CINXE.COM
Raul Toral | Universitat de les Illes Balears - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Raul Toral | Universitat de les Illes Balears - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="HvPfnu8U2jchIkC7b9is9y4CM3kylk5ciN8xd2XE9ZddnE3KWZUtw1j6i8mt--4u_t4H2zlNHJNYB-pmeqG1Nw" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="raul toral" /> <meta name="description" content="Raul Toral, Universitat de les Illes Balears: 22 Followers, 6 Following, 100 Research papers. Research interests: Physical Oceanography, Turbulence, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'c3e65371540394fa16a6b85de54095502b039e97'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14090,"monthly_visitors":"102 million","monthly_visitor_count":102560969,"monthly_visitor_count_in_millions":102,"user_count":280927756,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1737430132000); window.Aedu.timeDifference = new Date().getTime() - 1737430132000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-2efdc2c32b2f6169a3d23607195f9ede0feb7fd3889550edb0f47f1877a4b611.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-ece822dec0187e6a017e8791d6c228e932dc25ad90fb5c11987e8316edda69e6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://uib-es.academia.edu/RToral" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-63ec8be7eb7df39cf363c5dc6049fbc2ac3c2d13c6f7d7a4db205d47242fe352.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral","photo":"https://0.academia-photos.com/26324295/7273690/8184267/s65_raul.toral.jpg_oh_d192334b32779656146f6464b00656fc_oe_558fef58___gda___1431145960_fb8c52838a6396a8c33f28fc0c9803b4","has_photo":true,"department":{"id":99099,"name":"IFISC","url":"https://uib-es.academia.edu/Departments/IFISC/Documents","university":{"id":1501,"name":"Universitat de les Illes Balears","url":"https://uib-es.academia.edu/"}},"position":"Department Member","position_id":4,"is_analytics_public":false,"interests":[{"id":16691,"name":"Physical Oceanography","url":"https://www.academia.edu/Documents/in/Physical_Oceanography"},{"id":2802,"name":"Turbulence","url":"https://www.academia.edu/Documents/in/Turbulence"},{"id":4091,"name":"Semiconductor Physics","url":"https://www.academia.edu/Documents/in/Semiconductor_Physics"},{"id":4955,"name":"Computational Modelling","url":"https://www.academia.edu/Documents/in/Computational_Modelling"},{"id":16496,"name":"Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Fluid_Dynamics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":9832997,"link":"https://www.facebook.com/raul.toral.165","name":"Facebook","link_domain":"www.facebook.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.facebook.com"},{"id":9833070,"link":"http://ifisc.uib-csic.es","name":"Homepage","link_domain":"ifisc.uib-csic.es","icon":"//www.google.com/s2/u/0/favicons?domain=ifisc.uib-csic.es"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://uib-es.academia.edu/RToral","location":"/RToral","scheme":"https","host":"uib-es.academia.edu","port":null,"pathname":"/RToral","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-39f5794c-9cd9-4b9a-b20b-adf0e4ff083c"></div> <div id="ProfileCheckPaperUpdate-react-component-39f5794c-9cd9-4b9a-b20b-adf0e4ff083c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Raul Toral" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/26324295/7273690/8184267/s200_raul.toral.jpg_oh_d192334b32779656146f6464b00656fc_oe_558fef58___gda___1431145960_fb8c52838a6396a8c33f28fc0c9803b4" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Raul Toral</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://uib-es.academia.edu/">Universitat de les Illes Balears</a>, <a class="u-tcGrayDarker" href="https://uib-es.academia.edu/Departments/IFISC/Documents">IFISC</a>, <span class="u-tcGrayDarker">Department Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Raul" data-follow-user-id="26324295" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="26324295"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">22</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">6</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address: </b>Palma de Mallorca, Balearic Islands, Spain<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/EneSabina"><img class="profile-avatar u-positionAbsolute" alt="Sabina Ene" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/dc4593345cdbfed8ca610d8f53488a5d?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/EneSabina">Sabina Ene</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/patidarvinod"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/patidarvinod">vinod patidar</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://upm-es.academia.edu/alexanderPisarchik"><img class="profile-avatar u-positionAbsolute" alt="Alexander N Pisarchik" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/7299271/2731399/3181548/s200_alexander.pisarchik.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://upm-es.academia.edu/alexanderPisarchik">Alexander N Pisarchik</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Politécnica de Madrid</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unitn.academia.edu/alessandrogrecucci"><img class="profile-avatar u-positionAbsolute" alt="Alessandro Grecucci" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/6123971/13197056/14488338/s200_alessandro.grecucci.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unitn.academia.edu/alessandrogrecucci">Alessandro Grecucci</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Trento</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://siue.academia.edu/AlbertLuo"><img class="profile-avatar u-positionAbsolute" alt="Albert Luo" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/34716076/11505856/12833098/s200_albert.luo.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://siue.academia.edu/AlbertLuo">Albert Luo</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Southern Illinois University Edwardsville</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://karabuk.academia.edu/HakanKutucu"><img class="profile-avatar u-positionAbsolute" alt="Hakan Kutucu" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/39734827/26222497/24822934/s200_hakan.kutucu.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://karabuk.academia.edu/HakanKutucu">Hakan Kutucu</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Karabuk University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://univ-kiev.academia.edu/%D0%AF%D0%BD%D0%B0%D0%92%D0%B5%D0%B4%D0%B5%D0%BB%D1%8C"><img class="profile-avatar u-positionAbsolute" alt="Яна Ведель" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/39734589/10915274/12181125/s200__._.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://univ-kiev.academia.edu/%D0%AF%D0%BD%D0%B0%D0%92%D0%B5%D0%B4%D0%B5%D0%BB%D1%8C">Яна Ведель</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Taras Shevchenko National University of Kyiv</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/%D0%90%D0%BD%D0%BD%D0%B0%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D1%8F%D0%BD%D0%BA%D0%BE"><img class="profile-avatar u-positionAbsolute" alt="Анна Деревянко" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/39739213/110933892/100185070/s200__._.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/%D0%90%D0%BD%D0%BD%D0%B0%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D1%8F%D0%BD%D0%BA%D0%BE">Анна Деревянко</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://univ-kiev.academia.edu/TaacConference"><img class="profile-avatar u-positionAbsolute" alt="Taac Conference" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/33638046/9920214/11060477/s200_taac.conference.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://univ-kiev.academia.edu/TaacConference">Taac Conference</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Taras Shevchenko National University of Kyiv</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://univ-kiev.academia.edu/EmilNasirov"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://univ-kiev.academia.edu/EmilNasirov">Emil Nasirov</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Taras Shevchenko National University of Kyiv</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26324295" href="https://www.academia.edu/Documents/in/Physical_Oceanography"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://uib-es.academia.edu/RToral","location":"/RToral","scheme":"https","host":"uib-es.academia.edu","port":null,"pathname":"/RToral","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Physical Oceanography"]}" data-trace="false" data-dom-id="Pill-react-component-0cd38326-f517-482e-9a61-728058470038"></div> <div id="Pill-react-component-0cd38326-f517-482e-9a61-728058470038"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26324295" href="https://www.academia.edu/Documents/in/Turbulence"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Turbulence"]}" data-trace="false" data-dom-id="Pill-react-component-c67c4fab-1086-4e51-a2e7-e7a4881cb84f"></div> <div id="Pill-react-component-c67c4fab-1086-4e51-a2e7-e7a4881cb84f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26324295" href="https://www.academia.edu/Documents/in/Semiconductor_Physics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Semiconductor Physics"]}" data-trace="false" data-dom-id="Pill-react-component-ffde2cf0-48f3-487a-9db7-4e34b700ffb9"></div> <div id="Pill-react-component-ffde2cf0-48f3-487a-9db7-4e34b700ffb9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26324295" href="https://www.academia.edu/Documents/in/Computational_Modelling"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computational Modelling"]}" data-trace="false" data-dom-id="Pill-react-component-5f43f5ad-22d3-450d-afa6-bc87c7f6b9a9"></div> <div id="Pill-react-component-5f43f5ad-22d3-450d-afa6-bc87c7f6b9a9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="26324295" href="https://www.academia.edu/Documents/in/Fluid_Dynamics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Fluid Dynamics"]}" data-trace="false" data-dom-id="Pill-react-component-6d5b1ead-e6ca-4fb3-96bb-8e1b12db8d73"></div> <div id="Pill-react-component-6d5b1ead-e6ca-4fb3-96bb-8e1b12db8d73"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Raul Toral</h3></div><div class="js-work-strip profile--work_container" data-work-id="10828984"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828984/Wavelet_description_of_the_Nikolaevskii_model"><img alt="Research paper thumbnail of Wavelet description of the Nikolaevskii model" class="work-thumbnail" src="https://attachments.academia-assets.com/36651726/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828984/Wavelet_description_of_the_Nikolaevskii_model">Wavelet description of the Nikolaevskii model</a></div><div class="wp-workCard_item"><span>Journal of Physics A-mathematical and General</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-dimensional model that shows a direct transition to spatiotemporal chaos. We find that the dynamics of this model in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a Daubechies basis yields a good separation of scales,as shown by an examination of the contribution of different wavelet levels to the power spectrum. At most scales, including the most energetic ones, we find essentially Gaussian dynamics. We also show that removal of certain wavelet modes can be carried out without altering the dynamics of the system as described by the Lyapunov spectrum.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d9f04d696ae603caea9182f5be15c00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651726,"asset_id":10828984,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651726/download_file?st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828984"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828984"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828984; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828984]").text(description); $(".js-view-count[data-work-id=10828984]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828984; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828984']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828984, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d9f04d696ae603caea9182f5be15c00" } } $('.js-work-strip[data-work-id=10828984]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828984,"title":"Wavelet description of the Nikolaevskii model","translated_title":"","metadata":{"grobid_abstract":"We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-dimensional model that shows a direct transition to spatiotemporal chaos. We find that the dynamics of this model in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a Daubechies basis yields a good separation of scales,as shown by an examination of the contribution of different wavelet levels to the power spectrum. At most scales, including the most energetic ones, we find essentially Gaussian dynamics. We also show that removal of certain wavelet modes can be carried out without altering the dynamics of the system as described by the Lyapunov spectrum.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Journal of Physics A-mathematical and General","grobid_abstract_attachment_id":36651726},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828984/Wavelet_description_of_the_Nikolaevskii_model","translated_internal_url":"","created_at":"2015-02-16T00:28:52.236-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651726,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651726/thumbnails/1.jpg","file_name":"P94_txgx03.pdf","download_url":"https://www.academia.edu/attachments/36651726/download_file?st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Wavelet_description_of_the_Nikolaevskii.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651726/P94_txgx03-libre.pdf?1424109202=\u0026response-content-disposition=attachment%3B+filename%3DWavelet_description_of_the_Nikolaevskii.pdf\u0026Expires=1737412431\u0026Signature=NfOMogq8LD89EoM6FoQiwXne~VqO3MOgtZzV0fiUpeqp4oM0RjIGqd1-oVrnrOEV7vrWUpC~87VdbnNdUMGNgczC5e5JE~7LkvkAdlgxiqChUXsAdygugS9hYlO3kO958CHSyp0nEtr25Pxxi903bbI16U4681PJqF6GEoML2MrJnJv1m4D1SpJAfsQoWnYfSmkSqBxYALXVdXc3pWtwqQqmET675qr4rb6tdISJDSw2LKQOys0Gt168YWrVXA5o-o80sicMElrSPcnibRgkdHZgTHSXqUW3ZykkyImIuOc21To67V9gkrsCO9CR6mgSPC0thyS6jY9PCAxRHCY6bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Wavelet_description_of_the_Nikolaevskii_model","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-dimensional model that shows a direct transition to spatiotemporal chaos. We find that the dynamics of this model in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a Daubechies basis yields a good separation of scales,as shown by an examination of the contribution of different wavelet levels to the power spectrum. At most scales, including the most energetic ones, we find essentially Gaussian dynamics. We also show that removal of certain wavelet modes can be carried out without altering the dynamics of the system as described by the Lyapunov spectrum.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651726,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651726/thumbnails/1.jpg","file_name":"P94_txgx03.pdf","download_url":"https://www.academia.edu/attachments/36651726/download_file?st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Wavelet_description_of_the_Nikolaevskii.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651726/P94_txgx03-libre.pdf?1424109202=\u0026response-content-disposition=attachment%3B+filename%3DWavelet_description_of_the_Nikolaevskii.pdf\u0026Expires=1737412431\u0026Signature=NfOMogq8LD89EoM6FoQiwXne~VqO3MOgtZzV0fiUpeqp4oM0RjIGqd1-oVrnrOEV7vrWUpC~87VdbnNdUMGNgczC5e5JE~7LkvkAdlgxiqChUXsAdygugS9hYlO3kO958CHSyp0nEtr25Pxxi903bbI16U4681PJqF6GEoML2MrJnJv1m4D1SpJAfsQoWnYfSmkSqBxYALXVdXc3pWtwqQqmET675qr4rb6tdISJDSw2LKQOys0Gt168YWrVXA5o-o80sicMElrSPcnibRgkdHZgTHSXqUW3ZykkyImIuOc21To67V9gkrsCO9CR6mgSPC0thyS6jY9PCAxRHCY6bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":115917,"name":"Chaotic Dynamics","url":"https://www.academia.edu/Documents/in/Chaotic_Dynamics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":386999,"name":"Power Spectrum","url":"https://www.academia.edu/Documents/in/Power_Spectrum"},{"id":1129722,"name":"Spatiotemporal Chaos","url":"https://www.academia.edu/Documents/in/Spatiotemporal_Chaos"}],"urls":[{"id":4363154,"url":"http://www.ifisc.uib.es/raul/publications/P/P94_txgx03.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828983"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828983/Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise"><img alt="Research paper thumbnail of Disordering Effects of Color in Nonequilibrium Phase Transitions Induced by Multiplicative Noise" class="work-thumbnail" src="https://attachments.academia-assets.com/36651728/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828983/Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise">Disordering Effects of Color in Nonequilibrium Phase Transitions Induced by Multiplicative Noise</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-lea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-leading to a second-order-like noise-induced nonequilibrium phase transition which shows reentrance as a function of the (multiplicative) noise intensity σ-is investigated beyond the white-noise assumption. Through a Markovian approximation and within a mean-field treatment it is found that-in striking contrast with the usual behavior for equilibrium phase transitions-for noise self-correlation time τ > 0, the stable phase for (diffusive) spatial coupling D → ∞ is always the disordered one. Another surprising result is that a large noise "memory" also tends to destroy order. These results are supported by numerical simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8830ad40eb3d4650c3329e713bd11c06" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651728,"asset_id":10828983,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651728/download_file?st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828983"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828983]").text(description); $(".js-view-count[data-work-id=10828983]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828983']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828983, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8830ad40eb3d4650c3329e713bd11c06" } } $('.js-work-strip[data-work-id=10828983]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828983,"title":"Disordering Effects of Color in Nonequilibrium Phase Transitions Induced by Multiplicative Noise","translated_title":"","metadata":{"grobid_abstract":"The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-leading to a second-order-like noise-induced nonequilibrium phase transition which shows reentrance as a function of the (multiplicative) noise intensity σ-is investigated beyond the white-noise assumption. Through a Markovian approximation and within a mean-field treatment it is found that-in striking contrast with the usual behavior for equilibrium phase transitions-for noise self-correlation time τ \u003e 0, the stable phase for (diffusive) spatial coupling D → ∞ is always the disordered one. Another surprising result is that a large noise \"memory\" also tends to destroy order. These results are supported by numerical simulations.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":36651728},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828983/Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise","translated_internal_url":"","created_at":"2015-02-16T00:28:52.038-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651728,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651728/thumbnails/1.jpg","file_name":"9707308.pdf","download_url":"https://www.academia.edu/attachments/36651728/download_file?st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Disordering_Effects_of_Color_in_Nonequil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651728/9707308-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DDisordering_Effects_of_Color_in_Nonequil.pdf\u0026Expires=1737433731\u0026Signature=Rsm2AB1S~A4oV-L0zXl7CTNGE6bzlnG0DSlN1RSfiXA4uL9qt2HETHgRbidf9KOCWpy2lYYnO1~Yp7YVqHk9kj~ZI2TkSQE31DBTNvVfbAJnRvDuS3K--sKL38s7KHewNygguBuzGEKkBJa-2jtJclwnx~ivFL-uqvfAMwywFypBzuRn40x8-BuyInVPafL6XkLq0s~NbaJ7aG4OWBK8ddBpCa8rxzfIxbpLG5diLcWXw~yUWYzz54bTqIoZFqRhdUj3Yeogkwpujea7K3~JfkWmlN~ocsQkbr6hZaykzMCgBMaiAVml2M89E0OgXtVWCupe~nCyArzhPHJR7X6oAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-leading to a second-order-like noise-induced nonequilibrium phase transition which shows reentrance as a function of the (multiplicative) noise intensity σ-is investigated beyond the white-noise assumption. Through a Markovian approximation and within a mean-field treatment it is found that-in striking contrast with the usual behavior for equilibrium phase transitions-for noise self-correlation time τ \u003e 0, the stable phase for (diffusive) spatial coupling D → ∞ is always the disordered one. Another surprising result is that a large noise \"memory\" also tends to destroy order. These results are supported by numerical simulations.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651728,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651728/thumbnails/1.jpg","file_name":"9707308.pdf","download_url":"https://www.academia.edu/attachments/36651728/download_file?st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Disordering_Effects_of_Color_in_Nonequil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651728/9707308-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DDisordering_Effects_of_Color_in_Nonequil.pdf\u0026Expires=1737433731\u0026Signature=Rsm2AB1S~A4oV-L0zXl7CTNGE6bzlnG0DSlN1RSfiXA4uL9qt2HETHgRbidf9KOCWpy2lYYnO1~Yp7YVqHk9kj~ZI2TkSQE31DBTNvVfbAJnRvDuS3K--sKL38s7KHewNygguBuzGEKkBJa-2jtJclwnx~ivFL-uqvfAMwywFypBzuRn40x8-BuyInVPafL6XkLq0s~NbaJ7aG4OWBK8ddBpCa8rxzfIxbpLG5diLcWXw~yUWYzz54bTqIoZFqRhdUj3Yeogkwpujea7K3~JfkWmlN~ocsQkbr6hZaykzMCgBMaiAVml2M89E0OgXtVWCupe~nCyArzhPHJR7X6oAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":36651729,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651729/thumbnails/1.jpg","file_name":"9707308.pdf","download_url":"https://www.academia.edu/attachments/36651729/download_file","bulk_download_file_name":"Disordering_Effects_of_Color_in_Nonequil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651729/9707308-libre.pdf?1424109199=\u0026response-content-disposition=attachment%3B+filename%3DDisordering_Effects_of_Color_in_Nonequil.pdf\u0026Expires=1737433731\u0026Signature=XCO64d3TRwEu1fG1hdOrMVdv16YBzddnBuTgC4Y2JZCIuiuDcHSbhXiBnv0YSfSx2gwVh-MRGlM97DdyjCRcIWw1eNA7T8BPPGdi8xo24WzzSAjY~kN4EtF-VryVERp6qgentraIHZvaFqR1I9AcXUSFYF8k6rBApvTImK62saezMg-ePTCjL-etDS67aqUQp-Kp4~i9ND5KyAUypDeS0TrOqkcCo-~uGACSYmQYJtNDHMi-e3NYK3PvILAa2AyZgXVgZVq6VjyCx3kkMuahi4OkVYDQ-k4ANSOOxB13LUTxuwJL8170GmrZZJCIyflLKf-mdk42iFQc15rqhEtlSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":1113523,"name":"White Noise","url":"https://www.academia.edu/Documents/in/White_Noise"},{"id":1988984,"name":"Multiplicative noise","url":"https://www.academia.edu/Documents/in/Multiplicative_noise"}],"urls":[{"id":4363153,"url":"http://arxiv.org/abs/cond-mat/9707308"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828982"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828982/Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture"><img alt="Research paper thumbnail of Role of dimensionality in Axelrod's model for the dissemination of culture" class="work-thumbnail" src="https://attachments.academia-assets.com/47093306/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828982/Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture">Role of dimensionality in Axelrod's model for the dissemination of culture</a></div><div class="wp-workCard_item"><span>Physica A-statistical Mechanics and Its Applications</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze a model of social interaction in one and two-dimensional lattices for a moderate numbe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze a model of social interaction in one and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first order transition between an ordered and a disordered state.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="19969fab9827f805f35cf93e3719db8d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093306,"asset_id":10828982,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093306/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828982"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828982"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828982; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828982]").text(description); $(".js-view-count[data-work-id=10828982]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828982; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828982']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828982, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "19969fab9827f805f35cf93e3719db8d" } } $('.js-work-strip[data-work-id=10828982]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828982,"title":"Role of dimensionality in Axelrod's model for the dissemination of culture","translated_title":"","metadata":{"grobid_abstract":"We analyze a model of social interaction in one and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first order transition between an ordered and a disordered state.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physica A-statistical Mechanics and Its Applications","grobid_abstract_attachment_id":47093306},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828982/Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture","translated_internal_url":"","created_at":"2015-02-16T00:28:51.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093306/thumbnails/1.jpg","file_name":"cult_ph.pdf","download_url":"https://www.academia.edu/attachments/47093306/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_dimensionality_in_Axelrods_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093306/cult_ph-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_dimensionality_in_Axelrods_model.pdf\u0026Expires=1737433732\u0026Signature=ZI6oe3nx3-GLQJlrg-nchEnvG6Y2S2Chz63AiQw2OPuimuF7Gcp0syRhNcUrURoe~aMuA8H6dyOU~xJQxjXRNXcidU~Du~T0EiffPPNDdAyDrdBtt4AA6QVvvO80Pmq3CHjLw6bSsyuuKoYc4XGbO9vhX~h5W8HcN-bo596oq~~hfqwep7N7t4b84sPrgrVSfzBy0jAxY6ROlBJF83-ry0AKhQfR3T5wAfmMb87Ckqhr3pt6pz15MQxeiayG0qSs-MsTVn59M6EYbx5udfTFFYpiY36z9DwqtkQwwXhqiXQcC8ECw0ufvKR-kMpXVP4va3limansiBPJDVxKtOMHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We analyze a model of social interaction in one and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first order transition between an ordered and a disordered state.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093306/thumbnails/1.jpg","file_name":"cult_ph.pdf","download_url":"https://www.academia.edu/attachments/47093306/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_dimensionality_in_Axelrods_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093306/cult_ph-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_dimensionality_in_Axelrods_model.pdf\u0026Expires=1737433732\u0026Signature=ZI6oe3nx3-GLQJlrg-nchEnvG6Y2S2Chz63AiQw2OPuimuF7Gcp0syRhNcUrURoe~aMuA8H6dyOU~xJQxjXRNXcidU~Du~T0EiffPPNDdAyDrdBtt4AA6QVvvO80Pmq3CHjLw6bSsyuuKoYc4XGbO9vhX~h5W8HcN-bo596oq~~hfqwep7N7t4b84sPrgrVSfzBy0jAxY6ROlBJF83-ry0AKhQfR3T5wAfmMb87Ckqhr3pt6pz15MQxeiayG0qSs-MsTVn59M6EYbx5udfTFFYpiY36z9DwqtkQwwXhqiXQcC8ECw0ufvKR-kMpXVP4va3limansiBPJDVxKtOMHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":4715,"name":"Social Interaction","url":"https://www.academia.edu/Documents/in/Social_Interaction"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":960474,"name":"Order Parameter","url":"https://www.academia.edu/Documents/in/Order_Parameter"}],"urls":[{"id":4363152,"url":"http://www.sciencedirect.com/science/article/pii/S037843710300428X"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828981"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828981/Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media"><img alt="Research paper thumbnail of Theory of collective firing induced by noise or diversity in excitable media" class="work-thumbnail" src="https://attachments.academia-assets.com/36651727/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828981/Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media">Theory of collective firing induced by noise or diversity in excitable media</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Large variety of physical, chemical, and biological systems show excitable behavior, characterize...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system response ͑firing͒. It has been reported that in coupled excitable identical systems noise may induce the simultaneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57edb9dd40be21af9b34e61ec07574e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651727,"asset_id":10828981,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651727/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828981"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828981"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828981; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828981]").text(description); $(".js-view-count[data-work-id=10828981]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828981; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828981']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828981, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57edb9dd40be21af9b34e61ec07574e7" } } $('.js-work-strip[data-work-id=10828981]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828981,"title":"Theory of collective firing induced by noise or diversity in excitable media","translated_title":"","metadata":{"grobid_abstract":"Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system response ͑firing͒. It has been reported that in coupled excitable identical systems noise may induce the simultaneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":36651727},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828981/Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media","translated_internal_url":"","created_at":"2015-02-16T00:28:51.572-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651727/thumbnails/1.jpg","file_name":"2007-pre.pdf","download_url":"https://www.academia.edu/attachments/36651727/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_collective_firing_induced_by_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651727/2007-pre-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_collective_firing_induced_by_n.pdf\u0026Expires=1737433732\u0026Signature=F9viuS1TGLgvNXkR~5QJhZwlIHFCqNrGMhogXLFBJeGRY~WT-nyfhlqqFUCYmTJfmWhzUzOBU1tMZQwJuJ3jGQeIfZhVAM4fVOB3qY75FRJdqMUwndiFFY5M87dfZkQ68Zvxrm2bK4KpiMowDv5iPqEHjcXr~MS4TtJXqjws10w6zxBN-vS4uP2NB15stbYDbqxlkERyrjK3LVwkxQDiyZ0coM99PEEtcxciYAjtDi5MhWUyjSQjOxA6VTUux5EANDgC-P0g1VDyJCGOViPHT1Rb71Zu6sMGGsQzXF7FrzTx-keVJHXUxDqyGOYO9hCJwc6WfO3h~hBv8Mx1wYh0ng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system response ͑firing͒. It has been reported that in coupled excitable identical systems noise may induce the simultaneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651727/thumbnails/1.jpg","file_name":"2007-pre.pdf","download_url":"https://www.academia.edu/attachments/36651727/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_collective_firing_induced_by_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651727/2007-pre-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_collective_firing_induced_by_n.pdf\u0026Expires=1737433732\u0026Signature=F9viuS1TGLgvNXkR~5QJhZwlIHFCqNrGMhogXLFBJeGRY~WT-nyfhlqqFUCYmTJfmWhzUzOBU1tMZQwJuJ3jGQeIfZhVAM4fVOB3qY75FRJdqMUwndiFFY5M87dfZkQ68Zvxrm2bK4KpiMowDv5iPqEHjcXr~MS4TtJXqjws10w6zxBN-vS4uP2NB15stbYDbqxlkERyrjK3LVwkxQDiyZ0coM99PEEtcxciYAjtDi5MhWUyjSQjOxA6VTUux5EANDgC-P0g1VDyJCGOViPHT1Rb71Zu6sMGGsQzXF7FrzTx-keVJHXUxDqyGOYO9hCJwc6WfO3h~hBv8Mx1wYh0ng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"},{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process"},{"id":10152,"name":"Excitable Media","url":"https://www.academia.edu/Documents/in/Excitable_Media"},{"id":15250,"name":"Synchronization","url":"https://www.academia.edu/Documents/in/Synchronization"},{"id":41726,"name":"Coupled Oscillator","url":"https://www.academia.edu/Documents/in/Coupled_Oscillator"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":84294,"name":"Fixed Point Theory","url":"https://www.academia.edu/Documents/in/Fixed_Point_Theory"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion"},{"id":351461,"name":"Biological systems","url":"https://www.academia.edu/Documents/in/Biological_systems"}],"urls":[{"id":4363151,"url":"http://ifisc.uib.es/~tessonec/work/papers/2007-pre.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828980"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828980/Nonequilibrium_phase_transitions_induced_by_multiplicative_noise"><img alt="Research paper thumbnail of Nonequilibrium phase transitions induced by multiplicative noise" class="work-thumbnail" src="https://attachments.academia-assets.com/47093314/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828980/Nonequilibrium_phase_transitions_induced_by_multiplicative_noise">Nonequilibrium phase transitions induced by multiplicative noise</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We review a mean-field analysis and give the details of a correlation function approach for spati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We review a mean-field analysis and give the details of a correlation function approach for spatially distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure noise-induced reentrant nonequilibrium phase transition in the model introduced in ͓C. Van den Broeck et al., Phys. Rev. Lett. 73, 3395 ͑1994͔͒, give an intuitive explanation of its origin, and present extensive simulations in dimension dϭ2. The observed critical properties are compatible with those of the Ising universality class.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="504777797eef673878bef9e8cf63c591" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093314,"asset_id":10828980,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093314/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828980"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828980"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828980; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828980]").text(description); $(".js-view-count[data-work-id=10828980]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828980; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828980']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828980, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "504777797eef673878bef9e8cf63c591" } } $('.js-work-strip[data-work-id=10828980]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828980,"title":"Nonequilibrium phase transitions induced by multiplicative noise","translated_title":"","metadata":{"grobid_abstract":"We review a mean-field analysis and give the details of a correlation function approach for spatially distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure noise-induced reentrant nonequilibrium phase transition in the model introduced in ͓C. Van den Broeck et al., Phys. Rev. Lett. 73, 3395 ͑1994͔͒, give an intuitive explanation of its origin, and present extensive simulations in dimension dϭ2. The observed critical properties are compatible with those of the Ising universality class.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":47093314},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828980/Nonequilibrium_phase_transitions_induced_by_multiplicative_noise","translated_internal_url":"","created_at":"2015-02-16T00:28:51.326-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093314/thumbnails/1.jpg","file_name":"nonequilibirum.pdf","download_url":"https://www.academia.edu/attachments/47093314/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_phase_transitions_induced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093314/nonequilibirum-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_phase_transitions_induced.pdf\u0026Expires=1737433732\u0026Signature=HHp2hEkeYGp3f04oT~680ljei1wpSbXX-yHzB2k1m943UeLk7vGrb-j3FcupA5xGEDfzN5NZ7Y13ktRuNaohjX03PIuTFbP2lMZsEHBW4BYhtiNk-DHIhLuUkZuBjC8G5AMTDbHY9zgFwpzXdOokpuE66Qb8y9nfmqjZOeL5NY6NSD0PFP568NwfHXXYfSMxvCWcX6~u9IWG24pNs9JzGc-L9Irz7E8uyQ7xhljCZrIYEGBEN4qfTzEhX1ic3r01y1l02kIjNeCdcJ0fYqxMPblzCjKKsn0PHxev3j3hn-KQvMIqBx6oTFrfG2VHn98egeEEwditJvN2e6K9vlKBqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonequilibrium_phase_transitions_induced_by_multiplicative_noise","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We review a mean-field analysis and give the details of a correlation function approach for spatially distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure noise-induced reentrant nonequilibrium phase transition in the model introduced in ͓C. Van den Broeck et al., Phys. Rev. Lett. 73, 3395 ͑1994͔͒, give an intuitive explanation of its origin, and present extensive simulations in dimension dϭ2. The observed critical properties are compatible with those of the Ising universality class.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093314/thumbnails/1.jpg","file_name":"nonequilibirum.pdf","download_url":"https://www.academia.edu/attachments/47093314/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_phase_transitions_induced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093314/nonequilibirum-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_phase_transitions_induced.pdf\u0026Expires=1737433732\u0026Signature=HHp2hEkeYGp3f04oT~680ljei1wpSbXX-yHzB2k1m943UeLk7vGrb-j3FcupA5xGEDfzN5NZ7Y13ktRuNaohjX03PIuTFbP2lMZsEHBW4BYhtiNk-DHIhLuUkZuBjC8G5AMTDbHY9zgFwpzXdOokpuE66Qb8y9nfmqjZOeL5NY6NSD0PFP568NwfHXXYfSMxvCWcX6~u9IWG24pNs9JzGc-L9Irz7E8uyQ7xhljCZrIYEGBEN4qfTzEhX1ic3r01y1l02kIjNeCdcJ0fYqxMPblzCjKKsn0PHxev3j3hn-KQvMIqBx6oTFrfG2VHn98egeEEwditJvN2e6K9vlKBqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":95016,"name":"Lattice Beam Model","url":"https://www.academia.edu/Documents/in/Lattice_Beam_Model"},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":187673,"name":"Phase Change","url":"https://www.academia.edu/Documents/in/Phase_Change"},{"id":339310,"name":"Symmetry Breaking","url":"https://www.academia.edu/Documents/in/Symmetry_Breaking"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":1988984,"name":"Multiplicative noise","url":"https://www.academia.edu/Documents/in/Multiplicative_noise"},{"id":2382100,"name":"Correlation function","url":"https://www.academia.edu/Documents/in/Correlation_function"}],"urls":[{"id":4363150,"url":"http://link.aps.org/doi/10.1103/PhysRevE.55.4084"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828979"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828979/Neighborhood_models_of_minority_opinion_spreading"><img alt="Research paper thumbnail of Neighborhood models of minority opinion spreading" class="work-thumbnail" src="https://attachments.academia-assets.com/47093313/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828979/Neighborhood_models_of_minority_opinion_spreading">Neighborhood models of minority opinion spreading</a></div><div class="wp-workCard_item"><span>European Physical Journal B</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N , the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa253bee8d89c980fbfc47da73581c6c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093313,"asset_id":10828979,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093313/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828979"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828979"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828979; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828979]").text(description); $(".js-view-count[data-work-id=10828979]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828979; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828979']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828979, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa253bee8d89c980fbfc47da73581c6c" } } $('.js-work-strip[data-work-id=10828979]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828979,"title":"Neighborhood models of minority opinion spreading","translated_title":"","metadata":{"grobid_abstract":"We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N , the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"European Physical Journal B","grobid_abstract_attachment_id":47093313},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828979/Neighborhood_models_of_minority_opinion_spreading","translated_internal_url":"","created_at":"2015-02-16T00:28:51.066-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093313,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093313/thumbnails/1.jpg","file_name":"0403339.pdf","download_url":"https://www.academia.edu/attachments/47093313/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neighborhood_models_of_minority_opinion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093313/0403339-libre.pdf?1467938305=\u0026response-content-disposition=attachment%3B+filename%3DNeighborhood_models_of_minority_opinion.pdf\u0026Expires=1737433732\u0026Signature=JH19HPToFWonoRFnSxA68qqa2Qud9N7DeYU26OkP9oQ9V2edaph9-Qjx10lTwO8HauTBdtGWLnIphJbEXQHab6U1-wTlMfQU6P8zNdXqbwqHCoAasAMnm1lV5YK-xxGZJvAFCjLHMfw~sJxMb~TKD4ZQriBSde9qKpR8MNz7osFhZ5eYqQcyN6p1d3O9LNoyqI5cBtRvsNtWdq8KfXZw7jC-MaRyW1xnhjpO86qQM~jE6-SlMjz~9J7xHXyfeDlj7isre~Zub2Jh6aBXyQzx7eEFhetzoSm9Bu9CQLl8zZEdXBgv39zttQaOGJrfjB58aLouc~wXt05uvAgkOZXw-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neighborhood_models_of_minority_opinion_spreading","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N , the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093313,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093313/thumbnails/1.jpg","file_name":"0403339.pdf","download_url":"https://www.academia.edu/attachments/47093313/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neighborhood_models_of_minority_opinion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093313/0403339-libre.pdf?1467938305=\u0026response-content-disposition=attachment%3B+filename%3DNeighborhood_models_of_minority_opinion.pdf\u0026Expires=1737433732\u0026Signature=JH19HPToFWonoRFnSxA68qqa2Qud9N7DeYU26OkP9oQ9V2edaph9-Qjx10lTwO8HauTBdtGWLnIphJbEXQHab6U1-wTlMfQU6P8zNdXqbwqHCoAasAMnm1lV5YK-xxGZJvAFCjLHMfw~sJxMb~TKD4ZQriBSde9qKpR8MNz7osFhZ5eYqQcyN6p1d3O9LNoyqI5cBtRvsNtWdq8KfXZw7jC-MaRyW1xnhjpO86qQM~jE6-SlMjz~9J7xHXyfeDlj7isre~Zub2Jh6aBXyQzx7eEFhetzoSm9Bu9CQLl8zZEdXBgv39zttQaOGJrfjB58aLouc~wXt05uvAgkOZXw-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":141675,"name":"Neighbourhood","url":"https://www.academia.edu/Documents/in/Neighbourhood"},{"id":236071,"name":"Populations","url":"https://www.academia.edu/Documents/in/Populations"},{"id":368057,"name":"Dimension","url":"https://www.academia.edu/Documents/in/Dimension"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"},{"id":613465,"name":"Statistical models","url":"https://www.academia.edu/Documents/in/Statistical_models"},{"id":741144,"name":"Agent Based Model","url":"https://www.academia.edu/Documents/in/Agent_Based_Model"},{"id":901297,"name":"Dimensions","url":"https://www.academia.edu/Documents/in/Dimensions"}],"urls":[{"id":4363148,"url":"http://www.springerlink.com/content/06a9g9frdhqk38e2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828978"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828978/System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models"><img alt="Research paper thumbnail of System size coherence resonance in coupled FitzHugh-Nagumo models" class="work-thumbnail" src="https://attachments.academia-assets.com/47093424/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828978/System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models">System size coherence resonance in coupled FitzHugh-Nagumo models</a></div><div class="wp-workCard_item"><span>Europhysics Letters (epl)</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show the existence of a system size coherence resonance effect for coupled excitable systems. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show the existence of a system size coherence resonance effect for coupled excitable systems. Namely, we demonstrate numerically that the regularity in the signal emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by independent noise sources, is optimal for a particular value of the number of coupled systems. This resonance is shown through several different dynamical measures: the time correlation function, correlation time and jitter.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="42cbef4ae2d11e4a73f60ef9f245e80f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093424,"asset_id":10828978,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093424/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828978"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828978"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828978; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828978]").text(description); $(".js-view-count[data-work-id=10828978]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828978; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828978']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828978, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "42cbef4ae2d11e4a73f60ef9f245e80f" } } $('.js-work-strip[data-work-id=10828978]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828978,"title":"System size coherence resonance in coupled FitzHugh-Nagumo models","translated_title":"","metadata":{"grobid_abstract":"We show the existence of a system size coherence resonance effect for coupled excitable systems. Namely, we demonstrate numerically that the regularity in the signal emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by independent noise sources, is optimal for a particular value of the number of coupled systems. This resonance is shown through several different dynamical measures: the time correlation function, correlation time and jitter.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Europhysics Letters (epl)","grobid_abstract_attachment_id":47093424},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828978/System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models","translated_internal_url":"","created_at":"2015-02-16T00:28:50.806-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093424/thumbnails/1.jpg","file_name":"System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u.pdf","download_url":"https://www.academia.edu/attachments/47093424/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"System_size_coherence_resonance_in_coupl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093424/System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u-libre.pdf?1467938294=\u0026response-content-disposition=attachment%3B+filename%3DSystem_size_coherence_resonance_in_coupl.pdf\u0026Expires=1737412431\u0026Signature=Wub-ROQuJ0wJiDjuVPYU0J0-bCAuFJAsNJghTsJo5b64cFvVqRaNQaqYBQoPFdWD1z4fCVD7wCJ73AzzHMNBDCfbFNM2B6gz~b8mQbh~p9w0JcT7qedbCEvuh-Ioj~3-OteW-HTIsRGhVXo30cfdb9wmEe5ct3U33~ceiNYiERVE6NiStVVgPpYj8aKsxD86oMrPPQ6SsPJa-N1UWE2dOirPL~hsQFaou258ZibFfYASQovrX2S9Hvs6HsblcvpqY1jbXwjjgnYs9K9mkqCu9Mutn09XiknDXQA3LaHupN4SBRePF77UHumlNqtswajkC3LXlGavRQnLu3BGvJpWQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We show the existence of a system size coherence resonance effect for coupled excitable systems. Namely, we demonstrate numerically that the regularity in the signal emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by independent noise sources, is optimal for a particular value of the number of coupled systems. This resonance is shown through several different dynamical measures: the time correlation function, correlation time and jitter.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093424/thumbnails/1.jpg","file_name":"System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u.pdf","download_url":"https://www.academia.edu/attachments/47093424/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"System_size_coherence_resonance_in_coupl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093424/System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u-libre.pdf?1467938294=\u0026response-content-disposition=attachment%3B+filename%3DSystem_size_coherence_resonance_in_coupl.pdf\u0026Expires=1737412431\u0026Signature=Wub-ROQuJ0wJiDjuVPYU0J0-bCAuFJAsNJghTsJo5b64cFvVqRaNQaqYBQoPFdWD1z4fCVD7wCJ73AzzHMNBDCfbFNM2B6gz~b8mQbh~p9w0JcT7qedbCEvuh-Ioj~3-OteW-HTIsRGhVXo30cfdb9wmEe5ct3U33~ceiNYiERVE6NiStVVgPpYj8aKsxD86oMrPPQ6SsPJa-N1UWE2dOirPL~hsQFaou258ZibFfYASQovrX2S9Hvs6HsblcvpqY1jbXwjjgnYs9K9mkqCu9Mutn09XiknDXQA3LaHupN4SBRePF77UHumlNqtswajkC3LXlGavRQnLu3BGvJpWQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15250,"name":"Synchronization","url":"https://www.academia.edu/Documents/in/Synchronization"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1164807,"name":"Coherence Resonance","url":"https://www.academia.edu/Documents/in/Coherence_Resonance"},{"id":1379965,"name":"Coupled Tank System","url":"https://www.academia.edu/Documents/in/Coupled_Tank_System"},{"id":2382100,"name":"Correlation function","url":"https://www.academia.edu/Documents/in/Correlation_function"}],"urls":[{"id":4363147,"url":"http://stacks.iop.org/0295-5075/61/i=2/a=162?key=crossref.993bda92f7dce8bbf1367abaccf859cf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828976"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828976/Diversity_Induced_Resonance"><img alt="Research paper thumbnail of Diversity-Induced Resonance" class="work-thumbnail" src="https://attachments.academia-assets.com/36651725/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828976/Diversity_Induced_Resonance">Diversity-Induced Resonance</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present conclusive evidence showing that different sources of diversity, such as those represe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="427de3604ca55370063e5ea22096b035" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651725,"asset_id":10828976,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651725/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828976"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828976]").text(description); $(".js-view-count[data-work-id=10828976]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828976']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828976, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "427de3604ca55370063e5ea22096b035" } } $('.js-work-strip[data-work-id=10828976]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828976,"title":"Diversity-Induced Resonance","translated_title":"","metadata":{"ai_title_tag":"Optimizing Response to Stimuli via Diversity-Induced Resonance","grobid_abstract":"We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":36651725},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828976/Diversity_Induced_Resonance","translated_internal_url":"","created_at":"2015-02-16T00:28:50.572-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651725/thumbnails/1.jpg","file_name":"0605082.pdf","download_url":"https://www.academia.edu/attachments/36651725/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diversity_Induced_Resonance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651725/0605082-libre.pdf?1424109193=\u0026response-content-disposition=attachment%3B+filename%3DDiversity_Induced_Resonance.pdf\u0026Expires=1737412431\u0026Signature=WAv4V8Z5JZBLF7v5VWo1Z12jvOXKBqQC9f9h2qW6VTVF2Fcy2kN4C1IevfYa3XLInfF16MEymocVbOKh48B-ftndNlNOnaAJ71KEdV5QVC1coS7G3aYaQ8~sTKRPy1~gtuGdQvG1HjnWAIMXNwrLIZfLxfSYoxCrQdUane3ihgGgWguvi4uy516RGtYb8giU6ZLJcV5Kt9GdnaKfPBJZvkZbQdJEso65aglHP1UEB5J8He9pyiYDdZYSqYA9h8ezBpgF3By8gUCqLLc0vToimQonbJr62MYtw871J5FNYEvvIiy33lgPVt~lZuwTLECB8Qn4Ulvt79Ldk9nOeZweNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Diversity_Induced_Resonance","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651725/thumbnails/1.jpg","file_name":"0605082.pdf","download_url":"https://www.academia.edu/attachments/36651725/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diversity_Induced_Resonance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651725/0605082-libre.pdf?1424109193=\u0026response-content-disposition=attachment%3B+filename%3DDiversity_Induced_Resonance.pdf\u0026Expires=1737412431\u0026Signature=WAv4V8Z5JZBLF7v5VWo1Z12jvOXKBqQC9f9h2qW6VTVF2Fcy2kN4C1IevfYa3XLInfF16MEymocVbOKh48B-ftndNlNOnaAJ71KEdV5QVC1coS7G3aYaQ8~sTKRPy1~gtuGdQvG1HjnWAIMXNwrLIZfLxfSYoxCrQdUane3ihgGgWguvi4uy516RGtYb8giU6ZLJcV5Kt9GdnaKfPBJZvkZbQdJEso65aglHP1UEB5J8He9pyiYDdZYSqYA9h8ezBpgF3By8gUCqLLc0vToimQonbJr62MYtw871J5FNYEvvIiy33lgPVt~lZuwTLECB8Qn4Ulvt79Ldk9nOeZweNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":185,"name":"Collective Behavior","url":"https://www.academia.edu/Documents/in/Collective_Behavior"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"},{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process"},{"id":15250,"name":"Synchronization","url":"https://www.academia.edu/Documents/in/Synchronization"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":121035,"name":"Profitability","url":"https://www.academia.edu/Documents/in/Profitability"},{"id":138717,"name":"Quenched Disorder","url":"https://www.academia.edu/Documents/in/Quenched_Disorder"}],"urls":[{"id":4363146,"url":"http://arxiv.org/abs/cond-mat/0605082"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828975/Binary_and_multivariate_stochastic_models_of_consensus_formation"><img alt="Research paper thumbnail of Binary and multivariate stochastic models of consensus formation" class="work-thumbnail" src="https://attachments.academia-assets.com/47093312/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828975/Binary_and_multivariate_stochastic_models_of_consensus_formation">Binary and multivariate stochastic models of consensus formation</a></div><div class="wp-workCard_item"><span>Computing in Science and Engineering</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A current paradigm in computer simulation studies of social sciences problems by physicists is th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A current paradigm in computer simulation studies of social sciences problems by physicists is the emergence of consensus . The question is to establish when the dynamics of a set of interacting agents that can choose among several options (political vote, opinion, cultural features, etc.) leads to a consensus in one of these options, or when a state with several coexisting social options prevail. The latter is called a polarized state. An important issue is to identify mechanisms producing a polarized state in spite of general convergent dynamics. When the agents are spatially distributed this problem shares many characteristics with the problem of domain growth in the kinetics of phase transitions [7]: Consensus emerges when a single spatial domain grows occupying the whole system, while polarization corresponds to a situation in which the system does not order and different spatial domains compete.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c55d56d477803e0faa8b4ef04066288" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093312,"asset_id":10828975,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093312/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828975]").text(description); $(".js-view-count[data-work-id=10828975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c55d56d477803e0faa8b4ef04066288" } } $('.js-work-strip[data-work-id=10828975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828975,"title":"Binary and multivariate stochastic models of consensus formation","translated_title":"","metadata":{"grobid_abstract":"A current paradigm in computer simulation studies of social sciences problems by physicists is the emergence of consensus . The question is to establish when the dynamics of a set of interacting agents that can choose among several options (political vote, opinion, cultural features, etc.) leads to a consensus in one of these options, or when a state with several coexisting social options prevail. The latter is called a polarized state. An important issue is to identify mechanisms producing a polarized state in spite of general convergent dynamics. When the agents are spatially distributed this problem shares many characteristics with the problem of domain growth in the kinetics of phase transitions [7]: Consensus emerges when a single spatial domain grows occupying the whole system, while polarization corresponds to a situation in which the system does not order and different spatial domains compete.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Computing in Science and Engineering","grobid_abstract_attachment_id":47093312},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828975/Binary_and_multivariate_stochastic_models_of_consensus_formation","translated_internal_url":"","created_at":"2015-02-16T00:28:50.335-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093312,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093312/thumbnails/1.jpg","file_name":"0507201.pdf","download_url":"https://www.academia.edu/attachments/47093312/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Binary_and_multivariate_stochastic_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093312/0507201-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DBinary_and_multivariate_stochastic_model.pdf\u0026Expires=1737433732\u0026Signature=LoNqrTcUBXP~wQt5qzwTvrcZL9MqHpgfNW61NyrCw0VqdkQhdLCjjsGp4tmLkLJgtWcD-xtNU7~VmkmXtrEViyaM4ztjRlUy5eU3XSCx91z-nctnnwRufx3K0zFJ5Hx2~jAvyDuq3tQy3KdBLWNrAzDFY9VuCQCefPSjYPQVeoPVu-LlwghLqDZgJmtG3fINhof7-9qO2G5os4sxxrppiExEoFEs~23v3ROuQX335ZXv2aYI2NVAzubedsfoCDRd4un0YihqoRkiBunctOeZkeHVz78sbnZ-ide66m9bvtoVjpidEwcohXJnadm88ZGJN2n-eVmNiSb5VggwHRzeDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Binary_and_multivariate_stochastic_models_of_consensus_formation","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"A current paradigm in computer simulation studies of social sciences problems by physicists is the emergence of consensus . The question is to establish when the dynamics of a set of interacting agents that can choose among several options (political vote, opinion, cultural features, etc.) leads to a consensus in one of these options, or when a state with several coexisting social options prevail. The latter is called a polarized state. An important issue is to identify mechanisms producing a polarized state in spite of general convergent dynamics. When the agents are spatially distributed this problem shares many characteristics with the problem of domain growth in the kinetics of phase transitions [7]: Consensus emerges when a single spatial domain grows occupying the whole system, while polarization corresponds to a situation in which the system does not order and different spatial domains compete.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093312,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093312/thumbnails/1.jpg","file_name":"0507201.pdf","download_url":"https://www.academia.edu/attachments/47093312/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Binary_and_multivariate_stochastic_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093312/0507201-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DBinary_and_multivariate_stochastic_model.pdf\u0026Expires=1737433732\u0026Signature=LoNqrTcUBXP~wQt5qzwTvrcZL9MqHpgfNW61NyrCw0VqdkQhdLCjjsGp4tmLkLJgtWcD-xtNU7~VmkmXtrEViyaM4ztjRlUy5eU3XSCx91z-nctnnwRufx3K0zFJ5Hx2~jAvyDuq3tQy3KdBLWNrAzDFY9VuCQCefPSjYPQVeoPVu-LlwghLqDZgJmtG3fINhof7-9qO2G5os4sxxrppiExEoFEs~23v3ROuQX335ZXv2aYI2NVAzubedsfoCDRd4un0YihqoRkiBunctOeZkeHVz78sbnZ-ide66m9bvtoVjpidEwcohXJnadm88ZGJN2n-eVmNiSb5VggwHRzeDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":185,"name":"Collective Behavior","url":"https://www.academia.edu/Documents/in/Collective_Behavior"},{"id":440,"name":"Distributed Computing","url":"https://www.academia.edu/Documents/in/Distributed_Computing"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":280464,"name":"Stochastic dynamics","url":"https://www.academia.edu/Documents/in/Stochastic_dynamics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":694897,"name":"Dynamic Model of WSN","url":"https://www.academia.edu/Documents/in/Dynamic_Model_of_WSN"},{"id":871199,"name":"Stochastic Model","url":"https://www.academia.edu/Documents/in/Stochastic_Model"},{"id":1197942,"name":"Social Science","url":"https://www.academia.edu/Documents/in/Social_Science"},{"id":2049094,"name":"Interaction Network","url":"https://www.academia.edu/Documents/in/Interaction_Network"}],"urls":[{"id":4363145,"url":"http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1524860"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828974"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828974/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction"><img alt="Research paper thumbnail of Nonequilibrium transitions in complex networks: A model of social interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/36651738/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828974/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction">Nonequilibrium transitions in complex networks: A model of social interaction</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="94ee575e233e6458b03c4458fb9dd20f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651738,"asset_id":10828974,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651738/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828974"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828974"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828974; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828974]").text(description); $(".js-view-count[data-work-id=10828974]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828974; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828974']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828974, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "94ee575e233e6458b03c4458fb9dd20f" } } $('.js-work-strip[data-work-id=10828974]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828974,"title":"Nonequilibrium transitions in complex networks: A model of social interaction","translated_title":"","metadata":{"grobid_abstract":"We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":36651738},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828974/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_internal_url":"","created_at":"2015-02-16T00:28:50.128-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651738/thumbnails/1.jpg","file_name":"klemm_pre67_026120.pdf","download_url":"https://www.academia.edu/attachments/36651738/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651738/klemm_pre67_026120-libre.pdf?1424109201=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=ft-yE3Bk4Csdpn0JhlX0-hdQJWbhfa-nCZiM3mG4ATH4~CO36LE9PAUsVI2InEL3LCFnCla~Ol55pYyRS6dxVDpozCcDfqZ4LmQA7R03qvD891GoBMnk1lldxX8C866QpH~rh8fkw7f57Jw1oTx-4uTdwiWSiPRzyiydJCR0ATMpgLmiYSAtmLpgC7jJ~YP3EbLs1k07DKbEzvKuNBcml3QnetPhur0awnUkRqnYNaOBXkwDdwyr9j8Xr8WHPDltYTjGs3pi7Wb8Odd5zKws8wMOYaFXm9vgwpW654osui6TmqOQiCNlswxVLqGMkB8RdyYKbwXAAbf~7xrY6x~tHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651738/thumbnails/1.jpg","file_name":"klemm_pre67_026120.pdf","download_url":"https://www.academia.edu/attachments/36651738/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651738/klemm_pre67_026120-libre.pdf?1424109201=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=ft-yE3Bk4Csdpn0JhlX0-hdQJWbhfa-nCZiM3mG4ATH4~CO36LE9PAUsVI2InEL3LCFnCla~Ol55pYyRS6dxVDpozCcDfqZ4LmQA7R03qvD891GoBMnk1lldxX8C866QpH~rh8fkw7f57Jw1oTx-4uTdwiWSiPRzyiydJCR0ATMpgLmiYSAtmLpgC7jJ~YP3EbLs1k07DKbEzvKuNBcml3QnetPhur0awnUkRqnYNaOBXkwDdwyr9j8Xr8WHPDltYTjGs3pi7Wb8Odd5zKws8wMOYaFXm9vgwpW654osui6TmqOQiCNlswxVLqGMkB8RdyYKbwXAAbf~7xrY6x~tHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":36651730,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651730/thumbnails/1.jpg","file_name":"klemm_pre67_026120.pdf","download_url":"https://www.academia.edu/attachments/36651730/download_file","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651730/klemm_pre67_026120-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=fd-AyhiiZtce-LZ~gAVOpWbEggyViiTvxICFcSe4upxHyjNljcBxI7lzayE8Hb0zM44sXHN1lJysOm4MZCi7J-9n8r1uD6WSBlgMaKvGxst8pp-hL-41uvXpdQhTTizLzis6Tvyldr3Gp8A8UaoDKAJsa25tzowQk-XXen6Gd7mOc~xwSKCKs7Bab69TLIwHRtPBvYG2XSiX8LrV8UhZA4q3DepWz5aWNALJqDUSlFyf4wb61gFqUQ0HK1IjMLMDDU78iR8Q9KNlcAHM5eI1hxnWcduaE6VS0GyL8QtsVFulgAtmUZv2mgtkw~iFXU5ou3WbLzqXpi0M6Vqqd6pEoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":4715,"name":"Social Interaction","url":"https://www.academia.edu/Documents/in/Social_Interaction"},{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"}],"urls":[{"id":4363144,"url":"http://www.izbi.uni-leipzig.de/izbi/publikationen/publi_2003/klemm_pre67_026120.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828973"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828973/Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers"><img alt="Research paper thumbnail of Numerical study of a Langevin model for the growth of wetting layers" class="work-thumbnail" src="https://attachments.academia-assets.com/47093309/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828973/Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers">Numerical study of a Langevin model for the growth of wetting layers</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1991</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="35d1e15b69346ee814f031857961f394" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093309,"asset_id":10828973,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093309/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828973"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828973"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828973; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828973]").text(description); $(".js-view-count[data-work-id=10828973]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828973; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828973']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828973, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "35d1e15b69346ee814f031857961f394" } } $('.js-work-strip[data-work-id=10828973]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828973,"title":"Numerical study of a Langevin model for the growth of wetting layers","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1991,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828973/Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers","translated_internal_url":"","created_at":"2015-02-16T00:28:49.981-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093309/thumbnails/1.jpg","file_name":"P30_tc91.pdf","download_url":"https://www.academia.edu/attachments/47093309/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_Langevin_model_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093309/P30_tc91-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_Langevin_model_for.pdf\u0026Expires=1737433732\u0026Signature=Hm1qz2ZQI4MpvDWm2Djp7-dWloWgj8evumKIWAbROyWVSgYP7ie8BzM~t-NEpR-yF2dMc~nxkOKinhxE47L8AzI3ZZI4NrSvJzjjnC3txHDOY2EJ8MIy1ggU8FKDYbJP~wTb5KhQiwY9xyWVI8LA0Z0rAqXpWQOZWwkzoiXR9RSM5ukuf22FF0OgGqfgZBov8l4Gpw478uqToYd66zQtH6p7VDz66R41CG2iLrzW0j4EfnDgLogMxygc91PdBfdBiKoOgz20q7OHYBQsY4Ch3qij2OJIrQe~d62VXrCFttZcW4LUhnh0FF5R~men63LiIbSQRjQFh4mJ6y59NpFeiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093309/thumbnails/1.jpg","file_name":"P30_tc91.pdf","download_url":"https://www.academia.edu/attachments/47093309/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_Langevin_model_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093309/P30_tc91-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_Langevin_model_for.pdf\u0026Expires=1737433732\u0026Signature=Hm1qz2ZQI4MpvDWm2Djp7-dWloWgj8evumKIWAbROyWVSgYP7ie8BzM~t-NEpR-yF2dMc~nxkOKinhxE47L8AzI3ZZI4NrSvJzjjnC3txHDOY2EJ8MIy1ggU8FKDYbJP~wTb5KhQiwY9xyWVI8LA0Z0rAqXpWQOZWwkzoiXR9RSM5ukuf22FF0OgGqfgZBov8l4Gpw478uqToYd66zQtH6p7VDz66R41CG2iLrzW0j4EfnDgLogMxygc91PdBfdBiKoOgz20q7OHYBQsY4Ch3qij2OJIrQe~d62VXrCFttZcW4LUhnh0FF5R~men63LiIbSQRjQFh4mJ6y59NpFeiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828972"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828972/Reversible_aggregation_in_self_associating_polymer_systems"><img alt="Research paper thumbnail of Reversible aggregation in self-associating polymer systems" class="work-thumbnail" src="https://attachments.academia-assets.com/47093311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828972/Reversible_aggregation_in_self_associating_polymer_systems">Reversible aggregation in self-associating polymer systems</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc5736409ba30d286568516947ad1fcc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093311,"asset_id":10828972,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093311/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828972"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828972"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828972; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828972]").text(description); $(".js-view-count[data-work-id=10828972]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828972; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828972']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828972, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc5736409ba30d286568516947ad1fcc" } } $('.js-work-strip[data-work-id=10828972]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828972,"title":"Reversible aggregation in self-associating polymer systems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828972/Reversible_aggregation_in_self_associating_polymer_systems","translated_internal_url":"","created_at":"2015-02-16T00:28:49.839-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093311/thumbnails/1.jpg","file_name":"P53_stc94.pdf","download_url":"https://www.academia.edu/attachments/47093311/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reversible_aggregation_in_self_associati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093311/P53_stc94-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DReversible_aggregation_in_self_associati.pdf\u0026Expires=1737412431\u0026Signature=dlZK665IzZOU-25wy081eUxTI5Ebvg-sj3M8ZxCxk~VRD3QHMrwTBaHvIvP-Xzic0NkVHEavMlab73cwwgnChk3CAN77lFEYISGdfgqSsAKUrJj5hUEq7T4ufX0Orp9bM49DhJw5ppgNMnvaX198DuPkyX1Ugp3JZ5rTI0M05H6taa3wUdf805cQv5gAHqhIj3d~JcV0fB~iWHw2Zt67D4w3JA7D9xeylDuhHH~Ck1GDnv-buHz2zxHoaT5b5SkT0fvVhV6iLhcYMlJA4GBT5u0YGdTALuk2uVY4nrHe3I2LQD6IcSLqjtpFGgPyVLvoi2P2VrL0d36ZojxxG0Z7Lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reversible_aggregation_in_self_associating_polymer_systems","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093311/thumbnails/1.jpg","file_name":"P53_stc94.pdf","download_url":"https://www.academia.edu/attachments/47093311/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reversible_aggregation_in_self_associati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093311/P53_stc94-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DReversible_aggregation_in_self_associati.pdf\u0026Expires=1737412431\u0026Signature=dlZK665IzZOU-25wy081eUxTI5Ebvg-sj3M8ZxCxk~VRD3QHMrwTBaHvIvP-Xzic0NkVHEavMlab73cwwgnChk3CAN77lFEYISGdfgqSsAKUrJj5hUEq7T4ufX0Orp9bM49DhJw5ppgNMnvaX198DuPkyX1Ugp3JZ5rTI0M05H6taa3wUdf805cQv5gAHqhIj3d~JcV0fB~iWHw2Zt67D4w3JA7D9xeylDuhHH~Ck1GDnv-buHz2zxHoaT5b5SkT0fvVhV6iLhcYMlJA4GBT5u0YGdTALuk2uVY4nrHe3I2LQD6IcSLqjtpFGgPyVLvoi2P2VrL0d36ZojxxG0Z7Lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2950,"name":"Computational Modeling","url":"https://www.academia.edu/Documents/in/Computational_Modeling"},{"id":48636,"name":"Simulation","url":"https://www.academia.edu/Documents/in/Simulation"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828971"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828971/Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions"><img alt="Research paper thumbnail of Numerical determination of the phase diagram for the cphi4 model in two dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/47093315/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828971/Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions">Numerical determination of the phase diagram for the cphi4 model in two dimensions</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5295426dfa9c9ab576522e5a0eaa8dc7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093315,"asset_id":10828971,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093315/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828971"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828971"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828971; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828971]").text(description); $(".js-view-count[data-work-id=10828971]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828971; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828971']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828971, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5295426dfa9c9ab576522e5a0eaa8dc7" } } $('.js-work-strip[data-work-id=10828971]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828971,"title":"Numerical determination of the phase diagram for the cphi4 model in two dimensions","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828971/Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions","translated_internal_url":"","created_at":"2015-02-16T00:28:49.716-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093315,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093315/thumbnails/1.jpg","file_name":"P25_tc90.pdf","download_url":"https://www.academia.edu/attachments/47093315/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_determination_of_the_phase_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093315/P25_tc90-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_determination_of_the_phase_dia.pdf\u0026Expires=1737412431\u0026Signature=JKg6XC0dgZEBVxTfXn46~S6d54rMynYkgUHf-rtJ8z5oVyWce4U4PX831aD4l8B~MlY~Usb1Vq7Cjc67Bp1KxxxlFiua2MsrU6kwRaArrwm8mWKASvFq7EEvIUUSyU-fd5iAUA8PzZD5bMz-ozmLKbtuTh6EYkZQTkhYT3ARljw0Xvbmz1~h4Q5oKnZLPu2aSXf1bT6DpALhppfBOpFsWhR~omv7sHLa98BTUE7S5Qk5BWYU6Zue1NJQi4I80PJOv8pK8cS1vM0jX7PZRFYR~8KAL7w-DTPLjjb1to4fqrGiP56zlf9jVJSSMQyhzJ~-d2kxxY9HiZ5uG6t7pnI20w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093315,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093315/thumbnails/1.jpg","file_name":"P25_tc90.pdf","download_url":"https://www.academia.edu/attachments/47093315/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_determination_of_the_phase_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093315/P25_tc90-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_determination_of_the_phase_dia.pdf\u0026Expires=1737412431\u0026Signature=JKg6XC0dgZEBVxTfXn46~S6d54rMynYkgUHf-rtJ8z5oVyWce4U4PX831aD4l8B~MlY~Usb1Vq7Cjc67Bp1KxxxlFiua2MsrU6kwRaArrwm8mWKASvFq7EEvIUUSyU-fd5iAUA8PzZD5bMz-ozmLKbtuTh6EYkZQTkhYT3ARljw0Xvbmz1~h4Q5oKnZLPu2aSXf1bT6DpALhppfBOpFsWhR~omv7sHLa98BTUE7S5Qk5BWYU6Zue1NJQi4I80PJOv8pK8cS1vM0jX7PZRFYR~8KAL7w-DTPLjjb1to4fqrGiP56zlf9jVJSSMQyhzJ~-d2kxxY9HiZ5uG6t7pnI20w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":415783,"name":"Spinodal Decomposition","url":"https://www.academia.edu/Documents/in/Spinodal_Decomposition"},{"id":415784,"name":"Phase Separation","url":"https://www.academia.edu/Documents/in/Phase_Separation"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828970/Numerical_study_of_a_model_for_interface_growth"><img alt="Research paper thumbnail of Numerical study of a model for interface growth" class="work-thumbnail" src="https://attachments.academia-assets.com/47093310/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828970/Numerical_study_of_a_model_for_interface_growth">Numerical study of a model for interface growth</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d7d34f26ae6f4bae6a448c07a54c09d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093310,"asset_id":10828970,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093310/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828970]").text(description); $(".js-view-count[data-work-id=10828970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d7d34f26ae6f4bae6a448c07a54c09d3" } } $('.js-work-strip[data-work-id=10828970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828970,"title":"Numerical study of a model for interface growth","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828970/Numerical_study_of_a_model_for_interface_growth","translated_internal_url":"","created_at":"2015-02-16T00:28:49.609-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093310/thumbnails/1.jpg","file_name":"P21_ct89.pdf","download_url":"https://www.academia.edu/attachments/47093310/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_model_for_interface.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093310/P21_ct89-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_model_for_interface.pdf\u0026Expires=1737412431\u0026Signature=aNUfYGcoYaxhO-5m2oPj2li-5QjKotQ8Tvks0AKAl5HehmuHxU6VQ~lzQXWc6ZkdppdEJm97sbfkkodjAfVSPxHSmGtS-ewSlQ4u1naJ3vczJXqCu3K~os4GEYwdL2e5Sj67H5EQ2OR7twSHVIHXuDuxw~i67Ewy0ltWXFwD338aRzyRxU29E-Mblfxk8wGh7taeCftewI7Hd3uRmkCDHuCdOKRi82ggsNRmo1R28zPAMxFwjZRa3Lo6MWB6VrD9AD32dCVbNcktCqmjFLv7uPQa7UIXxKpe6T~Sij3GsUBmtnL-ZqbeZSeAe-r9UhjIMWA4fgkJ5C~os1rfkLsBlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_study_of_a_model_for_interface_growth","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093310/thumbnails/1.jpg","file_name":"P21_ct89.pdf","download_url":"https://www.academia.edu/attachments/47093310/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_model_for_interface.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093310/P21_ct89-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_model_for_interface.pdf\u0026Expires=1737412431\u0026Signature=aNUfYGcoYaxhO-5m2oPj2li-5QjKotQ8Tvks0AKAl5HehmuHxU6VQ~lzQXWc6ZkdppdEJm97sbfkkodjAfVSPxHSmGtS-ewSlQ4u1naJ3vczJXqCu3K~os4GEYwdL2e5Sj67H5EQ2OR7twSHVIHXuDuxw~i67Ewy0ltWXFwD338aRzyRxU29E-Mblfxk8wGh7taeCftewI7Hd3uRmkCDHuCdOKRi82ggsNRmo1R28zPAMxFwjZRa3Lo6MWB6VrD9AD32dCVbNcktCqmjFLv7uPQa7UIXxKpe6T~Sij3GsUBmtnL-ZqbeZSeAe-r9UhjIMWA4fgkJ5C~os1rfkLsBlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828969"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828969/Descending_from_infinity_Convergence_of_tailed_distributions"><img alt="Research paper thumbnail of Descending from infinity: Convergence of tailed distributions" class="work-thumbnail" src="https://attachments.academia-assets.com/47093404/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828969/Descending_from_infinity_Convergence_of_tailed_distributions">Descending from infinity: Convergence of tailed distributions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. A delta function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="93b048547a5a988d12b8c4950b5e1c12" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093404,"asset_id":10828969,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093404/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828969"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828969"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828969; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828969]").text(description); $(".js-view-count[data-work-id=10828969]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828969; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828969']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828969, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "93b048547a5a988d12b8c4950b5e1c12" } } $('.js-work-strip[data-work-id=10828969]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828969,"title":"Descending from infinity: Convergence of tailed distributions","translated_title":"","metadata":{"grobid_abstract":"We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. A delta function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":47093404},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828969/Descending_from_infinity_Convergence_of_tailed_distributions","translated_internal_url":"","created_at":"2015-02-16T00:28:49.490-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093404/thumbnails/1.jpg","file_name":"Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv.pdf","download_url":"https://www.academia.edu/attachments/47093404/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Descending_from_infinity_Convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093404/Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv-libre.pdf?1467938297=\u0026response-content-disposition=attachment%3B+filename%3DDescending_from_infinity_Convergence_of.pdf\u0026Expires=1737412431\u0026Signature=SMXqS9qxpZdYokRr6C6osrHhowXhLuhHLArAxa0C~2prJzRdrPRxiljdRie8~BqWsHPh0KjsVhSPPL2QsiDrNubkDIOodAcrpdxhQPtnQDYpHGe6YCmWz4clme4MguTNq0VD~I8wwLmCSZ3VX-~JJtekzXgemfO-Rx~wExeGh0F2e2L~e8H45hMEehw2bFMy~FghR823gNnY5X9YVthsxrOGvIicNrtT82dTAVVY3Dw2SJbDS0-1Xrin0lstbdUhG20vJTGAOrS9l1xKY-vKgBXlm~m1u9JbEK5~mTVeRNSq63ayJ~1El329vVUHRdKm4QIs5HxUwg1REgwj7-01uA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Descending_from_infinity_Convergence_of_tailed_distributions","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. A delta function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093404/thumbnails/1.jpg","file_name":"Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv.pdf","download_url":"https://www.academia.edu/attachments/47093404/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Descending_from_infinity_Convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093404/Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv-libre.pdf?1467938297=\u0026response-content-disposition=attachment%3B+filename%3DDescending_from_infinity_Convergence_of.pdf\u0026Expires=1737412431\u0026Signature=SMXqS9qxpZdYokRr6C6osrHhowXhLuhHLArAxa0C~2prJzRdrPRxiljdRie8~BqWsHPh0KjsVhSPPL2QsiDrNubkDIOodAcrpdxhQPtnQDYpHGe6YCmWz4clme4MguTNq0VD~I8wwLmCSZ3VX-~JJtekzXgemfO-Rx~wExeGh0F2e2L~e8H45hMEehw2bFMy~FghR823gNnY5X9YVthsxrOGvIicNrtT82dTAVVY3Dw2SJbDS0-1Xrin0lstbdUhG20vJTGAOrS9l1xKY-vKgBXlm~m1u9JbEK5~mTVeRNSq63ayJ~1El329vVUHRdKm4QIs5HxUwg1REgwj7-01uA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":343667,"name":"Theoretical Models","url":"https://www.academia.edu/Documents/in/Theoretical_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828968"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828968/_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_"><img alt="Research paper thumbnail of <title>Exact ratchet description of Parrondo's games with self-transitions</title>" class="work-thumbnail" src="https://attachments.academia-assets.com/47093317/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828968/_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_"><title>Exact ratchet description of Parrondo's games with self-transitions</title></a></div><div class="wp-workCard_item"><span>Noise in Complex Systems and Stochastic Dynamics II</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We extend a recently developed relation between the master equation describing the Parrondo's gam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We extend a recently developed relation between the master equation describing the Parrondo's games and the formalism of the Fokker-Planck equation to the case in which the games are modified with the introduction of "self-transition probabilities". This accounts for the possibility that the capital can neither increase nor decrease during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a discretised version of the equivalent expressions in terms of the solution of the Fokker-Planck equation with multiplicative noise.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec76647c4471f2ff8a0a443f4e7ff802" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093317,"asset_id":10828968,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093317/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828968"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828968"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828968; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828968]").text(description); $(".js-view-count[data-work-id=10828968]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828968; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828968']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828968, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec76647c4471f2ff8a0a443f4e7ff802" } } $('.js-work-strip[data-work-id=10828968]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828968,"title":"\u003ctitle\u003eExact ratchet description of Parrondo's games with self-transitions\u003c/title\u003e","translated_title":"","metadata":{"grobid_abstract":"We extend a recently developed relation between the master equation describing the Parrondo's games and the formalism of the Fokker-Planck equation to the case in which the games are modified with the introduction of \"self-transition probabilities\". This accounts for the possibility that the capital can neither increase nor decrease during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a discretised version of the equivalent expressions in terms of the solution of the Fokker-Planck equation with multiplicative noise.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Noise in Complex Systems and Stochastic Dynamics II","grobid_abstract_attachment_id":47093317},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828968/_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_","translated_internal_url":"","created_at":"2015-02-16T00:28:49.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093317,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093317/thumbnails/1.jpg","file_name":"C23_at04.pdf","download_url":"https://www.academia.edu/attachments/47093317/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Exact_ratchet_description_of_Parr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093317/C23_at04-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Exact_ratchet_description_of_Parr.pdf\u0026Expires=1737433732\u0026Signature=NSiZc1mTRAkHmXNO3xyc~5WmD0lmMx59D5Be-KxY~QRoggVIiVQae-8RxQL4hxhS7G7KdDYKdb7938x76aO9QxQl1KKVylhzxlx0fOlRc32eiIDDmiU99ShD3MOZisMiidnqELAWIwsaBHHNcEuLvj1k2edSjQpAbGXPYvRtAlba5QqtDnHrF~oo91VWWZi9JoM-vpNDahgcff0OZ4FNRNPG1Zmdb7Hzn2kP1BAok9odP5EpDzQs96jrVOBXSsvTLap8UPVYbL9IPHocw5ml~bXkK-kHpm0yr7ZHrcWioYl0~7Z9Om4PWjaoItkW71~Cg5syO~UQWYokGaIdT7u7tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We extend a recently developed relation between the master equation describing the Parrondo's games and the formalism of the Fokker-Planck equation to the case in which the games are modified with the introduction of \"self-transition probabilities\". This accounts for the possibility that the capital can neither increase nor decrease during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a discretised version of the equivalent expressions in terms of the solution of the Fokker-Planck equation with multiplicative noise.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093317,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093317/thumbnails/1.jpg","file_name":"C23_at04.pdf","download_url":"https://www.academia.edu/attachments/47093317/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Exact_ratchet_description_of_Parr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093317/C23_at04-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Exact_ratchet_description_of_Parr.pdf\u0026Expires=1737433732\u0026Signature=NSiZc1mTRAkHmXNO3xyc~5WmD0lmMx59D5Be-KxY~QRoggVIiVQae-8RxQL4hxhS7G7KdDYKdb7938x76aO9QxQl1KKVylhzxlx0fOlRc32eiIDDmiU99ShD3MOZisMiidnqELAWIwsaBHHNcEuLvj1k2edSjQpAbGXPYvRtAlba5QqtDnHrF~oo91VWWZi9JoM-vpNDahgcff0OZ4FNRNPG1Zmdb7Hzn2kP1BAok9odP5EpDzQs96jrVOBXSsvTLap8UPVYbL9IPHocw5ml~bXkK-kHpm0yr7ZHrcWioYl0~7Z9Om4PWjaoItkW71~Cg5syO~UQWYokGaIdT7u7tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1540857,"name":"Master Equation","url":"https://www.academia.edu/Documents/in/Master_Equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828967"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828967/_title_Parrondos_games_and_the_zipping_algorithm_title_"><img alt="Research paper thumbnail of <title>Parrondo's games and the zipping algorithm</title>" class="work-thumbnail" src="https://attachments.academia-assets.com/47093320/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828967/_title_Parrondos_games_and_the_zipping_algorithm_title_"><title>Parrondo's games and the zipping algorithm</title></a></div><div class="wp-workCard_item"><span>Noise in Complex Systems and Stochastic Dynamics II</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the relation between the discrete-time version of the flashing ratchet known as Parrondo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the relation between the discrete-time version of the flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of informationnegentropy -between the Brownian particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games, showing all of them a good qualitative agreement between the gain and the inverse of the entropy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="216533706ec61e214970cbaebb75e7a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093320,"asset_id":10828967,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093320/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828967"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828967"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828967; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828967]").text(description); $(".js-view-count[data-work-id=10828967]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828967; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828967']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828967, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "216533706ec61e214970cbaebb75e7a4" } } $('.js-work-strip[data-work-id=10828967]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828967,"title":"\u003ctitle\u003eParrondo's games and the zipping algorithm\u003c/title\u003e","translated_title":"","metadata":{"grobid_abstract":"We study the relation between the discrete-time version of the flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of informationnegentropy -between the Brownian particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games, showing all of them a good qualitative agreement between the gain and the inverse of the entropy.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Noise in Complex Systems and Stochastic Dynamics II","grobid_abstract_attachment_id":47093320},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828967/_title_Parrondos_games_and_the_zipping_algorithm_title_","translated_internal_url":"","created_at":"2015-02-16T00:28:49.238-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093320,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093320/thumbnails/1.jpg","file_name":"0402515.pdf","download_url":"https://www.academia.edu/attachments/47093320/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Parrondos_games_and_the_zipping_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093320/0402515-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Parrondos_games_and_the_zipping_a.pdf\u0026Expires=1737412432\u0026Signature=AZgHWiGU2FFZcU8cc-K~ppdcuS~DWDAXfre-6T6YyYPnJ0MghUoRVVxZnTBZy5Uv1EcIb1iCbIw0LBeIIboZ~ZgEBK~6prP~EP1SMqeghuww6DrMIxvPCSqE4OT4pNBVZxMpNX~dPIjmTgDcavjkiJd2hFwUnnhawAKQBtA8awS5KZASv67S1D9dGOZHnxI3amcMhQbfG0gQamOe~fs7vWnfwDQBC9pi~m1pLVnqr~TBNt7CvssPCd-PtqQca3OND-~0rfsTYH4oql20VSgAySNOALYxrcIcTwxNAPfXtGyRPTXffOPE03bpRcbiIwFvp770zpqO5rWDnQAffeGDeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_title_Parrondos_games_and_the_zipping_algorithm_title_","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study the relation between the discrete-time version of the flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of informationnegentropy -between the Brownian particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games, showing all of them a good qualitative agreement between the gain and the inverse of the entropy.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093320,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093320/thumbnails/1.jpg","file_name":"0402515.pdf","download_url":"https://www.academia.edu/attachments/47093320/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Parrondos_games_and_the_zipping_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093320/0402515-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Parrondos_games_and_the_zipping_a.pdf\u0026Expires=1737412432\u0026Signature=AZgHWiGU2FFZcU8cc-K~ppdcuS~DWDAXfre-6T6YyYPnJ0MghUoRVVxZnTBZy5Uv1EcIb1iCbIw0LBeIIboZ~ZgEBK~6prP~EP1SMqeghuww6DrMIxvPCSqE4OT4pNBVZxMpNX~dPIjmTgDcavjkiJd2hFwUnnhawAKQBtA8awS5KZASv67S1D9dGOZHnxI3amcMhQbfG0gQamOe~fs7vWnfwDQBC9pi~m1pLVnqr~TBNt7CvssPCd-PtqQca3OND-~0rfsTYH4oql20VSgAySNOALYxrcIcTwxNAPfXtGyRPTXffOPE03bpRcbiIwFvp770zpqO5rWDnQAffeGDeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828966"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828966/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction"><img alt="Research paper thumbnail of Nonequilibrium transitions in complex networks: A model of social interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/47093318/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828966/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction">Nonequilibrium transitions in complex networks: A model of social interaction</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="007fe97e3a8de95422ac71584e2aab3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093318,"asset_id":10828966,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093318/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828966"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828966"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828966; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828966]").text(description); $(".js-view-count[data-work-id=10828966]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828966; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828966']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828966, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "007fe97e3a8de95422ac71584e2aab3f" } } $('.js-work-strip[data-work-id=10828966]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828966,"title":"Nonequilibrium transitions in complex networks: A model of social interaction","translated_title":"","metadata":{"grobid_abstract":"We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":47093318},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828966/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_internal_url":"","created_at":"2015-02-16T00:28:49.136-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093318/thumbnails/1.jpg","file_name":"0210542.pdf","download_url":"https://www.academia.edu/attachments/47093318/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093318/0210542-libre.pdf?1467938307=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=HbaeE94u8WOLtOsAMGfC4rI9bhw1tOp7WGXp69tNk55-KbIQkFNb6dQ6TQL4icnP6g-IUrgT8oaLn4sRzIME5ud7NRyA1vKnVakUTE5ZD6FcOlI-fw1W2uXCOIBJ2383B7hPt7od03yo3QK5negNNnzoimOdtfiljI0fpwrOc0l~hJxptIUVwp9hAwm-qX-v5Sp6I2juYO~MCug1~5fisEPaKPQCKOwLnYCqh~QK5G5CLqP6SYE5b1fpd4p6ofaqxRdrEVXY-KMlgSg3qw4Pvu9TRQm-42h8XwFkKyxBoDsm~qUWA2gzmpCquFJUYJrxAgVZEmupjyXOGW1c3mkk5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093318/thumbnails/1.jpg","file_name":"0210542.pdf","download_url":"https://www.academia.edu/attachments/47093318/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093318/0210542-libre.pdf?1467938307=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=HbaeE94u8WOLtOsAMGfC4rI9bhw1tOp7WGXp69tNk55-KbIQkFNb6dQ6TQL4icnP6g-IUrgT8oaLn4sRzIME5ud7NRyA1vKnVakUTE5ZD6FcOlI-fw1W2uXCOIBJ2383B7hPt7od03yo3QK5negNNnzoimOdtfiljI0fpwrOc0l~hJxptIUVwp9hAwm-qX-v5Sp6I2juYO~MCug1~5fisEPaKPQCKOwLnYCqh~QK5G5CLqP6SYE5b1fpd4p6ofaqxRdrEVXY-KMlgSg3qw4Pvu9TRQm-42h8XwFkKyxBoDsm~qUWA2gzmpCquFJUYJrxAgVZEmupjyXOGW1c3mkk5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":4715,"name":"Social Interaction","url":"https://www.academia.edu/Documents/in/Social_Interaction"},{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828965"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828965/Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing"><img alt="Research paper thumbnail of Anticipating the Response of Excitable Systems Driven by Random Forcing" class="work-thumbnail" src="https://attachments.academia-assets.com/47093327/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828965/Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing">Anticipating the Response of Excitable Systems Driven by Random Forcing</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the regime of anticipated synchronization in unidirectionally coupled model neurons subj...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by implementation in analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the pulses fired by the master neuron. This anticipated synchronization occurs even when the common external forcing is white noise.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f03d5f0ec0bc55075eb6d47e332867c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093327,"asset_id":10828965,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093327/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828965"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828965"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828965; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828965]").text(description); $(".js-view-count[data-work-id=10828965]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828965; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828965']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828965, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f03d5f0ec0bc55075eb6d47e332867c" } } $('.js-work-strip[data-work-id=10828965]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828965,"title":"Anticipating the Response of Excitable Systems Driven by Random Forcing","translated_title":"","metadata":{"grobid_abstract":"We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by implementation in analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the pulses fired by the master neuron. This anticipated synchronization occurs even when the common external forcing is white noise.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":47093327},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828965/Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing","translated_internal_url":"","created_at":"2015-02-16T00:28:48.940-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093327,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093327/thumbnails/1.jpg","file_name":"0203583.pdf","download_url":"https://www.academia.edu/attachments/47093327/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anticipating_the_Response_of_Excitable_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093327/0203583-libre.pdf?1467938298=\u0026response-content-disposition=attachment%3B+filename%3DAnticipating_the_Response_of_Excitable_S.pdf\u0026Expires=1737433732\u0026Signature=aZjpJp3vXIcbmBVs1padooAg37RS5ORFVdCTgvIjV~Ey3BVJR75TrkSdNPbXwkIdQKgO09Z-PsJBjWDytx-rFwlpgwh4ul0jPvgx9N5Vwpvm9HuUKcJ9MkFiQNc1Xr6BYm49JK0jvsL-~xSzBIlOYAxv2HMMSbzWBvgv6j2TJGEUbt8FyWQ3khBCSCmJuWrrY8SufaED7uYlSzVW05r5-vfp945D-WF7LnhpLKaVIAvesdibUu0oP83K0AaHmxYY4iDiR41MZMQGZpgwY5Ih1WW0U2nNHMzXlvNqhA71P-URKOH10ImXugNzKSNdhx2-Tu-8tYpoZvqIhPQmIsAAwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by implementation in analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the pulses fired by the master neuron. This anticipated synchronization occurs even when the common external forcing is white noise.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093327,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093327/thumbnails/1.jpg","file_name":"0203583.pdf","download_url":"https://www.academia.edu/attachments/47093327/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anticipating_the_Response_of_Excitable_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093327/0203583-libre.pdf?1467938298=\u0026response-content-disposition=attachment%3B+filename%3DAnticipating_the_Response_of_Excitable_S.pdf\u0026Expires=1737433732\u0026Signature=aZjpJp3vXIcbmBVs1padooAg37RS5ORFVdCTgvIjV~Ey3BVJR75TrkSdNPbXwkIdQKgO09Z-PsJBjWDytx-rFwlpgwh4ul0jPvgx9N5Vwpvm9HuUKcJ9MkFiQNc1Xr6BYm49JK0jvsL-~xSzBIlOYAxv2HMMSbzWBvgv6j2TJGEUbt8FyWQ3khBCSCmJuWrrY8SufaED7uYlSzVW05r5-vfp945D-WF7LnhpLKaVIAvesdibUu0oP83K0AaHmxYY4iDiR41MZMQGZpgwY5Ih1WW0U2nNHMzXlvNqhA71P-URKOH10ImXugNzKSNdhx2-Tu-8tYpoZvqIhPQmIsAAwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4317,"name":"Nonlinear Optics","url":"https://www.academia.edu/Documents/in/Nonlinear_Optics"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":28501,"name":"Temporal dynamics","url":"https://www.academia.edu/Documents/in/Temporal_dynamics"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":485404,"name":"Local Field Potential","url":"https://www.academia.edu/Documents/in/Local_Field_Potential"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1113523,"name":"White Noise","url":"https://www.academia.edu/Documents/in/White_Noise"},{"id":1475630,"name":"Optical Bistability","url":"https://www.academia.edu/Documents/in/Optical_Bistability"}],"urls":[{"id":4363143,"url":"http://ifisc.uib.es/eng/lines/bio_content/prl90.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828964/Coherence_resonance_in_chaotic_systems"><img alt="Research paper thumbnail of Coherence resonance in chaotic systems" class="work-thumbnail" src="https://attachments.academia-assets.com/36651723/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828964/Coherence_resonance_in_chaotic_systems">Coherence resonance in chaotic systems</a></div><div class="wp-workCard_item"><span>Europhysics Letters (epl)</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. 05.45.Ac -Low-dimensional chaos.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9329f76c235972b718dbb024457a5e5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651723,"asset_id":10828964,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651723/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828964]").text(description); $(".js-view-count[data-work-id=10828964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828964, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9329f76c235972b718dbb024457a5e5e" } } $('.js-work-strip[data-work-id=10828964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828964,"title":"Coherence resonance in chaotic systems","translated_title":"","metadata":{"ai_title_tag":"Coherence Resonance in Chaotic Nonlinear Dynamics","grobid_abstract":"PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. 05.45.Ac -Low-dimensional chaos.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Europhysics Letters (epl)","grobid_abstract_attachment_id":36651723},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828964/Coherence_resonance_in_chaotic_systems","translated_internal_url":"","created_at":"2015-02-16T00:28:48.756-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651723/thumbnails/1.jpg","file_name":"Coherence_Resonance_Chaotic_Systems.pdf","download_url":"https://www.academia.edu/attachments/36651723/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coherence_resonance_in_chaotic_systems.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651723/Coherence_Resonance_Chaotic_Systems-libre.pdf?1424109198=\u0026response-content-disposition=attachment%3B+filename%3DCoherence_resonance_in_chaotic_systems.pdf\u0026Expires=1737412432\u0026Signature=KubVei7ID7pK0L7UQFYTEIPg1B9JBYcxDWFDGeJOyEg9BYEwCb1A~bkR6j153go1I3eFZ34eFyZjbRUjD9ULJu8BUYUFmc7xqHHLOA4I4eKXsIwujADdJ2CTrh5oJ8IA0CThqOgTdx2USBs-474jKbNFvQP6giaL6gry8VFSQZVrFXfQJJVMH7lw~tATRdO-aKLYqNmRMIDC~GKf4IZvMmHYHAMw8DxteaIICuBlX~KXkGJpUxTJj7T3sXUyVoCbSKxVJx3oxGrkFrLzC7V0~Mkc9Dmi3~bgChY3Es4jsjAVulp28ePG96txU2AskgfClmV0r5ERs5rVqbEwO77p~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coherence_resonance_in_chaotic_systems","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. 05.45.Ac -Low-dimensional chaos.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651723/thumbnails/1.jpg","file_name":"Coherence_Resonance_Chaotic_Systems.pdf","download_url":"https://www.academia.edu/attachments/36651723/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coherence_resonance_in_chaotic_systems.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651723/Coherence_Resonance_Chaotic_Systems-libre.pdf?1424109198=\u0026response-content-disposition=attachment%3B+filename%3DCoherence_resonance_in_chaotic_systems.pdf\u0026Expires=1737412432\u0026Signature=KubVei7ID7pK0L7UQFYTEIPg1B9JBYcxDWFDGeJOyEg9BYEwCb1A~bkR6j153go1I3eFZ34eFyZjbRUjD9ULJu8BUYUFmc7xqHHLOA4I4eKXsIwujADdJ2CTrh5oJ8IA0CThqOgTdx2USBs-474jKbNFvQP6giaL6gry8VFSQZVrFXfQJJVMH7lw~tATRdO-aKLYqNmRMIDC~GKf4IZvMmHYHAMw8DxteaIICuBlX~KXkGJpUxTJj7T3sXUyVoCbSKxVJx3oxGrkFrLzC7V0~Mkc9Dmi3~bgChY3Es4jsjAVulp28ePG96txU2AskgfClmV0r5ERs5rVqbEwO77p~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":124831,"name":"Resonance","url":"https://www.academia.edu/Documents/in/Resonance"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":189262,"name":"Chaotic System","url":"https://www.academia.edu/Documents/in/Chaotic_System"},{"id":203898,"name":"Nonlinear Dynamics and Chaos","url":"https://www.academia.edu/Documents/in/Nonlinear_Dynamics_and_Chaos"},{"id":215075,"name":"Experimental Study","url":"https://www.academia.edu/Documents/in/Experimental_Study"},{"id":386999,"name":"Power Spectrum","url":"https://www.academia.edu/Documents/in/Power_Spectrum"},{"id":472460,"name":"Coherent States","url":"https://www.academia.edu/Documents/in/Coherent_States"},{"id":1164807,"name":"Coherence Resonance","url":"https://www.academia.edu/Documents/in/Coherence_Resonance"}],"urls":[{"id":4363142,"url":"http://www.lehigh.edu/~jdg4/publications/Coherence_Resonance_Chaotic_Systems.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2577076" id="papers"><div class="js-work-strip profile--work_container" data-work-id="10828984"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828984/Wavelet_description_of_the_Nikolaevskii_model"><img alt="Research paper thumbnail of Wavelet description of the Nikolaevskii model" class="work-thumbnail" src="https://attachments.academia-assets.com/36651726/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828984/Wavelet_description_of_the_Nikolaevskii_model">Wavelet description of the Nikolaevskii model</a></div><div class="wp-workCard_item"><span>Journal of Physics A-mathematical and General</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-dimensional model that shows a direct transition to spatiotemporal chaos. We find that the dynamics of this model in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a Daubechies basis yields a good separation of scales,as shown by an examination of the contribution of different wavelet levels to the power spectrum. At most scales, including the most energetic ones, we find essentially Gaussian dynamics. We also show that removal of certain wavelet modes can be carried out without altering the dynamics of the system as described by the Lyapunov spectrum.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6d9f04d696ae603caea9182f5be15c00" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651726,"asset_id":10828984,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651726/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828984"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828984"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828984; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828984]").text(description); $(".js-view-count[data-work-id=10828984]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828984; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828984']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828984, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6d9f04d696ae603caea9182f5be15c00" } } $('.js-work-strip[data-work-id=10828984]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828984,"title":"Wavelet description of the Nikolaevskii model","translated_title":"","metadata":{"grobid_abstract":"We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-dimensional model that shows a direct transition to spatiotemporal chaos. We find that the dynamics of this model in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a Daubechies basis yields a good separation of scales,as shown by an examination of the contribution of different wavelet levels to the power spectrum. At most scales, including the most energetic ones, we find essentially Gaussian dynamics. We also show that removal of certain wavelet modes can be carried out without altering the dynamics of the system as described by the Lyapunov spectrum.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Journal of Physics A-mathematical and General","grobid_abstract_attachment_id":36651726},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828984/Wavelet_description_of_the_Nikolaevskii_model","translated_internal_url":"","created_at":"2015-02-16T00:28:52.236-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651726,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651726/thumbnails/1.jpg","file_name":"P94_txgx03.pdf","download_url":"https://www.academia.edu/attachments/36651726/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Wavelet_description_of_the_Nikolaevskii.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651726/P94_txgx03-libre.pdf?1424109202=\u0026response-content-disposition=attachment%3B+filename%3DWavelet_description_of_the_Nikolaevskii.pdf\u0026Expires=1737412431\u0026Signature=NfOMogq8LD89EoM6FoQiwXne~VqO3MOgtZzV0fiUpeqp4oM0RjIGqd1-oVrnrOEV7vrWUpC~87VdbnNdUMGNgczC5e5JE~7LkvkAdlgxiqChUXsAdygugS9hYlO3kO958CHSyp0nEtr25Pxxi903bbI16U4681PJqF6GEoML2MrJnJv1m4D1SpJAfsQoWnYfSmkSqBxYALXVdXc3pWtwqQqmET675qr4rb6tdISJDSw2LKQOys0Gt168YWrVXA5o-o80sicMElrSPcnibRgkdHZgTHSXqUW3ZykkyImIuOc21To67V9gkrsCO9CR6mgSPC0thyS6jY9PCAxRHCY6bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Wavelet_description_of_the_Nikolaevskii_model","translated_slug":"","page_count":13,"language":"en","content_type":"Work","summary":"We present the results of a wavelet-based approach to the study of the chaotic dynamics of a one-dimensional model that shows a direct transition to spatiotemporal chaos. We find that the dynamics of this model in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a Daubechies basis yields a good separation of scales,as shown by an examination of the contribution of different wavelet levels to the power spectrum. At most scales, including the most energetic ones, we find essentially Gaussian dynamics. We also show that removal of certain wavelet modes can be carried out without altering the dynamics of the system as described by the Lyapunov spectrum.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651726,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651726/thumbnails/1.jpg","file_name":"P94_txgx03.pdf","download_url":"https://www.academia.edu/attachments/36651726/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Wavelet_description_of_the_Nikolaevskii.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651726/P94_txgx03-libre.pdf?1424109202=\u0026response-content-disposition=attachment%3B+filename%3DWavelet_description_of_the_Nikolaevskii.pdf\u0026Expires=1737412431\u0026Signature=NfOMogq8LD89EoM6FoQiwXne~VqO3MOgtZzV0fiUpeqp4oM0RjIGqd1-oVrnrOEV7vrWUpC~87VdbnNdUMGNgczC5e5JE~7LkvkAdlgxiqChUXsAdygugS9hYlO3kO958CHSyp0nEtr25Pxxi903bbI16U4681PJqF6GEoML2MrJnJv1m4D1SpJAfsQoWnYfSmkSqBxYALXVdXc3pWtwqQqmET675qr4rb6tdISJDSw2LKQOys0Gt168YWrVXA5o-o80sicMElrSPcnibRgkdHZgTHSXqUW3ZykkyImIuOc21To67V9gkrsCO9CR6mgSPC0thyS6jY9PCAxRHCY6bw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":115917,"name":"Chaotic Dynamics","url":"https://www.academia.edu/Documents/in/Chaotic_Dynamics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":386999,"name":"Power Spectrum","url":"https://www.academia.edu/Documents/in/Power_Spectrum"},{"id":1129722,"name":"Spatiotemporal Chaos","url":"https://www.academia.edu/Documents/in/Spatiotemporal_Chaos"}],"urls":[{"id":4363154,"url":"http://www.ifisc.uib.es/raul/publications/P/P94_txgx03.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828983"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828983/Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise"><img alt="Research paper thumbnail of Disordering Effects of Color in Nonequilibrium Phase Transitions Induced by Multiplicative Noise" class="work-thumbnail" src="https://attachments.academia-assets.com/36651728/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828983/Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise">Disordering Effects of Color in Nonequilibrium Phase Transitions Induced by Multiplicative Noise</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-lea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-leading to a second-order-like noise-induced nonequilibrium phase transition which shows reentrance as a function of the (multiplicative) noise intensity σ-is investigated beyond the white-noise assumption. Through a Markovian approximation and within a mean-field treatment it is found that-in striking contrast with the usual behavior for equilibrium phase transitions-for noise self-correlation time τ > 0, the stable phase for (diffusive) spatial coupling D → ∞ is always the disordered one. Another surprising result is that a large noise "memory" also tends to destroy order. These results are supported by numerical simulations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8830ad40eb3d4650c3329e713bd11c06" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651728,"asset_id":10828983,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651728/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828983"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828983]").text(description); $(".js-view-count[data-work-id=10828983]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828983']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828983, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8830ad40eb3d4650c3329e713bd11c06" } } $('.js-work-strip[data-work-id=10828983]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828983,"title":"Disordering Effects of Color in Nonequilibrium Phase Transitions Induced by Multiplicative Noise","translated_title":"","metadata":{"grobid_abstract":"The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-leading to a second-order-like noise-induced nonequilibrium phase transition which shows reentrance as a function of the (multiplicative) noise intensity σ-is investigated beyond the white-noise assumption. Through a Markovian approximation and within a mean-field treatment it is found that-in striking contrast with the usual behavior for equilibrium phase transitions-for noise self-correlation time τ \u003e 0, the stable phase for (diffusive) spatial coupling D → ∞ is always the disordered one. Another surprising result is that a large noise \"memory\" also tends to destroy order. These results are supported by numerical simulations.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":36651728},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828983/Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise","translated_internal_url":"","created_at":"2015-02-16T00:28:52.038-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651728,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651728/thumbnails/1.jpg","file_name":"9707308.pdf","download_url":"https://www.academia.edu/attachments/36651728/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Disordering_Effects_of_Color_in_Nonequil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651728/9707308-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DDisordering_Effects_of_Color_in_Nonequil.pdf\u0026Expires=1737433731\u0026Signature=Rsm2AB1S~A4oV-L0zXl7CTNGE6bzlnG0DSlN1RSfiXA4uL9qt2HETHgRbidf9KOCWpy2lYYnO1~Yp7YVqHk9kj~ZI2TkSQE31DBTNvVfbAJnRvDuS3K--sKL38s7KHewNygguBuzGEKkBJa-2jtJclwnx~ivFL-uqvfAMwywFypBzuRn40x8-BuyInVPafL6XkLq0s~NbaJ7aG4OWBK8ddBpCa8rxzfIxbpLG5diLcWXw~yUWYzz54bTqIoZFqRhdUj3Yeogkwpujea7K3~JfkWmlN~ocsQkbr6hZaykzMCgBMaiAVml2M89E0OgXtVWCupe~nCyArzhPHJR7X6oAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Disordering_Effects_of_Color_in_Nonequilibrium_Phase_Transitions_Induced_by_Multiplicative_Noise","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"The model introduced by Van den Broeck, Parrondo and Toral [Phys. Rev. Lett. 73, 3395 (1994)]-leading to a second-order-like noise-induced nonequilibrium phase transition which shows reentrance as a function of the (multiplicative) noise intensity σ-is investigated beyond the white-noise assumption. Through a Markovian approximation and within a mean-field treatment it is found that-in striking contrast with the usual behavior for equilibrium phase transitions-for noise self-correlation time τ \u003e 0, the stable phase for (diffusive) spatial coupling D → ∞ is always the disordered one. Another surprising result is that a large noise \"memory\" also tends to destroy order. These results are supported by numerical simulations.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651728,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651728/thumbnails/1.jpg","file_name":"9707308.pdf","download_url":"https://www.academia.edu/attachments/36651728/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Disordering_Effects_of_Color_in_Nonequil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651728/9707308-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DDisordering_Effects_of_Color_in_Nonequil.pdf\u0026Expires=1737433731\u0026Signature=Rsm2AB1S~A4oV-L0zXl7CTNGE6bzlnG0DSlN1RSfiXA4uL9qt2HETHgRbidf9KOCWpy2lYYnO1~Yp7YVqHk9kj~ZI2TkSQE31DBTNvVfbAJnRvDuS3K--sKL38s7KHewNygguBuzGEKkBJa-2jtJclwnx~ivFL-uqvfAMwywFypBzuRn40x8-BuyInVPafL6XkLq0s~NbaJ7aG4OWBK8ddBpCa8rxzfIxbpLG5diLcWXw~yUWYzz54bTqIoZFqRhdUj3Yeogkwpujea7K3~JfkWmlN~ocsQkbr6hZaykzMCgBMaiAVml2M89E0OgXtVWCupe~nCyArzhPHJR7X6oAQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":36651729,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651729/thumbnails/1.jpg","file_name":"9707308.pdf","download_url":"https://www.academia.edu/attachments/36651729/download_file","bulk_download_file_name":"Disordering_Effects_of_Color_in_Nonequil.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651729/9707308-libre.pdf?1424109199=\u0026response-content-disposition=attachment%3B+filename%3DDisordering_Effects_of_Color_in_Nonequil.pdf\u0026Expires=1737433731\u0026Signature=XCO64d3TRwEu1fG1hdOrMVdv16YBzddnBuTgC4Y2JZCIuiuDcHSbhXiBnv0YSfSx2gwVh-MRGlM97DdyjCRcIWw1eNA7T8BPPGdi8xo24WzzSAjY~kN4EtF-VryVERp6qgentraIHZvaFqR1I9AcXUSFYF8k6rBApvTImK62saezMg-ePTCjL-etDS67aqUQp-Kp4~i9ND5KyAUypDeS0TrOqkcCo-~uGACSYmQYJtNDHMi-e3NYK3PvILAa2AyZgXVgZVq6VjyCx3kkMuahi4OkVYDQ-k4ANSOOxB13LUTxuwJL8170GmrZZJCIyflLKf-mdk42iFQc15rqhEtlSw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":1113523,"name":"White Noise","url":"https://www.academia.edu/Documents/in/White_Noise"},{"id":1988984,"name":"Multiplicative noise","url":"https://www.academia.edu/Documents/in/Multiplicative_noise"}],"urls":[{"id":4363153,"url":"http://arxiv.org/abs/cond-mat/9707308"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828982"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828982/Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture"><img alt="Research paper thumbnail of Role of dimensionality in Axelrod's model for the dissemination of culture" class="work-thumbnail" src="https://attachments.academia-assets.com/47093306/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828982/Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture">Role of dimensionality in Axelrod's model for the dissemination of culture</a></div><div class="wp-workCard_item"><span>Physica A-statistical Mechanics and Its Applications</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze a model of social interaction in one and two-dimensional lattices for a moderate numbe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze a model of social interaction in one and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first order transition between an ordered and a disordered state.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="19969fab9827f805f35cf93e3719db8d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093306,"asset_id":10828982,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093306/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828982"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828982"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828982; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828982]").text(description); $(".js-view-count[data-work-id=10828982]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828982; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828982']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828982, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "19969fab9827f805f35cf93e3719db8d" } } $('.js-work-strip[data-work-id=10828982]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828982,"title":"Role of dimensionality in Axelrod's model for the dissemination of culture","translated_title":"","metadata":{"grobid_abstract":"We analyze a model of social interaction in one and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first order transition between an ordered and a disordered state.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physica A-statistical Mechanics and Its Applications","grobid_abstract_attachment_id":47093306},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828982/Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture","translated_internal_url":"","created_at":"2015-02-16T00:28:51.808-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093306/thumbnails/1.jpg","file_name":"cult_ph.pdf","download_url":"https://www.academia.edu/attachments/47093306/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_dimensionality_in_Axelrods_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093306/cult_ph-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_dimensionality_in_Axelrods_model.pdf\u0026Expires=1737433732\u0026Signature=ZI6oe3nx3-GLQJlrg-nchEnvG6Y2S2Chz63AiQw2OPuimuF7Gcp0syRhNcUrURoe~aMuA8H6dyOU~xJQxjXRNXcidU~Du~T0EiffPPNDdAyDrdBtt4AA6QVvvO80Pmq3CHjLw6bSsyuuKoYc4XGbO9vhX~h5W8HcN-bo596oq~~hfqwep7N7t4b84sPrgrVSfzBy0jAxY6ROlBJF83-ry0AKhQfR3T5wAfmMb87Ckqhr3pt6pz15MQxeiayG0qSs-MsTVn59M6EYbx5udfTFFYpiY36z9DwqtkQwwXhqiXQcC8ECw0ufvKR-kMpXVP4va3limansiBPJDVxKtOMHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Role_of_dimensionality_in_Axelrods_model_for_the_dissemination_of_culture","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"We analyze a model of social interaction in one and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first order transition between an ordered and a disordered state.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093306,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093306/thumbnails/1.jpg","file_name":"cult_ph.pdf","download_url":"https://www.academia.edu/attachments/47093306/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Role_of_dimensionality_in_Axelrods_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093306/cult_ph-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DRole_of_dimensionality_in_Axelrods_model.pdf\u0026Expires=1737433732\u0026Signature=ZI6oe3nx3-GLQJlrg-nchEnvG6Y2S2Chz63AiQw2OPuimuF7Gcp0syRhNcUrURoe~aMuA8H6dyOU~xJQxjXRNXcidU~Du~T0EiffPPNDdAyDrdBtt4AA6QVvvO80Pmq3CHjLw6bSsyuuKoYc4XGbO9vhX~h5W8HcN-bo596oq~~hfqwep7N7t4b84sPrgrVSfzBy0jAxY6ROlBJF83-ry0AKhQfR3T5wAfmMb87Ckqhr3pt6pz15MQxeiayG0qSs-MsTVn59M6EYbx5udfTFFYpiY36z9DwqtkQwwXhqiXQcC8ECw0ufvKR-kMpXVP4va3limansiBPJDVxKtOMHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":4715,"name":"Social Interaction","url":"https://www.academia.edu/Documents/in/Social_Interaction"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":960474,"name":"Order Parameter","url":"https://www.academia.edu/Documents/in/Order_Parameter"}],"urls":[{"id":4363152,"url":"http://www.sciencedirect.com/science/article/pii/S037843710300428X"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828981"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828981/Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media"><img alt="Research paper thumbnail of Theory of collective firing induced by noise or diversity in excitable media" class="work-thumbnail" src="https://attachments.academia-assets.com/36651727/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828981/Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media">Theory of collective firing induced by noise or diversity in excitable media</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Large variety of physical, chemical, and biological systems show excitable behavior, characterize...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system response ͑firing͒. It has been reported that in coupled excitable identical systems noise may induce the simultaneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="57edb9dd40be21af9b34e61ec07574e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651727,"asset_id":10828981,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651727/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828981"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828981"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828981; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828981]").text(description); $(".js-view-count[data-work-id=10828981]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828981; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828981']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828981, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "57edb9dd40be21af9b34e61ec07574e7" } } $('.js-work-strip[data-work-id=10828981]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828981,"title":"Theory of collective firing induced by noise or diversity in excitable media","translated_title":"","metadata":{"grobid_abstract":"Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system response ͑firing͒. It has been reported that in coupled excitable identical systems noise may induce the simultaneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":36651727},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828981/Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media","translated_internal_url":"","created_at":"2015-02-16T00:28:51.572-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651727/thumbnails/1.jpg","file_name":"2007-pre.pdf","download_url":"https://www.academia.edu/attachments/36651727/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_collective_firing_induced_by_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651727/2007-pre-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_collective_firing_induced_by_n.pdf\u0026Expires=1737433732\u0026Signature=F9viuS1TGLgvNXkR~5QJhZwlIHFCqNrGMhogXLFBJeGRY~WT-nyfhlqqFUCYmTJfmWhzUzOBU1tMZQwJuJ3jGQeIfZhVAM4fVOB3qY75FRJdqMUwndiFFY5M87dfZkQ68Zvxrm2bK4KpiMowDv5iPqEHjcXr~MS4TtJXqjws10w6zxBN-vS4uP2NB15stbYDbqxlkERyrjK3LVwkxQDiyZ0coM99PEEtcxciYAjtDi5MhWUyjSQjOxA6VTUux5EANDgC-P0g1VDyJCGOViPHT1Rb71Zu6sMGGsQzXF7FrzTx-keVJHXUxDqyGOYO9hCJwc6WfO3h~hBv8Mx1wYh0ng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Theory_of_collective_firing_induced_by_noise_or_diversity_in_excitable_media","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"Large variety of physical, chemical, and biological systems show excitable behavior, characterized by a nonlinear response under external perturbations: only perturbations exceeding a threshold induce a full system response ͑firing͒. It has been reported that in coupled excitable identical systems noise may induce the simultaneous firing of a macroscopic fraction of units. However, a comprehensive understanding of the role of noise and that of natural diversity present in realistic systems is still lacking. Here we develop a theory for the emergence of collective firings in nonidentical excitable systems subject to noise. Three different dynamical regimes arise: subthreshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for collective firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651727,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651727/thumbnails/1.jpg","file_name":"2007-pre.pdf","download_url":"https://www.academia.edu/attachments/36651727/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Theory_of_collective_firing_induced_by_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651727/2007-pre-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DTheory_of_collective_firing_induced_by_n.pdf\u0026Expires=1737433732\u0026Signature=F9viuS1TGLgvNXkR~5QJhZwlIHFCqNrGMhogXLFBJeGRY~WT-nyfhlqqFUCYmTJfmWhzUzOBU1tMZQwJuJ3jGQeIfZhVAM4fVOB3qY75FRJdqMUwndiFFY5M87dfZkQ68Zvxrm2bK4KpiMowDv5iPqEHjcXr~MS4TtJXqjws10w6zxBN-vS4uP2NB15stbYDbqxlkERyrjK3LVwkxQDiyZ0coM99PEEtcxciYAjtDi5MhWUyjSQjOxA6VTUux5EANDgC-P0g1VDyJCGOViPHT1Rb71Zu6sMGGsQzXF7FrzTx-keVJHXUxDqyGOYO9hCJwc6WfO3h~hBv8Mx1wYh0ng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"},{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process"},{"id":10152,"name":"Excitable Media","url":"https://www.academia.edu/Documents/in/Excitable_Media"},{"id":15250,"name":"Synchronization","url":"https://www.academia.edu/Documents/in/Synchronization"},{"id":41726,"name":"Coupled Oscillator","url":"https://www.academia.edu/Documents/in/Coupled_Oscillator"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":84294,"name":"Fixed Point Theory","url":"https://www.academia.edu/Documents/in/Fixed_Point_Theory"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion"},{"id":351461,"name":"Biological systems","url":"https://www.academia.edu/Documents/in/Biological_systems"}],"urls":[{"id":4363151,"url":"http://ifisc.uib.es/~tessonec/work/papers/2007-pre.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828980"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828980/Nonequilibrium_phase_transitions_induced_by_multiplicative_noise"><img alt="Research paper thumbnail of Nonequilibrium phase transitions induced by multiplicative noise" class="work-thumbnail" src="https://attachments.academia-assets.com/47093314/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828980/Nonequilibrium_phase_transitions_induced_by_multiplicative_noise">Nonequilibrium phase transitions induced by multiplicative noise</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We review a mean-field analysis and give the details of a correlation function approach for spati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We review a mean-field analysis and give the details of a correlation function approach for spatially distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure noise-induced reentrant nonequilibrium phase transition in the model introduced in ͓C. Van den Broeck et al., Phys. Rev. Lett. 73, 3395 ͑1994͔͒, give an intuitive explanation of its origin, and present extensive simulations in dimension dϭ2. The observed critical properties are compatible with those of the Ising universality class.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="504777797eef673878bef9e8cf63c591" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093314,"asset_id":10828980,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093314/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828980"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828980"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828980; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828980]").text(description); $(".js-view-count[data-work-id=10828980]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828980; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828980']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828980, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "504777797eef673878bef9e8cf63c591" } } $('.js-work-strip[data-work-id=10828980]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828980,"title":"Nonequilibrium phase transitions induced by multiplicative noise","translated_title":"","metadata":{"grobid_abstract":"We review a mean-field analysis and give the details of a correlation function approach for spatially distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure noise-induced reentrant nonequilibrium phase transition in the model introduced in ͓C. Van den Broeck et al., Phys. Rev. Lett. 73, 3395 ͑1994͔͒, give an intuitive explanation of its origin, and present extensive simulations in dimension dϭ2. The observed critical properties are compatible with those of the Ising universality class.","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":47093314},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828980/Nonequilibrium_phase_transitions_induced_by_multiplicative_noise","translated_internal_url":"","created_at":"2015-02-16T00:28:51.326-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093314/thumbnails/1.jpg","file_name":"nonequilibirum.pdf","download_url":"https://www.academia.edu/attachments/47093314/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_phase_transitions_induced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093314/nonequilibirum-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_phase_transitions_induced.pdf\u0026Expires=1737433732\u0026Signature=HHp2hEkeYGp3f04oT~680ljei1wpSbXX-yHzB2k1m943UeLk7vGrb-j3FcupA5xGEDfzN5NZ7Y13ktRuNaohjX03PIuTFbP2lMZsEHBW4BYhtiNk-DHIhLuUkZuBjC8G5AMTDbHY9zgFwpzXdOokpuE66Qb8y9nfmqjZOeL5NY6NSD0PFP568NwfHXXYfSMxvCWcX6~u9IWG24pNs9JzGc-L9Irz7E8uyQ7xhljCZrIYEGBEN4qfTzEhX1ic3r01y1l02kIjNeCdcJ0fYqxMPblzCjKKsn0PHxev3j3hn-KQvMIqBx6oTFrfG2VHn98egeEEwditJvN2e6K9vlKBqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonequilibrium_phase_transitions_induced_by_multiplicative_noise","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"We review a mean-field analysis and give the details of a correlation function approach for spatially distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure noise-induced reentrant nonequilibrium phase transition in the model introduced in ͓C. Van den Broeck et al., Phys. Rev. Lett. 73, 3395 ͑1994͔͒, give an intuitive explanation of its origin, and present extensive simulations in dimension dϭ2. The observed critical properties are compatible with those of the Ising universality class.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093314,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093314/thumbnails/1.jpg","file_name":"nonequilibirum.pdf","download_url":"https://www.academia.edu/attachments/47093314/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_phase_transitions_induced.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093314/nonequilibirum-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_phase_transitions_induced.pdf\u0026Expires=1737433732\u0026Signature=HHp2hEkeYGp3f04oT~680ljei1wpSbXX-yHzB2k1m943UeLk7vGrb-j3FcupA5xGEDfzN5NZ7Y13ktRuNaohjX03PIuTFbP2lMZsEHBW4BYhtiNk-DHIhLuUkZuBjC8G5AMTDbHY9zgFwpzXdOokpuE66Qb8y9nfmqjZOeL5NY6NSD0PFP568NwfHXXYfSMxvCWcX6~u9IWG24pNs9JzGc-L9Irz7E8uyQ7xhljCZrIYEGBEN4qfTzEhX1ic3r01y1l02kIjNeCdcJ0fYqxMPblzCjKKsn0PHxev3j3hn-KQvMIqBx6oTFrfG2VHn98egeEEwditJvN2e6K9vlKBqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"},{"id":95016,"name":"Lattice Beam Model","url":"https://www.academia.edu/Documents/in/Lattice_Beam_Model"},{"id":136128,"name":"Brownian Motion","url":"https://www.academia.edu/Documents/in/Brownian_Motion"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":187673,"name":"Phase Change","url":"https://www.academia.edu/Documents/in/Phase_Change"},{"id":339310,"name":"Symmetry Breaking","url":"https://www.academia.edu/Documents/in/Symmetry_Breaking"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"},{"id":1988984,"name":"Multiplicative noise","url":"https://www.academia.edu/Documents/in/Multiplicative_noise"},{"id":2382100,"name":"Correlation function","url":"https://www.academia.edu/Documents/in/Correlation_function"}],"urls":[{"id":4363150,"url":"http://link.aps.org/doi/10.1103/PhysRevE.55.4084"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828979"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828979/Neighborhood_models_of_minority_opinion_spreading"><img alt="Research paper thumbnail of Neighborhood models of minority opinion spreading" class="work-thumbnail" src="https://attachments.academia-assets.com/47093313/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828979/Neighborhood_models_of_minority_opinion_spreading">Neighborhood models of minority opinion spreading</a></div><div class="wp-workCard_item"><span>European Physical Journal B</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N , the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa253bee8d89c980fbfc47da73581c6c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093313,"asset_id":10828979,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093313/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828979"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828979"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828979; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828979]").text(description); $(".js-view-count[data-work-id=10828979]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828979; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828979']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828979, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa253bee8d89c980fbfc47da73581c6c" } } $('.js-work-strip[data-work-id=10828979]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828979,"title":"Neighborhood models of minority opinion spreading","translated_title":"","metadata":{"grobid_abstract":"We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N , the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"European Physical Journal B","grobid_abstract_attachment_id":47093313},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828979/Neighborhood_models_of_minority_opinion_spreading","translated_internal_url":"","created_at":"2015-02-16T00:28:51.066-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093313,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093313/thumbnails/1.jpg","file_name":"0403339.pdf","download_url":"https://www.academia.edu/attachments/47093313/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neighborhood_models_of_minority_opinion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093313/0403339-libre.pdf?1467938305=\u0026response-content-disposition=attachment%3B+filename%3DNeighborhood_models_of_minority_opinion.pdf\u0026Expires=1737433732\u0026Signature=JH19HPToFWonoRFnSxA68qqa2Qud9N7DeYU26OkP9oQ9V2edaph9-Qjx10lTwO8HauTBdtGWLnIphJbEXQHab6U1-wTlMfQU6P8zNdXqbwqHCoAasAMnm1lV5YK-xxGZJvAFCjLHMfw~sJxMb~TKD4ZQriBSde9qKpR8MNz7osFhZ5eYqQcyN6p1d3O9LNoyqI5cBtRvsNtWdq8KfXZw7jC-MaRyW1xnhjpO86qQM~jE6-SlMjz~9J7xHXyfeDlj7isre~Zub2Jh6aBXyQzx7eEFhetzoSm9Bu9CQLl8zZEdXBgv39zttQaOGJrfjB58aLouc~wXt05uvAgkOZXw-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neighborhood_models_of_minority_opinion_spreading","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N , the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093313,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093313/thumbnails/1.jpg","file_name":"0403339.pdf","download_url":"https://www.academia.edu/attachments/47093313/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neighborhood_models_of_minority_opinion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093313/0403339-libre.pdf?1467938305=\u0026response-content-disposition=attachment%3B+filename%3DNeighborhood_models_of_minority_opinion.pdf\u0026Expires=1737433732\u0026Signature=JH19HPToFWonoRFnSxA68qqa2Qud9N7DeYU26OkP9oQ9V2edaph9-Qjx10lTwO8HauTBdtGWLnIphJbEXQHab6U1-wTlMfQU6P8zNdXqbwqHCoAasAMnm1lV5YK-xxGZJvAFCjLHMfw~sJxMb~TKD4ZQriBSde9qKpR8MNz7osFhZ5eYqQcyN6p1d3O9LNoyqI5cBtRvsNtWdq8KfXZw7jC-MaRyW1xnhjpO86qQM~jE6-SlMjz~9J7xHXyfeDlj7isre~Zub2Jh6aBXyQzx7eEFhetzoSm9Bu9CQLl8zZEdXBgv39zttQaOGJrfjB58aLouc~wXt05uvAgkOZXw-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":64336,"name":"Population","url":"https://www.academia.edu/Documents/in/Population"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":141675,"name":"Neighbourhood","url":"https://www.academia.edu/Documents/in/Neighbourhood"},{"id":236071,"name":"Populations","url":"https://www.academia.edu/Documents/in/Populations"},{"id":368057,"name":"Dimension","url":"https://www.academia.edu/Documents/in/Dimension"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"},{"id":613465,"name":"Statistical models","url":"https://www.academia.edu/Documents/in/Statistical_models"},{"id":741144,"name":"Agent Based Model","url":"https://www.academia.edu/Documents/in/Agent_Based_Model"},{"id":901297,"name":"Dimensions","url":"https://www.academia.edu/Documents/in/Dimensions"}],"urls":[{"id":4363148,"url":"http://www.springerlink.com/content/06a9g9frdhqk38e2"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828978"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828978/System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models"><img alt="Research paper thumbnail of System size coherence resonance in coupled FitzHugh-Nagumo models" class="work-thumbnail" src="https://attachments.academia-assets.com/47093424/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828978/System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models">System size coherence resonance in coupled FitzHugh-Nagumo models</a></div><div class="wp-workCard_item"><span>Europhysics Letters (epl)</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show the existence of a system size coherence resonance effect for coupled excitable systems. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show the existence of a system size coherence resonance effect for coupled excitable systems. Namely, we demonstrate numerically that the regularity in the signal emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by independent noise sources, is optimal for a particular value of the number of coupled systems. This resonance is shown through several different dynamical measures: the time correlation function, correlation time and jitter.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="42cbef4ae2d11e4a73f60ef9f245e80f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093424,"asset_id":10828978,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093424/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828978"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828978"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828978; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828978]").text(description); $(".js-view-count[data-work-id=10828978]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828978; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828978']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828978, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "42cbef4ae2d11e4a73f60ef9f245e80f" } } $('.js-work-strip[data-work-id=10828978]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828978,"title":"System size coherence resonance in coupled FitzHugh-Nagumo models","translated_title":"","metadata":{"grobid_abstract":"We show the existence of a system size coherence resonance effect for coupled excitable systems. Namely, we demonstrate numerically that the regularity in the signal emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by independent noise sources, is optimal for a particular value of the number of coupled systems. This resonance is shown through several different dynamical measures: the time correlation function, correlation time and jitter.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Europhysics Letters (epl)","grobid_abstract_attachment_id":47093424},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828978/System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models","translated_internal_url":"","created_at":"2015-02-16T00:28:50.806-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093424/thumbnails/1.jpg","file_name":"System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u.pdf","download_url":"https://www.academia.edu/attachments/47093424/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"System_size_coherence_resonance_in_coupl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093424/System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u-libre.pdf?1467938294=\u0026response-content-disposition=attachment%3B+filename%3DSystem_size_coherence_resonance_in_coupl.pdf\u0026Expires=1737412431\u0026Signature=Wub-ROQuJ0wJiDjuVPYU0J0-bCAuFJAsNJghTsJo5b64cFvVqRaNQaqYBQoPFdWD1z4fCVD7wCJ73AzzHMNBDCfbFNM2B6gz~b8mQbh~p9w0JcT7qedbCEvuh-Ioj~3-OteW-HTIsRGhVXo30cfdb9wmEe5ct3U33~ceiNYiERVE6NiStVVgPpYj8aKsxD86oMrPPQ6SsPJa-N1UWE2dOirPL~hsQFaou258ZibFfYASQovrX2S9Hvs6HsblcvpqY1jbXwjjgnYs9K9mkqCu9Mutn09XiknDXQA3LaHupN4SBRePF77UHumlNqtswajkC3LXlGavRQnLu3BGvJpWQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"System_size_coherence_resonance_in_coupled_FitzHugh_Nagumo_models","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We show the existence of a system size coherence resonance effect for coupled excitable systems. Namely, we demonstrate numerically that the regularity in the signal emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by independent noise sources, is optimal for a particular value of the number of coupled systems. This resonance is shown through several different dynamical measures: the time correlation function, correlation time and jitter.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093424/thumbnails/1.jpg","file_name":"System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u.pdf","download_url":"https://www.academia.edu/attachments/47093424/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"System_size_coherence_resonance_in_coupl.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093424/System_size_coherence_resonance_in_coupl20160707-22990-hiuj7u-libre.pdf?1467938294=\u0026response-content-disposition=attachment%3B+filename%3DSystem_size_coherence_resonance_in_coupl.pdf\u0026Expires=1737412431\u0026Signature=Wub-ROQuJ0wJiDjuVPYU0J0-bCAuFJAsNJghTsJo5b64cFvVqRaNQaqYBQoPFdWD1z4fCVD7wCJ73AzzHMNBDCfbFNM2B6gz~b8mQbh~p9w0JcT7qedbCEvuh-Ioj~3-OteW-HTIsRGhVXo30cfdb9wmEe5ct3U33~ceiNYiERVE6NiStVVgPpYj8aKsxD86oMrPPQ6SsPJa-N1UWE2dOirPL~hsQFaou258ZibFfYASQovrX2S9Hvs6HsblcvpqY1jbXwjjgnYs9K9mkqCu9Mutn09XiknDXQA3LaHupN4SBRePF77UHumlNqtswajkC3LXlGavRQnLu3BGvJpWQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":15250,"name":"Synchronization","url":"https://www.academia.edu/Documents/in/Synchronization"},{"id":68431,"name":"Noise","url":"https://www.academia.edu/Documents/in/Noise"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":1164807,"name":"Coherence Resonance","url":"https://www.academia.edu/Documents/in/Coherence_Resonance"},{"id":1379965,"name":"Coupled Tank System","url":"https://www.academia.edu/Documents/in/Coupled_Tank_System"},{"id":2382100,"name":"Correlation function","url":"https://www.academia.edu/Documents/in/Correlation_function"}],"urls":[{"id":4363147,"url":"http://stacks.iop.org/0295-5075/61/i=2/a=162?key=crossref.993bda92f7dce8bbf1367abaccf859cf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828976"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828976/Diversity_Induced_Resonance"><img alt="Research paper thumbnail of Diversity-Induced Resonance" class="work-thumbnail" src="https://attachments.academia-assets.com/36651725/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828976/Diversity_Induced_Resonance">Diversity-Induced Resonance</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We present conclusive evidence showing that different sources of diversity, such as those represe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="427de3604ca55370063e5ea22096b035" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651725,"asset_id":10828976,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651725/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828976"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828976]").text(description); $(".js-view-count[data-work-id=10828976]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828976']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828976, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "427de3604ca55370063e5ea22096b035" } } $('.js-work-strip[data-work-id=10828976]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828976,"title":"Diversity-Induced Resonance","translated_title":"","metadata":{"ai_title_tag":"Optimizing Response to Stimuli via Diversity-Induced Resonance","grobid_abstract":"We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":36651725},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828976/Diversity_Induced_Resonance","translated_internal_url":"","created_at":"2015-02-16T00:28:50.572-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651725/thumbnails/1.jpg","file_name":"0605082.pdf","download_url":"https://www.academia.edu/attachments/36651725/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diversity_Induced_Resonance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651725/0605082-libre.pdf?1424109193=\u0026response-content-disposition=attachment%3B+filename%3DDiversity_Induced_Resonance.pdf\u0026Expires=1737412431\u0026Signature=WAv4V8Z5JZBLF7v5VWo1Z12jvOXKBqQC9f9h2qW6VTVF2Fcy2kN4C1IevfYa3XLInfF16MEymocVbOKh48B-ftndNlNOnaAJ71KEdV5QVC1coS7G3aYaQ8~sTKRPy1~gtuGdQvG1HjnWAIMXNwrLIZfLxfSYoxCrQdUane3ihgGgWguvi4uy516RGtYb8giU6ZLJcV5Kt9GdnaKfPBJZvkZbQdJEso65aglHP1UEB5J8He9pyiYDdZYSqYA9h8ezBpgF3By8gUCqLLc0vToimQonbJr62MYtw871J5FNYEvvIiy33lgPVt~lZuwTLECB8Qn4Ulvt79Ldk9nOeZweNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Diversity_Induced_Resonance","translated_slug":"","page_count":4,"language":"en","content_type":"Work","summary":"We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651725,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651725/thumbnails/1.jpg","file_name":"0605082.pdf","download_url":"https://www.academia.edu/attachments/36651725/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Diversity_Induced_Resonance.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651725/0605082-libre.pdf?1424109193=\u0026response-content-disposition=attachment%3B+filename%3DDiversity_Induced_Resonance.pdf\u0026Expires=1737412431\u0026Signature=WAv4V8Z5JZBLF7v5VWo1Z12jvOXKBqQC9f9h2qW6VTVF2Fcy2kN4C1IevfYa3XLInfF16MEymocVbOKh48B-ftndNlNOnaAJ71KEdV5QVC1coS7G3aYaQ8~sTKRPy1~gtuGdQvG1HjnWAIMXNwrLIZfLxfSYoxCrQdUane3ihgGgWguvi4uy516RGtYb8giU6ZLJcV5Kt9GdnaKfPBJZvkZbQdJEso65aglHP1UEB5J8He9pyiYDdZYSqYA9h8ezBpgF3By8gUCqLLc0vToimQonbJr62MYtw871J5FNYEvvIiy33lgPVt~lZuwTLECB8Qn4Ulvt79Ldk9nOeZweNA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":185,"name":"Collective Behavior","url":"https://www.academia.edu/Documents/in/Collective_Behavior"},{"id":344,"name":"Probability Theory","url":"https://www.academia.edu/Documents/in/Probability_Theory"},{"id":347,"name":"Stochastic Process","url":"https://www.academia.edu/Documents/in/Stochastic_Process"},{"id":15250,"name":"Synchronization","url":"https://www.academia.edu/Documents/in/Synchronization"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":121035,"name":"Profitability","url":"https://www.academia.edu/Documents/in/Profitability"},{"id":138717,"name":"Quenched Disorder","url":"https://www.academia.edu/Documents/in/Quenched_Disorder"}],"urls":[{"id":4363146,"url":"http://arxiv.org/abs/cond-mat/0605082"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828975/Binary_and_multivariate_stochastic_models_of_consensus_formation"><img alt="Research paper thumbnail of Binary and multivariate stochastic models of consensus formation" class="work-thumbnail" src="https://attachments.academia-assets.com/47093312/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828975/Binary_and_multivariate_stochastic_models_of_consensus_formation">Binary and multivariate stochastic models of consensus formation</a></div><div class="wp-workCard_item"><span>Computing in Science and Engineering</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A current paradigm in computer simulation studies of social sciences problems by physicists is th...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A current paradigm in computer simulation studies of social sciences problems by physicists is the emergence of consensus . The question is to establish when the dynamics of a set of interacting agents that can choose among several options (political vote, opinion, cultural features, etc.) leads to a consensus in one of these options, or when a state with several coexisting social options prevail. The latter is called a polarized state. An important issue is to identify mechanisms producing a polarized state in spite of general convergent dynamics. When the agents are spatially distributed this problem shares many characteristics with the problem of domain growth in the kinetics of phase transitions [7]: Consensus emerges when a single spatial domain grows occupying the whole system, while polarization corresponds to a situation in which the system does not order and different spatial domains compete.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7c55d56d477803e0faa8b4ef04066288" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093312,"asset_id":10828975,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093312/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828975]").text(description); $(".js-view-count[data-work-id=10828975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7c55d56d477803e0faa8b4ef04066288" } } $('.js-work-strip[data-work-id=10828975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828975,"title":"Binary and multivariate stochastic models of consensus formation","translated_title":"","metadata":{"grobid_abstract":"A current paradigm in computer simulation studies of social sciences problems by physicists is the emergence of consensus . The question is to establish when the dynamics of a set of interacting agents that can choose among several options (political vote, opinion, cultural features, etc.) leads to a consensus in one of these options, or when a state with several coexisting social options prevail. The latter is called a polarized state. An important issue is to identify mechanisms producing a polarized state in spite of general convergent dynamics. When the agents are spatially distributed this problem shares many characteristics with the problem of domain growth in the kinetics of phase transitions [7]: Consensus emerges when a single spatial domain grows occupying the whole system, while polarization corresponds to a situation in which the system does not order and different spatial domains compete.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Computing in Science and Engineering","grobid_abstract_attachment_id":47093312},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828975/Binary_and_multivariate_stochastic_models_of_consensus_formation","translated_internal_url":"","created_at":"2015-02-16T00:28:50.335-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093312,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093312/thumbnails/1.jpg","file_name":"0507201.pdf","download_url":"https://www.academia.edu/attachments/47093312/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Binary_and_multivariate_stochastic_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093312/0507201-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DBinary_and_multivariate_stochastic_model.pdf\u0026Expires=1737433732\u0026Signature=LoNqrTcUBXP~wQt5qzwTvrcZL9MqHpgfNW61NyrCw0VqdkQhdLCjjsGp4tmLkLJgtWcD-xtNU7~VmkmXtrEViyaM4ztjRlUy5eU3XSCx91z-nctnnwRufx3K0zFJ5Hx2~jAvyDuq3tQy3KdBLWNrAzDFY9VuCQCefPSjYPQVeoPVu-LlwghLqDZgJmtG3fINhof7-9qO2G5os4sxxrppiExEoFEs~23v3ROuQX335ZXv2aYI2NVAzubedsfoCDRd4un0YihqoRkiBunctOeZkeHVz78sbnZ-ide66m9bvtoVjpidEwcohXJnadm88ZGJN2n-eVmNiSb5VggwHRzeDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Binary_and_multivariate_stochastic_models_of_consensus_formation","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"A current paradigm in computer simulation studies of social sciences problems by physicists is the emergence of consensus . The question is to establish when the dynamics of a set of interacting agents that can choose among several options (political vote, opinion, cultural features, etc.) leads to a consensus in one of these options, or when a state with several coexisting social options prevail. The latter is called a polarized state. An important issue is to identify mechanisms producing a polarized state in spite of general convergent dynamics. When the agents are spatially distributed this problem shares many characteristics with the problem of domain growth in the kinetics of phase transitions [7]: Consensus emerges when a single spatial domain grows occupying the whole system, while polarization corresponds to a situation in which the system does not order and different spatial domains compete.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093312,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093312/thumbnails/1.jpg","file_name":"0507201.pdf","download_url":"https://www.academia.edu/attachments/47093312/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Binary_and_multivariate_stochastic_model.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093312/0507201-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3DBinary_and_multivariate_stochastic_model.pdf\u0026Expires=1737433732\u0026Signature=LoNqrTcUBXP~wQt5qzwTvrcZL9MqHpgfNW61NyrCw0VqdkQhdLCjjsGp4tmLkLJgtWcD-xtNU7~VmkmXtrEViyaM4ztjRlUy5eU3XSCx91z-nctnnwRufx3K0zFJ5Hx2~jAvyDuq3tQy3KdBLWNrAzDFY9VuCQCefPSjYPQVeoPVu-LlwghLqDZgJmtG3fINhof7-9qO2G5os4sxxrppiExEoFEs~23v3ROuQX335ZXv2aYI2NVAzubedsfoCDRd4un0YihqoRkiBunctOeZkeHVz78sbnZ-ide66m9bvtoVjpidEwcohXJnadm88ZGJN2n-eVmNiSb5VggwHRzeDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":185,"name":"Collective Behavior","url":"https://www.academia.edu/Documents/in/Collective_Behavior"},{"id":440,"name":"Distributed Computing","url":"https://www.academia.edu/Documents/in/Distributed_Computing"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":280464,"name":"Stochastic dynamics","url":"https://www.academia.edu/Documents/in/Stochastic_dynamics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"},{"id":694897,"name":"Dynamic Model of WSN","url":"https://www.academia.edu/Documents/in/Dynamic_Model_of_WSN"},{"id":871199,"name":"Stochastic Model","url":"https://www.academia.edu/Documents/in/Stochastic_Model"},{"id":1197942,"name":"Social Science","url":"https://www.academia.edu/Documents/in/Social_Science"},{"id":2049094,"name":"Interaction Network","url":"https://www.academia.edu/Documents/in/Interaction_Network"}],"urls":[{"id":4363145,"url":"http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1524860"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828974"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828974/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction"><img alt="Research paper thumbnail of Nonequilibrium transitions in complex networks: A model of social interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/36651738/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828974/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction">Nonequilibrium transitions in complex networks: A model of social interaction</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="94ee575e233e6458b03c4458fb9dd20f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651738,"asset_id":10828974,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651738/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828974"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828974"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828974; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828974]").text(description); $(".js-view-count[data-work-id=10828974]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828974; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828974']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828974, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "94ee575e233e6458b03c4458fb9dd20f" } } $('.js-work-strip[data-work-id=10828974]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828974,"title":"Nonequilibrium transitions in complex networks: A model of social interaction","translated_title":"","metadata":{"grobid_abstract":"We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":36651738},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828974/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_internal_url":"","created_at":"2015-02-16T00:28:50.128-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651738/thumbnails/1.jpg","file_name":"klemm_pre67_026120.pdf","download_url":"https://www.academia.edu/attachments/36651738/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651738/klemm_pre67_026120-libre.pdf?1424109201=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=ft-yE3Bk4Csdpn0JhlX0-hdQJWbhfa-nCZiM3mG4ATH4~CO36LE9PAUsVI2InEL3LCFnCla~Ol55pYyRS6dxVDpozCcDfqZ4LmQA7R03qvD891GoBMnk1lldxX8C866QpH~rh8fkw7f57Jw1oTx-4uTdwiWSiPRzyiydJCR0ATMpgLmiYSAtmLpgC7jJ~YP3EbLs1k07DKbEzvKuNBcml3QnetPhur0awnUkRqnYNaOBXkwDdwyr9j8Xr8WHPDltYTjGs3pi7Wb8Odd5zKws8wMOYaFXm9vgwpW654osui6TmqOQiCNlswxVLqGMkB8RdyYKbwXAAbf~7xrY6x~tHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We analyze the nonequilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651738/thumbnails/1.jpg","file_name":"klemm_pre67_026120.pdf","download_url":"https://www.academia.edu/attachments/36651738/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651738/klemm_pre67_026120-libre.pdf?1424109201=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=ft-yE3Bk4Csdpn0JhlX0-hdQJWbhfa-nCZiM3mG4ATH4~CO36LE9PAUsVI2InEL3LCFnCla~Ol55pYyRS6dxVDpozCcDfqZ4LmQA7R03qvD891GoBMnk1lldxX8C866QpH~rh8fkw7f57Jw1oTx-4uTdwiWSiPRzyiydJCR0ATMpgLmiYSAtmLpgC7jJ~YP3EbLs1k07DKbEzvKuNBcml3QnetPhur0awnUkRqnYNaOBXkwDdwyr9j8Xr8WHPDltYTjGs3pi7Wb8Odd5zKws8wMOYaFXm9vgwpW654osui6TmqOQiCNlswxVLqGMkB8RdyYKbwXAAbf~7xrY6x~tHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":36651730,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651730/thumbnails/1.jpg","file_name":"klemm_pre67_026120.pdf","download_url":"https://www.academia.edu/attachments/36651730/download_file","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651730/klemm_pre67_026120-libre.pdf?1424109195=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=fd-AyhiiZtce-LZ~gAVOpWbEggyViiTvxICFcSe4upxHyjNljcBxI7lzayE8Hb0zM44sXHN1lJysOm4MZCi7J-9n8r1uD6WSBlgMaKvGxst8pp-hL-41uvXpdQhTTizLzis6Tvyldr3Gp8A8UaoDKAJsa25tzowQk-XXen6Gd7mOc~xwSKCKs7Bab69TLIwHRtPBvYG2XSiX8LrV8UhZA4q3DepWz5aWNALJqDUSlFyf4wb61gFqUQ0HK1IjMLMDDU78iR8Q9KNlcAHM5eI1hxnWcduaE6VS0GyL8QtsVFulgAtmUZv2mgtkw~iFXU5ou3WbLzqXpi0M6Vqqd6pEoA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":4715,"name":"Social Interaction","url":"https://www.academia.edu/Documents/in/Social_Interaction"},{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"}],"urls":[{"id":4363144,"url":"http://www.izbi.uni-leipzig.de/izbi/publikationen/publi_2003/klemm_pre67_026120.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828973"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828973/Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers"><img alt="Research paper thumbnail of Numerical study of a Langevin model for the growth of wetting layers" class="work-thumbnail" src="https://attachments.academia-assets.com/47093309/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828973/Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers">Numerical study of a Langevin model for the growth of wetting layers</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1991</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="35d1e15b69346ee814f031857961f394" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093309,"asset_id":10828973,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093309/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828973"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828973"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828973; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828973]").text(description); $(".js-view-count[data-work-id=10828973]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828973; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828973']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828973, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "35d1e15b69346ee814f031857961f394" } } $('.js-work-strip[data-work-id=10828973]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828973,"title":"Numerical study of a Langevin model for the growth of wetting layers","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1991,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828973/Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers","translated_internal_url":"","created_at":"2015-02-16T00:28:49.981-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093309/thumbnails/1.jpg","file_name":"P30_tc91.pdf","download_url":"https://www.academia.edu/attachments/47093309/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_Langevin_model_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093309/P30_tc91-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_Langevin_model_for.pdf\u0026Expires=1737433732\u0026Signature=Hm1qz2ZQI4MpvDWm2Djp7-dWloWgj8evumKIWAbROyWVSgYP7ie8BzM~t-NEpR-yF2dMc~nxkOKinhxE47L8AzI3ZZI4NrSvJzjjnC3txHDOY2EJ8MIy1ggU8FKDYbJP~wTb5KhQiwY9xyWVI8LA0Z0rAqXpWQOZWwkzoiXR9RSM5ukuf22FF0OgGqfgZBov8l4Gpw478uqToYd66zQtH6p7VDz66R41CG2iLrzW0j4EfnDgLogMxygc91PdBfdBiKoOgz20q7OHYBQsY4Ch3qij2OJIrQe~d62VXrCFttZcW4LUhnh0FF5R~men63LiIbSQRjQFh4mJ6y59NpFeiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_study_of_a_Langevin_model_for_the_growth_of_wetting_layers","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093309,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093309/thumbnails/1.jpg","file_name":"P30_tc91.pdf","download_url":"https://www.academia.edu/attachments/47093309/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_Langevin_model_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093309/P30_tc91-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_Langevin_model_for.pdf\u0026Expires=1737433732\u0026Signature=Hm1qz2ZQI4MpvDWm2Djp7-dWloWgj8evumKIWAbROyWVSgYP7ie8BzM~t-NEpR-yF2dMc~nxkOKinhxE47L8AzI3ZZI4NrSvJzjjnC3txHDOY2EJ8MIy1ggU8FKDYbJP~wTb5KhQiwY9xyWVI8LA0Z0rAqXpWQOZWwkzoiXR9RSM5ukuf22FF0OgGqfgZBov8l4Gpw478uqToYd66zQtH6p7VDz66R41CG2iLrzW0j4EfnDgLogMxygc91PdBfdBiKoOgz20q7OHYBQsY4Ch3qij2OJIrQe~d62VXrCFttZcW4LUhnh0FF5R~men63LiIbSQRjQFh4mJ6y59NpFeiA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828972"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828972/Reversible_aggregation_in_self_associating_polymer_systems"><img alt="Research paper thumbnail of Reversible aggregation in self-associating polymer systems" class="work-thumbnail" src="https://attachments.academia-assets.com/47093311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828972/Reversible_aggregation_in_self_associating_polymer_systems">Reversible aggregation in self-associating polymer systems</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc5736409ba30d286568516947ad1fcc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093311,"asset_id":10828972,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093311/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828972"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828972"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828972; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828972]").text(description); $(".js-view-count[data-work-id=10828972]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828972; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828972']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828972, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc5736409ba30d286568516947ad1fcc" } } $('.js-work-strip[data-work-id=10828972]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828972,"title":"Reversible aggregation in self-associating polymer systems","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1994,"errors":{}},"publication_name":"Physical Review E"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828972/Reversible_aggregation_in_self_associating_polymer_systems","translated_internal_url":"","created_at":"2015-02-16T00:28:49.839-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093311/thumbnails/1.jpg","file_name":"P53_stc94.pdf","download_url":"https://www.academia.edu/attachments/47093311/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reversible_aggregation_in_self_associati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093311/P53_stc94-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DReversible_aggregation_in_self_associati.pdf\u0026Expires=1737412431\u0026Signature=dlZK665IzZOU-25wy081eUxTI5Ebvg-sj3M8ZxCxk~VRD3QHMrwTBaHvIvP-Xzic0NkVHEavMlab73cwwgnChk3CAN77lFEYISGdfgqSsAKUrJj5hUEq7T4ufX0Orp9bM49DhJw5ppgNMnvaX198DuPkyX1Ugp3JZ5rTI0M05H6taa3wUdf805cQv5gAHqhIj3d~JcV0fB~iWHw2Zt67D4w3JA7D9xeylDuhHH~Ck1GDnv-buHz2zxHoaT5b5SkT0fvVhV6iLhcYMlJA4GBT5u0YGdTALuk2uVY4nrHe3I2LQD6IcSLqjtpFGgPyVLvoi2P2VrL0d36ZojxxG0Z7Lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reversible_aggregation_in_self_associating_polymer_systems","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093311/thumbnails/1.jpg","file_name":"P53_stc94.pdf","download_url":"https://www.academia.edu/attachments/47093311/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reversible_aggregation_in_self_associati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093311/P53_stc94-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DReversible_aggregation_in_self_associati.pdf\u0026Expires=1737412431\u0026Signature=dlZK665IzZOU-25wy081eUxTI5Ebvg-sj3M8ZxCxk~VRD3QHMrwTBaHvIvP-Xzic0NkVHEavMlab73cwwgnChk3CAN77lFEYISGdfgqSsAKUrJj5hUEq7T4ufX0Orp9bM49DhJw5ppgNMnvaX198DuPkyX1Ugp3JZ5rTI0M05H6taa3wUdf805cQv5gAHqhIj3d~JcV0fB~iWHw2Zt67D4w3JA7D9xeylDuhHH~Ck1GDnv-buHz2zxHoaT5b5SkT0fvVhV6iLhcYMlJA4GBT5u0YGdTALuk2uVY4nrHe3I2LQD6IcSLqjtpFGgPyVLvoi2P2VrL0d36ZojxxG0Z7Lw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2950,"name":"Computational Modeling","url":"https://www.academia.edu/Documents/in/Computational_Modeling"},{"id":48636,"name":"Simulation","url":"https://www.academia.edu/Documents/in/Simulation"},{"id":60658,"name":"Numerical Simulation","url":"https://www.academia.edu/Documents/in/Numerical_Simulation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828971"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828971/Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions"><img alt="Research paper thumbnail of Numerical determination of the phase diagram for the cphi4 model in two dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/47093315/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828971/Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions">Numerical determination of the phase diagram for the cphi4 model in two dimensions</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1990</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5295426dfa9c9ab576522e5a0eaa8dc7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093315,"asset_id":10828971,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093315/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828971"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828971"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828971; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828971]").text(description); $(".js-view-count[data-work-id=10828971]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828971; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828971']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828971, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5295426dfa9c9ab576522e5a0eaa8dc7" } } $('.js-work-strip[data-work-id=10828971]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828971,"title":"Numerical determination of the phase diagram for the cphi4 model in two dimensions","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828971/Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions","translated_internal_url":"","created_at":"2015-02-16T00:28:49.716-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093315,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093315/thumbnails/1.jpg","file_name":"P25_tc90.pdf","download_url":"https://www.academia.edu/attachments/47093315/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_determination_of_the_phase_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093315/P25_tc90-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_determination_of_the_phase_dia.pdf\u0026Expires=1737412431\u0026Signature=JKg6XC0dgZEBVxTfXn46~S6d54rMynYkgUHf-rtJ8z5oVyWce4U4PX831aD4l8B~MlY~Usb1Vq7Cjc67Bp1KxxxlFiua2MsrU6kwRaArrwm8mWKASvFq7EEvIUUSyU-fd5iAUA8PzZD5bMz-ozmLKbtuTh6EYkZQTkhYT3ARljw0Xvbmz1~h4Q5oKnZLPu2aSXf1bT6DpALhppfBOpFsWhR~omv7sHLa98BTUE7S5Qk5BWYU6Zue1NJQi4I80PJOv8pK8cS1vM0jX7PZRFYR~8KAL7w-DTPLjjb1to4fqrGiP56zlf9jVJSSMQyhzJ~-d2kxxY9HiZ5uG6t7pnI20w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_determination_of_the_phase_diagram_for_the_cphi4_model_in_two_dimensions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093315,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093315/thumbnails/1.jpg","file_name":"P25_tc90.pdf","download_url":"https://www.academia.edu/attachments/47093315/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_determination_of_the_phase_dia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093315/P25_tc90-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_determination_of_the_phase_dia.pdf\u0026Expires=1737412431\u0026Signature=JKg6XC0dgZEBVxTfXn46~S6d54rMynYkgUHf-rtJ8z5oVyWce4U4PX831aD4l8B~MlY~Usb1Vq7Cjc67Bp1KxxxlFiua2MsrU6kwRaArrwm8mWKASvFq7EEvIUUSyU-fd5iAUA8PzZD5bMz-ozmLKbtuTh6EYkZQTkhYT3ARljw0Xvbmz1~h4Q5oKnZLPu2aSXf1bT6DpALhppfBOpFsWhR~omv7sHLa98BTUE7S5Qk5BWYU6Zue1NJQi4I80PJOv8pK8cS1vM0jX7PZRFYR~8KAL7w-DTPLjjb1to4fqrGiP56zlf9jVJSSMQyhzJ~-d2kxxY9HiZ5uG6t7pnI20w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":415783,"name":"Spinodal Decomposition","url":"https://www.academia.edu/Documents/in/Spinodal_Decomposition"},{"id":415784,"name":"Phase Separation","url":"https://www.academia.edu/Documents/in/Phase_Separation"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828970/Numerical_study_of_a_model_for_interface_growth"><img alt="Research paper thumbnail of Numerical study of a model for interface growth" class="work-thumbnail" src="https://attachments.academia-assets.com/47093310/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828970/Numerical_study_of_a_model_for_interface_growth">Numerical study of a model for interface growth</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1989</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d7d34f26ae6f4bae6a448c07a54c09d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093310,"asset_id":10828970,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093310/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828970]").text(description); $(".js-view-count[data-work-id=10828970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d7d34f26ae6f4bae6a448c07a54c09d3" } } $('.js-work-strip[data-work-id=10828970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828970,"title":"Numerical study of a model for interface growth","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1989,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828970/Numerical_study_of_a_model_for_interface_growth","translated_internal_url":"","created_at":"2015-02-16T00:28:49.609-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093310/thumbnails/1.jpg","file_name":"P21_ct89.pdf","download_url":"https://www.academia.edu/attachments/47093310/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_model_for_interface.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093310/P21_ct89-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_model_for_interface.pdf\u0026Expires=1737412431\u0026Signature=aNUfYGcoYaxhO-5m2oPj2li-5QjKotQ8Tvks0AKAl5HehmuHxU6VQ~lzQXWc6ZkdppdEJm97sbfkkodjAfVSPxHSmGtS-ewSlQ4u1naJ3vczJXqCu3K~os4GEYwdL2e5Sj67H5EQ2OR7twSHVIHXuDuxw~i67Ewy0ltWXFwD338aRzyRxU29E-Mblfxk8wGh7taeCftewI7Hd3uRmkCDHuCdOKRi82ggsNRmo1R28zPAMxFwjZRa3Lo6MWB6VrD9AD32dCVbNcktCqmjFLv7uPQa7UIXxKpe6T~Sij3GsUBmtnL-ZqbeZSeAe-r9UhjIMWA4fgkJ5C~os1rfkLsBlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_study_of_a_model_for_interface_growth","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":null,"owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093310,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093310/thumbnails/1.jpg","file_name":"P21_ct89.pdf","download_url":"https://www.academia.edu/attachments/47093310/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_study_of_a_model_for_interface.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093310/P21_ct89-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_study_of_a_model_for_interface.pdf\u0026Expires=1737412431\u0026Signature=aNUfYGcoYaxhO-5m2oPj2li-5QjKotQ8Tvks0AKAl5HehmuHxU6VQ~lzQXWc6ZkdppdEJm97sbfkkodjAfVSPxHSmGtS-ewSlQ4u1naJ3vczJXqCu3K~os4GEYwdL2e5Sj67H5EQ2OR7twSHVIHXuDuxw~i67Ewy0ltWXFwD338aRzyRxU29E-Mblfxk8wGh7taeCftewI7Hd3uRmkCDHuCdOKRi82ggsNRmo1R28zPAMxFwjZRa3Lo6MWB6VrD9AD32dCVbNcktCqmjFLv7uPQa7UIXxKpe6T~Sij3GsUBmtnL-ZqbeZSeAe-r9UhjIMWA4fgkJ5C~os1rfkLsBlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828969"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828969/Descending_from_infinity_Convergence_of_tailed_distributions"><img alt="Research paper thumbnail of Descending from infinity: Convergence of tailed distributions" class="work-thumbnail" src="https://attachments.academia-assets.com/47093404/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828969/Descending_from_infinity_Convergence_of_tailed_distributions">Descending from infinity: Convergence of tailed distributions</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. A delta function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="93b048547a5a988d12b8c4950b5e1c12" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093404,"asset_id":10828969,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093404/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828969"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828969"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828969; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828969]").text(description); $(".js-view-count[data-work-id=10828969]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828969; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828969']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828969, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "93b048547a5a988d12b8c4950b5e1c12" } } $('.js-work-strip[data-work-id=10828969]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828969,"title":"Descending from infinity: Convergence of tailed distributions","translated_title":"","metadata":{"grobid_abstract":"We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. A delta function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":47093404},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828969/Descending_from_infinity_Convergence_of_tailed_distributions","translated_internal_url":"","created_at":"2015-02-16T00:28:49.490-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093404/thumbnails/1.jpg","file_name":"Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv.pdf","download_url":"https://www.academia.edu/attachments/47093404/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Descending_from_infinity_Convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093404/Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv-libre.pdf?1467938297=\u0026response-content-disposition=attachment%3B+filename%3DDescending_from_infinity_Convergence_of.pdf\u0026Expires=1737412431\u0026Signature=SMXqS9qxpZdYokRr6C6osrHhowXhLuhHLArAxa0C~2prJzRdrPRxiljdRie8~BqWsHPh0KjsVhSPPL2QsiDrNubkDIOodAcrpdxhQPtnQDYpHGe6YCmWz4clme4MguTNq0VD~I8wwLmCSZ3VX-~JJtekzXgemfO-Rx~wExeGh0F2e2L~e8H45hMEehw2bFMy~FghR823gNnY5X9YVthsxrOGvIicNrtT82dTAVVY3Dw2SJbDS0-1Xrin0lstbdUhG20vJTGAOrS9l1xKY-vKgBXlm~m1u9JbEK5~mTVeRNSq63ayJ~1El329vVUHRdKm4QIs5HxUwg1REgwj7-01uA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Descending_from_infinity_Convergence_of_tailed_distributions","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. A delta function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093404,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093404/thumbnails/1.jpg","file_name":"Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv.pdf","download_url":"https://www.academia.edu/attachments/47093404/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Descending_from_infinity_Convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093404/Descending_from_infinity_Convergence_of_20160707-11093-1cagxnv-libre.pdf?1467938297=\u0026response-content-disposition=attachment%3B+filename%3DDescending_from_infinity_Convergence_of.pdf\u0026Expires=1737412431\u0026Signature=SMXqS9qxpZdYokRr6C6osrHhowXhLuhHLArAxa0C~2prJzRdrPRxiljdRie8~BqWsHPh0KjsVhSPPL2QsiDrNubkDIOodAcrpdxhQPtnQDYpHGe6YCmWz4clme4MguTNq0VD~I8wwLmCSZ3VX-~JJtekzXgemfO-Rx~wExeGh0F2e2L~e8H45hMEehw2bFMy~FghR823gNnY5X9YVthsxrOGvIicNrtT82dTAVVY3Dw2SJbDS0-1Xrin0lstbdUhG20vJTGAOrS9l1xKY-vKgBXlm~m1u9JbEK5~mTVeRNSq63ayJ~1El329vVUHRdKm4QIs5HxUwg1REgwj7-01uA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":33069,"name":"Probability","url":"https://www.academia.edu/Documents/in/Probability"},{"id":43131,"name":"Stochastic processes","url":"https://www.academia.edu/Documents/in/Stochastic_processes"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":83315,"name":"Diffusion","url":"https://www.academia.edu/Documents/in/Diffusion"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":343667,"name":"Theoretical Models","url":"https://www.academia.edu/Documents/in/Theoretical_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828968"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828968/_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_"><img alt="Research paper thumbnail of <title>Exact ratchet description of Parrondo's games with self-transitions</title>" class="work-thumbnail" src="https://attachments.academia-assets.com/47093317/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828968/_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_"><title>Exact ratchet description of Parrondo's games with self-transitions</title></a></div><div class="wp-workCard_item"><span>Noise in Complex Systems and Stochastic Dynamics II</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We extend a recently developed relation between the master equation describing the Parrondo's gam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We extend a recently developed relation between the master equation describing the Parrondo's games and the formalism of the Fokker-Planck equation to the case in which the games are modified with the introduction of "self-transition probabilities". This accounts for the possibility that the capital can neither increase nor decrease during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a discretised version of the equivalent expressions in terms of the solution of the Fokker-Planck equation with multiplicative noise.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ec76647c4471f2ff8a0a443f4e7ff802" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093317,"asset_id":10828968,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093317/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828968"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828968"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828968; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828968]").text(description); $(".js-view-count[data-work-id=10828968]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828968; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828968']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828968, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ec76647c4471f2ff8a0a443f4e7ff802" } } $('.js-work-strip[data-work-id=10828968]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828968,"title":"\u003ctitle\u003eExact ratchet description of Parrondo's games with self-transitions\u003c/title\u003e","translated_title":"","metadata":{"grobid_abstract":"We extend a recently developed relation between the master equation describing the Parrondo's games and the formalism of the Fokker-Planck equation to the case in which the games are modified with the introduction of \"self-transition probabilities\". This accounts for the possibility that the capital can neither increase nor decrease during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a discretised version of the equivalent expressions in terms of the solution of the Fokker-Planck equation with multiplicative noise.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Noise in Complex Systems and Stochastic Dynamics II","grobid_abstract_attachment_id":47093317},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828968/_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_","translated_internal_url":"","created_at":"2015-02-16T00:28:49.346-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093317,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093317/thumbnails/1.jpg","file_name":"C23_at04.pdf","download_url":"https://www.academia.edu/attachments/47093317/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Exact_ratchet_description_of_Parr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093317/C23_at04-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Exact_ratchet_description_of_Parr.pdf\u0026Expires=1737433732\u0026Signature=NSiZc1mTRAkHmXNO3xyc~5WmD0lmMx59D5Be-KxY~QRoggVIiVQae-8RxQL4hxhS7G7KdDYKdb7938x76aO9QxQl1KKVylhzxlx0fOlRc32eiIDDmiU99ShD3MOZisMiidnqELAWIwsaBHHNcEuLvj1k2edSjQpAbGXPYvRtAlba5QqtDnHrF~oo91VWWZi9JoM-vpNDahgcff0OZ4FNRNPG1Zmdb7Hzn2kP1BAok9odP5EpDzQs96jrVOBXSsvTLap8UPVYbL9IPHocw5ml~bXkK-kHpm0yr7ZHrcWioYl0~7Z9Om4PWjaoItkW71~Cg5syO~UQWYokGaIdT7u7tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_title_Exact_ratchet_description_of_Parrondos_games_with_self_transitions_title_","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"We extend a recently developed relation between the master equation describing the Parrondo's games and the formalism of the Fokker-Planck equation to the case in which the games are modified with the introduction of \"self-transition probabilities\". This accounts for the possibility that the capital can neither increase nor decrease during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a discretised version of the equivalent expressions in terms of the solution of the Fokker-Planck equation with multiplicative noise.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093317,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093317/thumbnails/1.jpg","file_name":"C23_at04.pdf","download_url":"https://www.academia.edu/attachments/47093317/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Exact_ratchet_description_of_Parr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093317/C23_at04-libre.pdf?1467938300=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Exact_ratchet_description_of_Parr.pdf\u0026Expires=1737433732\u0026Signature=NSiZc1mTRAkHmXNO3xyc~5WmD0lmMx59D5Be-KxY~QRoggVIiVQae-8RxQL4hxhS7G7KdDYKdb7938x76aO9QxQl1KKVylhzxlx0fOlRc32eiIDDmiU99ShD3MOZisMiidnqELAWIwsaBHHNcEuLvj1k2edSjQpAbGXPYvRtAlba5QqtDnHrF~oo91VWWZi9JoM-vpNDahgcff0OZ4FNRNPG1Zmdb7Hzn2kP1BAok9odP5EpDzQs96jrVOBXSsvTLap8UPVYbL9IPHocw5ml~bXkK-kHpm0yr7ZHrcWioYl0~7Z9Om4PWjaoItkW71~Cg5syO~UQWYokGaIdT7u7tg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1540857,"name":"Master Equation","url":"https://www.academia.edu/Documents/in/Master_Equation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828967"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828967/_title_Parrondos_games_and_the_zipping_algorithm_title_"><img alt="Research paper thumbnail of <title>Parrondo's games and the zipping algorithm</title>" class="work-thumbnail" src="https://attachments.academia-assets.com/47093320/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828967/_title_Parrondos_games_and_the_zipping_algorithm_title_"><title>Parrondo's games and the zipping algorithm</title></a></div><div class="wp-workCard_item"><span>Noise in Complex Systems and Stochastic Dynamics II</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the relation between the discrete-time version of the flashing ratchet known as Parrondo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the relation between the discrete-time version of the flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of informationnegentropy -between the Brownian particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games, showing all of them a good qualitative agreement between the gain and the inverse of the entropy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="216533706ec61e214970cbaebb75e7a4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093320,"asset_id":10828967,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093320/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828967"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828967"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828967; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828967]").text(description); $(".js-view-count[data-work-id=10828967]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828967; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828967']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828967, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "216533706ec61e214970cbaebb75e7a4" } } $('.js-work-strip[data-work-id=10828967]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828967,"title":"\u003ctitle\u003eParrondo's games and the zipping algorithm\u003c/title\u003e","translated_title":"","metadata":{"grobid_abstract":"We study the relation between the discrete-time version of the flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of informationnegentropy -between the Brownian particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games, showing all of them a good qualitative agreement between the gain and the inverse of the entropy.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Noise in Complex Systems and Stochastic Dynamics II","grobid_abstract_attachment_id":47093320},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828967/_title_Parrondos_games_and_the_zipping_algorithm_title_","translated_internal_url":"","created_at":"2015-02-16T00:28:49.238-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093320,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093320/thumbnails/1.jpg","file_name":"0402515.pdf","download_url":"https://www.academia.edu/attachments/47093320/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Parrondos_games_and_the_zipping_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093320/0402515-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Parrondos_games_and_the_zipping_a.pdf\u0026Expires=1737412432\u0026Signature=AZgHWiGU2FFZcU8cc-K~ppdcuS~DWDAXfre-6T6YyYPnJ0MghUoRVVxZnTBZy5Uv1EcIb1iCbIw0LBeIIboZ~ZgEBK~6prP~EP1SMqeghuww6DrMIxvPCSqE4OT4pNBVZxMpNX~dPIjmTgDcavjkiJd2hFwUnnhawAKQBtA8awS5KZASv67S1D9dGOZHnxI3amcMhQbfG0gQamOe~fs7vWnfwDQBC9pi~m1pLVnqr~TBNt7CvssPCd-PtqQca3OND-~0rfsTYH4oql20VSgAySNOALYxrcIcTwxNAPfXtGyRPTXffOPE03bpRcbiIwFvp770zpqO5rWDnQAffeGDeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"_title_Parrondos_games_and_the_zipping_algorithm_title_","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"We study the relation between the discrete-time version of the flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of informationnegentropy -between the Brownian particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games, showing all of them a good qualitative agreement between the gain and the inverse of the entropy.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093320,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093320/thumbnails/1.jpg","file_name":"0402515.pdf","download_url":"https://www.academia.edu/attachments/47093320/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"title_Parrondos_games_and_the_zipping_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093320/0402515-libre.pdf?1467938299=\u0026response-content-disposition=attachment%3B+filename%3Dtitle_Parrondos_games_and_the_zipping_a.pdf\u0026Expires=1737412432\u0026Signature=AZgHWiGU2FFZcU8cc-K~ppdcuS~DWDAXfre-6T6YyYPnJ0MghUoRVVxZnTBZy5Uv1EcIb1iCbIw0LBeIIboZ~ZgEBK~6prP~EP1SMqeghuww6DrMIxvPCSqE4OT4pNBVZxMpNX~dPIjmTgDcavjkiJd2hFwUnnhawAKQBtA8awS5KZASv67S1D9dGOZHnxI3amcMhQbfG0gQamOe~fs7vWnfwDQBC9pi~m1pLVnqr~TBNt7CvssPCd-PtqQca3OND-~0rfsTYH4oql20VSgAySNOALYxrcIcTwxNAPfXtGyRPTXffOPE03bpRcbiIwFvp770zpqO5rWDnQAffeGDeA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828966"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828966/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction"><img alt="Research paper thumbnail of Nonequilibrium transitions in complex networks: A model of social interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/47093318/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828966/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction">Nonequilibrium transitions in complex networks: A model of social interaction</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="007fe97e3a8de95422ac71584e2aab3f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093318,"asset_id":10828966,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093318/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828966"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828966"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828966; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828966]").text(description); $(".js-view-count[data-work-id=10828966]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828966; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828966']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828966, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "007fe97e3a8de95422ac71584e2aab3f" } } $('.js-work-strip[data-work-id=10828966]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828966,"title":"Nonequilibrium transitions in complex networks: A model of social interaction","translated_title":"","metadata":{"grobid_abstract":"We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":47093318},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828966/Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_internal_url":"","created_at":"2015-02-16T00:28:49.136-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093318/thumbnails/1.jpg","file_name":"0210542.pdf","download_url":"https://www.academia.edu/attachments/47093318/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093318/0210542-libre.pdf?1467938307=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=HbaeE94u8WOLtOsAMGfC4rI9bhw1tOp7WGXp69tNk55-KbIQkFNb6dQ6TQL4icnP6g-IUrgT8oaLn4sRzIME5ud7NRyA1vKnVakUTE5ZD6FcOlI-fw1W2uXCOIBJ2383B7hPt7od03yo3QK5negNNnzoimOdtfiljI0fpwrOc0l~hJxptIUVwp9hAwm-qX-v5Sp6I2juYO~MCug1~5fisEPaKPQCKOwLnYCqh~QK5G5CLqP6SYE5b1fpd4p6ofaqxRdrEVXY-KMlgSg3qw4Pvu9TRQm-42h8XwFkKyxBoDsm~qUWA2gzmpCquFJUYJrxAgVZEmupjyXOGW1c3mkk5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonequilibrium_transitions_in_complex_networks_A_model_of_social_interaction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093318,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093318/thumbnails/1.jpg","file_name":"0210542.pdf","download_url":"https://www.academia.edu/attachments/47093318/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonequilibrium_transitions_in_complex_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093318/0210542-libre.pdf?1467938307=\u0026response-content-disposition=attachment%3B+filename%3DNonequilibrium_transitions_in_complex_ne.pdf\u0026Expires=1737433732\u0026Signature=HbaeE94u8WOLtOsAMGfC4rI9bhw1tOp7WGXp69tNk55-KbIQkFNb6dQ6TQL4icnP6g-IUrgT8oaLn4sRzIME5ud7NRyA1vKnVakUTE5ZD6FcOlI-fw1W2uXCOIBJ2383B7hPt7od03yo3QK5negNNnzoimOdtfiljI0fpwrOc0l~hJxptIUVwp9hAwm-qX-v5Sp6I2juYO~MCug1~5fisEPaKPQCKOwLnYCqh~QK5G5CLqP6SYE5b1fpd4p6ofaqxRdrEVXY-KMlgSg3qw4Pvu9TRQm-42h8XwFkKyxBoDsm~qUWA2gzmpCquFJUYJrxAgVZEmupjyXOGW1c3mkk5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":963,"name":"Lattice Theory","url":"https://www.academia.edu/Documents/in/Lattice_Theory"},{"id":4715,"name":"Social Interaction","url":"https://www.academia.edu/Documents/in/Social_Interaction"},{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":372231,"name":"Social System","url":"https://www.academia.edu/Documents/in/Social_System"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828965"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828965/Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing"><img alt="Research paper thumbnail of Anticipating the Response of Excitable Systems Driven by Random Forcing" class="work-thumbnail" src="https://attachments.academia-assets.com/47093327/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828965/Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing">Anticipating the Response of Excitable Systems Driven by Random Forcing</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the regime of anticipated synchronization in unidirectionally coupled model neurons subj...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by implementation in analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the pulses fired by the master neuron. This anticipated synchronization occurs even when the common external forcing is white noise.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f03d5f0ec0bc55075eb6d47e332867c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":47093327,"asset_id":10828965,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/47093327/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828965"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828965"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828965; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828965]").text(description); $(".js-view-count[data-work-id=10828965]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828965; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828965']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828965, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f03d5f0ec0bc55075eb6d47e332867c" } } $('.js-work-strip[data-work-id=10828965]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828965,"title":"Anticipating the Response of Excitable Systems Driven by Random Forcing","translated_title":"","metadata":{"grobid_abstract":"We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by implementation in analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the pulses fired by the master neuron. This anticipated synchronization occurs even when the common external forcing is white noise.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":47093327},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828965/Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing","translated_internal_url":"","created_at":"2015-02-16T00:28:48.940-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":47093327,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093327/thumbnails/1.jpg","file_name":"0203583.pdf","download_url":"https://www.academia.edu/attachments/47093327/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anticipating_the_Response_of_Excitable_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093327/0203583-libre.pdf?1467938298=\u0026response-content-disposition=attachment%3B+filename%3DAnticipating_the_Response_of_Excitable_S.pdf\u0026Expires=1737433732\u0026Signature=aZjpJp3vXIcbmBVs1padooAg37RS5ORFVdCTgvIjV~Ey3BVJR75TrkSdNPbXwkIdQKgO09Z-PsJBjWDytx-rFwlpgwh4ul0jPvgx9N5Vwpvm9HuUKcJ9MkFiQNc1Xr6BYm49JK0jvsL-~xSzBIlOYAxv2HMMSbzWBvgv6j2TJGEUbt8FyWQ3khBCSCmJuWrrY8SufaED7uYlSzVW05r5-vfp945D-WF7LnhpLKaVIAvesdibUu0oP83K0AaHmxYY4iDiR41MZMQGZpgwY5Ih1WW0U2nNHMzXlvNqhA71P-URKOH10ImXugNzKSNdhx2-Tu-8tYpoZvqIhPQmIsAAwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anticipating_the_Response_of_Excitable_Systems_Driven_by_Random_Forcing","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by implementation in analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the pulses fired by the master neuron. This anticipated synchronization occurs even when the common external forcing is white noise.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":47093327,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/47093327/thumbnails/1.jpg","file_name":"0203583.pdf","download_url":"https://www.academia.edu/attachments/47093327/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anticipating_the_Response_of_Excitable_S.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/47093327/0203583-libre.pdf?1467938298=\u0026response-content-disposition=attachment%3B+filename%3DAnticipating_the_Response_of_Excitable_S.pdf\u0026Expires=1737433732\u0026Signature=aZjpJp3vXIcbmBVs1padooAg37RS5ORFVdCTgvIjV~Ey3BVJR75TrkSdNPbXwkIdQKgO09Z-PsJBjWDytx-rFwlpgwh4ul0jPvgx9N5Vwpvm9HuUKcJ9MkFiQNc1Xr6BYm49JK0jvsL-~xSzBIlOYAxv2HMMSbzWBvgv6j2TJGEUbt8FyWQ3khBCSCmJuWrrY8SufaED7uYlSzVW05r5-vfp945D-WF7LnhpLKaVIAvesdibUu0oP83K0AaHmxYY4iDiR41MZMQGZpgwY5Ih1WW0U2nNHMzXlvNqhA71P-URKOH10ImXugNzKSNdhx2-Tu-8tYpoZvqIhPQmIsAAwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4317,"name":"Nonlinear Optics","url":"https://www.academia.edu/Documents/in/Nonlinear_Optics"},{"id":5493,"name":"Nonlinear dynamics","url":"https://www.academia.edu/Documents/in/Nonlinear_dynamics"},{"id":28501,"name":"Temporal dynamics","url":"https://www.academia.edu/Documents/in/Temporal_dynamics"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":176503,"name":"Synaptic Transmission","url":"https://www.academia.edu/Documents/in/Synaptic_Transmission"},{"id":485404,"name":"Local Field Potential","url":"https://www.academia.edu/Documents/in/Local_Field_Potential"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":1113523,"name":"White Noise","url":"https://www.academia.edu/Documents/in/White_Noise"},{"id":1475630,"name":"Optical Bistability","url":"https://www.academia.edu/Documents/in/Optical_Bistability"}],"urls":[{"id":4363143,"url":"http://ifisc.uib.es/eng/lines/bio_content/prl90.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="10828964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/10828964/Coherence_resonance_in_chaotic_systems"><img alt="Research paper thumbnail of Coherence resonance in chaotic systems" class="work-thumbnail" src="https://attachments.academia-assets.com/36651723/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/10828964/Coherence_resonance_in_chaotic_systems">Coherence resonance in chaotic systems</a></div><div class="wp-workCard_item"><span>Europhysics Letters (epl)</span><span>, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. 05.45.Ac -Low-dimensional chaos.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9329f76c235972b718dbb024457a5e5e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":36651723,"asset_id":10828964,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/36651723/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="10828964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="10828964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10828964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10828964]").text(description); $(".js-view-count[data-work-id=10828964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10828964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='10828964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 10828964, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9329f76c235972b718dbb024457a5e5e" } } $('.js-work-strip[data-work-id=10828964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":10828964,"title":"Coherence resonance in chaotic systems","translated_title":"","metadata":{"ai_title_tag":"Coherence Resonance in Chaotic Nonlinear Dynamics","grobid_abstract":"PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. 05.45.Ac -Low-dimensional chaos.","publication_date":{"day":null,"month":null,"year":2001,"errors":{}},"publication_name":"Europhysics Letters (epl)","grobid_abstract_attachment_id":36651723},"translated_abstract":null,"internal_url":"https://www.academia.edu/10828964/Coherence_resonance_in_chaotic_systems","translated_internal_url":"","created_at":"2015-02-16T00:28:48.756-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":26324295,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":36651723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651723/thumbnails/1.jpg","file_name":"Coherence_Resonance_Chaotic_Systems.pdf","download_url":"https://www.academia.edu/attachments/36651723/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coherence_resonance_in_chaotic_systems.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651723/Coherence_Resonance_Chaotic_Systems-libre.pdf?1424109198=\u0026response-content-disposition=attachment%3B+filename%3DCoherence_resonance_in_chaotic_systems.pdf\u0026Expires=1737412432\u0026Signature=KubVei7ID7pK0L7UQFYTEIPg1B9JBYcxDWFDGeJOyEg9BYEwCb1A~bkR6j153go1I3eFZ34eFyZjbRUjD9ULJu8BUYUFmc7xqHHLOA4I4eKXsIwujADdJ2CTrh5oJ8IA0CThqOgTdx2USBs-474jKbNFvQP6giaL6gry8VFSQZVrFXfQJJVMH7lw~tATRdO-aKLYqNmRMIDC~GKf4IZvMmHYHAMw8DxteaIICuBlX~KXkGJpUxTJj7T3sXUyVoCbSKxVJx3oxGrkFrLzC7V0~Mkc9Dmi3~bgChY3Es4jsjAVulp28ePG96txU2AskgfClmV0r5ERs5rVqbEwO77p~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Coherence_resonance_in_chaotic_systems","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"PACS. 05.40.Ca -Noise. PACS. 05.45.-a -Nonlinear dynamics and nonlinear dynamical systems. PACS. 05.45.Ac -Low-dimensional chaos.","owner":{"id":26324295,"first_name":"Raul","middle_initials":null,"last_name":"Toral","page_name":"RToral","domain_name":"uib-es","created_at":"2015-02-16T00:27:45.012-08:00","display_name":"Raul Toral","url":"https://uib-es.academia.edu/RToral"},"attachments":[{"id":36651723,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36651723/thumbnails/1.jpg","file_name":"Coherence_Resonance_Chaotic_Systems.pdf","download_url":"https://www.academia.edu/attachments/36651723/download_file?st=MTczNzQzMDEzMiw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Coherence_resonance_in_chaotic_systems.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36651723/Coherence_Resonance_Chaotic_Systems-libre.pdf?1424109198=\u0026response-content-disposition=attachment%3B+filename%3DCoherence_resonance_in_chaotic_systems.pdf\u0026Expires=1737412432\u0026Signature=KubVei7ID7pK0L7UQFYTEIPg1B9JBYcxDWFDGeJOyEg9BYEwCb1A~bkR6j153go1I3eFZ34eFyZjbRUjD9ULJu8BUYUFmc7xqHHLOA4I4eKXsIwujADdJ2CTrh5oJ8IA0CThqOgTdx2USBs-474jKbNFvQP6giaL6gry8VFSQZVrFXfQJJVMH7lw~tATRdO-aKLYqNmRMIDC~GKf4IZvMmHYHAMw8DxteaIICuBlX~KXkGJpUxTJj7T3sXUyVoCbSKxVJx3oxGrkFrLzC7V0~Mkc9Dmi3~bgChY3Es4jsjAVulp28ePG96txU2AskgfClmV0r5ERs5rVqbEwO77p~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":124831,"name":"Resonance","url":"https://www.academia.edu/Documents/in/Resonance"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":174781,"name":"Oscillations","url":"https://www.academia.edu/Documents/in/Oscillations"},{"id":189262,"name":"Chaotic System","url":"https://www.academia.edu/Documents/in/Chaotic_System"},{"id":203898,"name":"Nonlinear Dynamics and Chaos","url":"https://www.academia.edu/Documents/in/Nonlinear_Dynamics_and_Chaos"},{"id":215075,"name":"Experimental Study","url":"https://www.academia.edu/Documents/in/Experimental_Study"},{"id":386999,"name":"Power Spectrum","url":"https://www.academia.edu/Documents/in/Power_Spectrum"},{"id":472460,"name":"Coherent States","url":"https://www.academia.edu/Documents/in/Coherent_States"},{"id":1164807,"name":"Coherence Resonance","url":"https://www.academia.edu/Documents/in/Coherence_Resonance"}],"urls":[{"id":4363142,"url":"http://www.lehigh.edu/~jdg4/publications/Coherence_Resonance_Chaotic_Systems.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "1ea420d07da34af4ebcbbc3a12b89e8eb77b02a8fc0a2e99eccbbd95c8b4ea2e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="jVHC9Q4N3l01UnfM_e48htyiQCK4K_A0bNx0b1r_VVDOPlChuIwpqUyKvL4_zX5fDH50gLPwovu8BK9-RZoV8A" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://uib-es.academia.edu/RToral" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="9-_d9Wp7eGApL37XNNwWeBUqlRwOrQcW-_T0jm-yHb20gE-h3PqPlFD3taX2_1ShxfahvgV2VdkrLC-fcNddHQ" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>