CINXE.COM
e (mathematical constant) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>e (mathematical constant) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"092f7c81-095b-4c8a-9e57-c051dcfe708b","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"E_(mathematical_constant)","wgTitle":"E (mathematical constant)","wgCurRevisionId":1256778139,"wgRevisionId":1256778139,"wgArticleId":9633,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","Articles containing Latin-language text","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely move-protected pages","Commons category link from Wikidata","Good articles","E (mathematical constant)","Leonhard Euler","Mathematical constants","Real transcendental numbers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en", "wgPageContentModel":"wikitext","wgRelevantPageName":"E_(mathematical_constant)","wgRelevantArticleId":9633,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":["sysop"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q82435", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc", "skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Hyperbola_E.svg/1200px-Hyperbola_E.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1285"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Hyperbola_E.svg/800px-Hyperbola_E.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="856"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Hyperbola_E.svg/640px-Hyperbola_E.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="685"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="e (mathematical constant) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/E_(mathematical_constant)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=E_(mathematical_constant)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/E_(mathematical_constant)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-E_mathematical_constant rootpage-E_mathematical_constant skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=E+%28mathematical+constant%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=E+%28mathematical+constant%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=E+%28mathematical+constant%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=E+%28mathematical+constant%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definitions</span> </div> </a> <ul id="toc-Definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Compound_interest" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Compound_interest"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Compound interest</span> </div> </a> <ul id="toc-Compound_interest-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bernoulli_trials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bernoulli_trials"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Bernoulli trials</span> </div> </a> <ul id="toc-Bernoulli_trials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exponential_growth_and_decay" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exponential_growth_and_decay"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Exponential growth and decay</span> </div> </a> <ul id="toc-Exponential_growth_and_decay-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Standard_normal_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Standard_normal_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Standard normal distribution</span> </div> </a> <ul id="toc-Standard_normal_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derangements" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derangements"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Derangements</span> </div> </a> <ul id="toc-Derangements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Optimal_planning_problems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Optimal_planning_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Optimal planning problems</span> </div> </a> <ul id="toc-Optimal_planning_problems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Asymptotics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Asymptotics"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Asymptotics</span> </div> </a> <ul id="toc-Asymptotics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Calculus" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Calculus</span> </div> </a> <ul id="toc-Calculus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inequalities" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inequalities"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Inequalities</span> </div> </a> <ul id="toc-Inequalities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exponential-like_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exponential-like_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Exponential-like functions</span> </div> </a> <ul id="toc-Exponential-like_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Number_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Number_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Number theory</span> </div> </a> <ul id="toc-Number_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complex_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complex_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Complex numbers</span> </div> </a> <ul id="toc-Complex_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Representations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Representations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Representations</span> </div> </a> <button aria-controls="toc-Representations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Representations subsection</span> </button> <ul id="toc-Representations-sublist" class="vector-toc-list"> <li id="toc-Stochastic_representations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stochastic_representations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Stochastic representations</span> </div> </a> <ul id="toc-Stochastic_representations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Known_digits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Known_digits"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Known digits</span> </div> </a> <ul id="toc-Known_digits-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computing_the_digits" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computing_the_digits"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Computing the digits</span> </div> </a> <ul id="toc-Computing_the_digits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_computer_culture" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_computer_culture"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>In computer culture</span> </div> </a> <ul id="toc-In_computer_culture-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="texhtml mvar" style="font-style:italic;">e</span> (mathematical constant)</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 88 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-88" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">88 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/E_(wiskunde)" title="E (wiskunde) – Afrikaans" lang="af" hreflang="af" data-title="E (wiskunde)" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8A%A6%E1%8B%AD%E1%88%88%E1%88%AD_%E1%89%81%E1%8C%A5%E1%88%AD" title="ኦይለር ቁጥር – Amharic" lang="am" hreflang="am" data-title="ኦይለር ቁጥር" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%87_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="ه (رياضيات) – Arabic" lang="ar" hreflang="ar" data-title="ه (رياضيات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Numero_e" title="Numero e – Aragonese" lang="an" hreflang="an" data-title="Numero e" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_e" title="Númberu e – Asturian" lang="ast" hreflang="ast" data-title="Númberu e" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/E_(%C9%99d%C9%99d)" title="E (ədəd) – Azerbaijani" lang="az" hreflang="az" data-title="E (ədəd)" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%AF%E0%A6%BC%E0%A6%B2%E0%A6%BE%E0%A6%B0%E0%A7%87%E0%A6%B0_%E0%A6%A7%E0%A7%8D%E0%A6%B0%E0%A7%81%E0%A6%AC%E0%A6%95" title="অয়লারের ধ্রুবক – Bangla" lang="bn" hreflang="bn" data-title="অয়লারের ধ্রুবক" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%95_(%D2%BB%D0%B0%D0%BD)" title="Е (һан) – Bashkir" lang="ba" hreflang="ba" data-title="Е (һан)" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/E_(%D0%BB%D1%96%D0%BA)" title="E (лік) – Belarusian" lang="be" hreflang="be" data-title="E (лік)" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9D%D0%B5%D0%BF%D0%B5%D1%80%D0%BE%D0%B2%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Неперово число – Bulgarian" lang="bg" hreflang="bg" data-title="Неперово число" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/E_(broj)" title="E (broj) – Bosnian" lang="bs" hreflang="bs" data-title="E (broj)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/E_(niver)" title="E (niver) – Breton" lang="br" hreflang="br" data-title="E (niver)" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_e" title="Nombre e – Catalan" lang="ca" hreflang="ca" data-title="Nombre e" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/E_(%D1%85%D0%B8%D1%81%D0%B5%D0%BF)" title="E (хисеп) – Chuvash" lang="cv" hreflang="cv" data-title="E (хисеп)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Eulerovo_%C4%8D%C3%ADslo" title="Eulerovo číslo – Czech" lang="cs" hreflang="cs" data-title="Eulerovo číslo" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/E_(tal)" title="E (tal) – Danish" lang="da" hreflang="da" data-title="E (tal)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Eulersche_Zahl" title="Eulersche Zahl – German" lang="de" hreflang="de" data-title="Eulersche Zahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/E_(arv)" title="E (arv) – Estonian" lang="et" hreflang="et" data-title="E (arv)" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/E_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AE_%CF%83%CF%84%CE%B1%CE%B8%CE%B5%CF%81%CE%AC)" title="E (μαθηματική σταθερά) – Greek" lang="el" hreflang="el" data-title="E (μαθηματική σταθερά)" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_e" title="Número e – Spanish" lang="es" hreflang="es" data-title="Número e" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/E_(matematiko)" title="E (matematiko) – Esperanto" lang="eo" hreflang="eo" data-title="E (matematiko)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://eu.wikipedia.org/wiki/E_(zenbakia)" title="E (zenbakia) – Basque" lang="eu" hreflang="eu" data-title="E (zenbakia)" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/E_(%D8%B9%D8%AF%D8%AF)" title="E (عدد) – Persian" lang="fa" hreflang="fa" data-title="E (عدد)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/E_(nombre)" title="E (nombre) – French" lang="fr" hreflang="fr" data-title="E (nombre)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_e" title="Número e – Galician" lang="gl" hreflang="gl" data-title="Número e" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/E_(%E6%95%B8%E5%AD%B8%E5%B8%B8%E6%95%B8)" title="E (數學常數) – Gan" lang="gan" hreflang="gan" data-title="E (數學常數)" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9E%90%EC%97%B0%EB%A1%9C%EA%B7%B8%EC%9D%98_%EB%B0%91" title="자연로그의 밑 – Korean" lang="ko" hreflang="ko" data-title="자연로그의 밑" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/E_(%D5%A9%D5%AB%D5%BE)" title="E (թիվ) – Armenian" lang="hy" hreflang="hy" data-title="E (թիվ)" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/E_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%A8%E0%A4%BF%E0%A4%AF%E0%A4%A4%E0%A4%BE%E0%A4%82%E0%A4%95)" title="E (गणितीय नियतांक) – Hindi" lang="hi" hreflang="hi" data-title="E (गणितीय नियतांक)" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/E_(matemati%C4%8Dka_konstanta)" title="E (matematička konstanta) – Croatian" lang="hr" hreflang="hr" data-title="E (matematička konstanta)" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Nombro_di_Euler" title="Nombro di Euler – Ido" lang="io" hreflang="io" data-title="Nombro di Euler" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/E_(konstanta_matematika)" title="E (konstanta matematika) – Indonesian" lang="id" hreflang="id" data-title="E (konstanta matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/E_(constante_mathematic)" title="E (constante mathematic) – Interlingua" lang="ia" hreflang="ia" data-title="E (constante mathematic)" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/E_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0ilegur_fasti)" title="E (stærðfræðilegur fasti) – Icelandic" lang="is" hreflang="is" data-title="E (stærðfræðilegur fasti)" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/E_(costante_matematica)" title="E (costante matematica) – Italian" lang="it" hreflang="it" data-title="E (costante matematica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/E_(%D7%A7%D7%91%D7%95%D7%A2_%D7%9E%D7%AA%D7%9E%D7%98%D7%99)" title="E (קבוע מתמטי) – Hebrew" lang="he" hreflang="he" data-title="E (קבוע מתמטי)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%88_(%E0%B2%97%E0%B2%A3%E0%B2%BF%E0%B2%A4%E0%B2%A6_%E0%B2%B8%E0%B3%8D%E0%B2%A5%E0%B2%BF%E0%B2%B0%E0%B2%BE%E0%B2%82%E0%B2%95)" title="ಈ (ಗಣಿತದ ಸ್ಥಿರಾಂಕ) – Kannada" lang="kn" hreflang="kn" data-title="ಈ (ಗಣಿತದ ಸ್ಥಿರಾಂಕ)" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://ka.wikipedia.org/wiki/E_(%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98)" title="E (რიცხვი) – Georgian" lang="ka" hreflang="ka" data-title="E (რიცხვი)" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/E_%D1%81%D0%B0%D0%BD%D1%8B" title="E саны – Kazakh" lang="kk" hreflang="kk" data-title="E саны" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/E_(nonm)" title="E (nonm) – Guianan Creole" lang="gcr" hreflang="gcr" data-title="E (nonm)" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_e" title="Numerus e – Latin" lang="la" hreflang="la" data-title="Numerus e" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/E_(matem%C4%81tiska_konstante)" title="E (matemātiska konstante) – Latvian" lang="lv" hreflang="lv" data-title="E (matemātiska konstante)" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/E_(skai%C4%8Dius)" title="E (skaičius) – Lithuanian" lang="lt" hreflang="lt" data-title="E (skaičius)" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Numero_e" title="Numero e – Lingua Franca Nova" lang="lfn" hreflang="lfn" data-title="Numero e" data-language-autonym="Lingua Franca Nova" data-language-local-name="Lingua Franca Nova" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://lmo.wikipedia.org/wiki/E_(costant_matematega)" title="E (costant matematega) – Lombard" lang="lmo" hreflang="lmo" data-title="E (costant matematega)" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Euler-f%C3%A9le_sz%C3%A1m" title="Euler-féle szám – Hungarian" lang="hu" hreflang="hu" data-title="Euler-féle szám" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://mk.wikipedia.org/wiki/%D0%95_(%D0%B1%D1%80%D0%BE%D1%98)" title="Е (број) – Macedonian" lang="mk" hreflang="mk" data-title="Е (број)" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/E_(%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%82)" title="E (ഗണിതം) – Malayalam" lang="ml" hreflang="ml" data-title="E (ഗണിതം)" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%88_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A5%80_%E0%A4%B8%E0%A5%8D%E0%A4%A5%E0%A4%BF%E0%A4%B0%E0%A4%BE%E0%A4%82%E0%A4%95)" title="ई (गणिती स्थिरांक) – Marathi" lang="mr" hreflang="mr" data-title="ई (गणिती स्थिरांक)" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/E_(pemalar)" title="E (pemalar) – Malay" lang="ms" hreflang="ms" data-title="E (pemalar)" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B8%D0%B9%D0%BD_%D1%82%D0%BE%D0%BE" title="Эйлерийн тоо – Mongolian" lang="mn" hreflang="mn" data-title="Эйлерийн тоо" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/E_(wiskunde)" title="E (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="E (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%27e%27_(%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4%E0%A5%80%E0%A4%AF_%E0%A4%85%E0%A4%9A%E0%A4%B0)" title="'e' (गणितीय अचर) – Nepali" lang="ne" hreflang="ne" data-title="'e' (गणितीय अचर)" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%8D%E3%82%A4%E3%83%94%E3%82%A2%E6%95%B0" title="ネイピア数 – Japanese" lang="ja" hreflang="ja" data-title="ネイピア数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Euler_sin_taal" title="Euler sin taal – Northern Frisian" lang="frr" hreflang="frr" data-title="Euler sin taal" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Eulers_tall" title="Eulers tall – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Eulers tall" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/E_i_matematikk" title="E i matematikk – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="E i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/E_(nombre)" title="E (nombre) – Occitan" lang="oc" hreflang="oc" data-title="E (nombre)" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Nomba_e" title="Nomba e – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Nomba e" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Podstawa_logarytmu_naturalnego" title="Podstawa logarytmu naturalnego – Polish" lang="pl" hreflang="pl" data-title="Podstawa logarytmu naturalnego" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/E_(constante_matem%C3%A1tica)" title="E (constante matemática) – Portuguese" lang="pt" hreflang="pt" data-title="E (constante matemática)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/E_(constant%C4%83_matematic%C4%83)" title="E (constantă matematică) – Romanian" lang="ro" hreflang="ro" data-title="E (constantă matematică)" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/E_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="E (число) – Russian" lang="ru" hreflang="ru" data-title="E (число)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/E_(mathematical_constant)" title="E (mathematical constant) – Scots" lang="sco" hreflang="sco" data-title="E (mathematical constant)" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numri_e" title="Numri e – Albanian" lang="sq" hreflang="sq" data-title="Numri e" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Basi_naturali_d%C3%AE_logaritmi" title="Basi naturali dî logaritmi – Sicilian" lang="scn" hreflang="scn" data-title="Basi naturali dî logaritmi" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/E_(%E0%B6%9C%E0%B6%AB%E0%B7%92%E0%B6%AD_%E0%B6%B1%E0%B7%92%E0%B6%BA%E0%B6%AD%E0%B6%BA)" title="E (ගණිත නියතය) – Sinhala" lang="si" hreflang="si" data-title="E (ගණිත නියතය)" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/E_(mathematical_constant)" title="E (mathematical constant) – Simple English" lang="en-simple" hreflang="en-simple" data-title="E (mathematical constant)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Eulerovo_%C4%8D%C3%ADslo" title="Eulerovo číslo – Slovak" lang="sk" hreflang="sk" data-title="Eulerovo číslo" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/E_(matemati%C4%8Dna_konstanta)" title="E (matematična konstanta) – Slovenian" lang="sl" hreflang="sl" data-title="E (matematična konstanta)" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_e" title="ژمارەی e – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ژمارەی e" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/E_(%D0%BA%D0%BE%D0%BD%D1%81%D1%82%D0%B0%D0%BD%D1%82%D0%B0)" title="E (константа) – Serbian" lang="sr" hreflang="sr" data-title="E (константа)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Broj_e" title="Broj e – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Broj e" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Neperin_luku" title="Neperin luku – Finnish" lang="fi" hreflang="fi" data-title="Neperin luku" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/E_(tal)" title="E (tal) – Swedish" lang="sv" hreflang="sv" data-title="E (tal)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/E_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4_%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AE%BF%E0%AE%B2%E0%AE%BF)" title="E (கணித மாறிலி) – Tamil" lang="ta" hreflang="ta" data-title="E (கணித மாறிலி)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/E_(am%E1%B8%8Dan_n_tusnakt)" title="E (amḍan n tusnakt) – Tachelhit" lang="shi" hreflang="shi" data-title="E (amḍan n tusnakt)" data-language-autonym="Taclḥit" data-language-local-name="Tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/E_(%D1%81%D0%B0%D0%BD)" title="E (сан) – Tatar" lang="tt" hreflang="tt" data-title="E (сан)" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/E_(%E0%B8%84%E0%B9%88%E0%B8%B2%E0%B8%84%E0%B8%87%E0%B8%95%E0%B8%B1%E0%B8%A7)" title="E (ค่าคงตัว) – Thai" lang="th" hreflang="th" data-title="E (ค่าคงตัว)" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%B4%D0%B0%D0%B4%D0%B8_%D0%9D%D0%B5%D0%BF%D0%B5%D1%80" title="Адади Непер – Tajik" lang="tg" hreflang="tg" data-title="Адади Непер" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/E_say%C4%B1s%C4%B1" title="E sayısı – Turkish" lang="tr" hreflang="tr" data-title="E sayısı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/E_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)" title="E (число) – Ukrainian" lang="uk" hreflang="uk" data-title="E (число)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/E_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA%DB%8C_%D8%AF%D8%A7%D8%A6%D9%85)" title="E (ریاضیاتی دائم) – Urdu" lang="ur" hreflang="ur" data-title="E (ریاضیاتی دائم)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://vi.wikipedia.org/wiki/E_(s%E1%BB%91)" title="E (số) – Vietnamese" lang="vi" hreflang="vi" data-title="E (số)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%AD%90%E6%8B%89%E6%95%B8" title="歐拉數 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="歐拉數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/E%EF%BC%88%E6%95%B0%E5%AD%A6%E5%B8%B8%E6%95%B0%EF%BC%89" title="E(数学常数) – Wu" lang="wuu" hreflang="wuu" data-title="E(数学常数)" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/E_(%E6%95%B8%E5%AD%B8%E5%B8%B8%E6%95%B8)" title="E (數學常數) – Cantonese" lang="yue" hreflang="yue" data-title="E (數學常數)" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/E_(%E6%95%B0%E5%AD%A6%E5%B8%B8%E6%95%B0)" title="E (数学常数) – Chinese" lang="zh" hreflang="zh" data-title="E (数学常数)" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q82435#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/E_(mathematical_constant)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:E_(mathematical_constant)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/E_(mathematical_constant)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=E_(mathematical_constant)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=E_(mathematical_constant)&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/E_(mathematical_constant)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=E_(mathematical_constant)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=E_(mathematical_constant)&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/E_(mathematical_constant)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/E_(mathematical_constant)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=E_(mathematical_constant)&oldid=1256778139" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=E_(mathematical_constant)&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=E_%28mathematical_constant%29&id=1256778139&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FE_%28mathematical_constant%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FE_%28mathematical_constant%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=E_%28mathematical_constant%29&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=E_(mathematical_constant)&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:E_(mathematical_constant)" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/E_(mathematical_constant)" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q82435" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">2.71828..., base of natural logarithms</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For other uses of "e", see <a href="/wiki/E_(disambiguation)" class="mw-disambig" title="E (disambiguation)">e (disambiguation)</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Euler's number" redirects here. For other Euler's numbers, see <a href="/wiki/List_of_things_named_after_Leonhard_Euler#Numbers" class="mw-redirect" title="List of things named after Leonhard Euler">List of things named after Leonhard Euler § Numbers</a>.</div> <div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Constant value used in mathematics</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox"><tbody><tr><th colspan="2" class="infobox-above" style="background:#e0e0e0;padding:0.15em 0.5em 0.25em;font-weight:bold;">Euler's number</th></tr><tr><td colspan="2" class="infobox-subheader"><span style="font-size: 4em; line-height: 1.2em; vertical-align: super; font-weight: normal;"><span class="texhtml mvar" style="font-style:italic;">e</span></span><br /><span style="font-size: 1.1em; font-weight: bold;">2.71828...<sup id="cite_ref-OEIS_decimal_expansion_1-0" class="reference"><a href="#cite_note-OEIS_decimal_expansion-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></span></td></tr><tr><th colspan="2" class="infobox-header" style="background:#e0e0e0;padding-bottom:0.2em;">General information</th></tr><tr><th scope="row" class="infobox-label">Type</th><td class="infobox-data"><a href="/wiki/Transcendental_number" title="Transcendental number">Transcendental</a></td></tr><tr><th colspan="2" class="infobox-header" style="background:#e0e0e0;padding-bottom:0.2em;">History</th></tr><tr><th scope="row" class="infobox-label">Discovered</th><td class="infobox-data">1685</td></tr><tr><th scope="row" class="infobox-label">By</th><td class="infobox-data"><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a></td></tr><tr><th scope="row" class="infobox-label">First mention</th><td class="infobox-data"><i>Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685</i></td></tr><tr><th scope="row" class="infobox-label">Named after</th><td class="infobox-data"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><div class="hlist"> <ul><li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/John_Napier" title="John Napier">John Napier</a></li></ul> </div></td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Hyperbola_E.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Hyperbola_E.svg/237px-Hyperbola_E.svg.png" decoding="async" width="237" height="254" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Hyperbola_E.svg/356px-Hyperbola_E.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Hyperbola_E.svg/474px-Hyperbola_E.svg.png 2x" data-file-width="609" data-file-height="652" /></a><figcaption>Graph of the equation <span class="texhtml"><i>y</i> = 1/<i>x</i></span>. Here, <span class="texhtml mvar" style="font-style:italic;">e</span> is the unique number larger than 1 that makes the shaded <a href="/wiki/Area_under_the_curve" class="mw-redirect" title="Area under the curve">area under the curve</a> equal to 1.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1238256010">.mw-parser-output .e-mathematical-constant-sidebar{width:20em}.mw-parser-output .e-mathematical-constant-sidebar .sidebar-title-with-pretitle{font-size:130%}.mw-parser-output .e-mathematical-constant-sidebar .sidebar-heading{border-top:#aaa 1px solid}</style><table class="sidebar nomobile nowraplinks hlist e-mathematical-constant-sidebar"><tbody><tr><td class="sidebar-pretitle">Part of <a href="/wiki/Category:E_(mathematical_constant)" title="Category:E (mathematical constant)">a series of articles</a> on the</td></tr><tr><th class="sidebar-title-with-pretitle">mathematical constant <span class="texhtml mvar" style="font-style:italic;"><a class="mw-selflink selflink">e</a></span></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Euler%27s_formula.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/180px-Euler%27s_formula.svg.png" decoding="async" width="180" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/270px-Euler%27s_formula.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/360px-Euler%27s_formula.svg.png 2x" data-file-width="760" data-file-height="782" /></a></span></td></tr><tr><th class="sidebar-heading"> Properties</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithm</a></li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Applications</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Compound_interest" title="Compound interest">compound interest</a></li> <li><a href="/wiki/Euler%27s_identity" title="Euler's identity">Euler's identity</a></li> <li><a href="/wiki/Euler%27s_formula" title="Euler's formula">Euler's formula</a></li> <li><a href="/wiki/Half-life" title="Half-life">half-lives</a> <ul><li>exponential <a href="/wiki/Exponential_growth" title="Exponential growth">growth</a> and <a href="/wiki/Exponential_decay" title="Exponential decay">decay</a></li></ul></li></ul></td> </tr><tr><th class="sidebar-heading"> Defining <span class="texhtml mvar" style="font-style:italic;">e</span></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Proof_that_e_is_irrational" title="Proof that e is irrational">proof that <span class="texhtml mvar" style="font-style:italic;">e</span> is irrational</a></li> <li><a href="/wiki/List_of_representations_of_e" title="List of representations of e">representations of <span class="texhtml mvar" style="font-style:italic;">e</span></a></li> <li><a href="/wiki/Lindemann%E2%80%93Weierstrass_theorem" title="Lindemann–Weierstrass theorem">Lindemann–Weierstrass theorem</a></li></ul></td> </tr><tr><th class="sidebar-heading"> People</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/John_Napier" title="John Napier">John Napier</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a><br /></li></ul></td> </tr><tr><th class="sidebar-heading"> Related topics</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Schanuel%27s_conjecture" title="Schanuel's conjecture">Schanuel's conjecture</a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:E_(mathematical_constant)" title="Template:E (mathematical constant)"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:E_(mathematical_constant)" title="Template talk:E (mathematical constant)"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:E_(mathematical_constant)" title="Special:EditPage/Template:E (mathematical constant)"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>The number <b><span class="texhtml mvar" style="font-style:italic;">e</span></b> is a <a href="/wiki/Mathematical_constant" title="Mathematical constant">mathematical constant</a> approximately equal to 2.71828 that is the <a href="/wiki/Base_of_a_logarithm" class="mw-redirect" title="Base of a logarithm">base</a> of the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a> and <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>. It is sometimes called <b>Euler's number</b>, after the Swiss mathematician <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>, though this can invite confusion with <a href="/wiki/Euler_numbers" title="Euler numbers">Euler numbers</a>, or with <a href="/wiki/Euler%27s_constant" title="Euler's constant">Euler's constant</a>, a different constant typically denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>. Alternatively, <span class="texhtml mvar" style="font-style:italic;">e</span> can be called <b>Napier's constant</b> after <a href="/wiki/John_Napier" title="John Napier">John Napier</a>.<sup id="cite_ref-Miller_2-0" class="reference"><a href="#cite_note-Miller-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Weisstein_3-0" class="reference"><a href="#cite_note-Weisstein-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> The Swiss mathematician <a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a> discovered the constant while studying compound interest.<sup id="cite_ref-Pickover_4-0" class="reference"><a href="#cite_note-Pickover-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-OConnor_5-0" class="reference"><a href="#cite_note-OConnor-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>The number <span class="texhtml mvar" style="font-style:italic;">e</span> is of great importance in mathematics,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> alongside 0, 1, <a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a>, and <span class="texhtml mvar" style="font-style:italic;"><a href="/wiki/Imaginary_unit" title="Imaginary unit">i</a></span>. All five appear in one formulation of <a href="/wiki/Euler%27s_identity" title="Euler's identity">Euler's identity</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\pi }+1=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>π<!-- π --></mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\pi }+1=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7464809a40f9e486de3a454745f572fbf8bb256" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.089ex; height:2.843ex;" alt="{\displaystyle e^{i\pi }+1=0}"></span> and play important and recurring roles across mathematics.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Like the constant <span class="texhtml mvar" style="font-style:italic;">π</span>, <span class="texhtml mvar" style="font-style:italic;">e</span> is <a href="/wiki/Irrational_number" title="Irrational number">irrational</a>, meaning that it cannot be represented as a ratio of integers, and moreover it is <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a>, meaning that it is not a root of any non-zero <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> with rational coefficients.<sup id="cite_ref-Weisstein_3-1" class="reference"><a href="#cite_note-Weisstein-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> To 30 decimal places, the value of <span class="texhtml mvar" style="font-style:italic;">e</span> is:<sup id="cite_ref-OEIS_decimal_expansion_1-1" class="reference"><a href="#cite_note-OEIS_decimal_expansion-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent"><span style="white-space:nowrap">2.71828<span style="margin-left:0.25em">18284</span><span style="margin-left:0.25em">59045</span><span style="margin-left:0.25em">23536</span><span style="margin-left:0.25em">02874</span><span style="margin-left:0.25em">71352</span></span> </div> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=1" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The number <span class="texhtml mvar" style="font-style:italic;">e</span> is the <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6abb8f4094bafd4757b3e350336fbc66a4b67675" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.18ex; height:6.176ex;" alt="{\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n},}"></span> an expression that arises in the computation of <a href="/wiki/Compound_interest" title="Compound interest">compound interest</a>. </p><p>It is the sum of the infinite <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=\sum \limits _{n=0}^{\infty }{\frac {1}{n!}}=1+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=\sum \limits _{n=0}^{\infty }{\frac {1}{n!}}=1+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f9a1f86072b07e1f69d5e21571c207d52680d8f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.702ex; height:6.843ex;" alt="{\displaystyle e=\sum \limits _{n=0}^{\infty }{\frac {1}{n!}}=1+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots .}"></span> </p><p>It is the unique positive number <span class="texhtml mvar" style="font-style:italic;">a</span> such that the graph of the function <span class="texhtml"><i>y</i> = <i>a</i><sup><i>x</i></sup></span> has a <a href="/wiki/Slope" title="Slope">slope</a> of 1 at <span class="texhtml"><i>x</i> = 0</span>. </p><p>One has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=\exp(1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=\exp(1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5788ee8a9b7d2f155f4c635142cf74879daea13f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.353ex; height:2.843ex;" alt="{\displaystyle e=\exp(1),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d1185b570f67b4221307626254f64f9e619e769" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.552ex; height:2.009ex;" alt="{\displaystyle \exp }"></span> is the (natural) <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a>, the unique function that equals its own <a href="/wiki/Derivative" title="Derivative">derivative</a> and satisfies the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(0)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(0)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a538ff408ca744879fb353be27dbfae4d511b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.432ex; height:2.843ex;" alt="{\displaystyle \exp(0)=1.}"></span> Since the exponential function is commonly denoted as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto e^{x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto e^{x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4abbbdd9b9faf016185bb1cd9d8ba9520ee0cc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.847ex; height:2.676ex;" alt="{\displaystyle x\mapsto e^{x},}"></span> one has also <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=e^{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=e^{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5212cb82dee76925a5499d281b787c4ef9d262b5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.967ex; height:2.676ex;" alt="{\displaystyle e=e^{1}.}"></span> </p><p>The <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> of base <span class="texhtml mvar" style="font-style:italic;">b</span> can be defined as the <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a> of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto b^{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto b^{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20dff57d5ff150fcd5b1061cc34610a8e4572603" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.761ex; height:2.343ex;" alt="{\displaystyle x\mapsto b^{x}.}"></span> Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=b^{1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=b^{1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa0d8da70f119de4029d4581d2c59e33a914bbf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.795ex; height:3.009ex;" alt="{\displaystyle b=b^{1},}"></span> one has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log _{b}b=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>b</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log _{b}b=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9afd18263767c2274147a008174865fcf178ba84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.202ex; height:2.676ex;" alt="{\displaystyle \log _{b}b=1.}"></span> The equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=e^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=e^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc2751ef5de2a81ebf127c01f3f57163e26867a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.32ex; height:2.676ex;" alt="{\displaystyle e=e^{1}}"></span> implies therefore that <span class="texhtml mvar" style="font-style:italic;">e</span> is the base of the natural logarithm. </p><p>The number <span class="texhtml mvar" style="font-style:italic;">e</span> can also be characterized in terms of an <a href="/wiki/Integral" title="Integral">integral</a>:<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{1}^{e}{\frac {dx}{x}}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{1}^{e}{\frac {dx}{x}}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87097c80b75c01a2a898586ed94e83203f1804d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.139ex; height:5.843ex;" alt="{\displaystyle \int _{1}^{e}{\frac {dx}{x}}=1.}"></span> </p><p>For other characterizations, see <a href="#Representations">§ Representations</a>. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=2" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first references to the constant were published in 1618 in the table of an appendix of a work on logarithms by <a href="/wiki/John_Napier" title="John Napier">John Napier</a>. However, this did not contain the constant itself, but simply a list of <a href="/wiki/Natural_logarithm" title="Natural logarithm">logarithms to the base <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span></a>. It is assumed that the table was written by <a href="/wiki/William_Oughtred" title="William Oughtred">William Oughtred</a>. In 1661, <a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Christiaan Huygens</a> studied how to compute logarithms by geometrical methods and calculated a quantity that, in retrospect, is the base-10 logarithm of <span class="texhtml mvar" style="font-style:italic;">e</span>, but he did not recognize <span class="texhtml mvar" style="font-style:italic;">e</span> itself as a quantity of interest.<sup id="cite_ref-OConnor_5-1" class="reference"><a href="#cite_note-OConnor-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>The constant itself was introduced by <a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a> in 1683, for solving the problem of <a href="/wiki/Continuous_compounding" class="mw-redirect" title="Continuous compounding">continuous compounding</a> of interest.<sup id="cite_ref-Bernoulli,_1690_11-0" class="reference"><a href="#cite_note-Bernoulli,_1690-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> In his solution, the constant <span class="texhtml mvar" style="font-style:italic;">e</span> occurs as the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6abb8f4094bafd4757b3e350336fbc66a4b67675" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.18ex; height:6.176ex;" alt="{\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n},}"></span> where <span class="texhtml mvar" style="font-style:italic;">n</span> represents the number of intervals in a year on which the compound interest is evaluated (for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38fb7dfd38b5db65d78bb6f2c1bf9e6e6cd07c14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.818ex; height:2.176ex;" alt="{\displaystyle n=12}"></span> for monthly compounding). </p><p>The first symbol used for this constant was the letter <span class="texhtml mvar" style="font-style:italic;">b</span> by <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a> in letters to <a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Christiaan Huygens</a> in 1690 and 1691.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> started to use the letter <span class="texhtml mvar" style="font-style:italic;">e</span> for the constant in 1727 or 1728, in an unpublished paper on explosive forces in cannons,<sup id="cite_ref-Meditatio_14-0" class="reference"><a href="#cite_note-Meditatio-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> and in a letter to <a href="/wiki/Christian_Goldbach" title="Christian Goldbach">Christian Goldbach</a> on 25 November 1731.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> The first appearance of <span class="texhtml mvar" style="font-style:italic;">e</span> in a printed publication was in Euler's <i><a href="/wiki/Mechanica" title="Mechanica">Mechanica</a></i> (1736).<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> It is unknown why Euler chose the letter <span class="texhtml mvar" style="font-style:italic;">e</span>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Although some researchers used the letter <span class="texhtml mvar" style="font-style:italic;">c</span> in the subsequent years, the letter <span class="texhtml mvar" style="font-style:italic;">e</span> was more common and eventually became standard.<sup id="cite_ref-Miller_2-1" class="reference"><a href="#cite_note-Miller-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Euler proved that <span class="texhtml mvar" style="font-style:italic;">e</span> is the sum of the <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=\sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>0</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=\sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71fea921e7c8338dff877cc756a5d88ccbbb3cb9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.086ex; height:6.843ex;" alt="{\displaystyle e=\sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+\cdots ,}"></span> where <span class="texhtml"><i>n</i>!</span> is the <a href="/wiki/Factorial" title="Factorial">factorial</a> of <span class="texhtml mvar" style="font-style:italic;">n</span>.<sup id="cite_ref-OConnor_5-2" class="reference"><a href="#cite_note-OConnor-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> The equivalence of the two characterizations using the limit and the infinite series can be proved via the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=3" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Compound_interest">Compound interest</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=4" title="Edit section: Compound interest"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Compound_Interest_with_Varying_Frequencies.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Compound_Interest_with_Varying_Frequencies.svg/220px-Compound_Interest_with_Varying_Frequencies.svg.png" decoding="async" width="220" height="137" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Compound_Interest_with_Varying_Frequencies.svg/330px-Compound_Interest_with_Varying_Frequencies.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Compound_Interest_with_Varying_Frequencies.svg/440px-Compound_Interest_with_Varying_Frequencies.svg.png 2x" data-file-width="900" data-file-height="560" /></a><figcaption>The effect of earning 20% annual interest on an <span class="nowrap">initial $1,000</span> investment at various compounding frequencies. The limiting curve on top is the graph <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=1000e^{0.2t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mn>1000</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0.2</mn> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=1000e^{0.2t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/041055b6a4e391e953e4b619ee4d4c53bb090a3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.915ex; height:3.009ex;" alt="{\displaystyle y=1000e^{0.2t}}"></span>, where <span class="texhtml mvar" style="font-style:italic;">y</span> is in dollars, <span class="texhtml mvar" style="font-style:italic;">t</span> in years, and 0.2 = 20%.</figcaption></figure> <p>Jacob Bernoulli discovered this constant in 1683, while studying a question about <a href="/wiki/Compound_interest" title="Compound interest">compound interest</a>:<sup id="cite_ref-OConnor_5-3" class="reference"><a href="#cite_note-OConnor-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>An account starts with $1.00 and pays 100 percent interest per year. If the interest is credited once, at the end of the year, the value of the account at year-end will be $2.00. What happens if the interest is computed and credited more frequently during the year?</p></blockquote> <p>If the interest is credited twice in the year, the interest rate for each 6 months will be 50%, so the initial $1 is multiplied by 1.5 twice, yielding <span class="nowrap">$1.00 × 1.5<sup>2</sup> = $2.25</span> at the end of the year. Compounding quarterly yields <span class="nowrap">$1.00 × 1.25<sup>4</sup> = $2.44140625</span>, and compounding monthly yields <span class="nowrap">$1.00 × (1 + 1/12)<sup>12</sup> = $2.613035...</span>. If there are <span class="texhtml mvar" style="font-style:italic;">n</span> compounding intervals, the interest for each interval will be <span class="texhtml">100%/<i>n</i></span> and the value at the end of the year will be $1.00 × <span class="texhtml">(1 + 1/<i>n</i>)<sup><i>n</i></sup></span>.<sup id="cite_ref-Gonick_20-0" class="reference"><a href="#cite_note-Gonick-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:0_21-0" class="reference"><a href="#cite_note-:0-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>Bernoulli noticed that this sequence approaches a limit (the <a href="/wiki/Force_of_interest" class="mw-redirect" title="Force of interest">force of interest</a>) with larger <span class="texhtml mvar" style="font-style:italic;">n</span> and, thus, smaller compounding intervals.<sup id="cite_ref-OConnor_5-4" class="reference"><a href="#cite_note-OConnor-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Compounding weekly (<span class="texhtml"><i>n</i> = 52</span>) yields $2.692596..., while compounding daily (<span class="texhtml"><i>n</i> = 365</span>) yields $2.714567... (approximately two cents more). The limit as <span class="texhtml mvar" style="font-style:italic;">n</span> grows large is the number that came to be known as <span class="texhtml mvar" style="font-style:italic;">e</span>. That is, with <i>continuous</i> compounding, the account value will reach $2.718281828... More generally, an account that starts at $1 and offers an annual interest rate of <span class="texhtml mvar" style="font-style:italic;">R</span> will, after <span class="texhtml mvar" style="font-style:italic;">t</span> years, yield <span class="texhtml"><i>e</i><sup><i>Rt</i></sup></span> dollars with continuous compounding. Here, <span class="texhtml mvar" style="font-style:italic;">R</span> is the decimal equivalent of the rate of interest expressed as a <i>percentage</i>, so for 5% interest, <span class="texhtml"><i>R</i> = 5/100 = 0.05</span>.<sup id="cite_ref-Gonick_20-1" class="reference"><a href="#cite_note-Gonick-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:0_21-1" class="reference"><a href="#cite_note-:0-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bernoulli_trials">Bernoulli trials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=5" title="Edit section: Bernoulli trials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Bernoulli_trial_sequence.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Bernoulli_trial_sequence.svg/300px-Bernoulli_trial_sequence.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Bernoulli_trial_sequence.svg/450px-Bernoulli_trial_sequence.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Bernoulli_trial_sequence.svg/600px-Bernoulli_trial_sequence.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Graphs of probability <span class="texhtml mvar" style="font-style:italic;">P</span> of <em>not</em> observing independent events each of probability <span class="texhtml">1/<i>n</i></span> after <span class="texhtml mvar" style="font-style:italic;">n</span> Bernoulli trials, and <span class="texhtml">1 − <i>P</i> </span> vs <span class="texhtml mvar" style="font-style:italic;">n</span> ; it can be observed that as <span class="texhtml mvar" style="font-style:italic;">n</span> increases, the probability of a <span class="texhtml">1/<i>n</i></span>-chance event never appearing after <i>n</i> tries rapidly <span class="nowrap">converges to <span class="texhtml">1/<i>e</i></span>.</span></figcaption></figure> <p>The number <span class="texhtml mvar" style="font-style:italic;">e</span> itself also has applications in <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, in a way that is not obviously related to exponential growth. Suppose that a gambler plays a slot machine that pays out with a probability of one in <span class="texhtml mvar" style="font-style:italic;">n</span> and plays it <span class="texhtml mvar" style="font-style:italic;">n</span> times. As <span class="texhtml mvar" style="font-style:italic;">n</span> increases, the probability that gambler will lose all <span class="texhtml mvar" style="font-style:italic;">n</span> bets approaches <span class="texhtml">1/<i>e</i></span>. For <span class="texhtml"><i>n</i> = 20</span>, this is already approximately 1/2.789509.... </p><p>This is an example of a <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a> process. Each time the gambler plays the slots, there is a one in <span class="texhtml mvar" style="font-style:italic;">n</span> chance of winning. Playing <span class="texhtml mvar" style="font-style:italic;">n</span> times is modeled by the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>, which is closely related to the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a> and <a href="/wiki/Pascal%27s_triangle" title="Pascal's triangle">Pascal's triangle</a>. The probability of winning <span class="texhtml mvar" style="font-style:italic;">k</span> times out of <span class="texhtml mvar" style="font-style:italic;">n</span> trials is:<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr[k~\mathrm {wins~of} ~n]={\binom {n}{k}}\left({\frac {1}{n}}\right)^{k}\left(1-{\frac {1}{n}}\right)^{n-k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>k</mi> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">w</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">s</mi> <mtext> </mtext> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">f</mi> </mrow> <mtext> </mtext> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr[k~\mathrm {wins~of} ~n]={\binom {n}{k}}\left({\frac {1}{n}}\right)^{k}\left(1-{\frac {1}{n}}\right)^{n-k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11467bf6b08712fd2081a929d154c3e1c17f07dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:43.008ex; height:6.676ex;" alt="{\displaystyle \Pr[k~\mathrm {wins~of} ~n]={\binom {n}{k}}\left({\frac {1}{n}}\right)^{k}\left(1-{\frac {1}{n}}\right)^{n-k}.}"></span></dd></dl> <p>In particular, the probability of winning zero times (<span class="texhtml"><i>k</i> = 0</span>) is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr[0~\mathrm {wins~of} ~n]=\left(1-{\frac {1}{n}}\right)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">w</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">s</mi> <mtext> </mtext> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">f</mi> </mrow> <mtext> </mtext> <mi>n</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr[0~\mathrm {wins~of} ~n]=\left(1-{\frac {1}{n}}\right)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/534de6d23bfaf39e681e5d8cf2724fa19fc687e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.267ex; height:6.176ex;" alt="{\displaystyle \Pr[0~\mathrm {wins~of} ~n]=\left(1-{\frac {1}{n}}\right)^{n}.}"></span></dd></dl> <p>The limit of the above expression, as <span class="texhtml mvar" style="font-style:italic;">n</span> tends to infinity, is precisely <span class="texhtml">1/<i>e</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Exponential_growth_and_decay">Exponential growth and decay</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=6" title="Edit section: Exponential growth and decay"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Exponential_growth" title="Exponential growth">Exponential growth</a> and <a href="/wiki/Exponential_decay" title="Exponential decay">Exponential decay</a></div> <p><a href="/wiki/Exponential_growth" title="Exponential growth">Exponential growth</a> is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous <a href="/wiki/Rate_(mathematics)#Of_change" title="Rate (mathematics)">rate of change</a> (that is, the <a href="/wiki/Derivative" title="Derivative">derivative</a>) of a quantity with respect to time is <a href="/wiki/Proportionality_(mathematics)" title="Proportionality (mathematics)">proportional</a> to the quantity itself.<sup id="cite_ref-:0_21-2" class="reference"><a href="#cite_note-:0-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> Described as a function, a quantity undergoing exponential growth is an <a href="/wiki/Exponentiation#Power_functions" title="Exponentiation">exponential function</a> of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as <a href="/wiki/Quadratic_growth" title="Quadratic growth">quadratic growth</a>). If the constant of proportionality is negative, then the quantity decreases over time, and is said to be undergoing <a href="/wiki/Exponential_decay" title="Exponential decay">exponential decay</a> instead. The law of exponential growth can be written in different but mathematically equivalent forms, by using a different <a href="/wiki/Exponentiation" title="Exponentiation">base</a>, for which the number <span class="texhtml mvar" style="font-style:italic;">e</span> is a common and convenient choice: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)=x_{0}\cdot e^{kt}=x_{0}\cdot e^{t/\tau }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>τ<!-- τ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)=x_{0}\cdot e^{kt}=x_{0}\cdot e^{t/\tau }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7372dd3a702bc6b5ccd275c4e7466e9c1634f204" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.296ex; height:3.343ex;" alt="{\displaystyle x(t)=x_{0}\cdot e^{kt}=x_{0}\cdot e^{t/\tau }.}"></span> Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> denotes the initial value of the quantity <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">k</span> is the growth constant, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span> is the time it takes the quantity to grow by a factor of <span class="texhtml mvar" style="font-style:italic;">e</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Standard_normal_distribution">Standard normal distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=7" title="Edit section: Standard normal distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Normal_distribution" title="Normal distribution">Normal distribution</a></div> <p>The normal distribution with zero mean and unit standard deviation is known as the <i>standard normal distribution</i>,<sup id="cite_ref-openstax_23-0" class="reference"><a href="#cite_note-openstax-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> given by the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4a5d73fb1296606c68401ae0ab4f9697b1b723" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.406ex; height:6.176ex;" alt="{\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}.}"></span> </p><p>The constraint of unit standard deviation (and thus also unit variance) results in the <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> in the exponent, and the constraint of unit total area under the curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546b660b2f3cfb5f34be7b3ed8371d54f5c74227" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.524ex; height:2.843ex;" alt="{\displaystyle \phi (x)}"></span> results in the factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle 1/{\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle 1/{\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bc8e3e4df369ae48dea75e5d9ce018177064a69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.755ex; height:3.176ex;" alt="{\displaystyle \textstyle 1/{\sqrt {2\pi }}}"></span>. This function is symmetric around <span class="texhtml"><i>x</i> = 0</span>, where it attains its maximum value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle 1/{\sqrt {2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle 1/{\sqrt {2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bc8e3e4df369ae48dea75e5d9ce018177064a69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.755ex; height:3.176ex;" alt="{\displaystyle \textstyle 1/{\sqrt {2\pi }}}"></span>, and has <a href="/wiki/Inflection_point" title="Inflection point">inflection points</a> at <span class="texhtml"><i>x</i> = ±1</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Derangements">Derangements</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=8" title="Edit section: Derangements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Derangement" title="Derangement">Derangement</a></div> <p>Another application of <span class="texhtml mvar" style="font-style:italic;">e</span>, also discovered in part by Jacob Bernoulli along with <a href="/wiki/Pierre_Remond_de_Montmort" title="Pierre Remond de Montmort">Pierre Remond de Montmort</a>, is in the problem of <a href="/wiki/Derangement" title="Derangement">derangements</a>, also known as the <i>hat check problem</i>:<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> <span class="texhtml mvar" style="font-style:italic;">n</span> guests are invited to a party and, at the door, the guests all check their hats with the butler, who in turn places the hats into <span class="texhtml mvar" style="font-style:italic;">n</span> boxes, each labelled with the name of one guest. But the butler has not asked the identities of the guests, and so puts the hats into boxes selected at random. The problem of de Montmort is to find the probability that <i>none</i> of the hats gets put into the right box. This probability, denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{n}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{n}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12d31a4c0444bd4002de6089482e2e7479d3784a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; margin-right: -0.387ex; width:2.477ex; height:2.009ex;" alt="{\displaystyle p_{n}\!}"></span>, is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{n}=1-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+\cdots +{\frac {(-1)^{n}}{n!}}=\sum _{k=0}^{n}{\frac {(-1)^{k}}{k!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{n}=1-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+\cdots +{\frac {(-1)^{n}}{n!}}=\sum _{k=0}^{n}{\frac {(-1)^{k}}{k!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0cd19cf6ff4b4104f532bd9c7d713d3e249b09c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-left: -0.089ex; width:52.626ex; height:7.176ex;" alt="{\displaystyle p_{n}=1-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+\cdots +{\frac {(-1)^{n}}{n!}}=\sum _{k=0}^{n}{\frac {(-1)^{k}}{k!}}.}"></span></dd></dl> <p>As <span class="texhtml mvar" style="font-style:italic;">n</span> tends to infinity, <span class="texhtml"><i>p</i><sub><i>n</i></sub></span> approaches <span class="texhtml">1/<i>e</i></span>. Furthermore, the number of ways the hats can be placed into the boxes so that none of the hats are in the right box is <span class="texhtml"><i>n</i>!/<i>e</i>,</span> <a href="/wiki/Rounding" title="Rounding">rounded</a> to the nearest integer, for every positive <span class="texhtml mvar" style="font-style:italic;">n</span>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Optimal_planning_problems">Optimal planning problems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=9" title="Edit section: Optimal planning problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The maximum value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{x}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{x}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61b4a0a76158849854a302fc639dfc882ec16008" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{x}]{x}}}"></span> occurs at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba47ab1931fc4886c5da08831962cc141d20655" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.512ex; height:1.676ex;" alt="{\displaystyle x=e}"></span>. Equivalently, for any value of the base <span class="texhtml"><i>b</i> > 1</span>, it is the case that the maximum value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{-1}\log _{b}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{-1}\log _{b}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef00edd9bb547a2e7f1587920bbcbe9e395391f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.676ex; height:3.176ex;" alt="{\displaystyle x^{-1}\log _{b}x}"></span> occurs at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba47ab1931fc4886c5da08831962cc141d20655" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.512ex; height:1.676ex;" alt="{\displaystyle x=e}"></span> (<a href="/wiki/Steiner%27s_calculus_problem" title="Steiner's calculus problem">Steiner's problem</a>, discussed <a href="#Exponential-like_functions">below</a>). </p><p>This is useful in the problem of a stick of length <span class="texhtml mvar" style="font-style:italic;">L</span> that is broken into <span class="texhtml mvar" style="font-style:italic;">n</span> equal parts. The value of <span class="texhtml mvar" style="font-style:italic;">n</span> that maximizes the product of the lengths is then either<sup id="cite_ref-Finch-2003-p14_26-0" class="reference"><a href="#cite_note-Finch-2003-p14-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=\left\lfloor {\frac {L}{e}}\right\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mi>e</mi> </mfrac> </mrow> <mo>⌋</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=\left\lfloor {\frac {L}{e}}\right\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/558720ed36cc9ec4216745f558379040e7e3a155" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.623ex; height:6.176ex;" alt="{\displaystyle n=\left\lfloor {\frac {L}{e}}\right\rfloor }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\lceil {\frac {L}{e}}\right\rceil .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⌈</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mi>e</mi> </mfrac> </mrow> <mo>⌉</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\lceil {\frac {L}{e}}\right\rceil .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1857ad26c882953299f989477879de56a1c84ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.163ex; height:6.176ex;" alt="{\displaystyle \left\lceil {\frac {L}{e}}\right\rceil .}"></span></dd></dl> <p>The quantity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{-1}\log _{b}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{-1}\log _{b}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef00edd9bb547a2e7f1587920bbcbe9e395391f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.676ex; height:3.176ex;" alt="{\displaystyle x^{-1}\log _{b}x}"></span> is also a measure of <a href="/wiki/Shannon_information" class="mw-redirect" title="Shannon information">information</a> gleaned from an event occurring with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a55fefc6f37f48a9b4414b09ad3b17dfa739d9e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.655ex; height:2.843ex;" alt="{\displaystyle 1/x}"></span> (approximately <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 36.8\%}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>36.8</mn> <mi mathvariant="normal">%<!-- % --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 36.8\%}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06d5bb204e1c9d1872ce0ef561dcc98807cda718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.07ex; height:2.343ex;" alt="{\displaystyle 36.8\%}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba47ab1931fc4886c5da08831962cc141d20655" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.512ex; height:1.676ex;" alt="{\displaystyle x=e}"></span>), so that essentially the same optimal division appears in optimal planning problems like the <a href="/wiki/Secretary_problem" title="Secretary problem">secretary problem</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Asymptotics">Asymptotics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=10" title="Edit section: Asymptotics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The number <span class="texhtml mvar" style="font-style:italic;">e</span> occurs naturally in connection with many problems involving <a href="/wiki/Asymptotics" class="mw-redirect" title="Asymptotics">asymptotics</a>. An example is <a href="/wiki/Stirling%27s_formula" class="mw-redirect" title="Stirling's formula">Stirling's formula</a> for the <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotics</a> of the <a href="/wiki/Factorial_function" class="mw-redirect" title="Factorial function">factorial function</a>, in which both the numbers <span class="texhtml mvar" style="font-style:italic;">e</span> and <a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a> appear:<sup id="cite_ref-greg_27-0" class="reference"><a href="#cite_note-greg-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>!</mo> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b3c28f23e205ed542a2b9bbeff5c56db3881877" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.837ex; height:4.843ex;" alt="{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}"></span> </p><p>As a consequence,<sup id="cite_ref-greg_27-1" class="reference"><a href="#cite_note-greg-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=\lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mroot> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=\lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0cd8eb0003d22f6e68f69c95cf434c43bebc58" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:14.302ex; height:5.676ex;" alt="{\displaystyle e=\lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=11" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Calculus">Calculus</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=12" title="Edit section: Calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Characterizations_of_the_exponential_function" title="Characterizations of the exponential function">Characterizations of the exponential function</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Exp_derivative_at_0.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Exp_derivative_at_0.svg/220px-Exp_derivative_at_0.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Exp_derivative_at_0.svg/330px-Exp_derivative_at_0.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/50/Exp_derivative_at_0.svg/440px-Exp_derivative_at_0.svg.png 2x" data-file-width="255" data-file-height="255" /></a><figcaption>The graphs of the functions <span class="texhtml"><i>x</i> ↦ <i>a</i><sup><i>x</i></sup></span> are shown for <span class="texhtml"><i>a</i> = 2</span> (dotted), <span class="texhtml"><i>a</i> = <i>e</i></span> (blue), and <span class="texhtml"><i>a</i> = 4</span> (dashed). They all pass through the point <span class="texhtml">(0,1)</span>, but the red line (which has slope <span class="texhtml">1</span>) is tangent to only <span class="texhtml"><i>e</i><sup><i>x</i></sup></span> there.</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Ln%2Be.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Ln%2Be.svg/220px-Ln%2Be.svg.png" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Ln%2Be.svg/330px-Ln%2Be.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Ln%2Be.svg/440px-Ln%2Be.svg.png 2x" data-file-width="400" data-file-height="250" /></a><figcaption>The value of the natural log function for argument <span class="texhtml mvar" style="font-style:italic;">e</span>, i.e. <span class="texhtml">ln <i>e</i></span>, equals <span class="texhtml">1.</span></figcaption></figure> <p>The principal motivation for introducing the number <span class="texhtml mvar" style="font-style:italic;">e</span>, particularly in <a href="/wiki/Calculus" title="Calculus">calculus</a>, is to perform <a href="/wiki/Derivative_(mathematics)" class="mw-redirect" title="Derivative (mathematics)">differential</a> and <a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">integral calculus</a> with <a href="/wiki/Exponential_function" title="Exponential function">exponential functions</a> and <a href="/wiki/Logarithm" title="Logarithm">logarithms</a>.<sup id="cite_ref-kline_28-0" class="reference"><a href="#cite_note-kline-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> A general exponential <span class="nowrap">function <span class="texhtml"><i>y</i> = <i>a</i><sup><i>x</i></sup></span></span> has a derivative, given by a <a href="/wiki/Limit_of_a_function" title="Limit of a function">limit</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {d}{dx}}a^{x}&=\lim _{h\to 0}{\frac {a^{x+h}-a^{x}}{h}}=\lim _{h\to 0}{\frac {a^{x}a^{h}-a^{x}}{h}}\\&=a^{x}\cdot \left(\lim _{h\to 0}{\frac {a^{h}-1}{h}}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>+</mo> <mi>h</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mrow> <mi>h</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>h</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {d}{dx}}a^{x}&=\lim _{h\to 0}{\frac {a^{x+h}-a^{x}}{h}}=\lim _{h\to 0}{\frac {a^{x}a^{h}-a^{x}}{h}}\\&=a^{x}\cdot \left(\lim _{h\to 0}{\frac {a^{h}-1}{h}}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0af4f2aadd037812a0daacfa5eea2a9e0ba091ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.327ex; margin-bottom: -0.177ex; width:41.927ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {d}{dx}}a^{x}&=\lim _{h\to 0}{\frac {a^{x+h}-a^{x}}{h}}=\lim _{h\to 0}{\frac {a^{x}a^{h}-a^{x}}{h}}\\&=a^{x}\cdot \left(\lim _{h\to 0}{\frac {a^{h}-1}{h}}\right).\end{aligned}}}"></span></dd></dl> <p>The parenthesized limit on the right is independent of the <span class="nowrap">variable <span class="texhtml mvar" style="font-style:italic;">x</span>.</span> Its value turns out to be the logarithm of <span class="texhtml mvar" style="font-style:italic;">a</span> to base <span class="texhtml mvar" style="font-style:italic;">e</span>. Thus, when the value of <span class="texhtml mvar" style="font-style:italic;">a</span> is set <span class="nowrap">to <span class="texhtml mvar" style="font-style:italic;">e</span>,</span> this limit is equal <span class="nowrap">to <span class="texhtml">1</span>,</span> and so one arrives at the following simple identity: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0c27fbdebbf544403f5f1442939f21e7f77eae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.639ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}.}"></span></dd></dl> <p>Consequently, the exponential function with base <span class="texhtml mvar" style="font-style:italic;">e</span> is particularly suited to doing calculus. <span class="nowrap">Choosing <span class="texhtml mvar" style="font-style:italic;">e</span></span> (as opposed to some other number) as the base of the exponential function makes calculations involving the derivatives much simpler. </p><p>Another motivation comes from considering the derivative of the base-<span class="texhtml mvar" style="font-style:italic;">a</span> logarithm (i.e., <span class="texhtml">log<sub><i>a</i></sub> <i>x</i></span>),<sup id="cite_ref-kline_28-1" class="reference"><a href="#cite_note-kline-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> for <span class="texhtml"><i>x</i> > 0</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {d}{dx}}\log _{a}x&=\lim _{h\to 0}{\frac {\log _{a}(x+h)-\log _{a}(x)}{h}}\\&=\lim _{h\to 0}{\frac {\log _{a}(1+h/x)}{x\cdot h/x}}\\&={\frac {1}{x}}\log _{a}\left(\lim _{u\to 0}(1+u)^{\frac {1}{u}}\right)\\&={\frac {1}{x}}\log _{a}e,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>u</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>u</mi> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>e</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {d}{dx}}\log _{a}x&=\lim _{h\to 0}{\frac {\log _{a}(x+h)-\log _{a}(x)}{h}}\\&=\lim _{h\to 0}{\frac {\log _{a}(1+h/x)}{x\cdot h/x}}\\&={\frac {1}{x}}\log _{a}\left(\lim _{u\to 0}(1+u)^{\frac {1}{u}}\right)\\&={\frac {1}{x}}\log _{a}e,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b59e4b57e8dd05fe03460c15d45194bcf8b06fd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.244ex; margin-bottom: -0.261ex; width:39.489ex; height:24.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {d}{dx}}\log _{a}x&=\lim _{h\to 0}{\frac {\log _{a}(x+h)-\log _{a}(x)}{h}}\\&=\lim _{h\to 0}{\frac {\log _{a}(1+h/x)}{x\cdot h/x}}\\&={\frac {1}{x}}\log _{a}\left(\lim _{u\to 0}(1+u)^{\frac {1}{u}}\right)\\&={\frac {1}{x}}\log _{a}e,\end{aligned}}}"></span></dd></dl> <p>where the substitution <span class="texhtml"><i>u</i> = <i>h</i>/<i>x</i></span> was made. The base-<span class="texhtml mvar" style="font-style:italic;">a</span> logarithm of <span class="texhtml mvar" style="font-style:italic;">e</span> is 1, if <span class="texhtml mvar" style="font-style:italic;">a</span> equals <span class="texhtml mvar" style="font-style:italic;">e</span>. So symbolically, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\log _{e}x={\frac {1}{x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\log _{e}x={\frac {1}{x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a95626a9222ef0392a04642d314961425b37900" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.367ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\log _{e}x={\frac {1}{x}}.}"></span></dd></dl> <p>The logarithm with this special base is called the <a href="/wiki/Natural_logarithm" title="Natural logarithm">natural logarithm</a>, and is usually denoted as <span class="texhtml">ln</span>; it behaves well under differentiation since there is no undetermined limit to carry through the calculations. </p><p>Thus, there are two ways of selecting such special numbers <span class="texhtml mvar" style="font-style:italic;">a</span>. One way is to set the derivative of the exponential function <span class="texhtml"><i>a</i><sup><i>x</i></sup></span> equal to <span class="texhtml"><i>a</i><sup><i>x</i></sup></span>, and solve for <span class="texhtml mvar" style="font-style:italic;">a</span>. The other way is to set the derivative of the base <span class="texhtml mvar" style="font-style:italic;">a</span> logarithm to <span class="texhtml">1/<i>x</i></span> and solve for <span class="texhtml mvar" style="font-style:italic;">a</span>. In each case, one arrives at a convenient choice of base for doing calculus. It turns out that these two solutions for <span class="texhtml mvar" style="font-style:italic;">a</span> are actually <i>the same</i>: the number <span class="texhtml mvar" style="font-style:italic;">e</span>. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Area_under_rectangular_hyperbola.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Area_under_rectangular_hyperbola.svg/220px-Area_under_rectangular_hyperbola.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Area_under_rectangular_hyperbola.svg/330px-Area_under_rectangular_hyperbola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/98/Area_under_rectangular_hyperbola.svg/440px-Area_under_rectangular_hyperbola.svg.png 2x" data-file-width="540" data-file-height="540" /></a><figcaption>The five colored regions are of equal area, and define units of <a href="/wiki/Hyperbolic_angle" title="Hyperbolic angle">hyperbolic angle</a> along the <span class="nowrap"><a href="/wiki/Hyperbola" title="Hyperbola">hyperbola</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65451c8a210ae9635d8e1cfb592b8e3be0084a50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.393ex; height:2.509ex;" alt="{\displaystyle xy=1.}"></span></span></figcaption></figure> <p>The <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> for the exponential function can be deduced from the facts that the exponential function is its own derivative and that it equals 1 when evaluated at 0:<sup id="cite_ref-strangherman_29-0" class="reference"><a href="#cite_note-strangherman-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c2b1a7071d25d71cdd3b9e75ab6795938428d94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.128ex; height:6.843ex;" alt="{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}.}"></span> Setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee42176e76ae6b56d68c42ced807e08b962a2b54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=1}"></span> recovers the definition of <span class="texhtml mvar" style="font-style:italic;">e</span> as the sum of an infinite series. </p><p>The natural logarithm function can be defined as the integral from 1 to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac33aabb19fba3d5d9b2e6008f61658ca2a3af3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.165ex; height:2.843ex;" alt="{\displaystyle 1/t}"></span>, and the exponential function can then be defined as the inverse function of the natural logarithm. The number <span class="texhtml mvar" style="font-style:italic;">e</span> is the value of the exponential function evaluated at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee42176e76ae6b56d68c42ced807e08b962a2b54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=1}"></span>, or equivalently, the number whose natural logarithm is 1. It follows that <span class="texhtml mvar" style="font-style:italic;">e</span> is the unique positive real number such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{1}^{e}{\frac {1}{t}}\,dt=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>t</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{1}^{e}{\frac {1}{t}}\,dt=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbefeb5e424ed3a0840aaedf1b792b2f94b9ee24" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.199ex; height:5.843ex;" alt="{\displaystyle \int _{1}^{e}{\frac {1}{t}}\,dt=1.}"></span> </p><p>Because <span class="texhtml"><i>e</i><sup><i>x</i></sup></span> is the unique function (<a href="/wiki/Up_to" title="Up to">up to</a> multiplication by a constant <span class="texhtml mvar" style="font-style:italic;">K</span>) that is equal to its own <a href="/wiki/Derivative" title="Derivative">derivative</a>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}Ke^{x}=Ke^{x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>K</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>K</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}Ke^{x}=Ke^{x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a3f0b24ba62a1a1b2b58b4e3db87c1d86fdd898" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.771ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}Ke^{x}=Ke^{x},}"></span> </p><p>it is therefore its own <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a> as well:<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int Ke^{x}\,dx=Ke^{x}+C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>K</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>K</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>+</mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int Ke^{x}\,dx=Ke^{x}+C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2728e875d935bf53c71ecd54a06b6c293410ed4f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.509ex; height:5.676ex;" alt="{\displaystyle \int Ke^{x}\,dx=Ke^{x}+C.}"></span> </p><p>Equivalently, the family of functions </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(x)=Ke^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>K</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(x)=Ke^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4deac036ce10320199a532ae55193ff7e0873ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.715ex; height:2.843ex;" alt="{\displaystyle y(x)=Ke^{x}}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">K</span> is any real or complex number, is the full solution to the <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'=y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'=y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e049b1ccaa4b6e760b53b039bcd1ff95e21add2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.746ex; height:2.843ex;" alt="{\displaystyle y'=y.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Inequalities">Inequalities</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=13" title="Edit section: Inequalities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Exponentials_vs_x%2B1.pdf" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Exponentials_vs_x%2B1.pdf/page1-220px-Exponentials_vs_x%2B1.pdf.jpg" decoding="async" width="220" height="141" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Exponentials_vs_x%2B1.pdf/page1-330px-Exponentials_vs_x%2B1.pdf.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Exponentials_vs_x%2B1.pdf/page1-440px-Exponentials_vs_x%2B1.pdf.jpg 2x" data-file-width="1702" data-file-height="1087" /></a><figcaption>Exponential functions <span class="texhtml"><i>y</i> = 2<sup><i>x</i></sup></span> and <span class="texhtml"><i>y</i> = 4<sup><i>x</i></sup></span> intersect the graph of <span class="texhtml"><i>y</i> = <i>x</i> + 1</span>, respectively, at <span class="texhtml"><i>x</i> = 1</span> and <span class="texhtml"><i>x</i> = -1/2</span>. The number <span class="texhtml mvar" style="font-style:italic;">e</span> is the unique base such that <span class="texhtml"><i>y</i> = <i>e</i><sup><i>x</i></sup></span> intersects only at <span class="texhtml"><i>x</i> = 0</span>. We may infer that <span class="texhtml mvar" style="font-style:italic;">e</span> lies between 2 and 4.</figcaption></figure> <p>The number <span class="texhtml mvar" style="font-style:italic;">e</span> is the unique real number such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(1+{\frac {1}{x}}\right)^{x}<e<\left(1+{\frac {1}{x}}\right)^{x+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo><</mo> <mi>e</mi> <mo><</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(1+{\frac {1}{x}}\right)^{x}<e<\left(1+{\frac {1}{x}}\right)^{x+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ceaacec4719cec85d5e528f3271317db096ef25" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.906ex; height:6.509ex;" alt="{\displaystyle \left(1+{\frac {1}{x}}\right)^{x}<e<\left(1+{\frac {1}{x}}\right)^{x+1}}"></span> for all positive <span class="texhtml mvar" style="font-style:italic;">x</span>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>Also, we have the inequality <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}\geq x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}\geq x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2b4efce8a73c717394d8c647e131c8cfe2067ea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.687ex; height:2.509ex;" alt="{\displaystyle e^{x}\geq x+1}"></span> for all real <span class="texhtml mvar" style="font-style:italic;">x</span>, with equality if and only if <span class="texhtml"><i>x</i> = 0</span>. Furthermore, <span class="texhtml mvar" style="font-style:italic;">e</span> is the unique base of the exponential for which the inequality <span class="texhtml"><i>a</i><sup><i>x</i></sup> ≥ <i>x</i> + 1</span> holds for all <span class="texhtml mvar" style="font-style:italic;">x</span>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> This is a limiting case of <a href="/wiki/Bernoulli%27s_inequality" title="Bernoulli's inequality">Bernoulli's inequality</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Exponential-like_functions">Exponential-like functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=14" title="Edit section: Exponential-like functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Xth_root_of_x.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Xth_root_of_x.svg/250px-Xth_root_of_x.svg.png" decoding="async" width="250" height="227" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Xth_root_of_x.svg/375px-Xth_root_of_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Xth_root_of_x.svg/500px-Xth_root_of_x.svg.png 2x" data-file-width="512" data-file-height="465" /></a><figcaption>The <a href="/wiki/Global_maximum" class="mw-redirect" title="Global maximum">global maximum</a> of <span class="texhtml"><span class="nowrap"><sup style="margin-right: -0.5em; vertical-align: 0.8em;"><i>x</i></sup>√<span style="border-top:1px solid; padding:0 0.1em;"><i>x</i></span></span></span> <span class="nowrap">occurs at <span class="texhtml"><i>x</i> = <i>e</i></span>.</span></figcaption></figure> <p><a href="/wiki/Steiner%27s_calculus_problem" title="Steiner's calculus problem">Steiner's problem</a> asks to find the <a href="/wiki/Global_maximum" class="mw-redirect" title="Global maximum">global maximum</a> for the function </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{\frac {1}{x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{\frac {1}{x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2e036e4a0d684bd9a12f61dff116387c5fc3b3a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.324ex; height:3.843ex;" alt="{\displaystyle f(x)=x^{\frac {1}{x}}.}"></span> </p><p>This maximum occurs precisely at <span class="texhtml"><i>x</i> = <i>e</i></span>. (One can check that the derivative of <span class="texhtml">ln <i>f</i>(<i>x</i>)</span> is zero only for this value of <span class="texhtml mvar" style="font-style:italic;">x</span>.) </p><p>Similarly, <span class="texhtml"><i>x</i> = 1/<i>e</i></span> is where the <a href="/wiki/Global_minimum" class="mw-redirect" title="Global minimum">global minimum</a> occurs for the function </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6064c3a73cfc43c1b7e894a335566ae008d1ec68" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.665ex; height:2.843ex;" alt="{\displaystyle f(x)=x^{x}.}"></span> </p><p>The infinite <a href="/wiki/Tetration" title="Tetration">tetration</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{x^{x^{\cdot ^{\cdot ^{\cdot }}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> </msup> </mrow> </msup> </mrow> </msup> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{x^{x^{\cdot ^{\cdot ^{\cdot }}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5280c74ea328a1153b7ae0eebd3571199eff2b48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.944ex; height:4.009ex;" alt="{\displaystyle x^{x^{x^{\cdot ^{\cdot ^{\cdot }}}}}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {^{\infty }}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {^{\infty }}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/941e9b94ef87946de489befa76c6581c29c05df6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.205ex; height:2.343ex;" alt="{\displaystyle {^{\infty }}x}"></span></dd></dl> <p>converges if and only if <span class="texhtml"><i>x</i> ∈ [(1/<i>e</i>)<sup><i>e</i></sup>, <i>e</i><sup>1/<i>e</i></sup>] ≈ [0.06599, 1.4447] </span>,<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> shown by a theorem of <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Number_theory">Number theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=15" title="Edit section: Number theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The real number <span class="texhtml mvar" style="font-style:italic;">e</span> is <a href="/wiki/Irrational_number" title="Irrational number">irrational</a>. <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a> proved this by showing that its <a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">simple continued fraction</a> expansion does not terminate.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> (See also <a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Fourier</a>'s <a href="/wiki/Proof_that_e_is_irrational" title="Proof that e is irrational">proof that <span class="texhtml mvar" style="font-style:italic;">e</span> is irrational</a>.) </p><p>Furthermore, by the <a href="/wiki/Lindemann%E2%80%93Weierstrass_theorem" title="Lindemann–Weierstrass theorem">Lindemann–Weierstrass theorem</a>, <span class="texhtml mvar" style="font-style:italic;">e</span> is <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a>, meaning that it is not a solution of any non-zero polynomial equation with rational coefficients. It was the first number to be proved transcendental without having been specifically constructed for this purpose (compare with <a href="/wiki/Liouville_number" title="Liouville number">Liouville number</a>); the proof was given by <a href="/wiki/Charles_Hermite" title="Charles Hermite">Charles Hermite</a> in 1873.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> The number <span class="texhtml mvar" style="font-style:italic;">e</span> is one of only a few transcendental numbers for which the exact <a href="/wiki/Irrationality_measure#Irrationality_exponent" title="Irrationality measure">irrationality exponent</a> is known (given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (e)=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>e</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (e)=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9db1d1a2d408f5787506dd4e5350a47dc12800bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.555ex; height:2.843ex;" alt="{\displaystyle \mu (e)=2}"></span>).<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p><p>An <a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">unsolved problem</a> thus far is the question of whether or not the numbers <span class="texhtml mvar" style="font-style:italic;">e</span> and <span class="texhtml mvar" style="font-style:italic;">π</span> are <a href="/wiki/Algebraic_independence" title="Algebraic independence">algebraically independent</a>. This would be resolved by <a href="/wiki/Schanuel%27s_conjecture" title="Schanuel's conjecture">Schanuel's conjecture</a> – a currently unproven generalization of the Lindemann–Weierstrass theorem.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p>It is conjectured that <span class="texhtml mvar" style="font-style:italic;">e</span> is <a href="/wiki/Normal_number" title="Normal number">normal</a>, meaning that when <span class="texhtml mvar" style="font-style:italic;">e</span> is expressed in any <a href="/wiki/Radix" title="Radix">base</a> the possible digits in that base are uniformly distributed (occur with equal probability in any sequence of given length).<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>In <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>, a <i><a href="/wiki/Period_(algebraic_geometry)" title="Period (algebraic geometry)">period</a></i> is a number that can be expressed as an integral of an <a href="/wiki/Algebraic_function" title="Algebraic function">algebraic function</a> over an algebraic <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>. The constant <span class="texhtml mvar" style="font-style:italic;">π</span> is a period, but it is conjectured that <span class="texhtml mvar" style="font-style:italic;">e</span> is not.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Complex_numbers">Complex numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=16" title="Edit section: Complex numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> <span class="texhtml"><i>e</i><sup><i>x</i></sup></span> may be written as a <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-strangherman_29-1" class="reference"><a href="#cite_note-strangherman-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}=1+{x \over 1!}+{x^{2} \over 2!}+{x^{3} \over 3!}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}=1+{x \over 1!}+{x^{2} \over 2!}+{x^{3} \over 3!}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38978c994e4ef8842574d54e0890fd2a55a90fc7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.559ex; height:6.843ex;" alt="{\displaystyle e^{x}=1+{x \over 1!}+{x^{2} \over 2!}+{x^{3} \over 3!}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}.}"></span> </p><p>Because this series is <a href="/wiki/Convergent_series" title="Convergent series">convergent</a> for every <a href="/wiki/Complex_number" title="Complex number">complex</a> value of <span class="texhtml mvar" style="font-style:italic;">x</span>, it is commonly used to extend the definition of <span class="texhtml"><i>e</i><sup><i>x</i></sup></span> to the complex numbers.<sup id="cite_ref-Dennery_46-0" class="reference"><a href="#cite_note-Dennery-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> This, with the Taylor series for <a href="/wiki/Trigonometric_functions" title="Trigonometric functions"><span class="texhtml">sin</span> and <span class="texhtml">cos <i>x</i></span></a>, allows one to derive <a href="/wiki/Euler%27s_formula" title="Euler's formula">Euler's formula</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{ix}=\cos x+i\sin x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{ix}=\cos x+i\sin x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aab1fcd1a6db5cc6678bb9cbd871580eeeb86eda" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.999ex; height:3.009ex;" alt="{\displaystyle e^{ix}=\cos x+i\sin x,}"></span> </p><p>which holds for every complex <span class="texhtml mvar" style="font-style:italic;">x</span>.<sup id="cite_ref-Dennery_46-1" class="reference"><a href="#cite_note-Dennery-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> The special case with <span class="texhtml"><i>x</i> = <a href="/wiki/Pi" title="Pi"><span class="texhtml mvar" style="font-style:italic;">π</span></a></span> is <a href="/wiki/Euler%27s_identity" title="Euler's identity">Euler's identity</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\pi }+1=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>π<!-- π --></mi> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\pi }+1=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47665065f6bec7fb83e5b667197b8f93f4ca36da" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.736ex; height:3.009ex;" alt="{\displaystyle e^{i\pi }+1=0,}"></span> which is considered to be an exemplar of <a href="/wiki/Mathematical_beauty" title="Mathematical beauty">mathematical beauty</a> as it shows a profound connection between the most fundamental numbers in mathematics. In addition, it is directly used in <a href="/wiki/Lindemann%E2%80%93Weierstrass_theorem#Transcendence_of_e_and_π" title="Lindemann–Weierstrass theorem">a proof</a> that <span class="texhtml mvar" style="font-style:italic;">π</span> is <a href="/wiki/Transcendental_number" title="Transcendental number">transcendental</a>, which implies the impossibility of <a href="/wiki/Squaring_the_circle" title="Squaring the circle">squaring the circle</a>.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> Moreover, the identity implies that, in the <a href="/wiki/Principal_branch" title="Principal branch">principal branch</a> of the logarithm,<sup id="cite_ref-Dennery_46-2" class="reference"><a href="#cite_note-Dennery-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(-1)=i\pi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> <mi>π<!-- π --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(-1)=i\pi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b623d2fa371489f25ae38c0951f25ea4cc0b89" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.599ex; height:2.843ex;" alt="{\displaystyle \ln(-1)=i\pi .}"></span> </p><p>Furthermore, using the laws for exponentiation, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\cos x+i\sin x)^{n}=\left(e^{ix}\right)^{n}=e^{inx}=\cos nx+i\sin nx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\cos x+i\sin x)^{n}=\left(e^{ix}\right)^{n}=e^{inx}=\cos nx+i\sin nx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f870b74e0018cd897a916beaed2e86940840f33" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:51.954ex; height:3.343ex;" alt="{\displaystyle (\cos x+i\sin x)^{n}=\left(e^{ix}\right)^{n}=e^{inx}=\cos nx+i\sin nx}"></span> </p><p>for any integer <span class="texhtml mvar" style="font-style:italic;">n</span>, which is <a href="/wiki/De_Moivre%27s_formula" title="De Moivre's formula">de Moivre's formula</a>.<sup id="cite_ref-Sultan_49-0" class="reference"><a href="#cite_note-Sultan-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>The expressions of <span class="texhtml">cos <i>x</i></span> and <span class="texhtml">sin <i>x</i></span> in terms of the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> can be deduced from the Taylor series:<sup id="cite_ref-Dennery_46-3" class="reference"><a href="#cite_note-Dennery-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}},\qquad \sin x={\frac {e^{ix}-e^{-ix}}{2i}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>x</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>x</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}},\qquad \sin x={\frac {e^{ix}-e^{-ix}}{2i}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75fd5c29bc3f6abb90bcc6270e23e26b2a449170" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:43.127ex; height:5.676ex;" alt="{\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}},\qquad \sin x={\frac {e^{ix}-e^{-ix}}{2i}}.}"></span> </p><p>The expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \cos x+i\sin x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \cos x+i\sin x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adaab56b7cb1baa86ebcfb9afa09538e6d0630c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.43ex; height:2.343ex;" alt="{\textstyle \cos x+i\sin x}"></span> is sometimes abbreviated as <span class="texhtml">cis(<i>x</i>)</span>.<sup id="cite_ref-Sultan_49-1" class="reference"><a href="#cite_note-Sultan-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Representations">Representations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=17" title="Edit section: Representations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_representations_of_e" title="List of representations of e">List of representations of <span class="texhtml mvar" style="font-style:italic;">e</span></a></div> <p>The number <span class="texhtml mvar" style="font-style:italic;">e</span> can be represented in a variety of ways: as an <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a>, an <a href="/wiki/Infinite_product" title="Infinite product">infinite product</a>, a <a href="/wiki/Continued_fraction" title="Continued fraction">continued fraction</a>, or a <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit of a sequence</a>. In addition to the limit and the series given above, there is also the <a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">simple continued fraction</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=[2;1,2,1,1,4,1,1,6,1,...,1,2n,1,...],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>2</mn> <mo>;</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mi>n</mi> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=[2;1,2,1,1,4,1,1,6,1,...,1,2n,1,...],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eda10aefcc9d9e0268fb3b0734147f652800e6ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.308ex; height:2.843ex;" alt="{\displaystyle e=[2;1,2,1,1,4,1,1,6,1,...,1,2n,1,...],}"></span><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-OEIS_continued_fraction_51-0" class="reference"><a href="#cite_note-OEIS_continued_fraction-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup></dd></dl> <p>which written out looks like </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{4+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mo>⋱<!-- ⋱ --></mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{4+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1bf3c9f2712a7350f765443d5b75a550bd20e43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -26.171ex; width:45.683ex; height:30.343ex;" alt="{\displaystyle e=2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{4+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}}}}}}.}"></span></dd></dl> <p>The following infinite product evaluates to <span class="texhtml mvar" style="font-style:italic;">e</span>:<sup id="cite_ref-Finch-2003-p14_26-1" class="reference"><a href="#cite_note-Finch-2003-p14-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e={\frac {2}{1}}\left({\frac {4}{3}}\right)^{1/2}\left({\frac {6\cdot 8}{5\cdot 7}}\right)^{1/4}\left({\frac {10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}}\right)^{1/8}\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>1</mn> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> </mrow> <mrow> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>10</mn> <mo>⋅<!-- ⋅ --></mo> <mn>12</mn> <mo>⋅<!-- ⋅ --></mo> <mn>14</mn> <mo>⋅<!-- ⋅ --></mo> <mn>16</mn> </mrow> <mrow> <mn>9</mn> <mo>⋅<!-- ⋅ --></mo> <mn>11</mn> <mo>⋅<!-- ⋅ --></mo> <mn>13</mn> <mo>⋅<!-- ⋅ --></mo> <mn>15</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>8</mn> </mrow> </msup> <mo>⋯<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e={\frac {2}{1}}\left({\frac {4}{3}}\right)^{1/2}\left({\frac {6\cdot 8}{5\cdot 7}}\right)^{1/4}\left({\frac {10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}}\right)^{1/8}\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49fb901f1db7a1d6b1437a59be4313a58f38729d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.695ex; height:6.676ex;" alt="{\displaystyle e={\frac {2}{1}}\left({\frac {4}{3}}\right)^{1/2}\left({\frac {6\cdot 8}{5\cdot 7}}\right)^{1/4}\left({\frac {10\cdot 12\cdot 14\cdot 16}{9\cdot 11\cdot 13\cdot 15}}\right)^{1/8}\cdots .}"></span> </p><p>Many other series, sequence, continued fraction, and infinite product representations of <span class="texhtml mvar" style="font-style:italic;">e</span> have been proved. </p> <div class="mw-heading mw-heading3"><h3 id="Stochastic_representations">Stochastic representations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=18" title="Edit section: Stochastic representations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to exact analytical expressions for representation of <span class="texhtml mvar" style="font-style:italic;">e</span>, there are stochastic techniques for estimating <span class="texhtml mvar" style="font-style:italic;">e</span>. One such approach begins with an infinite sequence of independent random variables <span class="texhtml"><i>X</i><sub>1</sub></span>, <span class="texhtml"><i>X</i><sub>2</sub></span>..., drawn from the <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a> on [0, 1]. Let <span class="texhtml mvar" style="font-style:italic;">V</span> be the least number <span class="texhtml mvar" style="font-style:italic;">n</span> such that the sum of the first <span class="texhtml mvar" style="font-style:italic;">n</span> observations exceeds 1: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=\min \left\{n\mid X_{1}+X_{2}+\cdots +X_{n}>1\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mo movablelimits="true" form="prefix">min</mo> <mrow> <mo>{</mo> <mrow> <mi>n</mi> <mo>∣<!-- ∣ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>></mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=\min \left\{n\mid X_{1}+X_{2}+\cdots +X_{n}>1\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/229adce5af07552aa13c6bfb51e67fdb35169f34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.444ex; height:2.843ex;" alt="{\displaystyle V=\min \left\{n\mid X_{1}+X_{2}+\cdots +X_{n}>1\right\}.}"></span></dd></dl> <p>Then the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of <span class="texhtml mvar" style="font-style:italic;">V</span> is <span class="texhtml mvar" style="font-style:italic;">e</span>: <span class="texhtml">E(<i>V</i>) = <i>e</i></span>.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Known_digits">Known digits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=19" title="Edit section: Known digits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The number of known digits of <span class="texhtml mvar" style="font-style:italic;">e</span> has increased substantially since the introduction of the computer, due both to increasing performance of computers and to algorithmic improvements.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="margin: 1em auto 1em auto"> <caption>Number of known decimal digits of <span class="texhtml mvar" style="font-style:italic;">e</span> </caption> <tbody><tr> <th>Date</th> <th>Decimal digits</th> <th>Computation performed by </th></tr> <tr> <td>1690</td> <td align="right">1</td> <td><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a><sup id="cite_ref-Bernoulli,_1690_11-1" class="reference"><a href="#cite_note-Bernoulli,_1690-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>1714</td> <td align="right">13</td> <td><a href="/wiki/Roger_Cotes" title="Roger Cotes">Roger Cotes</a><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>1748</td> <td align="right">23</td> <td><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>1853</td> <td align="right">137</td> <td><a href="/wiki/William_Shanks" title="William Shanks">William Shanks</a><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>1871</td> <td align="right">205</td> <td>William Shanks<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>1884</td> <td align="right">346</td> <td>J. Marcus Boorman<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>1949</td> <td align="right">2,010</td> <td><a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> (on the <a href="/wiki/ENIAC" title="ENIAC">ENIAC</a>) </td></tr> <tr> <td>1961</td> <td align="right">100,265</td> <td><a href="/wiki/Daniel_Shanks" title="Daniel Shanks">Daniel Shanks</a> and <a href="/wiki/John_Wrench" title="John Wrench">John Wrench</a><sup id="cite_ref-We_have_computed_e_on_a_7090_to_100,265D_by_the_obvious_program._61-0" class="reference"><a href="#cite_note-We_have_computed_e_on_a_7090_to_100,265D_by_the_obvious_program.-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </td></tr> <tr> <td>1978</td> <td align="right">116,000</td> <td><a href="/wiki/Steve_Wozniak" title="Steve Wozniak">Steve Wozniak</a> on the <a href="/wiki/Apple_II" title="Apple II">Apple II</a><sup id="cite_ref-wozniak198106_62-0" class="reference"><a href="#cite_note-wozniak198106-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </td></tr></tbody></table> <p>Since around 2010, the proliferation of modern high-speed <a href="/wiki/Desktop_computer" title="Desktop computer">desktop computers</a> has made it feasible for amateurs to compute trillions of digits of <span class="texhtml mvar" style="font-style:italic;">e</span> within acceptable amounts of time. On Dec 5, 2020, a record-setting calculation was made, giving <span class="texhtml mvar" style="font-style:italic;">e</span> to 31,415,926,535,897 (approximately <span class="texhtml mvar" style="font-style:italic;">π</span><span style="margin:0 .15em 0 .25em">×</span>10<sup><span class="nowrap"><span data-sort-value="7001130000000000000♠"></span>13</span></sup>) digits.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Computing_the_digits">Computing the digits</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=20" title="Edit section: Computing the digits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One way to compute the digits of <span class="texhtml mvar" style="font-style:italic;">e</span> is with the series<sup id="cite_ref-Finch-2005_64-0" class="reference"><a href="#cite_note-Finch-2005-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=\sum _{k=0}^{\infty }{\frac {1}{k!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=\sum _{k=0}^{\infty }{\frac {1}{k!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f88e7e4aec44c76ae1ed2e8262f50c1a8e89d98" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:11.265ex; height:7.009ex;" alt="{\displaystyle e=\sum _{k=0}^{\infty }{\frac {1}{k!}}.}"></span> </p><p>A faster method involves two recursive functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/493f8914158b9bf218a601c58c038c768d47e567" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle p(a,b)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/129ca5bfe0bbc5b38b982767e75dcca4c084c85e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.14ex; height:2.843ex;" alt="{\displaystyle q(a,b)}"></span>. The functions are defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {p(a,b)}{q(a,b)}}={\begin{cases}{\binom {1}{b}},&{\text{if }}b=a+1{\text{,}}\\{\binom {p(a,m)q(m,b)+p(m,b)}{q(a,m)q(m,b)}},&{\text{otherwise, where }}m=\lfloor (a+b)/2\rfloor .\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>q</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mn>1</mn> <mi>b</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>,</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>q</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise, where </mtext> </mrow> <mi>m</mi> <mo>=</mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {p(a,b)}{q(a,b)}}={\begin{cases}{\binom {1}{b}},&{\text{if }}b=a+1{\text{,}}\\{\binom {p(a,m)q(m,b)+p(m,b)}{q(a,m)q(m,b)}},&{\text{otherwise, where }}m=\lfloor (a+b)/2\rfloor .\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5c4a907e96300ce2d3c249767051aff5a34621" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.98ex; margin-bottom: -0.192ex; width:70.376ex; height:7.509ex;" alt="{\displaystyle {\binom {p(a,b)}{q(a,b)}}={\begin{cases}{\binom {1}{b}},&{\text{if }}b=a+1{\text{,}}\\{\binom {p(a,m)q(m,b)+p(m,b)}{q(a,m)q(m,b)}},&{\text{otherwise, where }}m=\lfloor (a+b)/2\rfloor .\end{cases}}}"></span> </p><p>The expression <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\frac {p(0,n)}{q(0,n)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>q</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\frac {p(0,n)}{q(0,n)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/807036816204d7d716441dc6fb61b24944a2132d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.409ex; height:6.509ex;" alt="{\displaystyle 1+{\frac {p(0,n)}{q(0,n)}}}"></span> produces the <span class="texhtml mvar" style="font-style:italic;">n</span>th partial sum of the series above. This method uses <a href="/wiki/Binary_splitting" title="Binary splitting">binary splitting</a> to compute <span class="texhtml mvar" style="font-style:italic;">e</span> with fewer single-digit arithmetic operations and thus reduced <a href="/wiki/Bit_complexity" class="mw-redirect" title="Bit complexity">bit complexity</a>. Combining this with <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a>-based methods of multiplying integers makes computing the digits very fast.<sup id="cite_ref-Finch-2005_64-1" class="reference"><a href="#cite_note-Finch-2005-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="In_computer_culture">In computer culture</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=21" title="Edit section: In computer culture"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>During the emergence of <a href="/wiki/Internet_culture" title="Internet culture">internet culture</a>, individuals and organizations sometimes paid homage to the number <span class="texhtml mvar" style="font-style:italic;">e</span>. </p><p>In an early example, the <a href="/wiki/Computer_scientist" title="Computer scientist">computer scientist</a> <a href="/wiki/Donald_Knuth" title="Donald Knuth">Donald Knuth</a> let the version numbers of his program <a href="/wiki/Metafont" title="Metafont">Metafont</a> approach <span class="texhtml mvar" style="font-style:italic;">e</span>. The versions are 2, 2.7, 2.71, 2.718, and so forth.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p>In another instance, the <a href="/wiki/Initial_public_offering" title="Initial public offering">IPO</a> filing for <a href="/wiki/Google" title="Google">Google</a> in 2004, rather than a typical round-number amount of money, the company announced its intention to raise 2,718,281,828 <a href="/wiki/USD" class="mw-redirect" title="USD">USD</a>, which is <span class="texhtml mvar" style="font-style:italic;">e</span> billion <a href="/wiki/United_States_dollar" title="United States dollar">dollars</a> rounded to the nearest dollar.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p>Google was also responsible for a billboard<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> that appeared in the heart of <a href="/wiki/Silicon_Valley" title="Silicon Valley">Silicon Valley</a>, and later in <a href="/wiki/Cambridge,_Massachusetts" title="Cambridge, Massachusetts">Cambridge, Massachusetts</a>; <a href="/wiki/Seattle,_Washington" class="mw-redirect" title="Seattle, Washington">Seattle, Washington</a>; and <a href="/wiki/Austin,_Texas" title="Austin, Texas">Austin, Texas</a>. It read "{first 10-digit prime found in consecutive digits of <span class="texhtml mvar" style="font-style:italic;">e</span>}.com". The first 10-digit prime in <span class="texhtml mvar" style="font-style:italic;">e</span> is 7427466391, which starts at the 99th digit.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> Solving this problem and visiting the advertised (now defunct) website led to an even more difficult problem to solve, which consisted in finding the fifth term in the sequence 7182818284, 8182845904, 8747135266, 7427466391. It turned out that the sequence consisted of 10-digit numbers found in consecutive digits of <span class="texhtml mvar" style="font-style:italic;">e</span> whose digits summed to 49. The fifth term in the sequence is 5966290435, which starts at the 127th digit.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> Solving this second problem finally led to a <a href="/wiki/Google_Labs" title="Google Labs">Google Labs</a> webpage where the visitor was invited to submit a résumé.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=22" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-OEIS_decimal_expansion-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-OEIS_decimal_expansion_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-OEIS_decimal_expansion_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSloane_"A001113"" class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A001113">"Sequence A001113 (Decimal expansion of <span class="texhtml mvar" style="font-style:italic;">e</span>)"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&rft.atitle=Sequence%26%23x20%3BA001113%26%23x20%3B%28Decimal+expansion+of+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3Ee%3C%2Fspan%3E%29&rft_id=https%3A%2F%2Foeis.org%2FA001113&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Miller-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Miller_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Miller_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller" class="citation web cs1">Miller, Jeff. <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Miller/mathsym/constants/">"Earliest Uses of Symbols for Constants"</a>. <i>MacTutor</i>. University of St. Andrews, Scotland<span class="reference-accessdate">. Retrieved <span class="nowrap">31 October</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MacTutor&rft.atitle=Earliest+Uses+of+Symbols+for+Constants&rft.aulast=Miller&rft.aufirst=Jeff&rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FMiller%2Fmathsym%2Fconstants%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Weisstein-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weisstein_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weisstein_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="mathworld" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/e.html">"e"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=e&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2Fe.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Pickover-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pickover_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPickover2009" class="citation book cs1">Pickover, Clifford A. (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JrslMKTgSZwC"><i>The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics</i></a> (illustrated ed.). Sterling Publishing Company. p. 166. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4027-5796-9" title="Special:BookSources/978-1-4027-5796-9"><bdi>978-1-4027-5796-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Math+Book%3A+From+Pythagoras+to+the+57th+Dimension%2C+250+Milestones+in+the+History+of+Mathematics&rft.pages=166&rft.edition=illustrated&rft.pub=Sterling+Publishing+Company&rft.date=2009&rft.isbn=978-1-4027-5796-9&rft.aulast=Pickover&rft.aufirst=Clifford+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJrslMKTgSZwC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JrslMKTgSZwC&pg=PA166">Extract of page 166</a></span> </li> <li id="cite_note-OConnor-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-OConnor_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-OConnor_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-OConnor_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-OConnor_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-OConnor_5-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO'ConnorRobertson2001" class="citation cs1">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a> (September 2001). <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/e.html">"The number <span class="texhtml mvar" style="font-style:italic;">e</span>"</a>. <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>. <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+number+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3Ee%3C%2Fspan%3E&rft.btitle=MacTutor+History+of+Mathematics+Archive&rft.pub=University+of+St+Andrews&rft.date=2001-09&rft.aulast=O%27Connor&rft.aufirst=John+J.&rft.au=Robertson%2C+Edmund+F.&rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2Fe.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSawyer1961" class="citation book cs1">Sawyer, W. W. (1961). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/MathemateciansDelight-W.W.Sawyer/page/n153/mode/2up"><i>Mathematician's Delight</i></a></span>. Penguin. p. 155.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematician%27s+Delight&rft.pages=155&rft.pub=Penguin&rft.date=1961&rft.aulast=Sawyer&rft.aufirst=W.+W.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FMathemateciansDelight-W.W.Sawyer%2Fpage%2Fn153%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson2018" class="citation book cs1">Wilson, Robinn (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=345HDwAAQBAJ"><i>Euler's Pioneering Equation: The most beautiful theorem in mathematics</i></a> (illustrated ed.). Oxford University Press. p. (preface). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-251405-9" title="Special:BookSources/978-0-19-251405-9"><bdi>978-0-19-251405-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Euler%27s+Pioneering+Equation%3A+The+most+beautiful+theorem+in+mathematics&rft.pages=%28preface%29&rft.edition=illustrated&rft.pub=Oxford+University+Press&rft.date=2018&rft.isbn=978-0-19-251405-9&rft.aulast=Wilson&rft.aufirst=Robinn&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D345HDwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPosamentierLehmann2004" class="citation book cs1">Posamentier, Alfred S.; Lehmann, Ingmar (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QFPvAAAAMAAJ"><i>Pi: A Biography of the World's Most Mysterious Number</i></a> (illustrated ed.). Prometheus Books. p. 68. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59102-200-8" title="Special:BookSources/978-1-59102-200-8"><bdi>978-1-59102-200-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Pi%3A+A+Biography+of+the+World%27s+Most+Mysterious+Number&rft.pages=68&rft.edition=illustrated&rft.pub=Prometheus+Books&rft.date=2004&rft.isbn=978-1-59102-200-8&rft.aulast=Posamentier&rft.aufirst=Alfred+S.&rft.au=Lehmann%2C+Ingmar&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQFPvAAAAMAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlverLozierBoisvertClark2010" class="citation cs2"><a href="/wiki/Frank_W._J._Olver" title="Frank W. J. Olver">Olver, Frank W. J.</a>; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), <a rel="nofollow" class="external text" href="http://dlmf.nist.gov/">"E (mathematical constant)"</a>, <i><a href="/wiki/Digital_Library_of_Mathematical_Functions" title="Digital Library of Mathematical Functions">NIST Handbook of Mathematical Functions</a></i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-19225-5" title="Special:BookSources/978-0-521-19225-5"><bdi>978-0-521-19225-5</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2723248">2723248</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=E+%28mathematical+constant%29&rft.btitle=NIST+Handbook+of+Mathematical+Functions&rft.pub=Cambridge+University+Press&rft.date=2010&rft.isbn=978-0-521-19225-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2723248%23id-name%3DMR&rft_id=http%3A%2F%2Fdlmf.nist.gov%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span>.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBruins1983" class="citation journal cs1">Bruins, E. M. (1983). <a rel="nofollow" class="external text" href="http://www.math.bas.bg/mathmod/Proceedings_CTF/CTF-1981/files_CTF-1981/CTF-1981-254-257.pdf">"The Computation of Logarithms by Huygens"</a> <span class="cs1-format">(PDF)</span>. <i>Constructive Function Theory</i>: 254–257.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Constructive+Function+Theory&rft.atitle=The+Computation+of+Logarithms+by+Huygens&rft.pages=254-257&rft.date=1983&rft.aulast=Bruins&rft.aufirst=E.+M.&rft_id=http%3A%2F%2Fwww.math.bas.bg%2Fmathmod%2FProceedings_CTF%2FCTF-1981%2Ffiles_CTF-1981%2FCTF-1981-254-257.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Bernoulli,_1690-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bernoulli,_1690_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bernoulli,_1690_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Jacob Bernoulli considered the problem of continuous compounding of interest, which led to a series expression for <span class="texhtml mvar" style="font-style:italic;">e</span>. See: Jacob Bernoulli (1690) "Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685" (Some questions about interest, with a solution of a problem about games of chance, proposed in the <i>Journal des Savants</i> (<i>Ephemerides Eruditorum Gallicanæ</i>), in the year (anno) 1685.**), <i>Acta eruditorum</i>, pp. 219–23. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=s4pw4GyHTRcC&pg=PA222">On page 222</a>, Bernoulli poses the question: <i>"Alterius naturæ hoc Problema est: Quæritur, si creditor aliquis pecuniæ summam fænori exponat, ea lege, ut singulis momentis pars proportionalis usuræ annuæ sorti annumeretur; quantum ipsi finito anno debeatur?"</i> (This is a problem of another kind: The question is, if some lender were to invest [a] sum of money [at] interest, let it accumulate, so that [at] every moment [it] were to receive [a] proportional part of [its] annual interest; how much would be owing [at the] end of [the] year?) Bernoulli constructs a power series to calculate the answer, and then writes: " … quæ nostra serie [mathematical expression for a geometric series] &c. major est. … si <span class="texhtml"><i>a</i> = <i>b</i></span>, debebitur plu quam <span class="texhtml">2½<i>a</i></span> & minus quam <span class="texhtml">3<i>a</i></span>." ( … which our series [a geometric series] is larger [than]. … if <span class="texhtml"><i>a</i>=<i>b</i></span>, [the lender] will be owed more than <span class="texhtml">2½<i>a</i></span> and less than <span class="texhtml">3<i>a</i></span>.) If <span class="texhtml"><i>a</i> = <i>b</i></span>, the geometric series reduces to the series for <span class="texhtml"><i>a</i> × <i>e</i></span>, so <span class="texhtml">2.5 < <i>e</i> < 3</span>. (** The reference is to a problem which Jacob Bernoulli posed and which appears in the <i>Journal des Sçavans</i> of 1685 at the bottom of <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k56536t/f307.image.langEN">page 314.</a>)</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarl_BoyerUta_Merzbach1991" class="citation book cs1">Carl Boyer; <a href="/wiki/Uta_Merzbach" title="Uta Merzbach">Uta Merzbach</a> (1991). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye"><i>A History of Mathematics</i></a></span> (2nd ed.). Wiley. p. <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye/page/419">419</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-54397-8" title="Special:BookSources/978-0-471-54397-8"><bdi>978-0-471-54397-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+History+of+Mathematics&rft.pages=419&rft.edition=2nd&rft.pub=Wiley&rft.date=1991&rft.isbn=978-0-471-54397-8&rft.au=Carl+Boyer&rft.au=Uta+Merzbach&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00boye&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeibniz2003" class="citation web cs1 cs1-prop-foreign-lang-source">Leibniz, Gottfried Wilhelm (2003). <a rel="nofollow" class="external text" href="https://leibniz.uni-goettingen.de/files/pdf/Leibniz-Edition-III-5.pdf">"Sämliche Schriften Und Briefe"</a> <span class="cs1-format">(PDF)</span> (in German). <q>look for example letter nr. 6</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=S%C3%A4mliche+Schriften+Und+Briefe&rft.date=2003&rft.aulast=Leibniz&rft.aufirst=Gottfried+Wilhelm&rft_id=https%3A%2F%2Fleibniz.uni-goettingen.de%2Ffiles%2Fpdf%2FLeibniz-Edition-III-5.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Meditatio-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Meditatio_14-0">^</a></b></span> <span class="reference-text">Euler, <i><a rel="nofollow" class="external text" href="https://scholarlycommons.pacific.edu/euler-works/853/">Meditatio in experimenta explosione tormentorum nuper instituta</a></i>. <span title="Latin-language text"><i lang="la">Scribatur pro numero cujus logarithmus est unitas, e, qui est 2,7182817…</i></span> (English: Written for the number of which the logarithm has the unit, e, that is 2,7182817...")</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Lettre XV. Euler à Goldbach, dated November 25, 1731 in: P.H. Fuss, ed., <i>Correspondance Mathématique et Physique de Quelques Célèbres Géomètres du XVIIIeme Siècle</i> … (Mathematical and physical correspondence of some famous geometers of the 18th century), vol. 1, (St. Petersburg, Russia: 1843), pp. 56–60, see especially <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gf1OEXIQQgsC&pg=PA58">p. 58.</a> From p. 58: <i>" … ( e denotat hic numerum, cujus logarithmus hyperbolicus est = 1), … "</i> ( … (e denotes that number whose hyperbolic [i.e., natural] logarithm is equal to 1) … )</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRemmert1991" class="citation book cs1"><a href="/wiki/Reinhold_Remmert" title="Reinhold Remmert">Remmert, Reinhold</a> (1991). <i>Theory of Complex Functions</i>. <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. p. 136. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-97195-7" title="Special:BookSources/978-0-387-97195-7"><bdi>978-0-387-97195-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theory+of+Complex+Functions&rft.pages=136&rft.pub=Springer-Verlag&rft.date=1991&rft.isbn=978-0-387-97195-7&rft.aulast=Remmert&rft.aufirst=Reinhold&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Leonhard Euler, <i>Mechanica, sive Motus scientia analytice exposita</i> (St. Petersburg (Petropoli), Russia: Academy of Sciences, 1736), vol. 1, Chapter 2, Corollary 11, paragraph 171, p. 68. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qalsP7uMiV4C&pg=PA68">From page 68:</a> <i>Erit enim <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dc}{c}}={\frac {dyds}{rdx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>c</mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>s</mi> </mrow> <mrow> <mi>r</mi> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dc}{c}}={\frac {dyds}{rdx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a5f6a94a29fc0aed56962f557ad1cf5ca540615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.671ex; height:5.509ex;" alt="{\displaystyle {\frac {dc}{c}}={\frac {dyds}{rdx}}}"></span> seu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=e^{\int {\frac {dyds}{rdx}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>s</mi> </mrow> <mrow> <mi>r</mi> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=e^{\int {\frac {dyds}{rdx}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69734b7fb10c894953c8a773dac844cdb1004cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.332ex; height:3.843ex;" alt="{\displaystyle c=e^{\int {\frac {dyds}{rdx}}}}"></span> ubi <span class="texhtml mvar" style="font-style:italic;">e</span> denotat numerum, cuius logarithmus hyperbolicus est 1.</i> (So it [i.e., <span class="texhtml mvar" style="font-style:italic;">c</span>, the speed] will be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dc}{c}}={\frac {dyds}{rdx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>c</mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>s</mi> </mrow> <mrow> <mi>r</mi> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dc}{c}}={\frac {dyds}{rdx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a5f6a94a29fc0aed56962f557ad1cf5ca540615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.671ex; height:5.509ex;" alt="{\displaystyle {\frac {dc}{c}}={\frac {dyds}{rdx}}}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=e^{\int {\frac {dyds}{rdx}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>s</mi> </mrow> <mrow> <mi>r</mi> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=e^{\int {\frac {dyds}{rdx}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69734b7fb10c894953c8a773dac844cdb1004cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.332ex; height:3.843ex;" alt="{\displaystyle c=e^{\int {\frac {dyds}{rdx}}}}"></span>, where <span class="texhtml mvar" style="font-style:italic;">e</span> denotes the number whose hyperbolic [i.e., natural] logarithm is 1.)</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCalinger2016" class="citation book cs1">Calinger, Ronald (2016). <i>Leonhard Euler: Mathematical Genius in the Enlightenment</i>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-11927-4" title="Special:BookSources/978-0-691-11927-4"><bdi>978-0-691-11927-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Leonhard+Euler%3A+Mathematical+Genius+in+the+Enlightenment&rft.pub=Princeton+University+Press&rft.date=2016&rft.isbn=978-0-691-11927-4&rft.aulast=Calinger&rft.aufirst=Ronald&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span> p. 124.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1976" class="citation book cs1"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1976). <i>Principles of Mathematical Analysis</i> (3rd ed.). McGraw–Hill. pp. 63–65. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-054235-X" title="Special:BookSources/0-07-054235-X"><bdi>0-07-054235-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Mathematical+Analysis&rft.pages=63-65&rft.edition=3rd&rft.pub=McGraw%E2%80%93Hill&rft.date=1976&rft.isbn=0-07-054235-X&rft.aulast=Rudin&rft.aufirst=Walter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Gonick-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gonick_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gonick_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGonick2012" class="citation book cs1"><a href="/wiki/Larry_Gonick" title="Larry Gonick">Gonick, Larry</a> (2012). <a rel="nofollow" class="external text" href="https://www.larrygonick.com/titles/science/cartoon-guide-to-calculus-2/"><i>The Cartoon Guide to Calculus</i></a>. William Morrow. pp. 29–32. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-06-168909-3" title="Special:BookSources/978-0-06-168909-3"><bdi>978-0-06-168909-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Cartoon+Guide+to+Calculus&rft.pages=29-32&rft.pub=William+Morrow&rft.date=2012&rft.isbn=978-0-06-168909-3&rft.aulast=Gonick&rft.aufirst=Larry&rft_id=https%3A%2F%2Fwww.larrygonick.com%2Ftitles%2Fscience%2Fcartoon-guide-to-calculus-2%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-:0-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_21-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_21-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbramson2023" class="citation book cs1">Abramson, Jay; et al. (2023). <a rel="nofollow" class="external text" href="https://openstax.org/books/college-algebra-2e/pages/6-1-exponential-functions">"6.1 Exponential Functions"</a>. <i>College Algebra 2e</i>. OpenStax. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-951693-41-1" title="Special:BookSources/978-1-951693-41-1"><bdi>978-1-951693-41-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=6.1+Exponential+Functions&rft.btitle=College+Algebra+2e&rft.pub=OpenStax&rft.date=2023&rft.isbn=978-1-951693-41-1&rft.aulast=Abramson&rft.aufirst=Jay&rft_id=https%3A%2F%2Fopenstax.org%2Fbooks%2Fcollege-algebra-2e%2Fpages%2F6-1-exponential-functions&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKardar2007" class="citation book cs1"><a href="/wiki/Mehran_Kardar" title="Mehran Kardar">Kardar, Mehran</a> (2007). <a href="/wiki/Statistical_Physics_of_Particles" title="Statistical Physics of Particles"><i>Statistical Physics of Particles</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p. 41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-87342-0" title="Special:BookSources/978-0-521-87342-0"><bdi>978-0-521-87342-0</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/860391091">860391091</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistical+Physics+of+Particles&rft.pages=41&rft.pub=Cambridge+University+Press&rft.date=2007&rft_id=info%3Aoclcnum%2F860391091&rft.isbn=978-0-521-87342-0&rft.aulast=Kardar&rft.aufirst=Mehran&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-openstax-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-openstax_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIllowskyDean2023" class="citation book cs1">Illowsky, Barbara; Dean, Susan; et al. (2023). <a rel="nofollow" class="external text" href="https://openstax.org/books/statistics/pages/6-1-the-standard-normal-distribution">"6.1 The Standard Normal Distribution"</a>. <i>Statistics</i>. OpenStax. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-951693-22-0" title="Special:BookSources/978-1-951693-22-0"><bdi>978-1-951693-22-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=6.1+The+Standard+Normal+Distribution&rft.btitle=Statistics&rft.pub=OpenStax&rft.date=2023&rft.isbn=978-1-951693-22-0&rft.aulast=Illowsky&rft.aufirst=Barbara&rft.au=Dean%2C+Susan&rft_id=https%3A%2F%2Fopenstax.org%2Fbooks%2Fstatistics%2Fpages%2F6-1-the-standard-normal-distribution&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrinsteadSnell1997" class="citation book cs1">Grinstead, Charles M.; <a href="/wiki/J._Laurie_Snell" title="J. Laurie Snell">Snell, James Laurie</a> (1997). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110727200156/http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html"><i>Introduction to Probability</i></a> (published online under the <a href="/wiki/GFDL" class="mw-redirect" title="GFDL">GFDL</a>). American Mathematical Society. p. 85. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-9414-9" title="Special:BookSources/978-0-8218-9414-9"><bdi>978-0-8218-9414-9</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html">the original</a> on 2011-07-27.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Probability&rft.pages=85&rft.pub=American+Mathematical+Society&rft.date=1997&rft.isbn=978-0-8218-9414-9&rft.aulast=Grinstead&rft.aufirst=Charles+M.&rft.au=Snell%2C+James+Laurie&rft_id=http%3A%2F%2Fwww.dartmouth.edu%2F~chance%2Fteaching_aids%2Fbooks_articles%2Fprobability_book%2Fbook.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1997" class="citation book cs1"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a> (1997). <a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming"><i>The Art of Computer Programming</i></a>. Vol. I. Addison-Wesley. p. 183. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-201-03801-3" title="Special:BookSources/0-201-03801-3"><bdi>0-201-03801-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Art+of+Computer+Programming&rft.pages=183&rft.pub=Addison-Wesley&rft.date=1997&rft.isbn=0-201-03801-3&rft.aulast=Knuth&rft.aufirst=Donald&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Finch-2003-p14-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-Finch-2003-p14_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Finch-2003-p14_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteven_Finch2003" class="citation book cs1">Steven Finch (2003). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalcons0000finc"><i>Mathematical constants</i></a></span>. Cambridge University Press. p. <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalcons0000finc/page/14">14</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-81805-6" title="Special:BookSources/978-0-521-81805-6"><bdi>978-0-521-81805-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+constants&rft.pages=14&rft.pub=Cambridge+University+Press&rft.date=2003&rft.isbn=978-0-521-81805-6&rft.au=Steven+Finch&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalcons0000finc&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-greg-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-greg_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-greg_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGbur2011" class="citation book cs1"><a href="/wiki/Greg_Gbur" title="Greg Gbur">Gbur, Greg</a> (2011). <i>Mathematical Methods for Optical Physics and Engineering</i>. Cambridge University Press. p. 779. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521516-10-5" title="Special:BookSources/978-0-521516-10-5"><bdi>978-0-521516-10-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Methods+for+Optical+Physics+and+Engineering&rft.pages=779&rft.pub=Cambridge+University+Press&rft.date=2011&rft.isbn=978-0-521516-10-5&rft.aulast=Gbur&rft.aufirst=Greg&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-kline-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-kline_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kline_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKline1998" class="citation book cs1">Kline, M. (1998). <i>Calculus: An intuitive and physical approach</i>. Dover Publications. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YdjK_rD7BEkC&pg=PA337">337 ff</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-40453-6" title="Special:BookSources/0-486-40453-6"><bdi>0-486-40453-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus%3A+An+intuitive+and+physical+approach&rft.pages=337+ff&rft.pub=Dover+Publications&rft.date=1998&rft.isbn=0-486-40453-6&rft.aulast=Kline&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-strangherman-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-strangherman_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-strangherman_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrangHerman2023" class="citation book cs1">Strang, Gilbert; Herman, Edwin; et al. (2023). <a rel="nofollow" class="external text" href="https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series">"6.3 Taylor and Maclaurin Series"</a>. <i>Calculus, volume 2</i>. OpenStax. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-947172-14-2" title="Special:BookSources/978-1-947172-14-2"><bdi>978-1-947172-14-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=6.3+Taylor+and+Maclaurin+Series&rft.btitle=Calculus%2C+volume+2&rft.pub=OpenStax&rft.date=2023&rft.isbn=978-1-947172-14-2&rft.aulast=Strang&rft.aufirst=Gilbert&rft.au=Herman%2C+Edwin&rft_id=https%3A%2F%2Fopenstax.org%2Fbooks%2Fcalculus-volume-2%2Fpages%2F6-3-taylor-and-maclaurin-series&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrangHerman2023" class="citation book cs1">Strang, Gilbert; Herman, Edwin; et al. (2023). <a rel="nofollow" class="external text" href="https://openstax.org/books/calculus-volume-1/pages/4-10-antiderivatives">"4.10 Antiderivatives"</a>. <i>Calculus, volume 2</i>. OpenStax. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-947172-14-2" title="Special:BookSources/978-1-947172-14-2"><bdi>978-1-947172-14-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=4.10+Antiderivatives&rft.btitle=Calculus%2C+volume+2&rft.pub=OpenStax&rft.date=2023&rft.isbn=978-1-947172-14-2&rft.aulast=Strang&rft.aufirst=Gilbert&rft.au=Herman%2C+Edwin&rft_id=https%3A%2F%2Fopenstax.org%2Fbooks%2Fcalculus-volume-1%2Fpages%2F4-10-antiderivatives&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDorrie1965" class="citation book cs1">Dorrie, Heinrich (1965). <i>100 Great Problems of Elementary Mathematics</i>. Dover. pp. 44–48.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=100+Great+Problems+of+Elementary+Mathematics&rft.pages=44-48&rft.pub=Dover&rft.date=1965&rft.aulast=Dorrie&rft.aufirst=Heinrich&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">A standard calculus exercise using the <a href="/wiki/Mean_value_theorem" title="Mean value theorem">mean value theorem</a>; see for example Apostol (1967) <i>Calculus</i>, § 6.17.41.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSloane_"A073230"" class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A073230">"Sequence A073230 (Decimal expansion of (1/e)^e)"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&rft.atitle=Sequence%26%23x20%3BA073230%26%23x20%3B%28Decimal+expansion+of+%281%2Fe%29%5Ee%29&rft_id=https%3A%2F%2Foeis.org%2FA073230&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSloane_"A073229"" class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A073229">"Sequence A073229 (Decimal expansion of e^(1/e))"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&rft.atitle=Sequence%26%23x20%3BA073229%26%23x20%3B%28Decimal+expansion+of+e%5E%281%2Fe%29%29&rft_id=https%3A%2F%2Foeis.org%2FA073229&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." <i>Acta Acad. Scient. Petropol. 2</i>, 29–51, 1783. Reprinted in Euler, L. <i>Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae</i>. Leipzig, Germany: Teubner, pp. 350–369, 1921. (<a rel="nofollow" class="external text" href="http://math.dartmouth.edu/~euler/docs/originals/E532.pdf">facsimile</a>)</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnoebel1981" class="citation journal cs1">Knoebel, R. Arthur (1981). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2320546">"Exponentials Reiterated"</a>. <i>The American Mathematical Monthly</i>. <b>88</b> (4): 235–252. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2320546">10.2307/2320546</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9890">0002-9890</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2320546">2320546</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Mathematical+Monthly&rft.atitle=Exponentials+Reiterated&rft.volume=88&rft.issue=4&rft.pages=235-252&rft.date=1981&rft.issn=0002-9890&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2320546%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2320546&rft.aulast=Knoebel&rft.aufirst=R.+Arthur&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2320546&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnderson2004" class="citation journal cs1">Anderson, Joel (2004). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/4145040">"Iterated Exponentials"</a>. <i>The American Mathematical Monthly</i>. <b>111</b> (8): 668–679. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F4145040">10.2307/4145040</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9890">0002-9890</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/4145040">4145040</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Mathematical+Monthly&rft.atitle=Iterated+Exponentials&rft.volume=111&rft.issue=8&rft.pages=668-679&rft.date=2004&rft.issn=0002-9890&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F4145040%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F4145040&rft.aulast=Anderson&rft.aufirst=Joel&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F4145040&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandifer2006" class="citation web cs1">Sandifer, Ed (Feb 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140223072640/http://vanilla47.com/PDFs/Leonhard%20Euler/How%20Euler%20Did%20It%20by%20Ed%20Sandifer/Who%20proved%20e%20is%20irrational.pdf">"How Euler Did It: Who proved <span class="texhtml mvar" style="font-style:italic;">e</span> is Irrational?"</a> <span class="cs1-format">(PDF)</span>. MAA Online. Archived from <a rel="nofollow" class="external text" href="http://vanilla47.com/PDFs/Leonhard%20Euler/How%20Euler%20Did%20It%20by%20Ed%20Sandifer/Who%20proved%20e%20is%20irrational.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-02-23<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-06-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=How+Euler+Did+It%3A+Who+proved+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3Ee%3C%2Fspan%3E+is+Irrational%3F&rft.pub=MAA+Online&rft.date=2006-02&rft.aulast=Sandifer&rft.aufirst=Ed&rft_id=http%3A%2F%2Fvanilla47.com%2FPDFs%2FLeonhard%2520Euler%2FHow%2520Euler%2520Did%2520It%2520by%2520Ed%2520Sandifer%2FWho%2520proved%2520e%2520is%2520irrational.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelfond2015" class="citation book cs1"><a href="/wiki/Alexander_Gelfond" title="Alexander Gelfond">Gelfond, A. O.</a> (2015) [1960]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=408wBgAAQBAJ"><i>Transcendental and Algebraic Numbers</i></a>. Dover Books on Mathematics. Translated by <a href="/w/index.php?title=Leo_F._Boron&action=edit&redlink=1" class="new" title="Leo F. Boron (page does not exist)">Boron, Leo F.</a> New York: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>. p. 41. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-49526-2" title="Special:BookSources/978-0-486-49526-2"><bdi>978-0-486-49526-2</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0057921">0057921</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transcendental+and+Algebraic+Numbers&rft.place=New+York&rft.series=Dover+Books+on+Mathematics&rft.pages=41&rft.pub=Dover+Publications&rft.date=2015&rft.isbn=978-0-486-49526-2&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0057921%23id-name%3DMR&rft.aulast=Gelfond&rft.aufirst=A.+O.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D408wBgAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/IrrationalityMeasure.html">"Irrationality Measure"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-09-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Irrationality+Measure&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FIrrationalityMeasure.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurtyRath2014" class="citation book cs1">Murty, M. Ram; Rath, Purusottam (2014). <a rel="nofollow" class="external text" href="https://link.springer.com/book/10.1007/978-1-4939-0832-5"><i>Transcendental Numbers</i></a>. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4939-0832-5">10.1007/978-1-4939-0832-5</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transcendental+Numbers&rft.pub=Springer&rft.date=2014&rft_id=info%3Adoi%2F10.1007%2F978-1-4939-0832-5&rft.aulast=Murty&rft.aufirst=M.+Ram&rft.au=Rath%2C+Purusottam&rft_id=https%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-1-4939-0832-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldschmidt2021" class="citation web cs1">Waldschmidt, Michel (2021). <a rel="nofollow" class="external text" href="https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/SchanuelEn.pdf">"Schanuel's Conjecture: algebraic independence of transcendental numbers"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Schanuel%E2%80%99s+Conjecture%3A+algebraic+independence+of+transcendental+numbers&rft.date=2021&rft.aulast=Waldschmidt&rft.aufirst=Michel&rft_id=https%3A%2F%2Fwebusers.imj-prg.fr%2F~michel.waldschmidt%2Farticles%2Fpdf%2FSchanuelEn.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKhoshnevisan2006" class="citation book cs1"><a href="/wiki/Davar_Khoshnevisan" title="Davar Khoshnevisan">Khoshnevisan, Davar</a> (2006). <a rel="nofollow" class="external text" href="http://www.claymath.org/library/annual_report/ar2006/06report_normalnumbers.pdf">"Normal numbers are normal"</a> <span class="cs1-format">(PDF)</span>. <i>Clay Mathematics Institute Annual Report 2006</i>. <a href="/wiki/Clay_Mathematics_Institute" title="Clay Mathematics Institute">Clay Mathematics Institute</a>. pp. 15, 27–31.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Normal+numbers+are+normal&rft.btitle=Clay+Mathematics+Institute+Annual+Report+2006&rft.pages=15%2C+27-31&rft.pub=Clay+Mathematics+Institute&rft.date=2006&rft.aulast=Khoshnevisan&rft.aufirst=Davar&rft_id=http%3A%2F%2Fwww.claymath.org%2Flibrary%2Fannual_report%2Far2006%2F06report_normalnumbers.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKontsevichZagier2001" class="citation web cs1"><a href="/wiki/Maxim_Kontsevich" title="Maxim Kontsevich">Kontsevich, Maxim</a>; <a href="/wiki/Don_Zagier" title="Don Zagier">Zagier, Don</a> (2001). <a rel="nofollow" class="external text" href="https://www.ihes.fr/~maxim/TEXTS/Periods.pdf">"Periods"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Periods&rft.date=2001&rft.aulast=Kontsevich&rft.aufirst=Maxim&rft.au=Zagier%2C+Don&rft_id=https%3A%2F%2Fwww.ihes.fr%2F~maxim%2FTEXTS%2FPeriods.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittakerWatson1927" class="citation book cs1"><a href="/wiki/Edmund_Taylor_Whittaker" class="mw-redirect" title="Edmund Taylor Whittaker">Whittaker, Edmund Taylor</a>; <a href="/wiki/George_Neville_Watson" class="mw-redirect" title="George Neville Watson">Watson, George Neville</a> (1927-01-02). <a href="/wiki/A_Course_of_Modern_Analysis" title="A Course of Modern Analysis"><i>A Course Of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions</i></a> (4th ed.). Cambridge, UK: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p. 581. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-06794-2" title="Special:BookSources/978-0-521-06794-2"><bdi>978-0-521-06794-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Course+Of+Modern+Analysis%3A+An+Introduction+to+the+General+Theory+of+Infinite+Processes+and+of+Analytic+Functions%3B+with+an+Account+of+the+Principal+Transcendental+Functions&rft.place=Cambridge%2C+UK&rft.pages=581&rft.edition=4th&rft.pub=Cambridge+University+Press&rft.date=1927-01-02&rft.isbn=978-0-521-06794-2&rft.aulast=Whittaker&rft.aufirst=Edmund+Taylor&rft.au=Watson%2C+George+Neville&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Dennery-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dennery_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dennery_46-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Dennery_46-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Dennery_46-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDenneryKrzywicki1995" class="citation book cs1">Dennery, P.; Krzywicki, A. (1995) [1967]. <i>Mathematics for Physicists</i>. Dover. pp. 23–25. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-69193-4" title="Special:BookSources/0-486-69193-4"><bdi>0-486-69193-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+for+Physicists&rft.pages=23-25&rft.pub=Dover&rft.date=1995&rft.isbn=0-486-69193-4&rft.aulast=Dennery&rft.aufirst=P.&rft.au=Krzywicki%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilla2020" class="citation arxiv cs1">Milla, Lorenz (2020). "The Transcendence of π and the Squaring of the Circle". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.14035">2003.14035</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.HO">math.HO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=The+Transcendence+of+%CF%80+and+the+Squaring+of+the+Circle&rft.date=2020&rft_id=info%3Aarxiv%2F2003.14035&rft.aulast=Milla&rft.aufirst=Lorenz&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHines" class="citation web cs1">Hines, Robert. <a rel="nofollow" class="external text" href="https://math.colorado.edu/~rohi1040/expository/eistranscendental.pdf">"e is transcendental"</a> <span class="cs1-format">(PDF)</span>. <i>University of Colorado</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210623215444/https://math.colorado.edu/~rohi1040/expository/eistranscendental.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2021-06-23.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=University+of+Colorado&rft.atitle=e+is+transcendental&rft.aulast=Hines&rft.aufirst=Robert&rft_id=https%3A%2F%2Fmath.colorado.edu%2F~rohi1040%2Fexpository%2Feistranscendental.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Sultan-49"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sultan_49-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sultan_49-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSultanArtzt2010" class="citation book cs1">Sultan, Alan; Artzt, Alice F. (2010). <i>The Mathematics That Every Secondary School Math Teacher Needs to Know</i>. Routledge. pp. 326–328. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-203-85753-3" title="Special:BookSources/978-0-203-85753-3"><bdi>978-0-203-85753-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematics+That+Every+Secondary+School+Math+Teacher+Needs+to+Know&rft.pages=326-328&rft.pub=Routledge&rft.date=2010&rft.isbn=978-0-203-85753-3&rft.aulast=Sultan&rft.aufirst=Alan&rft.au=Artzt%2C+Alice+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHofstadter1995" class="citation book cs1"><a href="/wiki/Douglas_Hofstadter" title="Douglas Hofstadter">Hofstadter, D.R.</a> (1995). <i>Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought</i>. Basic Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7139-9155-0" title="Special:BookSources/0-7139-9155-0"><bdi>0-7139-9155-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fluid+Concepts+and+Creative+Analogies%3A+Computer+Models+of+the+Fundamental+Mechanisms+of+Thought&rft.pub=Basic+Books&rft.date=1995&rft.isbn=0-7139-9155-0&rft.aulast=Hofstadter&rft.aufirst=D.R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-OEIS_continued_fraction-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-OEIS_continued_fraction_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSloane_"A003417"" class="citation web cs1"><a href="/wiki/Neil_Sloane" title="Neil Sloane">Sloane, N. J. A.</a> (ed.). <a rel="nofollow" class="external text" href="https://oeis.org/A003417">"Sequence A003417 (Continued fraction for e)"</a>. <i>The <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">On-Line Encyclopedia of Integer Sequences</a></i>. OEIS Foundation.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+On-Line+Encyclopedia+of+Integer+Sequences&rft.atitle=Sequence%26%23x20%3BA003417%26%23x20%3B%28Continued+fraction+for+e%29&rft_id=https%3A%2F%2Foeis.org%2FA003417&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRussell1991" class="citation journal cs1">Russell, K.G. (February 1991). "Estimating the Value of e by Simulation". <i>The American Statistician</i>. <b>45</b> (1): 66–68. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00031305.1991.10475769">10.1080/00031305.1991.10475769</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2685243">2685243</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Statistician&rft.atitle=Estimating+the+Value+of+e+by+Simulation&rft.volume=45&rft.issue=1&rft.pages=66-68&rft.date=1991-02&rft_id=info%3Adoi%2F10.1080%2F00031305.1991.10475769&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2685243%23id-name%3DJSTOR&rft.aulast=Russell&rft.aufirst=K.G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">Dinov, ID (2007) <i><a rel="nofollow" class="external text" href="http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LawOfLargeNumbers#Estimating_e_using_SOCR_simulation">Estimating e using SOCR simulation</a></i>, SOCR Hands-on Activities (retrieved December 26, 2007).</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">Sebah, P. and Gourdon, X.; <a rel="nofollow" class="external text" href="http://numbers.computation.free.fr/Constants/E/e.html">The constant <span class="texhtml mvar" style="font-style:italic;">e</span> and its computation</a></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">Gourdon, X.; <a rel="nofollow" class="external text" href="http://numbers.computation.free.fr/Constants/PiProgram/computations.html">Reported large computations with PiFast</a></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">Roger Cotes (1714) "Logometria," <i>Philosophical Transactions of the Royal Society of London</i>, <b>29</b> (338) : 5–45; <a rel="nofollow" class="external text" href="https://archive.today/20140410203227/http://babel.hathitrust.org/cgi/pt?id=ucm.5324351035;view=2up;seq=16">see especially the bottom of page 10.</a> From page 10: <i>"Porro eadem ratio est inter 2,718281828459 &c et 1, … "</i> (Furthermore, by the same means, the ratio is between 2.718281828459… and 1, … )</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text">Leonhard Euler, <i>Introductio in Analysin Infinitorum</i> (Lausanne, Switzerland: Marc Michel Bousquet & Co., 1748), volume 1, <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_jQ1bAAAAQAAJ/page/n115">page 90.</a></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">William Shanks, <i>Contributions to Mathematics</i>, ... (London, England: G. Bell, 1853), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=d-9ZAAAAcAAJ&pg=PA89">page 89.</a></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">William Shanks (1871) <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sclTAAAAcAAJ&pg=PA27">"On the numerical values of <span class="texhtml mvar" style="font-style:italic;">e</span>, <span class="texhtml">log<sub><i>e</i></sub> 2</span>, <span class="texhtml">log<sub><i>e</i></sub> 3</span>, <span class="texhtml">log<sub><i>e</i></sub> 5</span>, and <span class="texhtml">log<sub><i>e</i></sub> 10</span>, also on the numerical value of <span class="texhtml mvar" style="font-style:italic;">M</span> the modulus of the common system of logarithms, all to 205 decimals,"</a> <i>Proceedings of the Royal Society of London</i>, <b>20</b> : 27–29.</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text">J. Marcus Boorman (October 1884) <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mG8yAQAAMAAJ&pg=PA204">"Computation of the Naperian base,"</a> <i>Mathematical Magazine</i>, <b>1</b> (12) : 204–205.</span> </li> <li id="cite_note-We_have_computed_e_on_a_7090_to_100,265D_by_the_obvious_program.-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-We_have_computed_e_on_a_7090_to_100,265D_by_the_obvious_program._61-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaniel_ShanksJohn_W_Wrench1962" class="citation journal cs1"><a href="/wiki/Daniel_Shanks" title="Daniel Shanks">Daniel Shanks</a>; <a href="/wiki/John_Wrench" title="John Wrench">John W Wrench</a> (1962). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/mcom/1962-16-077/S0025-5718-1962-0136051-9/S0025-5718-1962-0136051-9.pdf">"Calculation of Pi to 100,000 Decimals"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>16</b> (77): 76–99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2003813">10.2307/2003813</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2003813">2003813</a>. p. 78: <q>We have computed e on a 7090 to 100,265D by the obvious program</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Calculation+of+Pi+to+100%2C000+Decimals&rft.volume=16&rft.issue=77&rft.pages=76-99&rft.date=1962&rft_id=info%3Adoi%2F10.2307%2F2003813&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2003813%23id-name%3DJSTOR&rft.au=Daniel+Shanks&rft.au=John+W+Wrench&rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fmcom%2F1962-16-077%2FS0025-5718-1962-0136051-9%2FS0025-5718-1962-0136051-9.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-wozniak198106-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-wozniak198106_62-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWozniak1981" class="citation magazine cs1"><a href="/wiki/Steve_Wozniak" title="Steve Wozniak">Wozniak, Steve</a> (June 1981). <a rel="nofollow" class="external text" href="https://archive.org/stream/byte-magazine-1981-06/1981_06_BYTE_06-06_Operating_Systems#page/n393/mode/2up">"The Impossible Dream: Computing <span class="texhtml mvar" style="font-style:italic;">e</span> to 116,000 Places with a Personal Computer"</a>. <i>BYTE</i>. Vol. 6, no. 6. McGraw-Hill. p. 392<span class="reference-accessdate">. Retrieved <span class="nowrap">18 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=BYTE&rft.atitle=The+Impossible+Dream%3A+Computing+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3Ee%3C%2Fspan%3E+to+116%2C000+Places+with+a+Personal+Computer&rft.volume=6&rft.issue=6&rft.pages=392&rft.date=1981-06&rft.aulast=Wozniak&rft.aufirst=Steve&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fbyte-magazine-1981-06%2F1981_06_BYTE_06-06_Operating_Systems%23page%2Fn393%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlexander_Yee2020" class="citation web cs1">Alexander Yee, ed. (5 December 2020). <a rel="nofollow" class="external text" href="http://www.numberworld.org/digits/E/">"e"</a>. <i>Numberworld</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Numberworld&rft.atitle=e&rft.date=2020-12-05&rft_id=http%3A%2F%2Fwww.numberworld.org%2Fdigits%2FE%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-Finch-2005-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-Finch-2005_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Finch-2005_64-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFinch2005" class="citation book cs1">Finch, Steven R. (2005). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/180072364"><i>Mathematical constants</i></a>. Cambridge Univ. Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-81805-6" title="Special:BookSources/978-0-521-81805-6"><bdi>978-0-521-81805-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/180072364">180072364</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+constants&rft.pub=Cambridge+Univ.+Press&rft.date=2005&rft_id=info%3Aoclcnum%2F180072364&rft.isbn=978-0-521-81805-6&rft.aulast=Finch&rft.aufirst=Steven+R.&rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F180072364&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1990" class="citation journal cs1"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald</a> (1990-10-03). <a rel="nofollow" class="external text" href="http://www.ntg.nl/maps/05/34.pdf">"The Future of TeX and Metafont"</a> <span class="cs1-format">(PDF)</span>. <i>TeX Mag</i>. <b>5</b> (1): 145<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-02-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=TeX+Mag&rft.atitle=The+Future+of+TeX+and+Metafont&rft.volume=5&rft.issue=1&rft.pages=145&rft.date=1990-10-03&rft.aulast=Knuth&rft.aufirst=Donald&rft_id=http%3A%2F%2Fwww.ntg.nl%2Fmaps%2F05%2F34.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobergeMelançon2017" class="citation journal cs1">Roberge, Jonathan; Melançon, Louis (June 2017). <a rel="nofollow" class="external text" href="http://journals.sagepub.com/doi/10.1177/1354856515592506">"Being the King Kong of algorithmic culture is a tough job after all: Google's regimes of justification and the meanings of Glass"</a>. <i>Convergence: The International Journal of Research into New Media Technologies</i>. <b>23</b> (3): 306–324. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F1354856515592506">10.1177/1354856515592506</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1354-8565">1354-8565</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Convergence%3A+The+International+Journal+of+Research+into+New+Media+Technologies&rft.atitle=Being+the+King+Kong+of+algorithmic+culture+is+a+tough+job+after+all%3A+Google%27s+regimes+of+justification+and+the+meanings+of+Glass&rft.volume=23&rft.issue=3&rft.pages=306-324&rft.date=2017-06&rft_id=info%3Adoi%2F10.1177%2F1354856515592506&rft.issn=1354-8565&rft.aulast=Roberge&rft.aufirst=Jonathan&rft.au=Melan%C3%A7on%2C+Louis&rft_id=http%3A%2F%2Fjournals.sagepub.com%2Fdoi%2F10.1177%2F1354856515592506&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20131203102744/http://braintags.com/archives/2004/07/first-10digit-prime-found-in-consecutive-digits-of-e/">"First 10-digit prime found in consecutive digits of <span class="texhtml">e</span>"</a>. <i>Brain Tags</i>. Archived from <a rel="nofollow" class="external text" href="http://braintags.com/archives/2004/07/first-10digit-prime-found-in-consecutive-digits-of-e/">the original</a> on 2013-12-03<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-02-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Brain+Tags&rft.atitle=First+10-digit+prime+found+in+consecutive+digits+of+%3Cspan+class%3D%22texhtml+%22+%3Ee%3C%2Fspan%3E&rft_id=http%3A%2F%2Fbraintags.com%2Farchives%2F2004%2F07%2Ffirst-10digit-prime-found-in-consecutive-digits-of-e%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKazmierczak2004" class="citation web cs1">Kazmierczak, Marcus (2004-07-29). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100923111259/http://mkaz.com/math/google-billboard/">"Google Billboard"</a>. mkaz.com. Archived from <a rel="nofollow" class="external text" href="http://mkaz.com/math/google-billboard">the original</a> on 2010-09-23<span class="reference-accessdate">. Retrieved <span class="nowrap">2007-06-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Google+Billboard&rft.pub=mkaz.com&rft.date=2004-07-29&rft.aulast=Kazmierczak&rft.aufirst=Marcus&rft_id=http%3A%2F%2Fmkaz.com%2Fmath%2Fgoogle-billboard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://explorepdx.com/firsten.html">The first 10-digit prime in <span class="texhtml">e</span></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210411010312/http://explorepdx.com/firsten.html">Archived</a> 2021-04-11 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Explore Portland Community. Retrieved on 2020-12-09.</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShea" class="citation news cs1">Shea, Andrea. <a rel="nofollow" class="external text" href="https://www.npr.org/templates/story/story.php?storyId=3916173">"Google Entices Job-Searchers with Math Puzzle"</a>. <i>NPR</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2007-06-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=NPR&rft.atitle=Google+Entices+Job-Searchers+with+Math+Puzzle&rft.aulast=Shea&rft.aufirst=Andrea&rft_id=https%3A%2F%2Fwww.npr.org%2Ftemplates%2Fstory%2Fstory.php%3FstoryId%3D3916173&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=23" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Maor, Eli; <i><span class="texhtml mvar" style="font-style:italic;">e</span>: The Story of a Number</i>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-691-05854-7" title="Special:BookSources/0-691-05854-7">0-691-05854-7</a></li> <li><a rel="nofollow" class="external text" href="http://www.johnderbyshire.com/Books/Prime/Blog/page.html#endnote10">Commentary on Endnote 10</a> of the book <i><a href="/wiki/Prime_Obsession" title="Prime Obsession">Prime Obsession</a></i> for another stochastic representation</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcCartin,_Brian_J.2006" class="citation journal cs1">McCartin, Brian J. (2006). <a rel="nofollow" class="external text" href="http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/mccartin.pdf">"e: The Master of All"</a> <span class="cs1-format">(PDF)</span>. <i>The Mathematical Intelligencer</i>. <b>28</b> (2): 10–21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf02987150">10.1007/bf02987150</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123033482">123033482</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Intelligencer&rft.atitle=e%3A+The+Master+of+All&rft.volume=28&rft.issue=2&rft.pages=10-21&rft.date=2006&rft_id=info%3Adoi%2F10.1007%2Fbf02987150&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123033482%23id-name%3DS2CID&rft.au=McCartin%2C+Brian+J.&rft_id=http%3A%2F%2Fwww.maa.org%2Fsites%2Fdefault%2Ffiles%2Fpdf%2Fupload_library%2F22%2FChauvenet%2Fmccartin.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AE+%28mathematical+constant%29" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E_(mathematical_constant)&action=edit&section=24" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:E_(mathematical_constant)" class="extiw" title="commons:Category:E (mathematical constant)"><span class="texhtml mvar" style="font-style:italic;">e</span> (mathematical constant)</a></span>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/E_(mathematical_constant)" class="extiw" title="q:E (mathematical constant)"><span class="texhtml mvar" style="font-style:italic;">e</span> (mathematical constant)</a></b></i>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070210095028/http://www.gutenberg.org/ebooks/127">The number <span class="texhtml mvar" style="font-style:italic;">e</span> to 1 million places</a> and <a rel="nofollow" class="external text" href="https://apod.nasa.gov/htmltest/rjn_dig.html">NASA.gov</a> 2 and 5 million places</li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/eApproximations.html"><span class="texhtml mvar" style="font-style:italic;">e</span> Approximations</a> – Wolfram MathWorld</li> <li><a rel="nofollow" class="external text" href="http://jeff560.tripod.com/constants.html">Earliest Uses of Symbols for Constants</a> Jan. 13, 2008</li> <li><a rel="nofollow" class="external text" href="http://www.gresham.ac.uk/lectures-and-events/the-story-of-e">"The story of <span class="texhtml mvar" style="font-style:italic;">e</span>"</a>, by Robin Wilson at <a href="/wiki/Gresham_College" title="Gresham College">Gresham College</a>, 28 February 2007 (available for audio and video download)</li> <li><a rel="nofollow" class="external text" href="http://pisearch.org/e"><span class="texhtml mvar" style="font-style:italic;">e</span> Search Engine</a> 2 billion searchable digits of <span class="texhtml mvar" style="font-style:italic;">e</span>, <span class="texhtml mvar" style="font-style:italic;">π</span> and <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">2</span></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Irrational_numbers" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Irrational_number" title="Template:Irrational number"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Irrational_number" title="Template talk:Irrational number"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Irrational_number" title="Special:EditPage/Template:Irrational number"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Irrational_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Irrational_number" title="Irrational number">Irrational numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chaitin%27s_constant" title="Chaitin's constant">Chaitin's</a> (<span class="texhtml">Ω</span>)</li> <li><a href="/wiki/Liouville_number" title="Liouville number">Liouville</a></li> <li><a href="/wiki/Prime_constant" title="Prime constant">Prime</a> (<span class="texhtml mvar" style="font-style:italic;">ρ</span>)</li> <li><a href="/wiki/Omega_constant" title="Omega constant">Omega</a></li> <li><a href="/wiki/Cahen%27s_constant" title="Cahen's constant">Cahen</a></li></ul> <ul><li><a href="/wiki/Natural_logarithm_of_2" title="Natural logarithm of 2">Logarithm of 2</a></li> <li><a href="/wiki/Dottie_number" title="Dottie number">Dottie</a></li> <li><a href="/wiki/Lemniscate_constant" title="Lemniscate constant">Lemniscate</a> (<span class="texhtml mvar" style="font-style:italic;">ϖ</span>)</li> <li><a href="/wiki/Twelfth_root_of_two" title="Twelfth root of two">Twelfth root of 2</a></li> <li><a href="/wiki/Ap%C3%A9ry%27s_constant" title="Apéry's constant">Apéry's</a> (<span class="texhtml"><i>ζ</i>(3)</span>)</li> <li><a href="/wiki/Doubling_the_cube" title="Doubling the cube">Cube root of 2</a></li> <li><a href="/wiki/Plastic_ratio" title="Plastic ratio">Plastic ratio</a> (<span class="texhtml mvar" style="font-style:italic;">ρ</span>)</li></ul> <ul><li><a href="/wiki/Square_root_of_2" title="Square root of 2">Square root of 2</a></li> <li><a href="/wiki/Supergolden_ratio" title="Supergolden ratio">Supergolden ratio</a> (<span class="texhtml mvar" style="font-style:italic;">ψ</span>)</li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Borwein_constant" title="Erdős–Borwein constant">Erdős–Borwein</a> (<span class="texhtml mvar" style="font-style:italic;">E</span>)</li> <li><a href="/wiki/Golden_ratio" title="Golden ratio">Golden ratio</a> (<span class="texhtml mvar" style="font-style:italic;">φ</span>)</li> <li><a href="/wiki/Square_root_of_3" title="Square root of 3">Square root of 3</a></li> <li><a href="/wiki/Supersilver_ratio" title="Supersilver ratio">Supersilver ratio</a> (<span class="texhtml mvar" style="font-style:italic;">ς</span>)</li> <li><a href="/wiki/Square_root_of_5" title="Square root of 5">Square root of 5</a></li> <li><a href="/wiki/Silver_ratio" title="Silver ratio">Silver ratio</a> (<span class="texhtml"><i>δ</i><sub><i>S</i></sub></span>)</li> <li><a href="/wiki/Square_root_of_6" title="Square root of 6">Square root of 6</a></li> <li><a href="/wiki/Square_root_of_7" title="Square root of 7">Square root of 7</a></li></ul> <ul><li><a class="mw-selflink selflink">Euler's</a> (<span class="texhtml mvar" style="font-style:italic;">e</span>)</li> <li><a href="/wiki/Pi" title="Pi">Pi</a> (<span class="texhtml mvar" style="font-style:italic;">π</span>)</li></ul> </div></td><td class="noviewer navbox-image" rowspan="2" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Gold,_square_root_of_2,_and_square_root_of_3_rectangles.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Gold%2C_square_root_of_2%2C_and_square_root_of_3_rectangles.svg/50px-Gold%2C_square_root_of_2%2C_and_square_root_of_3_rectangles.svg.png" decoding="async" width="50" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Gold%2C_square_root_of_2%2C_and_square_root_of_3_rectangles.svg/75px-Gold%2C_square_root_of_2%2C_and_square_root_of_3_rectangles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Gold%2C_square_root_of_2%2C_and_square_root_of_3_rectangles.svg/100px-Gold%2C_square_root_of_2%2C_and_square_root_of_3_rectangles.svg.png 2x" data-file-width="980" data-file-height="1755" /></a></span></div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Schizophrenic_number" title="Schizophrenic number">Schizophrenic</a></li> <li><a href="/wiki/Transcendental_number" title="Transcendental number">Transcendental</a></li> <li><a href="/wiki/Trigonometric_number" class="mw-redirect" title="Trigonometric number">Trigonometric</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q82435#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4150966-3">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh93008168">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="e (číslo)"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph114413&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007546755505171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <p class="mw-empty-elt"> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐qn7zs Cached time: 20241122140447 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.491 seconds Real time usage: 1.885 seconds Preprocessor visited node count: 11318/1000000 Post‐expand include size: 173109/2097152 bytes Template argument size: 12547/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 250698/5000000 bytes Lua time usage: 0.823/10.000 seconds Lua memory usage: 29266683/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1537.003 1 -total 44.35% 681.677 1 Template:Reflist 14.40% 221.349 15 Template:Cite_web 10.21% 156.894 4 Template:Cite_OEIS 8.93% 137.249 28 Template:Cite_book 8.55% 131.346 1 Template:Lang 8.00% 122.930 2 Template:Short_description 6.58% 101.066 87 Template:Math 6.34% 97.492 1 Template:Infobox_mathematical_constant 6.11% 93.841 1 Template:Commons_category --> <!-- Saved in parser cache with key enwiki:pcache:idhash:9633-0!canonical and timestamp 20241122140447 and revision id 1256778139. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=E_(mathematical_constant)&oldid=1256778139">https://en.wikipedia.org/w/index.php?title=E_(mathematical_constant)&oldid=1256778139</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:E_(mathematical_constant)" title="Category:E (mathematical constant)">E (mathematical constant)</a></li><li><a href="/wiki/Category:Leonhard_Euler" title="Category:Leonhard Euler">Leonhard Euler</a></li><li><a href="/wiki/Category:Mathematical_constants" title="Category:Mathematical constants">Mathematical constants</a></li><li><a href="/wiki/Category:Real_transcendental_numbers" title="Category:Real transcendental numbers">Real transcendental numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_move-protected_pages" title="Category:Wikipedia indefinitely move-protected pages">Wikipedia indefinitely move-protected pages</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 14:43<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=E_(mathematical_constant)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-qn7zs","wgBackendResponseTime":2097,"wgPageParseReport":{"limitreport":{"cputime":"1.491","walltime":"1.885","ppvisitednodes":{"value":11318,"limit":1000000},"postexpandincludesize":{"value":173109,"limit":2097152},"templateargumentsize":{"value":12547,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":250698,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1537.003 1 -total"," 44.35% 681.677 1 Template:Reflist"," 14.40% 221.349 15 Template:Cite_web"," 10.21% 156.894 4 Template:Cite_OEIS"," 8.93% 137.249 28 Template:Cite_book"," 8.55% 131.346 1 Template:Lang"," 8.00% 122.930 2 Template:Short_description"," 6.58% 101.066 87 Template:Math"," 6.34% 97.492 1 Template:Infobox_mathematical_constant"," 6.11% 93.841 1 Template:Commons_category"]},"scribunto":{"limitreport-timeusage":{"value":"0.823","limit":"10.000"},"limitreport-memusage":{"value":29266683,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-qn7zs","timestamp":"20241122140447","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"E (mathematical constant)","url":"https:\/\/en.wikipedia.org\/wiki\/E_(mathematical_constant)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q82435","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q82435","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-08T20:21:59Z","dateModified":"2024-11-11T14:43:38Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/e8\/Hyperbola_E.svg","headline":"mathematical constant; limit of (1 + 1\/n)^n as n approaches infinity; transcendental number approximately equal 2.718281828"}</script> </body> </html>