CINXE.COM
Search results for: viaduct rail station
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: viaduct rail station</title> <meta name="description" content="Search results for: viaduct rail station"> <meta name="keywords" content="viaduct rail station"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="viaduct rail station" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="viaduct rail station"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 964</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: viaduct rail station</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> An Analytical Study on the Vibration Reduction Method of Railway Station Using TPU</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinho%20Hur">Jinho Hur</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjung%20Shin"> Minjung Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Heekyu%20Kim"> Heekyu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many places, new railway constructions in the city are being used to build a viaduct station to take advantage of the space below the line, for difficulty of securing railway site and disconnections of areas. The space under the viaduct has limited to use by noise and vibration. In order to use it for various purposes, reducing noise and vibration is required. The vibration reduction method for new structures is recently developed enough to use as accommodation, but the reduction method for existing structures is still far-off. In this study, it suggests vibration reduction method by filling vibration reduction material to column members which is path of structure-bone-noise from trains run. Because most of railroad stations are reinforced concrete structures. It compares vibration reduction of station applied the method and original station by FEM analysis. As a result, reduction of vibration acceleration level in bandwidth 15~30Hz can be reduced. Therefore, using this method for viaduct railroad station, vibration of station is expected to be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure%20borne%20noise" title="structure borne noise">structure borne noise</a>, <a href="https://publications.waset.org/abstracts/search?q=TPU" title=" TPU"> TPU</a>, <a href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station" title=" viaduct rail station"> viaduct rail station</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20reduction%20method" title=" vibration reduction method"> vibration reduction method</a> </p> <a href="https://publications.waset.org/abstracts/24122/an-analytical-study-on-the-vibration-reduction-method-of-railway-station-using-tpu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dyah%20Titisari%20Widyastuti">Dyah Titisari Widyastuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility%20of%20daily%20mobility" title="accessibility of daily mobility">accessibility of daily mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian-friendly%20district" title=" pedestrian-friendly district"> pedestrian-friendly district</a>, <a href="https://publications.waset.org/abstracts/search?q=rail-station%20district" title=" rail-station district"> rail-station district</a>, <a href="https://publications.waset.org/abstracts/search?q=transit%20oriented%20development" title=" transit oriented development"> transit oriented development</a> </p> <a href="https://publications.waset.org/abstracts/72883/enabling-the-physical-elements-of-a-pedestrian-friendly-district-around-a-rail-station-for-supporting-transit-oriented-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">962</span> Study on Influencing Factors of Walkability of Rail Transit Station Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Wenjuan">Yang Wenjuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Yilun"> Xu Yilun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the comparative analysis of the relevant evaluation methods of walking environment, this paper selects the combined evaluation method of macro urban morphology analysis and micro urban design quality survey, then investigates and analyzes the walking environment of three rail transit station area in Nanjing to explore the influence factor and internal relation of walkability of rail transit station area. Analysis shows that micro urban design factors have greater impact on the walkability of rail transit station area compared with macro urban morphology factors, the convenience is the key factor in the four aspects of convenience, security, identity and comfortability of the urban design factors, the convenience is not only affected by the block network form, but also related to the quality of the street space. The overall evaluation of walkability comes from the overlapping and regrouping of the walking environment at different levels, but some environmental factors play a leading role. The social attributes of pedestrians also partly influence their walking perception and evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail%20transit%20station%20area" title="rail transit station area">rail transit station area</a>, <a href="https://publications.waset.org/abstracts/search?q=walkability" title=" walkability"> walkability</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=influence%20factors" title=" influence factors"> influence factors</a> </p> <a href="https://publications.waset.org/abstracts/80309/study-on-influencing-factors-of-walkability-of-rail-transit-station-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">961</span> Analysis of Urban Rail Transit Station's Accessibility Reliability: A Case Study of Hangzhou Metro, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Qu%20Chen">Jin-Qu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Liu"> Jie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Yin"> Yong Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zi-Qi%20Ju"> Zi-Qi Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Yao%20Wu"> Yu-Yao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase in travel fare and station’s failure will have huge impact on passengers’ travel. The Urban Rail Transit (URT) station’s accessibility reliability under increasing travel fare and station failure are analyzed in this paper. Firstly, the passenger’s travel path is resumed based on stochastic user equilibrium and Automatic Fare Collection (AFC) data. Secondly, calculating station’s importance by combining LeaderRank algorithm and Ratio of Station Affected Passenger Volume (RSAPV), and then the station’s accessibility evaluation indicators are proposed based on the analysis of passenger’s travel characteristic. Thirdly, station’s accessibility under different scenarios are measured and rate of accessibility change is proposed as station’s accessibility reliability indicator. Finally, the accessibility of Hangzhou metro stations is analyzed by the formulated models. The result shows that Jinjiang station and Liangzhu station are the most important and convenient station in the Hangzhou metro, respectively. Station failure and increase in travel fare and station failure have huge impact on station’s accessibility, except for increase in travel fare. Stations in Hangzhou metro Line 1 have relatively worse accessibility reliability and Fengqi Road station’s accessibility reliability is weakest. For Hangzhou metro operational department, constructing new metro line around Line 1 and protecting Line 1’s station preferentially can effective improve the accessibility reliability of Hangzhou metro. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20fare%20collection%20data" title="automatic fare collection data">automatic fare collection data</a>, <a href="https://publications.waset.org/abstracts/search?q=AFC" title=" AFC"> AFC</a>, <a href="https://publications.waset.org/abstracts/search?q=station%E2%80%99s%20accessibility%20reliability" title=" station’s accessibility reliability"> station’s accessibility reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20user%20equilibrium" title=" stochastic user equilibrium"> stochastic user equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20rail%20transit" title=" urban rail transit"> urban rail transit</a>, <a href="https://publications.waset.org/abstracts/search?q=URT" title=" URT"> URT</a> </p> <a href="https://publications.waset.org/abstracts/113542/analysis-of-urban-rail-transit-stations-accessibility-reliability-a-case-study-of-hangzhou-metro-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">960</span> Study on the Spatial Vitality of Waterfront Rail Transit Station Area: A Case Study of Main Urban Area in Chongqing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lianxue%20Shi">Lianxue Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban waterfront rail transit stations exert a dual impact on both the waterfront and the transit station, resulting in a concentration of development elements in the surrounding space. In order to more effectively develop the space around the station, this study focuses on the perspective of the integration of station, city, and people. Taking Chongqing as an example, based on the Arc GIS platform, it explores the vitality of the site from the three dimensions of crowd activity heat, space facilities heat, and spatial accessibility. It conducts a comprehensive evaluation and interpretation of the vitality surrounding the waterfront rail transit station area in Chongqing. The study found that (1) the spatial vitality in the vicinity of waterfront rail transit stations is correlated with the waterfront's functional zoning and the intensity of development. Stations situated in waterfront residential and public spaces are more likely to experience a convergence of people, whereas those located in waterfront industrial areas exhibit lower levels of vitality. (2) Effective transportation accessibility plays a pivotal role in maintaining a steady flow of passengers and facilitating their movement. However, the three-dimensionality of urban space in mountainous regions is a notable challenge, leading to some stations experiencing limited accessibility. This underscores the importance of enhancing the optimization of walking space, particularly the access routes from the station to the waterfront area. (3) The density of spatial facilities around waterfront stations in old urban areas lags behind the population's needs, indicating a need to strengthen the allocation of relevant land and resources in these areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail%20transit%20station" title="rail transit station">rail transit station</a>, <a href="https://publications.waset.org/abstracts/search?q=waterfront" title=" waterfront"> waterfront</a>, <a href="https://publications.waset.org/abstracts/search?q=influence%20area" title=" influence area"> influence area</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20vitality" title=" spatial vitality"> spatial vitality</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20vitality" title=" urban vitality"> urban vitality</a> </p> <a href="https://publications.waset.org/abstracts/188398/study-on-the-spatial-vitality-of-waterfront-rail-transit-station-area-a-case-study-of-main-urban-area-in-chongqing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">959</span> Features of Rail Strength Analysis in Conditions of Increased Force Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Guramishvili">G. Guramishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moistsrapishvili"> M. Moistsrapishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Andghuladze"> L. Andghuladze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure. As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title="axial loading">axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20force%20loading" title=" rail force loading"> rail force loading</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20structure" title=" rail structure"> rail structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20strength%20analysis" title=" rail strength analysis"> rail strength analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20track%20stability" title=" rail track stability"> rail track stability</a> </p> <a href="https://publications.waset.org/abstracts/8609/features-of-rail-strength-analysis-in-conditions-of-increased-force-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">958</span> Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongyun%20Li">Hongyun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhibin%20Jiang"> Zhibin Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20rail%20transit" title="urban rail transit">urban rail transit</a>, <a href="https://publications.waset.org/abstracts/search?q=section%20shutdown" title=" section shutdown"> section shutdown</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20passenger" title=" frequent passenger"> frequent passenger</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20behavior%20pattern" title=" travel behavior pattern"> travel behavior pattern</a> </p> <a href="https://publications.waset.org/abstracts/174827/analysis-of-travel-behavior-patterns-of-frequent-passengers-after-the-section-shutdown-of-urban-rail-transit-taking-the-huaqiao-section-of-shanghai-metro-line-11-shutdown-during-the-covid-19-epidemic-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">957</span> Rail Corridors between Minimal Use of Train and Unsystematic Tightening of Population: A Methodological Essay </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benaiche">A. Benaiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current situation, the automobile has become the main means of locomotion. It allows traveling long distances, encouraging urban sprawl. To counteract this trend, the train is often proposed as an alternative to the car. Simultaneously, the favoring of urban development around public transport nodes such as railway stations is one of the main issues of the coordination between urban planning and transportation and the keystone of the sustainable urban development implementation. In this context, this paper focuses on the study of the spatial structuring dynamics around the railway. Specifically, it is a question of studying the demographic dynamics in rail corridors of Nantes, Angers and Le Mans (Western France) basing on the radiation of railway stations. Consequently, the methodology is concentrated on the knowledge of demographic weight and gains of these corridors, the index of urban intensity and the mobility behaviors (workers’ travels, scholars' travels, modal practices of travels). The perimeter considered to define the rail corridors includes the communes of urban area which have a railway station and communes with an access time to the railway station is less than fifteen minutes by car (time specified by the Regional Transport Scheme of Travelers). The main tools used are the statistical data from the census of population, the basis of detailed tables and databases on mobility flows. The study reveals that the population is not tightened along rail corridors and train use is minimal despite the presence of a nearby railway station. These results lead to propose guidelines to make the train, a real vector of mobility across the rail corridors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordination%20between%20urban%20planning%20and%20transportation" title="coordination between urban planning and transportation">coordination between urban planning and transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20corridors" title=" rail corridors"> rail corridors</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20stations" title=" railway stations"> railway stations</a>, <a href="https://publications.waset.org/abstracts/search?q=travels" title=" travels"> travels</a> </p> <a href="https://publications.waset.org/abstracts/57170/rail-corridors-between-minimal-use-of-train-and-unsystematic-tightening-of-population-a-methodological-essay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">956</span> Impact Load Response of Light Rail Train Rail Guard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyob%20Hundessa%20Gose">Eyob Hundessa Gose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title="impact load">impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20polymer" title=" fiber reinforced polymer"> fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20guard" title=" rail guard"> rail guard</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title=" LS-DYNA"> LS-DYNA</a> </p> <a href="https://publications.waset.org/abstracts/183199/impact-load-response-of-light-rail-train-rail-guard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">955</span> Vertical and Lateral Vibration Response for Corrugated Track Curves Supported on High-Density Polyethylene and Hytrel Rail Pads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.M.%20Balekwa">B.M. Balekwa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.V.V.%20Kallon"> D.V.V. Kallon</a>, <a href="https://publications.waset.org/abstracts/search?q=D.J.%20Fourie"> D.J. Fourie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is applied to establish the dynamic difference between vibration response of the rails supported on High Density Polyethylene (HDPE) and Hytrel/6358 rail pads. The experiment was conducted to obtain the results in the form of Frequency Response Functions (FRFs) in the vertical and lateral directions. Three antiresonance modes are seen in the vertical direction; one occurs at about 150 Hz when the rail resting on the Hytrel/6358 pad experiences a force mid-span. For the rail resting on this type of rail pad, no antiresonance occurs when the force is applied on the point of the rail that is resting on the pad and directly on top of a sleeper. The two antiresonance modes occur in a frequency range of 250 – 300 Hz in the vertical direction for the rail resting on HDPE pads. At resonance, the rail vibrates with a higher amplitude, but at antiresonance, the rail transmits vibration downwards to the sleepers. When the rail is at antiresonance, the stiffness of the rail pads play a vital role in terms of damping the vertical vibration to protect the sleepers. From the FRFs it is understood that the Hytrel/6358 rail pads perform better than the HDPE in terms of vertical response, given that at a lower frequency range of 0 – 300 Hz only one antiresonance mode was identified for vertical vibration of the rail supported on Hytrel/6358. This means the rail is at antiresonance only once within this frequency range and this is the only time when vibration is transmitted downwards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerance" title="accelerance">accelerance</a>, <a href="https://publications.waset.org/abstracts/search?q=FRF" title=" FRF"> FRF</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20corrugation" title=" rail corrugation"> rail corrugation</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20pad" title=" rail pad"> rail pad</a> </p> <a href="https://publications.waset.org/abstracts/125399/vertical-and-lateral-vibration-response-for-corrugated-track-curves-supported-on-high-density-polyethylene-and-hytrel-rail-pads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">954</span> The Effect of Surface Conditions on Wear of a Railway Wheel and Rail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani">A. Shebani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iwnicki"> S. Iwnicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20wheel%2Frail%20wear" title="railway wheel/rail wear">railway wheel/rail wear</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20conditions" title=" surface conditions"> surface conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20disc%20test%20rig" title=" twin disc test rig"> twin disc test rig</a>, <a href="https://publications.waset.org/abstracts/search?q=replica%20material" title=" replica material"> replica material</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicona%20profilometer" title=" Alicona profilometer"> Alicona profilometer</a> </p> <a href="https://publications.waset.org/abstracts/47795/the-effect-of-surface-conditions-on-wear-of-a-railway-wheel-and-rail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">953</span> Research on Optimization Strategies for the Negative Space of Urban Rail Transit Based on Urban Public Art Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kexin%20Chen">Kexin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an important method of transportation to solve the demand and supply contradiction generated in the rapid urbanization process, urban rail traffic system has been rapidly developed over the past ten years in China. During the rapid development, the space of urban rail Transit has encountered many problems, such as space simplification, sensory experience dullness, and poor regional identification, etc. This paper, focus on the study of the negative space of subway station and spatial softening, by comparing and learning from foreign cases. The article sorts out cases at home and abroad, make a comparative study of the cases, analysis more diversified setting of public art, and sets forth propositions on the domestic type of public art in the space of urban rail transit for reference, then shows the relationship of the spatial attribute in the space of urban rail transit and public art form. In this foundation, it aims to characterize more diverse setting ways for public art; then suggests the three public art forms corresponding properties, such as static presenting mode, dynamic image mode, and spatial softening mode; finds out the method of urban public art to optimize negative space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversification" title="diversification">diversification</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20space" title=" negative space"> negative space</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20strategy" title=" optimization strategy"> optimization strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20art%20planning" title=" public art planning"> public art planning</a> </p> <a href="https://publications.waset.org/abstracts/104297/research-on-optimization-strategies-for-the-negative-space-of-urban-rail-transit-based-on-urban-public-art-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">952</span> Choice of Sleeper and Rail Fastening Using Linear Programming Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Oliveira">Luciano Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsa%20V%C3%A1squez-Alvarez"> Elsa Vásquez-Alvarez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in rail freight transport in Brazil in recent years requires new railway lines and the maintenance of existing ones, which generates high costs for concessionaires. It is in this context that this work is inserted, whose objective is to propose a method that uses Binary Linear Programming for the choice of sleeper and rail fastening, from various options, including the way to apply these materials, with focus to minimize costs. Unit value information, the life cycle each of material type, and service expenses are considered. The model was implemented in commercial software using real data for its validation. The formulated model can be replicated to support decision-making for other railway projects in the choice of sleepers and rail fastening with lowest cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title="linear programming">linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20fastening" title=" rail fastening"> rail fastening</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20sleeper" title=" rail sleeper"> rail sleeper</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a> </p> <a href="https://publications.waset.org/abstracts/144639/choice-of-sleeper-and-rail-fastening-using-linear-programming-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">951</span> Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Karimpour">M. Karimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Elkhoury"> N. Elkhoury</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Hitihamillage"> L. Hitihamillage</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moridpour"> S. Moridpour</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hesami"> R. Hesami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARMAX" title="ARMAX">ARMAX</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20systems" title=" dynamic systems"> dynamic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=MGT" title=" MGT"> MGT</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20degradation" title=" rail degradation"> rail degradation</a> </p> <a href="https://publications.waset.org/abstracts/77370/rail-degradation-modelling-using-armax-a-case-study-applied-to-melbourne-tram-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">950</span> Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhaned%20Zaidi">Muhaned Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Grout"> Ian Grout</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Khari%20bin%20A%E2%80%99ain"> Abu Khari bin A’ain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=op-amp" title="op-amp">op-amp</a>, <a href="https://publications.waset.org/abstracts/search?q=rail-to-rail%20output" title=" rail-to-rail output"> rail-to-rail output</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller%20compensation" title=" Miller compensation"> Miller compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=Negative%20Miller%20capacitance" title=" Negative Miller capacitance"> Negative Miller capacitance</a> </p> <a href="https://publications.waset.org/abstracts/58421/rail-to-rail-output-op-amp-design-with-negative-miller-capacitance-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">949</span> Nonlinear Estimation Model for Rail Track Deterioration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Karimpour">M. Karimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Hitihamillage"> L. Hitihamillage</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Elkhoury"> N. Elkhoury</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moridpour"> S. Moridpour</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hesami"> R. Hesami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=MGT" title=" MGT"> MGT</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20modeling" title=" prediction modeling"> prediction modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20track%20degradation" title=" rail track degradation"> rail track degradation</a> </p> <a href="https://publications.waset.org/abstracts/77359/nonlinear-estimation-model-for-rail-track-deterioration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">948</span> Useful Lifetime Prediction of Rail Pads for High Speed Trains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%20Su%20Woo">Chang Su Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Sung%20Park"> Hyun Sung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Useful lifetime evaluations of rail-pads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail%20pads" title="rail pads">rail pads</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20test" title=" accelerated test"> accelerated test</a>, <a href="https://publications.waset.org/abstracts/search?q=Arrhenius%20plot" title=" Arrhenius plot"> Arrhenius plot</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20lifetime%20prediction" title=" useful lifetime prediction"> useful lifetime prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering%20design" title=" mechanical engineering design"> mechanical engineering design</a> </p> <a href="https://publications.waset.org/abstracts/3182/useful-lifetime-prediction-of-rail-pads-for-high-speed-trains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">947</span> Design and Analysis of Wireless Charging Lane for Light Rail Transit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watcharet%20Kongwarakom">Watcharet Kongwarakom</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosaphol%20Ratniyomchai"> Tosaphol Ratniyomchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanatchai%20Kulworawanichpong"> Thanatchai Kulworawanichpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and analysis of wireless charging lane system (WCLS) for light rail transit (LRT) by considering the performance of wireless charging, traffic conditions and energy consumption drawn by the LRT system. The dynamic of the vehicle movement in terms of the vehicle speed profile during running on the WCLS, a dwell time during stopping at the station for taking the WCLS and the capacity of the WCLS in each section are taken into account to alignment design of the WCLS. This paper proposes a case study of the design of the WCLS into 2 sub-cases including continuous and discontinuous WCLS with the same distance of WCLS in total. The energy consumption by the LRT through the WCLS with the different designs of the WCLS is compared to find out the better configuration of those two cases by considering the best performance of the power transfer between the LRT and the WCLS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Light%20rail%20transit" title="Light rail transit">Light rail transit</a>, <a href="https://publications.waset.org/abstracts/search?q=Wireless%20charging%20lane" title=" Wireless charging lane"> Wireless charging lane</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20consumption" title=" Energy consumption"> Energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20transfer" title=" Power transfer "> Power transfer </a> </p> <a href="https://publications.waset.org/abstracts/122597/design-and-analysis-of-wireless-charging-lane-for-light-rail-transit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">946</span> A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoya%20Ozaki">Naoya Ozaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Watanabe"> Takuya Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryosuke%20Matsumoto"> Ryosuke Matsumoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Noriko%20Fukasawa"> Noriko Fukasawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attractiveness%20of%20the%20station" title="attractiveness of the station">attractiveness of the station</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20method" title=" estimation method"> estimation method</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20passengers%20of%20the%20station" title=" number of passengers of the station"> number of passengers of the station</a>, <a href="https://publications.waset.org/abstracts/search?q=redevelopment%20around%20the%20station" title=" redevelopment around the station"> redevelopment around the station</a>, <a href="https://publications.waset.org/abstracts/search?q=renovation%20of%20the%20station" title=" renovation of the station"> renovation of the station</a> </p> <a href="https://publications.waset.org/abstracts/56406/a-quantification-method-of-attractiveness-of-stations-and-an-estimation-method-of-number-of-passengers-taking-into-consideration-the-attractiveness-of-the-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">945</span> Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Askarinejad">Hossein Askarinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Manicka%20Dhanasekar"> Manicka Dhanasekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jointed%20rails" title="jointed rails">jointed rails</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20mechanics" title=" railway mechanics"> railway mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20dynamics" title=" track dynamics"> track dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel-rail%20interaction" title=" wheel-rail interaction"> wheel-rail interaction</a> </p> <a href="https://publications.waset.org/abstracts/24008/evaluation-of-current-methods-in-modelling-and-analysis-of-track-with-jointed-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">944</span> Urban Spatial Experience Construction Strategies Under the Intervention of Online Media: A Case Study of Liziba Light Rail Station in Chongqing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhongde%20Wang">Zhongde Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanwei%20Meng"> Fanwei Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Yang"> Ling Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, social media deeply engages in urban spatial production in a ‘Disembedding’ form, allowing the public to ‘foresight’ physical spaces through online platforms and subsequently engage in corresponding ‘sight’ and visits, thus leading to the emergence of ‘Internet Celebrity Spots’. This paper delves into the laws of action of online media, focusing on experiences. From the perspectives of the public, space, and media, it thoroughly analyzes the experiential design strategies of Chongqing's Liziba Light Rail Station, including the construction of the experiential mainline capturing the matrix of public behavior, the creation of experiential sidelines leveraging spatial advantages, and the deepening of experiential touchpoints to promote media resonance. This analysis aims to provide insights and references for similar urban spaces to transition from ‘internet-famous’ to ‘real-famous’ attractions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=online%20media" title="online media">online media</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title=" urban space"> urban space</a>, <a href="https://publications.waset.org/abstracts/search?q=disembedding" title=" disembedding"> disembedding</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20celebrity%20spots" title=" internet celebrity spots"> internet celebrity spots</a>, <a href="https://publications.waset.org/abstracts/search?q=experience%20design" title=" experience design"> experience design</a> </p> <a href="https://publications.waset.org/abstracts/183974/urban-spatial-experience-construction-strategies-under-the-intervention-of-online-media-a-case-study-of-liziba-light-rail-station-in-chongqing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">943</span> Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Juboori">A. Al-Juboori</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Wexler"> D. Wexler</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Li"> H. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zhu"> H. Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lu"> C. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20McCusker"> A. McCusker</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20McLeod"> J. McLeod</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pannila"> S. Pannila</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Wang"> Z. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squat" title="squat">squat</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20etching%20layer" title=" white etching layer"> white etching layer</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20contact%20fatigue" title=" rolling contact fatigue"> rolling contact fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=synchrotron%20diffraction" title=" synchrotron diffraction"> synchrotron diffraction</a> </p> <a href="https://publications.waset.org/abstracts/83593/structural-and-microstructural-investigation-into-causes-of-rail-squat-defects-and-their-correlation-with-white-etching-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">942</span> Establishment of Standardized Bill of Material for Korean Urban Rail Transit System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20Jung">J. E. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Yang"> J. M. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Kim"> J. W. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The railway market across the world has been standardized with the globalization strategy of Europe. On the other hand, the Korean urban railway system is operated by 10 operators which have established their standards and independently managed BOMs. When operators manage different BOMs, lack of system compatibility prevents them from sharing information and hinders work linkage and efficiency. Europe launched a large-scale railway project in 1993 when the European Union went into effect. In particular, the recent standardization efforts of the EU-funded MODTRAIN project are similar to the approach of the urban rail system standardization research that is underway in Korea. This paper looks into the BOMs of Koran urban rail transit operators and suggests the standard BOM for the rail transit system in Korea by reviewing rail vehicle technologies and the MODTRAIN project of Europe. The standard BOM is structured up to the key device level or module level, and it allows vehicle manufacturers and component manufacturers to manage their lower-level BOMs and share them with each other and with operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BOM" title="BOM">BOM</a>, <a href="https://publications.waset.org/abstracts/search?q=Korean%20rail" title=" Korean rail"> Korean rail</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20rail" title=" urban rail"> urban rail</a>, <a href="https://publications.waset.org/abstracts/search?q=standardized" title=" standardized"> standardized</a> </p> <a href="https://publications.waset.org/abstracts/67065/establishment-of-standardized-bill-of-material-for-korean-urban-rail-transit-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">941</span> Developing Cyber Security Asset Mangement Framework for UK Rail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Kohli">Shruti Kohli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sophistication and pervasiveness of cyber-attacks are constantly growing, driven partly by technological progress, profitable applications in organized crime and state-sponsored innovation. The modernization of rail control systems has resulted in an increasing reliance on digital technology and increased the potential for security breaches and cyber-attacks. This research track showcases the need for developing a secure reusable scalable framework for enhancing cyber security of rail assets. A cyber security framework has been proposed that is being developed to detect the tell-tale signs of cyber-attacks against industrial assets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyber%20security" title="cyber security">cyber security</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20asset" title=" rail asset"> rail asset</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20threat" title=" security threat"> security threat</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20ontology" title=" cyber ontology"> cyber ontology</a> </p> <a href="https://publications.waset.org/abstracts/48915/developing-cyber-security-asset-mangement-framework-for-uk-rail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">940</span> Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Song">Yu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuefei%20Jin"> Yuefei Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feeder%20bus" title="feeder bus">feeder bus</a>, <a href="https://publications.waset.org/abstracts/search?q=route%20optimization" title=" route optimization"> route optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20growth%20probability" title=" link growth probability"> link growth probability</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20graph%20theory" title=" the graph theory"> the graph theory</a> </p> <a href="https://publications.waset.org/abstracts/163356/optimization-of-feeder-bus-routes-at-urban-rail-transit-stations-based-on-link-growth-probability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">939</span> Urban Freight Station: An Innovative Approach to Urban Freight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Jain">Amit Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Jain"> Surbhi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congestion" title="congestion">congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20freight" title=" urban freight"> urban freight</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport%20system" title=" intelligent transport system"> intelligent transport system</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/51283/urban-freight-station-an-innovative-approach-to-urban-freight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">938</span> Identifying Key Factors for Accidents’ Severity at Rail-Road Level Crossings Using Ordered Probit Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arefeh%20Lotfi">Arefeh Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Babaei"> Mahdi Babaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayda%20Mashhadizadeh"> Ayda Mashhadizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Nikpour"> Samira Nikpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Bagheri"> Morteza Bagheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to investigate the key factors in accidents’ severity at rail-road level crossings. The data required for this study is obtained from both accident and inventory database of Iran Railways during 2009-2015. The Ordered Probit model is developed using SPSS software to identify the significant factors in the accident severity at rail-road level crossings. The results show that 'train speed', 'vehicle type' and 'weather' are the most important factors affecting the severity of the accident. The results of these studies assist to allocate resources in the right place. This paper suggests mandating the regulations to reduce train speed at rail-road level crossings in bad weather conditions to improve the safety of rail-road level crossings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail-road%20level%20crossing" title="rail-road level crossing">rail-road level crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=ordered%20probit%20model" title=" ordered probit model"> ordered probit model</a>, <a href="https://publications.waset.org/abstracts/search?q=accidents%E2%80%99%20severity" title=" accidents’ severity"> accidents’ severity</a>, <a href="https://publications.waset.org/abstracts/search?q=significant%20factors" title=" significant factors"> significant factors</a> </p> <a href="https://publications.waset.org/abstracts/127904/identifying-key-factors-for-accidents-severity-at-rail-road-level-crossings-using-ordered-probit-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">937</span> Analyzing Safety Incidents using the Fatigue Risk Index Calculator as an Indicator of Fatigue within a UK Rail Franchise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Scott%20Evans">Michael Scott Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Smith"> Andrew Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The feeling of fatigue at work could potentially have devastating consequences. The aim of this study was to investigate whether the well-established objective indicator of fatigue – the Fatigue Risk Index (FRI) calculator used by the rail industry is an effective indicator to the number of safety incidents, in which fatigue could have been a contributing factor. The study received ethics approval from Cardiff University’s Ethics Committee (EC.16.06.14.4547). A total of 901 safety incidents were recorded from a single British rail franchise between 1st June 2010 – 31st December 2016, into the Safety Management Information System (SMIS). The safety incident types identified that fatigue could have been a contributing factor were: Signal Passed at Danger (SPAD), Train Protection & Warning System (TPWS) activation, Automatic Warning System (AWS) slow to cancel, failed to call, and station overrun. From the 901 recorded safety incidents, the scheduling system CrewPlan was used to extract the Fatigue Index (FI) score and Risk Index (RI) score of all train drivers on the day of the safety incident. Only the working rosters of 64.2% (N = 578) (550 men and 28 female) ranging in age from 24 – 65 years old (M = 47.13, SD = 7.30) were accessible for analyses. Analysis from all 578 train drivers who were involved in safety incidents revealed that 99.8% (N = 577) of Fatigue Index (FI) scores fell within or below the identified guideline threshold of 45 as well as 97.9% (N = 566) of Risk Index (RI) scores falling below the 1.6 threshold range. Their scores represent good practice within the rail industry. These findings seem to indicate that the current objective indicator, i.e. the FRI calculator used in this study by the British rail franchise was not an effective predictor of train driver’s FI scores and RI scores, as safety incidents in which fatigue could have been a contributing factor represented only 0.2% of FI scores and 2.1% of RI scores. Further research is needed to determine whether there are other contributing factors that could provide a better indication as to why there is such a significantly large proportion of train drivers who are involved in safety incidents, in which fatigue could have been a contributing factor have such low FI and RI scores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20risk%20index%20calculator" title="fatigue risk index calculator">fatigue risk index calculator</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20indicator%20of%20fatigue" title=" objective indicator of fatigue"> objective indicator of fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20industry" title=" rail industry"> rail industry</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20incident" title=" safety incident"> safety incident</a> </p> <a href="https://publications.waset.org/abstracts/83185/analyzing-safety-incidents-using-the-fatigue-risk-index-calculator-as-an-indicator-of-fatigue-within-a-uk-rail-franchise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">936</span> Simulation the Stress Distribution of Wheel/Rail at Contact Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norie%20A.%20Akeel">Norie A. Akeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sajuri"> Z. Sajuri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Ariffin"> A. K. Ariffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the effect of different loading analysis on crack initiation life of wheel/rail in the contact region. A simulated three dimensional (3D) elasto plastic model of a wheel/rail contact is modeled using the fine mesh technique in the contact region by using Finite Element Method FEM code ANSYS 11.0 software. Different loads of approximately from 70 to 140 KN was applied on the wheel tread through the running surface on the railhead surface to simulate stress distribution (Von Mises) and a life prediction of the crack initiation under rolling contact motion. Stress analysis is achieved and the fatigue life to the rail head surface is calculated numerically by using a multi-axial fatigue life of crack initiation model. All results obtained from the previous researches are compared with this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM" title="FEM">FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20contact" title=" rolling contact"> rolling contact</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20track" title=" rail track"> rail track</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life "> fatigue life </a> </p> <a href="https://publications.waset.org/abstracts/24766/simulation-the-stress-distribution-of-wheelrail-at-contact-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">935</span> Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinglu%20Nie">Xinglu Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Feifei%20Tang"> Feifei Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuntao%20Wei"> Chuntao Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhimin%20Ruan"> Zhimin Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianhong%20Zhu"> Qianhong Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rail%20transit" title="rail transit">rail transit</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20of%20protected%20areas" title=" control of protected areas"> control of protected areas</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20inspection" title=" intelligent inspection"> intelligent inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title=" change detection"> change detection</a> </p> <a href="https://publications.waset.org/abstracts/76631/application-of-unmanned-aerial-vehicle-in-urban-rail-transit-intelligent-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>