ij}(\varepsilon )=[MJM^{T}]_{ij}=\sum _{k=1}^{N}\left({\frac {\partial \varepsilon _{i}}{\partial \eta _{k}}}{\frac {\partial \varepsilon _{j}}{\partial \eta _{N+k}}}-{\frac {\partial \varepsilon _{i}}{\partial \eta _{N+k}}}{\frac {\partial \varepsilon _{j}}{\partial \eta _{k}}}\right)=\sum _{k=1}^{N}\left({\frac {\partial \varepsilon _{i}}{\partial q_{k}}}{\frac {\partial \varepsilon _{j}}{\partial p_{k}}}-{\frac {\partial \varepsilon _{i}}{\partial p_{k}}}{\frac {\partial \varepsilon _{j}}{\partial q_{k}}}\right)=\{\varepsilon _{i},\varepsilon _{j}\}_{\eta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a15e99967eb4d344ec57733457bae103ff0ffc0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:98.356ex; height:7.343ex;" alt="{\displaystyle {\mathcal {P}}_{ij}(\varepsilon )=[MJM^{T}]_{ij}=\sum _{k=1}^{N}\left({\frac {\partial \varepsilon _{i}}{\partial \eta _{k}}}{\frac {\partial \varepsilon _{j}}{\partial \eta _{N+k}}}-{\frac {\partial \varepsilon _{i}}{\partial \eta _{N+k}}}{\frac {\partial \varepsilon _{j}}{\partial \eta _{k}}}\right)=\sum _{k=1}^{N}\left({\frac {\partial \varepsilon _{i}}{\partial q_{k}}}{\frac {\partial \varepsilon _{j}}{\partial p_{k}}}-{\frac {\partial \varepsilon _{i}}{\partial p_{k}}}{\frac {\partial \varepsilon _{j}}{\partial q_{k}}}\right)=\{\varepsilon _{i},\varepsilon _{j}\}_{\eta }.}"></span> </p><p>The Poisson matrix satisfies the following known properties:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {P}}^{T}&amp;=-{\mathcal {P}}\\|{\mathcal {P}}|&amp;={\frac {1}{|M|^{2}}}\\{\mathcal {P}}^{-1}(\varepsilon )&amp;=-(M^{-1})^{T}JM^{-1}=-{\mathcal {L}}(\varepsilon )\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>M</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>J</mi> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {P}}^{T}&amp;=-{\mathcal {P}}\\|{\mathcal {P}}|&amp;={\frac {1}{|M|^{2}}}\\{\mathcal {P}}^{-1}(\varepsilon )&amp;=-(M^{-1})^{T}JM^{-1}=-{\mathcal {L}}(\varepsilon )\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0945b3a63255ce41b9af9f07a03835ba85d46f0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:36.349ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {P}}^{T}&amp;=-{\mathcal {P}}\\|{\mathcal {P}}|&amp;={\frac {1}{|M|^{2}}}\\{\mathcal {P}}^{-1}(\varepsilon )&amp;=-(M^{-1})^{T}JM^{-1}=-{\mathcal {L}}(\varepsilon )\\\end{aligned}}}"></span> </p><p>where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\mathcal {L}}(\varepsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\mathcal {L}}(\varepsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec3ad3480531270152db218b7754cd9e68b3521c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.497ex; height:2.843ex;" alt="{\textstyle {\mathcal {L}}(\varepsilon )}"></span> is known as a Lagrange matrix and whose elements correspond to <a href="/wiki/Lagrange_bracket" title="Lagrange bracket">Lagrange brackets</a>. The last identity can also be stated as the following:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{2N}\{\eta _{i},\eta _{k}\}[\eta _{k},\eta _{j}]=-\delta _{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>N</mi> </mrow> </munderover> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">[</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{2N}\{\eta _{i},\eta _{k}\}[\eta _{k},\eta _{j}]=-\delta _{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc66924f661f0d8deef403c52a795fd322ebcfe7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.966ex; height:7.343ex;" alt="{\displaystyle \sum _{k=1}^{2N}\{\eta _{i},\eta _{k}\}[\eta _{k},\eta _{j}]=-\delta _{ij}}"></span>Note that the summation here involves generalized coordinates as well as generalized momentum. </p><p>The invariance of Poisson bracket can be expressed as: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \{\varepsilon _{i},\varepsilon _{j}\}_{\eta }=\{\varepsilon _{i},\varepsilon _{j}\}_{\varepsilon }=J_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B7;<!-- η --></mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B5;<!-- ε --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \{\varepsilon _{i},\varepsilon _{j}\}_{\eta }=\{\varepsilon _{i},\varepsilon _{j}\}_{\varepsilon }=J_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1af681232916b1fbf5749679993588220ce9c4aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.492ex; height:3.009ex;" alt="{\textstyle \{\varepsilon _{i},\varepsilon _{j}\}_{\eta }=\{\varepsilon _{i},\varepsilon _{j}\}_{\varepsilon }=J_{ij}}"></span>, which directly leads to the symplectic condition: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle MJM^{T}=J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>M</mi> <mi>J</mi> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle MJM^{T}=J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad1baf25fb1d989aec0e4a15933e537a9c0bec47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.371ex; height:2.509ex;" alt="{\textstyle MJM^{T}=J}"></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Constants_of_motion">Constants of motion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=5" title="Edit section: Constants of motion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <a href="/wiki/Integrable_system" title="Integrable system">integrable system</a> will have <a href="/wiki/Constants_of_motion" class="mw-redirect" title="Constants of motion">constants of motion</a> in addition to the energy. Such constants of motion will commute with the Hamiltonian under the Poisson bracket. Suppose some function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(p,q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(p,q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1f73ce44a1cb676deb977b8d833ad1decd3e09a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.361ex; height:2.843ex;" alt="{\displaystyle f(p,q)}"></span> is a constant of motion. This implies that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(t),q(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(t),q(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb47a84e6f06bb36212097929ad2cd42e9bfb781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.66ex; height:2.843ex;" alt="{\displaystyle p(t),q(t)}"></span> is a <a href="/wiki/Trajectory" title="Trajectory">trajectory</a> or solution to <a href="/wiki/Hamilton%27s_equations_of_motion" class="mw-redirect" title="Hamilton&#39;s equations of motion">Hamilton's equations of motion</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0={\frac {df}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0={\frac {df}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c316b209fee04d6222f64248d4a641c59eec4aa2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.592ex; height:5.509ex;" alt="{\displaystyle 0={\frac {df}{dt}}}"></span> along that trajectory. Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0={\frac {d}{dt}}f(p,q)=\{f,H\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0={\frac {d}{dt}}f(p,q)=\{f,H\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d2f0f994b557d18f63a9e9c41af91e6b1430ab9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.313ex; height:5.509ex;" alt="{\displaystyle 0={\frac {d}{dt}}f(p,q)=\{f,H\}}"></span> where, as above, the intermediate step follows by applying the equations of motion and we assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> does not explicitly depend on time. This equation is known as the <a href="/wiki/Liouville%27s_theorem_(Hamiltonian)#Liouville_equations" title="Liouville&#39;s theorem (Hamiltonian)">Liouville equation</a>. The content of <a href="/wiki/Liouville%27s_theorem_(Hamiltonian)" title="Liouville&#39;s theorem (Hamiltonian)">Liouville's theorem</a> is that the time evolution of a <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measure</a> given by a <a href="/wiki/Distribution_function_(physics)" title="Distribution function (physics)">distribution function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is given by the above equation. </p><p>If the Poisson bracket of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> vanishes (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,g\}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,g\}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3b33bdfb9f245ef4b8b2dd7aa78a4fb8ef77ed5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.014ex; height:2.843ex;" alt="{\displaystyle \{f,g\}=0}"></span>), then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are said to be <b>in involution</b>. In order for a Hamiltonian system to be <a href="/wiki/Completely_integrable" class="mw-redirect" title="Completely integrable">completely integrable</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> independent constants of motion must be in <a href="/wiki/Distribution_(differential_geometry)#Involutive_distributions" title="Distribution (differential geometry)">mutual involution</a>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is the number of degrees of freedom. </p><p>Furthermore, according to <b>Poisson's Theorem</b>, if two quantities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> are explicitly time independent (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(p,q),B(p,q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(p,q),B(p,q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9ccd197afb1b10ec5b2784f162d539941eab14e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.705ex; height:2.843ex;" alt="{\displaystyle A(p,q),B(p,q)}"></span>) constants of motion, so is their Poisson bracket <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{A,\,B\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>A</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{A,\,B\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790fae42caa999d320d97bacb7de37bccb8fa5e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.253ex; height:2.843ex;" alt="{\displaystyle \{A,\,B\}}"></span>. This does not always supply a useful result, however, since the number of possible constants of motion is limited (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6ce8a02613283b1e60305814a1457335b44437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.56ex; height:2.343ex;" alt="{\displaystyle 2n-1}"></span> for a system with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> degrees of freedom), and so the result may be trivial (a constant, or a function of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>.) </p> <div class="mw-heading mw-heading2"><h2 id="The_Poisson_bracket_in_coordinate-free_language">The Poisson bracket in coordinate-free language</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=6" title="Edit section: The Poisson bracket in coordinate-free language"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> be a <a href="/wiki/Symplectic_manifold" title="Symplectic manifold">symplectic manifold</a>, that is, a <a href="/wiki/Manifold" title="Manifold">manifold</a> equipped with a <a href="/wiki/Symplectic_form" class="mw-redirect" title="Symplectic form">symplectic form</a>: a <a href="/wiki/Differential_form" title="Differential form">2-form</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> which is both <b>closed</b> (i.e., its <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad5fe5ef6e9587a089d370dc32119c60e91f1d4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.662ex; height:2.176ex;" alt="{\displaystyle d\omega }"></span> vanishes) and <b>non-degenerate</b>. For example, in the treatment above, take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47460f1a92774729807be11cf62b9178b5771b4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.719ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2n}}"></span> and take <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =\sum _{i=1}^{n}dq_{i}\wedge dp_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>d</mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =\sum _{i=1}^{n}dq_{i}\wedge dp_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/771c26131549265e88a4f9c63cad4484bf87f4b8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.753ex; height:6.843ex;" alt="{\displaystyle \omega =\sum _{i=1}^{n}dq_{i}\wedge dp_{i}.}"></span> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \iota _{v}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \iota _{v}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/135214e1e88dbd2255e42e2027217c0fd6f59904" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.299ex; height:2.009ex;" alt="{\displaystyle \iota _{v}\omega }"></span> is the <a href="/wiki/Interior_product" title="Interior product">interior product</a> or <a href="/wiki/Tensor_contraction" title="Tensor contraction">contraction</a> operation defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\iota _{v}\omega )(u)=\omega (v,\,u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\iota _{v}\omega )(u)=\omega (v,\,u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e1be627aa763d7f66a2e7e8b2776f1dfda4dfc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.479ex; height:2.843ex;" alt="{\displaystyle (\iota _{v}\omega )(u)=\omega (v,\,u)}"></span>, then non-degeneracy is equivalent to saying that for every one-form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> there is a unique vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb42c33a7b17ff4164064c8d31e0f636767d12f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.962ex; height:2.509ex;" alt="{\displaystyle \Omega _{\alpha }}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \iota _{\Omega _{\alpha }}\omega =\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \iota _{\Omega _{\alpha }}\omega =\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a322a6d9207e6784bf1c99c22230a3a9cab7341" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.292ex; height:2.176ex;" alt="{\displaystyle \iota _{\Omega _{\alpha }}\omega =\alpha }"></span>. Alternatively, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{dH}=\omega ^{-1}(dH)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>H</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>d</mi> <mi>H</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{dH}=\omega ^{-1}(dH)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d8800bb44aa06ff9c8554260edc64ca460de48c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.195ex; height:3.176ex;" alt="{\displaystyle \Omega _{dH}=\omega ^{-1}(dH)}"></span>. Then if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> is a smooth function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, the <a href="/wiki/Hamiltonian_vector_field" title="Hamiltonian vector field">Hamiltonian vector field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{H}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{H}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d229e5e97360e167654b28a40234485f65027ac8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.616ex; height:2.509ex;" alt="{\displaystyle X_{H}}"></span> can be defined to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{dH}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>H</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{dH}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0891cd6ddeab8765a1a79dc616b3cdf7b63b0ae9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.229ex; height:2.509ex;" alt="{\displaystyle \Omega _{dH}}"></span>. It is easy to see that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}X_{p_{i}}&amp;={\frac {\partial }{\partial q_{i}}}\\X_{q_{i}}&amp;=-{\frac {\partial }{\partial p_{i}}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}X_{p_{i}}&amp;={\frac {\partial }{\partial q_{i}}}\\X_{q_{i}}&amp;=-{\frac {\partial }{\partial p_{i}}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/100066389df094f3760deb5a070a725b6369e8d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:14.037ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}X_{p_{i}}&amp;={\frac {\partial }{\partial q_{i}}}\\X_{q_{i}}&amp;=-{\frac {\partial }{\partial p_{i}}}.\end{aligned}}}"></span> </p><p>The <b>Poisson bracket</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \{\cdot ,\,\cdot \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mo fence="false" stretchy="false">{</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \{\cdot ,\,\cdot \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9d755bdfb13226106697b8c6f7cfc3c0fb261bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.62ex; height:2.843ex;" alt="{\displaystyle \ \{\cdot ,\,\cdot \}}"></span> on <span class="texhtml">(<i>M</i>, <i>ω</i>)</span> is a <a href="/wiki/Bilinear_map" title="Bilinear map">bilinear operation</a> on <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable functions</a>, defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,\,g\}\;=\;\omega (X_{f},\,X_{g})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,\,g\}\;=\;\omega (X_{f},\,X_{g})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f55ad3734e67d81ceebbf22bd30a927098395c4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.212ex; height:3.009ex;" alt="{\displaystyle \{f,\,g\}\;=\;\omega (X_{f},\,X_{g})}"></span>; the Poisson bracket of two functions on <span class="texhtml"><i>M</i></span> is itself a function on <span class="texhtml"><i>M</i></span>. The Poisson bracket is antisymmetric because: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,g\}=\omega (X_{f},X_{g})=-\omega (X_{g},X_{f})=-\{g,f\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,g\}=\omega (X_{f},X_{g})=-\omega (X_{g},X_{f})=-\{g,f\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c782fe5c8ebdfaaf5746c80498b303673b335a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.656ex; height:3.009ex;" alt="{\displaystyle \{f,g\}=\omega (X_{f},X_{g})=-\omega (X_{g},X_{f})=-\{g,f\}.}"></span> </p><p>Furthermore, </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\{f,g\}&amp;=\omega (X_{f},X_{g})=\omega (\Omega _{df},X_{g})\\&amp;=(\iota _{\Omega _{df}}\omega )(X_{g})=df(X_{g})\\&amp;=X_{g}f={\mathcal {L}}_{X_{g}}f.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>f</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>f</mi> </mrow> </msub> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mi>f</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> </msub> <mi>f</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\{f,g\}&amp;=\omega (X_{f},X_{g})=\omega (\Omega _{df},X_{g})\\&amp;=(\iota _{\Omega _{df}}\omega )(X_{g})=df(X_{g})\\&amp;=X_{g}f={\mathcal {L}}_{X_{g}}f.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d627d8519236d9bab7251dd6cf3ef597437ed0a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:33.906ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}\{f,g\}&amp;=\omega (X_{f},X_{g})=\omega (\Omega _{df},X_{g})\\&amp;=(\iota _{\Omega _{df}}\omega )(X_{g})=df(X_{g})\\&amp;=X_{g}f={\mathcal {L}}_{X_{g}}f.\end{aligned}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>Here <span class="texhtml"><i>X<sub>g</sub>f</i></span> denotes the vector field <span class="texhtml"><i>X<sub>g</sub></i></span> applied to the function <span class="texhtml"><i>f</i></span> as a directional derivative, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X_{g}}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> </msub> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X_{g}}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bb2a5c22e9bd21e635eb1d706d6075aa4180938" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:5.28ex; height:3.009ex;" alt="{\displaystyle {\mathcal {L}}_{X_{g}}f}"></span> denotes the (entirely equivalent) <a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a> of the function <span class="texhtml"><i>f</i></span>. </p><p>If <span class="texhtml">α</span> is an arbitrary one-form on <span class="texhtml"><i>M</i></span>, the vector field <span class="texhtml">Ω<sub>α</sub></span> generates (at least locally) a <a href="/wiki/Flow_(mathematics)" title="Flow (mathematics)">flow</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{x}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{x}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f87a76cc3104b5779bbdbbfb02dc955632f7d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.207ex; height:2.843ex;" alt="{\displaystyle \phi _{x}(t)}"></span> satisfying the boundary condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{x}(0)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{x}(0)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b635b9e034aaa7df15b73c9dba144ba3e2f402f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.958ex; height:2.843ex;" alt="{\displaystyle \phi _{x}(0)=x}"></span> and the first-order differential equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\phi _{x}}{dt}}=\left.\Omega _{\alpha }\right|_{\phi _{x}(t)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\phi _{x}}{dt}}=\left.\Omega _{\alpha }\right|_{\phi _{x}(t)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0fba6e2cddc4efb04b0a0daa30884ea080c7f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.977ex; height:5.509ex;" alt="{\displaystyle {\frac {d\phi _{x}}{dt}}=\left.\Omega _{\alpha }\right|_{\phi _{x}(t)}.}"></span> </p><p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi _{x}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi _{x}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f87a76cc3104b5779bbdbbfb02dc955632f7d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.207ex; height:2.843ex;" alt="{\displaystyle \phi _{x}(t)}"></span> will be <a href="/wiki/Symplectomorphism" title="Symplectomorphism">symplectomorphisms</a> (<a href="/wiki/Canonical_transformation" title="Canonical transformation">canonical transformations</a>) for every <span class="texhtml"><i>t</i></span> as a function of <span class="texhtml"><i>x</i></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\Omega _{\alpha }}\omega \;=\;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\Omega _{\alpha }}\omega \;=\;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a83a1809361cb73ccc2ce06f8de29c9cd739cc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.038ex; height:2.676ex;" alt="{\displaystyle {\mathcal {L}}_{\Omega _{\alpha }}\omega \;=\;0}"></span>; when this is true, <span class="texhtml">Ω<sub>α</sub></span> is called a <a href="/wiki/Symplectic_vector_field" title="Symplectic vector field">symplectic vector field</a>. Recalling <a href="/wiki/Cartan%27s_identity" class="mw-redirect" title="Cartan&#39;s identity">Cartan's identity</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}\omega \;=\;d(\iota _{X}\omega )\,+\,\iota _{X}d\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}\omega \;=\;d(\iota _{X}\omega )\,+\,\iota _{X}d\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ef9f9cfd6f3ac74a6ca6e299b46815f6693a7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.729ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}\omega \;=\;d(\iota _{X}\omega )\,+\,\iota _{X}d\omega }"></span> and <span class="texhtml"><i>d</i>ω = 0</span>, it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{\Omega _{\alpha }}\omega \;=\;d\left(\iota _{\Omega _{\alpha }}\omega \right)\;=\;d\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mi>d</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mi>d</mi> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{\Omega _{\alpha }}\omega \;=\;d\left(\iota _{\Omega _{\alpha }}\omega \right)\;=\;d\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8be43a78cbe7f667c6a615b29d702dc16632a6c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.086ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{\Omega _{\alpha }}\omega \;=\;d\left(\iota _{\Omega _{\alpha }}\omega \right)\;=\;d\alpha }"></span>. Therefore, <span class="texhtml">Ω<sub>α</sub></span> is a symplectic vector field if and only if α is a <a href="/wiki/Closed_and_exact_differential_forms" title="Closed and exact differential forms">closed form</a>. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(df)\;=\;d^{2}f\;=\;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mi>f</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(df)\;=\;d^{2}f\;=\;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbee0fb98b9ab0af6cac2d022c221f8451e84040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.011ex; height:3.176ex;" alt="{\displaystyle d(df)\;=\;d^{2}f\;=\;0}"></span>, it follows that every Hamiltonian vector field <span class="texhtml"><i>X<sub>f</sub></i></span> is a symplectic vector field, and that the Hamiltonian flow consists of canonical transformations. From <b><a href="#math_1">(1)</a></b> above, under the Hamiltonian flow <span class="texhtml"><i>X<sub>H</sub></i></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}f(\phi _{x}(t))=X_{H}f=\{f,H\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mi>f</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>H</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}f(\phi _{x}(t))=X_{H}f=\{f,H\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f33f2ebb38510370a12d7909360e6efa827150e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.625ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dt}}f(\phi _{x}(t))=X_{H}f=\{f,H\}.}"></span> </p><p>This is a fundamental result in Hamiltonian mechanics, governing the time evolution of functions defined on phase space. As noted above, when <span class="texhtml">{<i>f</i>,<i>H</i>} = 0</span>, <span class="texhtml"><i>f</i></span> is a constant of motion of the system. In addition, in canonical coordinates (with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{p_{i},\,p_{j}\}\;=\;\{q_{i},q_{j}\}\;=\;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mo fence="false" stretchy="false">{</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{p_{i},\,p_{j}\}\;=\;\{q_{i},q_{j}\}\;=\;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75ec93326306d6e97ec7b991d1ba4afacf078c11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.877ex; height:3.009ex;" alt="{\displaystyle \{p_{i},\,p_{j}\}\;=\;\{q_{i},q_{j}\}\;=\;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{q_{i},\,p_{j}\}\;=\;\delta _{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{q_{i},\,p_{j}\}\;=\;\delta _{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfaeb184778351142286fd0d6aa09a4b8bdaf5f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.56ex; height:3.009ex;" alt="{\displaystyle \{q_{i},\,p_{j}\}\;=\;\delta _{ij}}"></span>), Hamilton's equations for the time evolution of the system follow immediately from this formula. </p><p>It also follows from <b><a href="#math_1">(1)</a></b> that the Poisson bracket is a <a href="/wiki/Derivation_(abstract_algebra)" class="mw-redirect" title="Derivation (abstract algebra)">derivation</a>; that is, it satisfies a non-commutative version of Leibniz's <a href="/wiki/Product_rule" title="Product rule">product rule</a>: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{fg,h\}=f\{g,h\}+g\{f,h\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>f</mi> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mi>g</mi> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{fg,h\}=f\{g,h\}+g\{f,h\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a7a6a1497effd34807814343f5fc9fb5207b310" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.863ex; height:2.843ex;" alt="{\displaystyle \{fg,h\}=f\{g,h\}+g\{f,h\},}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,gh\}=g\{f,h\}+h\{f,g\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>g</mi> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mi>h</mi> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,gh\}=g\{f,h\}+h\{f,g\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a97abd1914f07d7818db85f1535686d5f120481" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.863ex; height:2.843ex;" alt="{\displaystyle \{f,gh\}=g\{f,h\}+h\{f,g\}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>The Poisson bracket is intimately connected to the <a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a> of the Hamiltonian vector fields. Because the Lie derivative is a derivation, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{v}\iota _{w}\omega =\iota _{{\mathcal {L}}_{v}w}\omega +\iota _{w}{\mathcal {L}}_{v}\omega =\iota _{[v,w]}\omega +\iota _{w}{\mathcal {L}}_{v}\omega .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>w</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>+</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{v}\iota _{w}\omega =\iota _{{\mathcal {L}}_{v}w}\omega +\iota _{w}{\mathcal {L}}_{v}\omega =\iota _{[v,w]}\omega +\iota _{w}{\mathcal {L}}_{v}\omega .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc16f7218b3ca566bce6637f9565b15efb57f3a7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:42.93ex; height:3.009ex;" alt="{\displaystyle {\mathcal {L}}_{v}\iota _{w}\omega =\iota _{{\mathcal {L}}_{v}w}\omega +\iota _{w}{\mathcal {L}}_{v}\omega =\iota _{[v,w]}\omega +\iota _{w}{\mathcal {L}}_{v}\omega .}"></span> </p><p>Thus if <span class="texhtml"><i>v</i></span> and <span class="texhtml"><i>w</i></span> are symplectic, using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{v}\omega \;=\;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{v}\omega \;=\;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d7497d86b5442fd2786a04ff085eb53e0b9222" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.63ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{v}\omega \;=\;0}"></span>, Cartan's identity, and the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \iota _{w}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \iota _{w}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/706893d8760cd179f6ac92b34152bdcb5af7f1f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.678ex; height:2.009ex;" alt="{\displaystyle \iota _{w}\omega }"></span> is a closed form, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \iota _{[v,w]}\omega ={\mathcal {L}}_{v}\iota _{w}\omega =d(\iota _{v}\iota _{w}\omega )+\iota _{v}d(\iota _{w}\omega )=d(\iota _{v}\iota _{w}\omega )=d(\omega (w,v)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \iota _{[v,w]}\omega ={\mathcal {L}}_{v}\iota _{w}\omega =d(\iota _{v}\iota _{w}\omega )+\iota _{v}d(\iota _{w}\omega )=d(\iota _{v}\iota _{w}\omega )=d(\omega (w,v)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f795101df10dd21f0716cc78d27b5a5307ce8ce" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:63.815ex; height:3.176ex;" alt="{\displaystyle \iota _{[v,w]}\omega ={\mathcal {L}}_{v}\iota _{w}\omega =d(\iota _{v}\iota _{w}\omega )+\iota _{v}d(\iota _{w}\omega )=d(\iota _{v}\iota _{w}\omega )=d(\omega (w,v)).}"></span> </p><p>It follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [v,w]=X_{\omega (w,v)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [v,w]=X_{\omega (w,v)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abac09ab89da06328cafade8dcab9a2f568bf89d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.108ex; height:3.176ex;" alt="{\displaystyle [v,w]=X_{\omega (w,v)}}"></span>, so that </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [X_{f},X_{g}]=X_{\omega (X_{g},X_{f})}=-X_{\omega (X_{f},X_{g})}=-X_{\{f,g\}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [X_{f},X_{g}]=X_{\omega (X_{g},X_{f})}=-X_{\omega (X_{f},X_{g})}=-X_{\{f,g\}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7db4169c89959ab5dd91ff7676d4832e497bb088" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:46.524ex; height:3.343ex;" alt="{\displaystyle [X_{f},X_{g}]=X_{\omega (X_{g},X_{f})}=-X_{\omega (X_{f},X_{g})}=-X_{\{f,g\}}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span>)</b></td></tr></tbody></table> <p>Thus, the Poisson bracket on functions corresponds to the Lie bracket of the associated Hamiltonian vector fields. We have also shown that the Lie bracket of two symplectic vector fields is a Hamiltonian vector field and hence is also symplectic. In the language of <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, the symplectic vector fields form a <a href="/wiki/Subalgebra" title="Subalgebra">subalgebra</a> of the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> of smooth vector fields on <span class="texhtml"><i>M</i></span>, and the Hamiltonian vector fields form an <a href="/wiki/Algebraic_ideal" class="mw-redirect" title="Algebraic ideal">ideal</a> of this subalgebra. The symplectic vector fields are the Lie algebra of the (infinite-dimensional) <a href="/wiki/Lie_group" title="Lie group">Lie group</a> of <a href="/wiki/Symplectomorphism" title="Symplectomorphism">symplectomorphisms</a> of <span class="texhtml"><i>M</i></span>. </p><p>It is widely asserted that the <a href="/wiki/Jacobi_identity" title="Jacobi identity">Jacobi identity</a> for the Poisson bracket, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>+</mo> <mo fence="false" stretchy="false">{</mo> <mi>h</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/022941efe73a03dbf8e90d3ca46fa4aba6bce0bd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.296ex; height:2.843ex;" alt="{\displaystyle \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0}"></span> follows from the corresponding identity for the Lie bracket of vector fields, but this is true only up to a locally constant function. However, to prove the Jacobi identity for the Poisson bracket, it is <a href="/wiki/Jacobi_identity#Examples" title="Jacobi identity">sufficient</a> to show that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {ad} _{\{g,f\}}=\operatorname {ad} _{-\{f,g\}}=[\operatorname {ad} _{f},\operatorname {ad} _{g}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ad</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>ad</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>ad</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>ad</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {ad} _{\{g,f\}}=\operatorname {ad} _{-\{f,g\}}=[\operatorname {ad} _{f},\operatorname {ad} _{g}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3add2e4111344e6a7b5f99af35f629b1892fb378" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:29.834ex; height:3.176ex;" alt="{\displaystyle \operatorname {ad} _{\{g,f\}}=\operatorname {ad} _{-\{f,g\}}=[\operatorname {ad} _{f},\operatorname {ad} _{g}]}"></span> where the operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {ad} _{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ad</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {ad} _{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e71199d30b9419c35306d8247ba8c5a640cf031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.476ex; height:2.843ex;" alt="{\displaystyle \operatorname {ad} _{g}}"></span> on smooth functions on <span class="texhtml"><i>M</i></span> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {ad} _{g}(\cdot )\;=\;\{\cdot ,\,g\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ad</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mo fence="false" stretchy="false">{</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {ad} _{g}(\cdot )\;=\;\{\cdot ,\,g\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/177d78f12faea3fd6a0043f5dd0b0f06d3740357" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.83ex; height:3.009ex;" alt="{\displaystyle \operatorname {ad} _{g}(\cdot )\;=\;\{\cdot ,\,g\}}"></span> and the bracket on the right-hand side is the commutator of operators, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\operatorname {A} ,\,\operatorname {B} ]\;=\;\operatorname {A} \operatorname {B} -\operatorname {B} \operatorname {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi mathvariant="normal">A</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">B</mi> <mo stretchy="false">]</mo> <mspace width="thickmathspace" /> <mo>=</mo> <mspace width="thickmathspace" /> <mi mathvariant="normal">A</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi mathvariant="normal">B</mi> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">B</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi mathvariant="normal">A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\operatorname {A} ,\,\operatorname {B} ]\;=\;\operatorname {A} \operatorname {B} -\operatorname {B} \operatorname {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7f97f3ece87400d2b60f4bff90b63e785f72198" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.626ex; height:2.843ex;" alt="{\displaystyle [\operatorname {A} ,\,\operatorname {B} ]\;=\;\operatorname {A} \operatorname {B} -\operatorname {B} \operatorname {A} }"></span>. By <b><a href="#math_1">(1)</a></b>, the operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {ad} _{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ad</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {ad} _{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e71199d30b9419c35306d8247ba8c5a640cf031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.476ex; height:2.843ex;" alt="{\displaystyle \operatorname {ad} _{g}}"></span> is equal to the operator <span class="texhtml"><i>X<sub>g</sub></i></span>. The proof of the Jacobi identity follows from <b><a href="#math_3">(3)</a></b> because, up to the factor of -1, the Lie bracket of vector fields is just their commutator as differential operators. </p><p>The <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebra</a> of smooth functions on M, together with the Poisson bracket forms a <a href="/wiki/Poisson_algebra" title="Poisson algebra">Poisson algebra</a>, because it is a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> under the Poisson bracket, which additionally satisfies Leibniz's rule <b><a href="#math_2">(2)</a></b>. We have shown that every <a href="/wiki/Symplectic_manifold" title="Symplectic manifold">symplectic manifold</a> is a <a href="/wiki/Poisson_manifold" title="Poisson manifold">Poisson manifold</a>, that is a manifold with a "curly-bracket" operator on smooth functions such that the smooth functions form a Poisson algebra. However, not every Poisson manifold arises in this way, because Poisson manifolds allow for degeneracy which cannot arise in the symplectic case. </p> <div class="mw-heading mw-heading2"><h2 id="A_result_on_conjugate_momenta">A result on conjugate momenta</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=7" title="Edit section: A result on conjugate momenta"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a smooth <a href="/wiki/Vector_field" title="Vector field">vector field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> on the configuration space, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348dd8ce7e6f7f4778ee01fa5bdc7b828afd98c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.125ex; height:2.509ex;" alt="{\displaystyle P_{X}}"></span> be its <a href="/wiki/Conjugate_momentum" class="mw-redirect" title="Conjugate momentum">conjugate momentum</a>. The conjugate momentum mapping is a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> anti-homomorphism from the <a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a> to the Poisson bracket: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{P_{X},P_{Y}\}=-P_{[X,Y]}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{P_{X},P_{Y}\}=-P_{[X,Y]}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b807235723849825479543549bdc6d709f120bf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.766ex; height:3.176ex;" alt="{\displaystyle \{P_{X},P_{Y}\}=-P_{[X,Y]}.}"></span> </p><p>This important result is worth a short proof. Write a vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> at point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> in the <a href="/wiki/Configuration_space_(physics)" title="Configuration space (physics)">configuration space</a> as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{q}=\sum _{i}X^{i}(q){\frac {\partial }{\partial q^{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{q}=\sum _{i}X^{i}(q){\frac {\partial }{\partial q^{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a492465bb393cedbf09307c27e3c33aab56323" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.462ex; height:6.509ex;" alt="{\displaystyle X_{q}=\sum _{i}X^{i}(q){\frac {\partial }{\partial q^{i}}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\partial }{\partial q^{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\partial }{\partial q^{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dcbf7bb6ad5d91bb777b67ad7f5d273b6bfc502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:3.156ex; height:4.343ex;" alt="{\textstyle {\frac {\partial }{\partial q^{i}}}}"></span> is the local coordinate frame. The conjugate momentum to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has the expression <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}(q,p)=\sum _{i}X^{i}(q)\;p_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}(q,p)=\sum _{i}X^{i}(q)\;p_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ce52e06dda4634a4c464865c7b0c09176cdc49f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.337ex; height:5.509ex;" alt="{\displaystyle P_{X}(q,p)=\sum _{i}X^{i}(q)\;p_{i}}"></span> where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bab39399bf5424f25d957cdc57c84a0622626d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.059ex; height:2.009ex;" alt="{\displaystyle p_{i}}"></span> are the momentum functions conjugate to the coordinates. One then has, for a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q,p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q,p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e542f3143f252633d3d5633d5c9c9933e15dbfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.082ex; height:2.843ex;" alt="{\displaystyle (q,p)}"></span> in the <a href="/wiki/Phase_space" title="Phase space">phase space</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\{P_{X},P_{Y}\}(q,p)&amp;=\sum _{i}\sum _{j}\left\{X^{i}(q)\;p_{i},Y^{j}(q)\;p_{j}\right\}\\&amp;=\sum _{ij}p_{i}Y^{j}(q){\frac {\partial X^{i}}{\partial q^{j}}}-p_{j}X^{i}(q){\frac {\partial Y^{j}}{\partial q^{i}}}\\&amp;=-\sum _{i}p_{i}\;[X,Y]^{i}(q)\\&amp;=-P_{[X,Y]}(q,p).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thickmathspace" /> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\{P_{X},P_{Y}\}(q,p)&amp;=\sum _{i}\sum _{j}\left\{X^{i}(q)\;p_{i},Y^{j}(q)\;p_{j}\right\}\\&amp;=\sum _{ij}p_{i}Y^{j}(q){\frac {\partial X^{i}}{\partial q^{j}}}-p_{j}X^{i}(q){\frac {\partial Y^{j}}{\partial q^{i}}}\\&amp;=-\sum _{i}p_{i}\;[X,Y]^{i}(q)\\&amp;=-P_{[X,Y]}(q,p).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ba5433f5ac6a3170d8f796bd25cd1ec64a47f0b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:50.304ex; height:22.176ex;" alt="{\displaystyle {\begin{aligned}\{P_{X},P_{Y}\}(q,p)&amp;=\sum _{i}\sum _{j}\left\{X^{i}(q)\;p_{i},Y^{j}(q)\;p_{j}\right\}\\&amp;=\sum _{ij}p_{i}Y^{j}(q){\frac {\partial X^{i}}{\partial q^{j}}}-p_{j}X^{i}(q){\frac {\partial Y^{j}}{\partial q^{i}}}\\&amp;=-\sum _{i}p_{i}\;[X,Y]^{i}(q)\\&amp;=-P_{[X,Y]}(q,p).\end{aligned}}}"></span> </p><p>The above holds for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q,p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q,p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e542f3143f252633d3d5633d5c9c9933e15dbfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.082ex; height:2.843ex;" alt="{\displaystyle (q,p)}"></span>, giving the desired result. </p> <div class="mw-heading mw-heading2"><h2 id="Quantization">Quantization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=8" title="Edit section: Quantization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Poisson brackets <a href="/wiki/Deformation_theory" class="mw-redirect" title="Deformation theory">deform</a> to <a href="/wiki/Moyal_bracket" title="Moyal bracket">Moyal brackets</a> upon <a href="/wiki/Weyl_quantization" class="mw-redirect" title="Weyl quantization">quantization</a>, that is, they generalize to a different Lie algebra, the <a href="/wiki/Moyal_bracket" title="Moyal bracket">Moyal algebra</a>, or, equivalently in <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a>, quantum <a href="/wiki/Commutator" title="Commutator">commutators</a>. The Wigner-İnönü <a href="/wiki/Group_contraction" title="Group contraction">group contraction</a> of these (the classical limit, <span class="texhtml">ħ → 0</span>) yields the above Lie algebra. </p><p>To state this more explicitly and precisely, the <a href="/wiki/Universal_enveloping_algebra" title="Universal enveloping algebra">universal enveloping algebra</a> of the <a href="/wiki/Heisenberg_algebra" class="mw-redirect" title="Heisenberg algebra">Heisenberg algebra</a> is the <a href="/wiki/Weyl_algebra" title="Weyl algebra">Weyl algebra</a> (modulo the relation that the center be the unit). The Moyal product is then a special case of the star product on the algebra of symbols. An explicit definition of the algebra of symbols, and the star product is given in the article on the <a href="/wiki/Universal_enveloping_algebra" title="Universal enveloping algebra">universal enveloping algebra</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Commutator" title="Commutator">Commutator</a></li> <li><a href="/wiki/Dirac_bracket" title="Dirac bracket">Dirac bracket</a></li> <li><a href="/wiki/Lagrange_bracket" title="Lagrange bracket">Lagrange bracket</a></li> <li><a href="/wiki/Moyal_bracket" title="Moyal bracket">Moyal bracket</a></li> <li><a href="/wiki/Peierls_bracket" title="Peierls bracket">Peierls bracket</a></li> <li><a href="/wiki/Phase_space" title="Phase space">Phase space</a></li> <li><a href="/wiki/Poisson_algebra" title="Poisson algebra">Poisson algebra</a></li> <li><a href="/wiki/Poisson_ring" title="Poisson ring">Poisson ring</a></li> <li><a href="/wiki/Poisson_superalgebra" title="Poisson superalgebra">Poisson superalgebra</a></li> <li><a href="/wiki/Poisson_superbracket" class="mw-redirect" title="Poisson superbracket">Poisson superbracket</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Remarks">Remarks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=10" title="Edit section: Remarks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(p_{i},\,q_{i},\,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(p_{i},\,q_{i},\,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d09f5c1587f43bd85a789272cea23ba76841a08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.575ex; height:2.843ex;" alt="{\displaystyle f(p_{i},\,q_{i},\,t)}"></span> means <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a function of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2N+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2N+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d862395d02c6c80fb2ec2ebd027e13279c2c8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.229ex; height:2.343ex;" alt="{\displaystyle 2N+1}"></span> independent variables: momentum, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1\dots N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2026;<!-- … --></mo> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1\dots N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cbbaf1342ab99c9bcd5fae626bb75c80b60b714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.698ex; height:2.009ex;" alt="{\displaystyle p_{1\dots N}}"></span>; position, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{1\dots N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2026;<!-- … --></mo> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{1\dots N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a34bd1b8252a24efc58273442392cf1b6e5f4784" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.476ex; height:2.009ex;" alt="{\displaystyle q_{1\dots N}}"></span>; and time, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Poisson1809-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Poisson1809_1-0">^</a></b></span> <span class="reference-text"><a href="#poisson1881">S. D. Poisson (1809)</a></span> </li> <li id="cite_note-Marle2009-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Marle2009_2-0">^</a></b></span> <span class="reference-text"><a href="#marle2009">C. M. Marle (2009)</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGiacaglia1972" class="citation book cs1">Giacaglia, Giorgio E. O. (1972). <i>Perturbation methods in non-linear systems</i>. Applied mathematical sciences. New York Heidelberg: Springer. pp.&#160;8–9. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-90054-2" title="Special:BookSources/978-3-540-90054-2"><bdi>978-3-540-90054-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Perturbation+methods+in+non-linear+systems&amp;rft.place=New+York+Heidelberg&amp;rft.series=Applied+mathematical+sciences&amp;rft.pages=8-9&amp;rft.pub=Springer&amp;rft.date=1972&amp;rft.isbn=978-3-540-90054-2&amp;rft.aulast=Giacaglia&amp;rft.aufirst=Giorgio+E.+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></span> </li> </ol></div></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArnold1989" class="citation book cs1"><a href="/wiki/Vladimir_Arnold" title="Vladimir Arnold">Arnold, Vladimir I.</a> (1989). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalmeth0000arno"><i>Mathematical Methods of Classical Mechanics</i></a></span> (2nd&#160;ed.). New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-96890-2" title="Special:BookSources/978-0-387-96890-2"><bdi>978-0-387-96890-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Methods+of+Classical+Mechanics&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=1989&amp;rft.isbn=978-0-387-96890-2&amp;rft.aulast=Arnold&amp;rft.aufirst=Vladimir+I.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalmeth0000arno&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandauLifshitz1982" class="citation book cs1"><a href="/wiki/Lev_Landau" title="Lev Landau">Landau, Lev D.</a>; <a href="/wiki/Evgeny_Lifshitz" title="Evgeny Lifshitz">Lifshitz, Evegeny M.</a> (1982). <i>Mechanics</i>. <a href="/wiki/Course_of_Theoretical_Physics" title="Course of Theoretical Physics">Course of Theoretical Physics</a>. Vol.&#160;1 (3rd&#160;ed.). Butterworth-Heinemann. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7506-2896-9" title="Special:BookSources/978-0-7506-2896-9"><bdi>978-0-7506-2896-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mechanics&amp;rft.series=Course+of+Theoretical+Physics&amp;rft.edition=3rd&amp;rft.pub=Butterworth-Heinemann&amp;rft.date=1982&amp;rft.isbn=978-0-7506-2896-9&amp;rft.aulast=Landau&amp;rft.aufirst=Lev+D.&amp;rft.au=Lifshitz%2C+Evegeny+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarasëvMaslov1993" class="citation book cs1">Karasëv, Mikhail V.; <a href="/wiki/Victor_Pavlovich_Maslov" class="mw-redirect" title="Victor Pavlovich Maslov">Maslov, Victor P.</a> (1993). <i>Nonlinear Poisson brackets, Geometry and Quantization</i>. Translations of Mathematical Monographs. Vol.&#160;119. Translated by Sossinsky, Alexey; Shishkova, M.A. Providence, RI: American Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0821887967" title="Special:BookSources/978-0821887967"><bdi>978-0821887967</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1214142">1214142</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nonlinear+Poisson+brackets%2C+Geometry+and+Quantization&amp;rft.place=Providence%2C+RI&amp;rft.series=Translations+of+Mathematical+Monographs&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1993&amp;rft.isbn=978-0821887967&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1214142%23id-name%3DMR&amp;rft.aulast=Karas%C3%ABv&amp;rft.aufirst=Mikhail+V.&amp;rft.au=Maslov%2C+Victor+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoretti2023" class="citation book cs1">Moretti, Valter (2023). <i>Analytical Mechanics, Classical, Lagrangian and Hamiltonian Mechanics, Stability Theory, Special Relativity</i>. UNITEXT. Vol.&#160;150. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-031-27612-5" title="Special:BookSources/978-3-031-27612-5"><bdi>978-3-031-27612-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analytical+Mechanics%2C+Classical%2C+Lagrangian+and+Hamiltonian+Mechanics%2C+Stability+Theory%2C+Special+Relativity&amp;rft.series=UNITEXT&amp;rft.pub=Springer&amp;rft.date=2023&amp;rft.isbn=978-3-031-27612-5&amp;rft.aulast=Moretti&amp;rft.aufirst=Valter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="poisson1809" class="citation journal cs1">Poisson, Siméon-Denis (1809). <a rel="nofollow" class="external text" href="https://math.huji.ac.il/~piz/documents-others/SDP-1809.pdf">"Mémoire sur la variation des constantes arbitraires dans les questions de Mécanique"</a> <span class="cs1-format">(PDF)</span>. <i>Journal de l'École polytechnique, 15e cahier</i>. <b>8</b>: 266-344.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+de+l%27%C3%89cole+polytechnique%2C+15e+cahier&amp;rft.atitle=M%C3%A9moire+sur+la+variation+des+constantes+arbitraires+dans+les+questions+de+M%C3%A9canique&amp;rft.volume=8&amp;rft.pages=266-344&amp;rft.date=1809&amp;rft.aulast=Poisson&amp;rft.aufirst=Sim%C3%A9on-Denis&amp;rft_id=https%3A%2F%2Fmath.huji.ac.il%2F~piz%2Fdocuments-others%2FSDP-1809.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="marle2009" class="citation journal cs1"><a href="/wiki/Charles-Michel_Marle" title="Charles-Michel Marle">Marle, Charles-Michel</a> (2009). "The Inception of Symplectic Geometry: the Works of Lagrange and Poisson During the Years 1808-1810". <i>Letters in Mathematical Physics</i>. <b>90</b>: 3-21. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0902.0685">0902.0685</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11005-009-0347-y">10.1007/s11005-009-0347-y</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Letters+in+Mathematical+Physics&amp;rft.atitle=The+Inception+of+Symplectic+Geometry%3A+the+Works+of+Lagrange+and+Poisson+During+the+Years+1808-1810&amp;rft.volume=90&amp;rft.pages=3-21&amp;rft.date=2009&amp;rft_id=info%3Aarxiv%2F0902.0685&amp;rft_id=info%3Adoi%2F10.1007%2Fs11005-009-0347-y&amp;rft.aulast=Marle&amp;rft.aufirst=Charles-Michel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson_bracket&amp;action=edit&amp;section=12" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Poisson_brackets">"Poisson brackets"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Poisson+brackets&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DPoisson_brackets&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Poisson_bracket"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Eric W. Weisstein</a>. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/PoissonBracket.html">"Poisson bracket"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Poisson+bracket&amp;rft.au=Eric+W.+Weisstein&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FPoissonBracket.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson+bracket" class="Z3988"></span></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐9kd57 Cached time: 20241122141013 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.609 seconds Real time usage: 0.904 seconds Preprocessor visited node count: 3306/1000000 Post‐expand include size: 53534/2097152 bytes Template argument size: 5878/2097152 bytes Highest expansion depth: 10/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 71963/5000000 bytes Lua time usage: 0.256/10.000 seconds Lua memory usage: 5558769/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 550.184 1 -total 30.15% 165.879 1 Template:Classical_mechanics 29.58% 162.744 1 Template:Sidebar_with_collapsible_lists 21.53% 118.435 1 Template:Short_description 20.02% 110.164 5 Template:Cite_book 19.02% 104.639 2 Template:Reflist 12.84% 70.627 2 Template:Pagetype 7.24% 39.822 7 Template:Startflatlist 7.20% 39.612 32 Template:Main_other 5.82% 32.033 1 Template:SDcat --> <!-- Saved in parser cache with key enwiki:pcache:idhash:294340-0!canonical and timestamp 20241122141013 and revision id 1251072793. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Poisson_bracket&amp;oldid=1251072793">https://en.wikipedia.org/w/index.php?title=Poisson_bracket&amp;oldid=1251072793</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Symplectic_geometry" title="Category:Symplectic geometry">Symplectic geometry</a></li><li><a href="/wiki/Category:Hamiltonian_mechanics" title="Category:Hamiltonian mechanics">Hamiltonian mechanics</a></li><li><a href="/wiki/Category:Bilinear_maps" title="Category:Bilinear maps">Bilinear maps</a></li><li><a href="/wiki/Category:Concepts_in_physics" title="Category:Concepts in physics">Concepts in physics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 October 2024, at 07:20<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Poisson_bracket&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-znn46","wgBackendResponseTime":149,"wgPageParseReport":{"limitreport":{"cputime":"0.609","walltime":"0.904","ppvisitednodes":{"value":3306,"limit":1000000},"postexpandincludesize":{"value":53534,"limit":2097152},"templateargumentsize":{"value":5878,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":71963,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 550.184 1 -total"," 30.15% 165.879 1 Template:Classical_mechanics"," 29.58% 162.744 1 Template:Sidebar_with_collapsible_lists"," 21.53% 118.435 1 Template:Short_description"," 20.02% 110.164 5 Template:Cite_book"," 19.02% 104.639 2 Template:Reflist"," 12.84% 70.627 2 Template:Pagetype"," 7.24% 39.822 7 Template:Startflatlist"," 7.20% 39.612 32 Template:Main_other"," 5.82% 32.033 1 Template:SDcat"]},"scribunto":{"limitreport-timeusage":{"value":"0.256","limit":"10.000"},"limitreport-memusage":{"value":5558769,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-9kd57","timestamp":"20241122141013","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Poisson bracket","url":"https:\/\/en.wikipedia.org\/wiki\/Poisson_bracket","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1052775","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1052775","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-11T23:11:42Z","dateModified":"2024-10-14T07:20:18Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b7\/Simeon_Poisson.jpg","headline":"bilinear differential operation on scalar fields on a symplectic (or, more generally, Poisson) manifold"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10