CINXE.COM
triangle identities in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> triangle identities in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> triangle identities </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/6020/#Item_12" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="2category_theory">2-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/2-category+theory">2-category theory</a></strong></p> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-category">2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+2-category">strict 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+bicategory">enriched bicategory</a></p> </li> </ul> <p><strong>Transfors between 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+functor">lax functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+of+2-categories">equivalence of 2-categories</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-natural+transformation">2-natural transformation</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+natural+transformation">lax natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/icon">icon</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modification">modification</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+bicategories">Yoneda lemma for bicategories</a></p> </li> </ul> <p><strong>Morphisms in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fully+faithful+morphism">fully faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/faithful+morphism">faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conservative+morphism">conservative morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonic+morphism">pseudomonic morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+morphism">discrete morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/eso+morphism">eso morphism</a></p> </li> </ul> <p><strong>Structures in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mate">mate</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+object">cartesian object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibration+in+a+2-category">fibration in a 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/codiscrete+cofibration">codiscrete cofibration</a></p> </li> </ul> <p><strong>Limits in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> </ul> <p><strong>Structures on 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax-idempotent+2-monad">lax-idempotent 2-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonad">pseudomonad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudoalgebra+for+a+2-monad">pseudoalgebra for a 2-monad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gray+tensor+product">Gray tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proarrow+equipment">proarrow equipment</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#Idea'>Idea</a></li> <li><a href='#Statement'>Statement</a></li> <ul> <li><a href='#AsEquations'>As equations</a></li> <li><a href='#AsDiagrams'>As diagrams</a></li> <li><a href='#AsStringDiagrams'>As string diagrams</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="Idea">Idea</h2> <p>The <strong>triangle identities</strong> or <strong>zigzag identities</strong> are identities characterized by the <a class="existingWikiWord" href="/nlab/show/unit+of+an+adjunction">unit and counit</a> of an <a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a>, such as a <a class="existingWikiWord" href="/nlab/show/adjoint+pair">pair</a> of <a class="existingWikiWord" href="/nlab/show/adjoint+functors">adjoint functors</a>. These identities <em>define</em>, equivalently, the nature of adjunction (<a href="adjoint+functor#GeneralAdjunctsInTermsOfAdjunctionUnitCounit">this prop.</a>).</p> <h2 id="Statement">Statement</h2> <p>Consider:</p> <ol> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi><mo>,</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}, \mathcal{D}</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/pair">pair</a> of <a class="existingWikiWord" href="/nlab/show/categories">categories</a>, or, generally, of <a class="existingWikiWord" href="/nlab/show/objects">objects</a> in a given <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo lspace="verythinmathspace">:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding="application/x-tex">L \colon \mathcal{C} \to \mathcal{D}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo lspace="verythinmathspace">:</mo><mi>𝒟</mi><mo>→</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">R \colon \mathcal{D} \to \mathcal{C}</annotation></semantics></math> a pair of <a class="existingWikiWord" href="/nlab/show/functors">functors</a> between these, or generally <a class="existingWikiWord" href="/nlab/show/1-morphisms">1-morphisms</a> in the ambient <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi><mo lspace="verythinmathspace">:</mo><msub><mi>id</mi> <mi>𝒞</mi></msub><mo>⇒</mo><mi>R</mi><mo>∘</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\eta \colon id_{\mathcal{C}} \Rightarrow R \circ L</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>∘</mo><mi>R</mi><mo>⇒</mo><msub><mi>id</mi> <mi>𝒟</mi></msub></mrow><annotation encoding="application/x-tex">\epsilon \colon L \circ R \Rightarrow id_{\mathcal{D}}</annotation></semantics></math> two <a class="existingWikiWord" href="/nlab/show/natural+transformations">natural transformations</a> or, generally <a class="existingWikiWord" href="/nlab/show/2-morphisms">2-morphisms</a>.</p> </li> </ol> <p>This data is called a <em><a class="existingWikiWord" href="/nlab/show/adjoint+pair">pair</a> of <a class="existingWikiWord" href="/nlab/show/adjoint+functors">adjoint functors</a></em> (generally: an <em><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></em>) if the <em>triangle identities</em> are satisfied, which may be expressed in any of the following equivalent ways:</p> <ol> <li> <p><em><a href="#AsEquations">As equations</a></em></p> </li> <li> <p><em><a href="#AsDiagrams">As diagrams</a></em></p> </li> <li> <p><em><a href="#AsStringDiagrams">As string diagrams</a></em></p> </li> </ol> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math></p> <h3 id="AsEquations">As equations</h3> <p>As <a class="existingWikiWord" href="/nlab/show/equations">equations</a>, the triangle identities read</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>ϵ</mi><mi>L</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>∘</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>L</mi><mi>η</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msub><mi>id</mi> <mi>L</mi></msub></mrow><annotation encoding="application/x-tex"> \big( \epsilon L \big) \circ \big( L \eta \big) \;=\; id_L </annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>R</mi><mi>ϵ</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>∘</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>η</mi><mi>R</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><msub><mi>id</mi> <mi>R</mi></msub></mrow><annotation encoding="application/x-tex"> \big( R \epsilon \big) \circ \big( \eta R \big) \;=\; id_R </annotation></semantics></math></div> <p>Here juxtaposition denotes the <a class="existingWikiWord" href="/nlab/show/whiskering">whiskering</a> operation of <a class="existingWikiWord" href="/nlab/show/1-morphisms">1-morphisms</a> on <a class="existingWikiWord" href="/nlab/show/2-morphisms">2-morphisms</a>, as made more manifest in the diagrammatic unravelling of these expressions:</p> <h3 id="AsDiagrams">As diagrams</h3> <p>In terms of <a class="existingWikiWord" href="/nlab/show/diagrams">diagrams</a> in the <a class="existingWikiWord" href="/nlab/show/functor+categories">functor categories</a> this means</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>L</mi><mover><mo>⇒</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>L</mi><mi>η</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>L</mi><mi>R</mi><mi>L</mi><mover><mo>⇒</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>ϵ</mi><mi>L</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>L</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>L</mi><mover><mo>⇒</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>id</mi> <mi>L</mi></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>L</mi></mrow><annotation encoding="application/x-tex"> L \overset{\;\;L\eta\;\;}{\Rightarrow} L R L \overset{\;\;\epsilon L\;\;}{\Rightarrow} L \;\; = \;\; L \overset{\;\;id_L\;\;}{\Rightarrow} L </annotation></semantics></math></div> <p>and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>R</mi><mover><mo>⇒</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>η</mi><mi>R</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>R</mi><mi>L</mi><mi>R</mi><mover><mo>⇒</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>R</mi><mi>ϵ</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>R</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>R</mi><mover><mo>⇒</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>id</mi> <mi>R</mi></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mi>R</mi></mrow><annotation encoding="application/x-tex"> R \overset{\;\;\eta R\;\;}{\Rightarrow} R L R \overset{\;\;R\epsilon\;\;}{\Rightarrow} R \;\; = \;\; R \overset{\;\;id_R\;\;}{\Rightarrow} R </annotation></semantics></math></div> <p>In terms of diagrams of <a class="existingWikiWord" href="/nlab/show/2-morphisms">2-morphisms</a> in the ambient <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>, this looks as follows:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="451.766" height="78.605" viewBox="0 0 451.766 78.605"> <defs> <g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-0"> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-1"> <path d="M 5.921875 -1.875 C 5.921875 -1.953125 5.875 -1.953125 5.8125 -1.953125 C 5.609375 -1.953125 5.3125 -1.78125 5.3125 -1.78125 C 5.0625 -1.625 5.015625 -1.546875 4.875 -1.34375 C 4.5 -0.78125 3.984375 -0.375 3.203125 -0.375 C 2.125 -0.375 1.15625 -1.140625 1.15625 -2.9375 C 1.15625 -4.015625 1.59375 -5.4375 2.21875 -6.390625 C 2.75 -7.140625 3.390625 -7.765625 4.625 -7.765625 C 5.078125 -7.765625 5.359375 -7.609375 5.359375 -7.15625 C 5.359375 -6.734375 4.921875 -5.890625 4.78125 -5.65625 C 4.703125 -5.515625 4.703125 -5.5 4.703125 -5.46875 C 4.703125 -5.390625 4.765625 -5.390625 4.84375 -5.390625 C 5.078125 -5.390625 5.515625 -5.65625 5.671875 -5.84375 C 5.6875 -5.890625 6.390625 -7.0625 6.390625 -7.671875 C 6.390625 -8.328125 5.84375 -8.421875 5.421875 -8.421875 C 3.6875 -8.421875 2.265625 -7.296875 1.703125 -6.625 C 0.28125 -4.90625 0.140625 -3.046875 0.140625 -2.421875 C 0.140625 -0.6875 1.03125 0.28125 2.421875 0.28125 C 4.34375 0.28125 5.921875 -1.578125 5.921875 -1.875 Z M 5.921875 -1.875 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-2"> <path d="M 2.4375 0 C 5.21875 0 9.15625 -2.125 9.15625 -5.390625 C 9.15625 -6.453125 8.65625 -7.125 8.0625 -7.5 C 7.046875 -8.15625 5.9375 -8.15625 4.8125 -8.15625 C 3.78125 -8.15625 3.078125 -8.15625 2.0625 -7.734375 C 0.484375 -7.03125 0.25 -6.03125 0.25 -5.9375 C 0.25 -5.875 0.296875 -5.84375 0.375 -5.84375 C 0.5625 -5.84375 0.84375 -6.015625 0.9375 -6.078125 C 1.1875 -6.234375 1.21875 -6.3125 1.296875 -6.53125 C 1.453125 -7.015625 1.796875 -7.4375 3.296875 -7.5 C 3.109375 -5.015625 2.5 -2.71875 1.65625 -0.640625 C 1.21875 -0.484375 0.9375 -0.203125 0.9375 -0.078125 C 0.9375 -0.015625 0.9375 0 1.203125 0 Z M 2.5 -0.65625 C 3.859375 -4 4.109375 -6.078125 4.28125 -7.5 C 5.078125 -7.5 8.140625 -7.5 8.140625 -4.875 C 8.140625 -2.53125 6.03125 -0.65625 3.140625 -0.65625 Z M 2.5 -0.65625 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-0"> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-1"> <path d="M 3.09375 -4.828125 C 3.15625 -5.09375 3.171875 -5.171875 3.90625 -5.171875 C 4.140625 -5.171875 4.21875 -5.171875 4.21875 -5.328125 C 4.21875 -5.34375 4.203125 -5.4375 4.078125 -5.4375 C 3.90625 -5.4375 3.671875 -5.421875 3.5 -5.421875 L 2.9375 -5.421875 C 2.109375 -5.421875 1.90625 -5.4375 1.859375 -5.4375 C 1.828125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.796875 -5.171875 1.921875 -5.171875 C 2.1875 -5.171875 2.421875 -5.171875 2.421875 -5.046875 C 2.421875 -5.015625 2.421875 -5.015625 2.390625 -4.90625 L 1.328125 -0.625 C 1.25 -0.328125 1.234375 -0.265625 0.640625 -0.265625 C 0.5 -0.265625 0.390625 -0.265625 0.390625 -0.109375 C 0.390625 0 0.5 0 0.640625 0 L 4.484375 0 C 4.6875 0 4.6875 -0.015625 4.75 -0.15625 C 4.84375 -0.375 5.421875 -1.875 5.421875 -1.953125 C 5.421875 -2.03125 5.359375 -2.078125 5.296875 -2.078125 C 5.21875 -2.078125 5.203125 -2.015625 5.140625 -1.890625 C 4.859375 -1.15625 4.515625 -0.265625 3.078125 -0.265625 L 2.078125 -0.265625 C 2 -0.28125 1.96875 -0.28125 1.96875 -0.328125 C 1.96875 -0.390625 1.984375 -0.46875 2.015625 -0.515625 Z M 3.09375 -4.828125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-2"> <path d="M 3.09375 -4.890625 C 3.15625 -5.15625 3.171875 -5.171875 3.5 -5.171875 L 4.140625 -5.171875 C 4.796875 -5.171875 5.40625 -5.015625 5.40625 -4.359375 C 5.40625 -4.015625 5.234375 -3.453125 4.859375 -3.203125 C 4.484375 -2.921875 4.03125 -2.84375 3.5625 -2.84375 L 2.578125 -2.84375 Z M 4.453125 -2.703125 C 5.421875 -2.953125 6.1875 -3.546875 6.1875 -4.234375 C 6.1875 -4.921875 5.40625 -5.4375 4.296875 -5.4375 L 1.953125 -5.4375 C 1.8125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.8125 -5.171875 1.9375 -5.171875 C 2.203125 -5.171875 2.4375 -5.171875 2.4375 -5.046875 C 2.4375 -5.015625 2.421875 -5.015625 2.40625 -4.90625 L 1.328125 -0.625 C 1.265625 -0.328125 1.25 -0.265625 0.65625 -0.265625 C 0.5 -0.265625 0.40625 -0.265625 0.40625 -0.109375 C 0.40625 -0.078125 0.4375 0 0.53125 0 C 0.6875 0 0.875 -0.015625 1.03125 -0.03125 L 1.515625 -0.03125 C 2.265625 -0.03125 2.5 0 2.546875 0 C 2.59375 0 2.703125 0 2.703125 -0.15625 C 2.703125 -0.265625 2.59375 -0.265625 2.46875 -0.265625 C 2.4375 -0.265625 2.296875 -0.265625 2.15625 -0.28125 C 1.984375 -0.296875 1.96875 -0.3125 1.96875 -0.390625 C 1.96875 -0.4375 1.984375 -0.484375 2 -0.515625 L 2.515625 -2.609375 L 3.546875 -2.609375 C 4.265625 -2.609375 4.5 -2.234375 4.5 -1.90625 C 4.5 -1.796875 4.4375 -1.5625 4.40625 -1.40625 C 4.328125 -1.171875 4.25 -0.859375 4.25 -0.703125 C 4.25 -0.09375 4.78125 0.171875 5.375 0.171875 C 6.0625 0.171875 6.390625 -0.609375 6.390625 -0.765625 C 6.390625 -0.796875 6.359375 -0.875 6.265625 -0.875 C 6.171875 -0.875 6.15625 -0.8125 6.140625 -0.765625 C 5.96875 -0.21875 5.625 -0.0625 5.390625 -0.0625 C 5.09375 -0.0625 5.0625 -0.28125 5.0625 -0.546875 C 5.0625 -0.8125 5.109375 -1.15625 5.140625 -1.421875 C 5.171875 -1.65625 5.171875 -1.703125 5.171875 -1.78125 C 5.171875 -2.265625 4.875 -2.546875 4.453125 -2.703125 Z M 4.453125 -2.703125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-3"> <path d="M 4.15625 -2.203125 C 4.1875 -2.3125 4.21875 -2.453125 4.21875 -2.625 C 4.21875 -3.234375 3.796875 -3.515625 3.234375 -3.515625 C 2.578125 -3.515625 2.171875 -3.125 1.9375 -2.828125 C 1.875 -3.265625 1.53125 -3.515625 1.125 -3.515625 C 0.84375 -3.515625 0.640625 -3.328125 0.515625 -3.078125 C 0.328125 -2.71875 0.234375 -2.3125 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.21875 0.53125 -2.4375 C 0.625 -2.84375 0.765625 -3.296875 1.09375 -3.296875 C 1.296875 -3.296875 1.359375 -3.109375 1.359375 -2.921875 C 1.359375 -2.765625 1.3125 -2.625 1.25 -2.359375 C 1.234375 -2.296875 1.109375 -1.828125 1.078125 -1.71875 L 0.78125 -0.515625 C 0.75 -0.390625 0.703125 -0.203125 0.703125 -0.171875 C 0.703125 0.015625 0.859375 0.078125 0.96875 0.078125 C 1.109375 0.078125 1.234375 -0.015625 1.28125 -0.109375 C 1.3125 -0.15625 1.375 -0.4375 1.40625 -0.59375 L 1.59375 -1.3125 C 1.625 -1.421875 1.703125 -1.734375 1.71875 -1.84375 C 1.828125 -2.28125 1.828125 -2.28125 2.015625 -2.546875 C 2.28125 -2.9375 2.65625 -3.296875 3.1875 -3.296875 C 3.46875 -3.296875 3.640625 -3.125 3.640625 -2.75 C 3.640625 -2.59375 3.578125 -2.296875 3.578125 -2.296875 L 2.671875 1.28125 C 2.640625 1.40625 2.640625 1.453125 2.640625 1.46875 C 2.640625 1.671875 2.8125 1.71875 2.90625 1.71875 C 3.171875 1.71875 3.25 1.453125 3.265625 1.359375 Z M 4.15625 -2.203125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-4"> <path d="M 2.546875 -1.796875 C 2.671875 -1.796875 2.8125 -1.796875 2.8125 -1.921875 C 2.8125 -2.0625 2.703125 -2.0625 2.5625 -2.0625 L 1.1875 -2.0625 C 1.3125 -2.4375 1.625 -3.171875 2.609375 -3.171875 L 2.890625 -3.171875 C 3.03125 -3.171875 3.15625 -3.171875 3.15625 -3.3125 C 3.15625 -3.4375 3.046875 -3.4375 2.90625 -3.4375 L 2.578125 -3.4375 C 1.578125 -3.4375 0.390625 -2.71875 0.390625 -1.453125 C 0.390625 -0.515625 1.09375 0.078125 1.953125 0.078125 C 2.5 0.078125 3.078125 -0.234375 3.078125 -0.34375 C 3.078125 -0.359375 3.0625 -0.484375 2.96875 -0.484375 C 2.9375 -0.484375 2.921875 -0.484375 2.890625 -0.453125 C 2.75 -0.359375 2.375 -0.140625 1.96875 -0.140625 C 1.5 -0.140625 1.046875 -0.46875 1.046875 -1.1875 C 1.046875 -1.234375 1.046875 -1.453125 1.125 -1.796875 Z M 2.546875 -1.796875 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-0"> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-2"> <path d="M -2.9375 -4.453125 L -2.921875 -4.390625 C -2.734375 -3.890625 -2.546875 -3.40625 -2.296875 -2.953125 C -1.734375 -1.828125 -1.015625 -0.734375 -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 C -1 -1.375 -1.90625 -2.796875 -2.546875 -4.5 L -2.578125 -4.5625 L -2.609375 -4.609375 L -2.671875 -4.640625 L -2.734375 -4.640625 C -2.84375 -4.640625 -2.921875 -4.5625 -2.9375 -4.453125 Z M -2.9375 -4.453125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-3"> <path d="M -4.765625 2.328125 L -4.703125 2.3125 C -2.90625 1.90625 -1.21875 1.109375 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 L -0.0625 -0.1875 L -0.125 -0.15625 C -1.4375 0.765625 -3.078125 1.546875 -4.828125 1.9375 L -4.890625 1.953125 L -4.9375 2 L -4.953125 2.046875 L -4.96875 2.125 C -4.953125 2.25 -4.890625 2.3125 -4.765625 2.328125 Z M -4.765625 2.328125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-4"> <path d="M 2.71875 -4.65625 L 2.640625 -4.640625 L 2.59375 -4.625 L 2.546875 -4.578125 C 1.359375 -3.296875 0.453125 -1.828125 -0.1875 -0.0625 L -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 C 0.8125 -1.671875 1.71875 -3.078125 2.875 -4.34375 L 2.90625 -4.390625 L 2.90625 -4.453125 C 2.90625 -4.578125 2.828125 -4.640625 2.71875 -4.65625 Z M 2.71875 -4.65625 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-0"> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-2"> <path d="M 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 C -1.21875 -1.109375 -2.90625 -1.90625 -4.703125 -2.3125 L -4.765625 -2.328125 C -4.890625 -2.3125 -4.953125 -2.25 -4.96875 -2.125 L -4.953125 -2.046875 L -4.9375 -2 L -4.890625 -1.953125 L -4.828125 -1.9375 C -3.078125 -1.546875 -1.4375 -0.765625 -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-3"> <path d="M 0 -0.203125 L -0.0625 -0.1875 L -0.125 -0.15625 L -0.15625 -0.125 C -1.359375 1.171875 -2.265625 2.625 -2.921875 4.390625 L -2.9375 4.453125 C -2.921875 4.5625 -2.84375 4.640625 -2.734375 4.640625 L -2.671875 4.640625 L -2.609375 4.609375 L -2.578125 4.5625 L -2.546875 4.5 C -1.90625 2.796875 -1 1.375 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-4"> <path d="M 0.203125 0 L 0.1875 -0.0625 C -0.453125 -1.828125 -1.359375 -3.296875 -2.546875 -4.578125 L -2.59375 -4.625 L -2.640625 -4.640625 L -2.71875 -4.65625 C -2.828125 -4.640625 -2.90625 -4.578125 -2.90625 -4.453125 L -2.90625 -4.390625 L -2.875 -4.34375 C -1.71875 -3.078125 -0.8125 -1.671875 -0.1875 0.0625 L -0.15625 0.125 L -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-4-0"> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-4-1"> <path d="M 1.546875 -4.90625 C 1.546875 -5.140625 1.375 -5.359375 1.109375 -5.359375 C 0.875 -5.359375 0.671875 -5.171875 0.671875 -4.921875 C 0.671875 -4.640625 0.90625 -4.46875 1.109375 -4.46875 C 1.390625 -4.46875 1.546875 -4.703125 1.546875 -4.90625 Z M 0.359375 -3.421875 L 0.359375 -3.15625 C 0.875 -3.15625 0.9375 -3.109375 0.9375 -2.71875 L 0.9375 -0.625 C 0.9375 -0.265625 0.84375 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.640625 -0.03125 1.09375 -0.03125 1.21875 -0.03125 C 1.3125 -0.03125 1.796875 -0.03125 2.078125 0 L 2.078125 -0.265625 C 1.546875 -0.265625 1.515625 -0.296875 1.515625 -0.609375 L 1.515625 -3.515625 Z M 0.359375 -3.421875 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-4-2"> <path d="M 2.625 -5.4375 L 2.625 -5.171875 C 3.15625 -5.171875 3.234375 -5.125 3.234375 -4.734375 L 3.234375 -3.046875 C 2.953125 -3.359375 2.578125 -3.515625 2.15625 -3.515625 C 1.15625 -3.515625 0.28125 -2.734375 0.28125 -1.71875 C 0.28125 -0.734375 1.078125 0.078125 2.078125 0.078125 C 2.546875 0.078125 2.9375 -0.140625 3.203125 -0.421875 L 3.203125 0.078125 L 4.421875 0 L 4.421875 -0.265625 C 3.875 -0.265625 3.8125 -0.3125 3.8125 -0.703125 L 3.8125 -5.53125 Z M 3.203125 -0.984375 C 3.203125 -0.84375 3.203125 -0.8125 3.078125 -0.65625 C 2.859375 -0.328125 2.5 -0.140625 2.125 -0.140625 C 1.75 -0.140625 1.4375 -0.328125 1.25 -0.625 C 1.03125 -0.9375 0.984375 -1.328125 0.984375 -1.703125 C 0.984375 -2.171875 1.0625 -2.5 1.25 -2.765625 C 1.4375 -3.0625 1.796875 -3.296875 2.203125 -3.296875 C 2.578125 -3.296875 2.96875 -3.09375 3.203125 -2.6875 Z M 3.203125 -0.984375 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-5-0"> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-5-1"> <path d="M 3.6875 -0.953125 C 3.6875 -1.015625 3.625 -1.015625 3.609375 -1.015625 C 3.578125 -1.015625 3.375 -1.015625 3.125 -0.71875 C 2.8125 -0.390625 2.46875 -0.25 2.125 -0.25 C 1.34375 -0.25 0.875 -0.84375 0.875 -1.640625 C 0.875 -2.21875 1.28125 -3.828125 2.78125 -3.828125 C 3.015625 -3.828125 3.234375 -3.78125 3.234375 -3.5 C 3.234375 -3.3125 3.046875 -2.984375 2.953125 -2.828125 C 2.921875 -2.78125 2.890625 -2.75 2.890625 -2.734375 C 2.890625 -2.671875 2.96875 -2.671875 2.984375 -2.671875 C 3.078125 -2.671875 3.265625 -2.734375 3.421875 -2.890625 C 3.421875 -2.90625 3.8125 -3.453125 3.8125 -3.78125 C 3.8125 -4.21875 3.359375 -4.21875 3.25 -4.21875 C 2.6875 -4.21875 1.859375 -4.03125 1.109375 -3.28125 C 0.640625 -2.8125 0.296875 -2.03125 0.296875 -1.359375 C 0.296875 -0.390625 0.921875 0.140625 1.671875 0.140625 C 2.78125 0.140625 3.6875 -0.8125 3.6875 -0.953125 Z M 3.6875 -0.953125 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-5-2"> <path d="M 1.75 0 C 3.484375 0 5.546875 -1.015625 5.546875 -2.671875 C 5.546875 -3.25 5.25 -3.640625 4.609375 -3.890625 C 4.09375 -4.09375 3.484375 -4.09375 2.9375 -4.09375 C 2.375 -4.09375 1.859375 -4.09375 1.359375 -3.90625 C 0.359375 -3.53125 0.3125 -2.9375 0.3125 -2.9375 C 0.3125 -2.890625 0.34375 -2.859375 0.390625 -2.859375 C 0.484375 -2.859375 0.609375 -2.9375 0.703125 -2.984375 C 0.84375 -3.078125 0.859375 -3.125 0.890625 -3.25 C 0.96875 -3.453125 1.078125 -3.671875 2.0625 -3.703125 C 2.015625 -2.984375 1.9375 -1.96875 1.28125 -0.375 C 1.03125 -0.3125 0.859375 -0.140625 0.859375 -0.0625 C 0.859375 0 0.921875 0 1.015625 0 Z M 1.75 -0.390625 C 2.21875 -1.4375 2.546875 -2.546875 2.625 -3.703125 C 3.234375 -3.703125 4.96875 -3.703125 4.96875 -2.40625 C 4.96875 -2.125 4.90625 -1.390625 4.109375 -0.875 C 3.609375 -0.5625 2.8125 -0.390625 2.1875 -0.390625 Z M 1.75 -0.390625 "></path> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-6-0"> </g> <g id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-6-1"> <path d="M 8.0625 -3.875 C 8.234375 -3.875 8.453125 -3.875 8.453125 -4.09375 C 8.453125 -4.3125 8.25 -4.3125 8.0625 -4.3125 L 1.03125 -4.3125 C 0.859375 -4.3125 0.640625 -4.3125 0.640625 -4.09375 C 0.640625 -3.875 0.84375 -3.875 1.03125 -3.875 Z M 8.0625 -1.65625 C 8.234375 -1.65625 8.453125 -1.65625 8.453125 -1.859375 C 8.453125 -2.09375 8.25 -2.09375 8.0625 -2.09375 L 1.03125 -2.09375 C 0.859375 -2.09375 0.640625 -2.09375 0.640625 -1.875 C 0.640625 -1.65625 0.84375 -1.65625 1.03125 -1.65625 Z M 8.0625 -1.65625 "></path> </g> </g> <clipPath id="x6mnvjSw05AA6F96gZ8rOb8dRaY=-clip-0"> <path clip-rule="nonzero" d="M 152 74 L 158 74 L 158 78.605469 L 152 78.605469 Z M 152 74 "></path> </clipPath> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-1" x="2.989" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-1" x="39.355" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.48375 0.00121875 L 30.518906 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-1" x="71.5" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-1" x="71.5" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 40.98375 0.00121875 L 65.015 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-4-1" x="73.325" y="5.535"></use> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-4-2" x="75.676977" y="5.535"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-5-1" x="80.382" y="6.874"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.468125 6.091062 C 25.807969 23.45825 45.147813 33.227781 64.487656 35.399656 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-2" x="145.578" y="33.211"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-2" x="145.578" y="33.211"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 81.073594 35.399656 C 100.413438 33.227781 119.753281 23.45825 139.093125 6.091062 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-2" x="74.488" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-2" x="113.083" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 80.54625 0.00121875 L 104.245469 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-1" x="145.561" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-1" x="145.561" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 115.378281 0.00121875 L 139.0775 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-4-1" x="145.299" y="77.266"></use> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-4-2" x="147.650977" y="77.266"></use> </g> <g clip-path="url(#x6mnvjSw05AA6F96gZ8rOb8dRaY=-clip-0)"> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-5-2" x="152.356" y="78.605"></use> </g> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 79.104844 -5.963625 C 98.225938 -23.16675 117.343125 -32.948 136.460312 -35.303469 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-3" x="218.501" y="45.266"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-3" x="218.501" y="45.266"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 154.663437 -35.303469 C 173.780625 -32.948 192.897812 -23.16675 212.015 -5.963625 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-1" x="148.55" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-1" x="184.916" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 152.04625 0.00121875 L 176.0775 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-1" x="217.061" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-1" x="217.061" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 186.542344 0.00121875 L 210.5775 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-2" x="220.05" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-6-1" x="294.111" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-1" x="367.724" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-1" x="404.09" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 371.218125 0.00121875 L 395.253281 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-1" x="436.234" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-1" x="436.234" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 405.718125 0.00121875 L 429.749375 0.00121875 " transform="matrix(1, 0, 0, -1, 6.485, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-0-2" x="439.223" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-3" x="82.254" y="21.54"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-4" x="79.266" y="29.103"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-4" x="79.266" y="29.103"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 72.780719 27.20825 L 72.780719 12.688719 " transform="matrix(1, 0, 0, -1, 7.481, 39.302)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 72.780531 27.20825 L 72.780531 12.688719 " transform="matrix(1, 0, 0, -1, 5.489, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-1-4" x="155.035" y="59.722"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-2-4" x="152.046" y="66.51"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#x6mnvjSw05AA6F96gZ8rOb8dRaY=-glyph-3-4" x="152.046" y="66.51"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 145.561969 -10.201906 L 145.561969 -24.717531 " transform="matrix(1, 0, 0, -1, 7.481, 39.302)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 145.561781 -10.201906 L 145.561781 -24.717531 " transform="matrix(1, 0, 0, -1, 5.489, 39.302)"></path> </svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="451.766" height="78.605" viewBox="0 0 451.766 78.605"> <defs> <g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-0"> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-1"> <path d="M 2.4375 0 C 5.21875 0 9.15625 -2.125 9.15625 -5.390625 C 9.15625 -6.453125 8.65625 -7.125 8.0625 -7.5 C 7.046875 -8.15625 5.9375 -8.15625 4.8125 -8.15625 C 3.78125 -8.15625 3.078125 -8.15625 2.0625 -7.734375 C 0.484375 -7.03125 0.25 -6.03125 0.25 -5.9375 C 0.25 -5.875 0.296875 -5.84375 0.375 -5.84375 C 0.5625 -5.84375 0.84375 -6.015625 0.9375 -6.078125 C 1.1875 -6.234375 1.21875 -6.3125 1.296875 -6.53125 C 1.453125 -7.015625 1.796875 -7.4375 3.296875 -7.5 C 3.109375 -5.015625 2.5 -2.71875 1.65625 -0.640625 C 1.21875 -0.484375 0.9375 -0.203125 0.9375 -0.078125 C 0.9375 -0.015625 0.9375 0 1.203125 0 Z M 2.5 -0.65625 C 3.859375 -4 4.109375 -6.078125 4.28125 -7.5 C 5.078125 -7.5 8.140625 -7.5 8.140625 -4.875 C 8.140625 -2.53125 6.03125 -0.65625 3.140625 -0.65625 Z M 2.5 -0.65625 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-2"> <path d="M 5.921875 -1.875 C 5.921875 -1.953125 5.875 -1.953125 5.8125 -1.953125 C 5.609375 -1.953125 5.3125 -1.78125 5.3125 -1.78125 C 5.0625 -1.625 5.015625 -1.546875 4.875 -1.34375 C 4.5 -0.78125 3.984375 -0.375 3.203125 -0.375 C 2.125 -0.375 1.15625 -1.140625 1.15625 -2.9375 C 1.15625 -4.015625 1.59375 -5.4375 2.21875 -6.390625 C 2.75 -7.140625 3.390625 -7.765625 4.625 -7.765625 C 5.078125 -7.765625 5.359375 -7.609375 5.359375 -7.15625 C 5.359375 -6.734375 4.921875 -5.890625 4.78125 -5.65625 C 4.703125 -5.515625 4.703125 -5.5 4.703125 -5.46875 C 4.703125 -5.390625 4.765625 -5.390625 4.84375 -5.390625 C 5.078125 -5.390625 5.515625 -5.65625 5.671875 -5.84375 C 5.6875 -5.890625 6.390625 -7.0625 6.390625 -7.671875 C 6.390625 -8.328125 5.84375 -8.421875 5.421875 -8.421875 C 3.6875 -8.421875 2.265625 -7.296875 1.703125 -6.625 C 0.28125 -4.90625 0.140625 -3.046875 0.140625 -2.421875 C 0.140625 -0.6875 1.03125 0.28125 2.421875 0.28125 C 4.34375 0.28125 5.921875 -1.578125 5.921875 -1.875 Z M 5.921875 -1.875 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-0"> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-1"> <path d="M 3.09375 -4.890625 C 3.15625 -5.15625 3.171875 -5.171875 3.5 -5.171875 L 4.140625 -5.171875 C 4.796875 -5.171875 5.40625 -5.015625 5.40625 -4.359375 C 5.40625 -4.015625 5.234375 -3.453125 4.859375 -3.203125 C 4.484375 -2.921875 4.03125 -2.84375 3.5625 -2.84375 L 2.578125 -2.84375 Z M 4.453125 -2.703125 C 5.421875 -2.953125 6.1875 -3.546875 6.1875 -4.234375 C 6.1875 -4.921875 5.40625 -5.4375 4.296875 -5.4375 L 1.953125 -5.4375 C 1.8125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.8125 -5.171875 1.9375 -5.171875 C 2.203125 -5.171875 2.4375 -5.171875 2.4375 -5.046875 C 2.4375 -5.015625 2.421875 -5.015625 2.40625 -4.90625 L 1.328125 -0.625 C 1.265625 -0.328125 1.25 -0.265625 0.65625 -0.265625 C 0.5 -0.265625 0.40625 -0.265625 0.40625 -0.109375 C 0.40625 -0.078125 0.4375 0 0.53125 0 C 0.6875 0 0.875 -0.015625 1.03125 -0.03125 L 1.515625 -0.03125 C 2.265625 -0.03125 2.5 0 2.546875 0 C 2.59375 0 2.703125 0 2.703125 -0.15625 C 2.703125 -0.265625 2.59375 -0.265625 2.46875 -0.265625 C 2.4375 -0.265625 2.296875 -0.265625 2.15625 -0.28125 C 1.984375 -0.296875 1.96875 -0.3125 1.96875 -0.390625 C 1.96875 -0.4375 1.984375 -0.484375 2 -0.515625 L 2.515625 -2.609375 L 3.546875 -2.609375 C 4.265625 -2.609375 4.5 -2.234375 4.5 -1.90625 C 4.5 -1.796875 4.4375 -1.5625 4.40625 -1.40625 C 4.328125 -1.171875 4.25 -0.859375 4.25 -0.703125 C 4.25 -0.09375 4.78125 0.171875 5.375 0.171875 C 6.0625 0.171875 6.390625 -0.609375 6.390625 -0.765625 C 6.390625 -0.796875 6.359375 -0.875 6.265625 -0.875 C 6.171875 -0.875 6.15625 -0.8125 6.140625 -0.765625 C 5.96875 -0.21875 5.625 -0.0625 5.390625 -0.0625 C 5.09375 -0.0625 5.0625 -0.28125 5.0625 -0.546875 C 5.0625 -0.8125 5.109375 -1.15625 5.140625 -1.421875 C 5.171875 -1.65625 5.171875 -1.703125 5.171875 -1.78125 C 5.171875 -2.265625 4.875 -2.546875 4.453125 -2.703125 Z M 4.453125 -2.703125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-2"> <path d="M 3.09375 -4.828125 C 3.15625 -5.09375 3.171875 -5.171875 3.90625 -5.171875 C 4.140625 -5.171875 4.21875 -5.171875 4.21875 -5.328125 C 4.21875 -5.34375 4.203125 -5.4375 4.078125 -5.4375 C 3.90625 -5.4375 3.671875 -5.421875 3.5 -5.421875 L 2.9375 -5.421875 C 2.109375 -5.421875 1.90625 -5.4375 1.859375 -5.4375 C 1.828125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.796875 -5.171875 1.921875 -5.171875 C 2.1875 -5.171875 2.421875 -5.171875 2.421875 -5.046875 C 2.421875 -5.015625 2.421875 -5.015625 2.390625 -4.90625 L 1.328125 -0.625 C 1.25 -0.328125 1.234375 -0.265625 0.640625 -0.265625 C 0.5 -0.265625 0.390625 -0.265625 0.390625 -0.109375 C 0.390625 0 0.5 0 0.640625 0 L 4.484375 0 C 4.6875 0 4.6875 -0.015625 4.75 -0.15625 C 4.84375 -0.375 5.421875 -1.875 5.421875 -1.953125 C 5.421875 -2.03125 5.359375 -2.078125 5.296875 -2.078125 C 5.21875 -2.078125 5.203125 -2.015625 5.140625 -1.890625 C 4.859375 -1.15625 4.515625 -0.265625 3.078125 -0.265625 L 2.078125 -0.265625 C 2 -0.28125 1.96875 -0.28125 1.96875 -0.328125 C 1.96875 -0.390625 1.984375 -0.46875 2.015625 -0.515625 Z M 3.09375 -4.828125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-3"> <path d="M 4.15625 -2.203125 C 4.1875 -2.3125 4.21875 -2.453125 4.21875 -2.625 C 4.21875 -3.234375 3.796875 -3.515625 3.234375 -3.515625 C 2.578125 -3.515625 2.171875 -3.125 1.9375 -2.828125 C 1.875 -3.265625 1.53125 -3.515625 1.125 -3.515625 C 0.84375 -3.515625 0.640625 -3.328125 0.515625 -3.078125 C 0.328125 -2.71875 0.234375 -2.3125 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.21875 0.53125 -2.4375 C 0.625 -2.84375 0.765625 -3.296875 1.09375 -3.296875 C 1.296875 -3.296875 1.359375 -3.109375 1.359375 -2.921875 C 1.359375 -2.765625 1.3125 -2.625 1.25 -2.359375 C 1.234375 -2.296875 1.109375 -1.828125 1.078125 -1.71875 L 0.78125 -0.515625 C 0.75 -0.390625 0.703125 -0.203125 0.703125 -0.171875 C 0.703125 0.015625 0.859375 0.078125 0.96875 0.078125 C 1.109375 0.078125 1.234375 -0.015625 1.28125 -0.109375 C 1.3125 -0.15625 1.375 -0.4375 1.40625 -0.59375 L 1.59375 -1.3125 C 1.625 -1.421875 1.703125 -1.734375 1.71875 -1.84375 C 1.828125 -2.28125 1.828125 -2.28125 2.015625 -2.546875 C 2.28125 -2.9375 2.65625 -3.296875 3.1875 -3.296875 C 3.46875 -3.296875 3.640625 -3.125 3.640625 -2.75 C 3.640625 -2.59375 3.578125 -2.296875 3.578125 -2.296875 L 2.671875 1.28125 C 2.640625 1.40625 2.640625 1.453125 2.640625 1.46875 C 2.640625 1.671875 2.8125 1.71875 2.90625 1.71875 C 3.171875 1.71875 3.25 1.453125 3.265625 1.359375 Z M 4.15625 -2.203125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-4"> <path d="M 2.546875 -1.796875 C 2.671875 -1.796875 2.8125 -1.796875 2.8125 -1.921875 C 2.8125 -2.0625 2.703125 -2.0625 2.5625 -2.0625 L 1.1875 -2.0625 C 1.3125 -2.4375 1.625 -3.171875 2.609375 -3.171875 L 2.890625 -3.171875 C 3.03125 -3.171875 3.15625 -3.171875 3.15625 -3.3125 C 3.15625 -3.4375 3.046875 -3.4375 2.90625 -3.4375 L 2.578125 -3.4375 C 1.578125 -3.4375 0.390625 -2.71875 0.390625 -1.453125 C 0.390625 -0.515625 1.09375 0.078125 1.953125 0.078125 C 2.5 0.078125 3.078125 -0.234375 3.078125 -0.34375 C 3.078125 -0.359375 3.0625 -0.484375 2.96875 -0.484375 C 2.9375 -0.484375 2.921875 -0.484375 2.890625 -0.453125 C 2.75 -0.359375 2.375 -0.140625 1.96875 -0.140625 C 1.5 -0.140625 1.046875 -0.46875 1.046875 -1.1875 C 1.046875 -1.234375 1.046875 -1.453125 1.125 -1.796875 Z M 2.546875 -1.796875 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-0"> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-2"> <path d="M -4.765625 2.328125 L -4.703125 2.3125 C -2.90625 1.90625 -1.21875 1.109375 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 L -0.0625 -0.1875 L -0.125 -0.15625 C -1.4375 0.765625 -3.078125 1.546875 -4.828125 1.9375 L -4.890625 1.953125 L -4.9375 2 L -4.953125 2.046875 L -4.96875 2.125 C -4.953125 2.25 -4.890625 2.3125 -4.765625 2.328125 Z M -4.765625 2.328125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-3"> <path d="M -2.9375 -4.453125 L -2.921875 -4.390625 C -2.734375 -3.890625 -2.546875 -3.40625 -2.296875 -2.953125 C -1.734375 -1.828125 -1.015625 -0.734375 -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 C -1 -1.375 -1.90625 -2.796875 -2.546875 -4.5 L -2.578125 -4.5625 L -2.609375 -4.609375 L -2.671875 -4.640625 L -2.734375 -4.640625 C -2.84375 -4.640625 -2.921875 -4.5625 -2.9375 -4.453125 Z M -2.9375 -4.453125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-4"> <path d="M 2.71875 -4.65625 L 2.640625 -4.640625 L 2.59375 -4.625 L 2.546875 -4.578125 C 1.359375 -3.296875 0.453125 -1.828125 -0.1875 -0.0625 L -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 C 0.8125 -1.671875 1.71875 -3.078125 2.875 -4.34375 L 2.90625 -4.390625 L 2.90625 -4.453125 C 2.90625 -4.578125 2.828125 -4.640625 2.71875 -4.65625 Z M 2.71875 -4.65625 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-0"> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-2"> <path d="M 0 -0.203125 L -0.0625 -0.1875 L -0.125 -0.15625 L -0.15625 -0.125 C -1.359375 1.171875 -2.265625 2.625 -2.921875 4.390625 L -2.9375 4.453125 C -2.921875 4.5625 -2.84375 4.640625 -2.734375 4.640625 L -2.671875 4.640625 L -2.609375 4.609375 L -2.578125 4.5625 L -2.546875 4.5 C -1.90625 2.796875 -1 1.375 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-3"> <path d="M 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 C -1.21875 -1.109375 -2.90625 -1.90625 -4.703125 -2.3125 L -4.765625 -2.328125 C -4.890625 -2.3125 -4.953125 -2.25 -4.96875 -2.125 L -4.953125 -2.046875 L -4.9375 -2 L -4.890625 -1.953125 L -4.828125 -1.9375 C -3.078125 -1.546875 -1.4375 -0.765625 -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-4"> <path d="M 0.203125 0 L 0.1875 -0.0625 C -0.453125 -1.828125 -1.359375 -3.296875 -2.546875 -4.578125 L -2.59375 -4.625 L -2.640625 -4.640625 L -2.71875 -4.65625 C -2.828125 -4.640625 -2.90625 -4.578125 -2.90625 -4.453125 L -2.90625 -4.390625 L -2.875 -4.34375 C -1.71875 -3.078125 -0.8125 -1.671875 -0.1875 0.0625 L -0.15625 0.125 L -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-4-0"> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-4-1"> <path d="M 1.546875 -4.90625 C 1.546875 -5.140625 1.375 -5.359375 1.109375 -5.359375 C 0.875 -5.359375 0.671875 -5.171875 0.671875 -4.921875 C 0.671875 -4.640625 0.90625 -4.46875 1.109375 -4.46875 C 1.390625 -4.46875 1.546875 -4.703125 1.546875 -4.90625 Z M 0.359375 -3.421875 L 0.359375 -3.15625 C 0.875 -3.15625 0.9375 -3.109375 0.9375 -2.71875 L 0.9375 -0.625 C 0.9375 -0.265625 0.84375 -0.265625 0.328125 -0.265625 L 0.328125 0 C 0.640625 -0.03125 1.09375 -0.03125 1.21875 -0.03125 C 1.3125 -0.03125 1.796875 -0.03125 2.078125 0 L 2.078125 -0.265625 C 1.546875 -0.265625 1.515625 -0.296875 1.515625 -0.609375 L 1.515625 -3.515625 Z M 0.359375 -3.421875 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-4-2"> <path d="M 2.625 -5.4375 L 2.625 -5.171875 C 3.15625 -5.171875 3.234375 -5.125 3.234375 -4.734375 L 3.234375 -3.046875 C 2.953125 -3.359375 2.578125 -3.515625 2.15625 -3.515625 C 1.15625 -3.515625 0.28125 -2.734375 0.28125 -1.71875 C 0.28125 -0.734375 1.078125 0.078125 2.078125 0.078125 C 2.546875 0.078125 2.9375 -0.140625 3.203125 -0.421875 L 3.203125 0.078125 L 4.421875 0 L 4.421875 -0.265625 C 3.875 -0.265625 3.8125 -0.3125 3.8125 -0.703125 L 3.8125 -5.53125 Z M 3.203125 -0.984375 C 3.203125 -0.84375 3.203125 -0.8125 3.078125 -0.65625 C 2.859375 -0.328125 2.5 -0.140625 2.125 -0.140625 C 1.75 -0.140625 1.4375 -0.328125 1.25 -0.625 C 1.03125 -0.9375 0.984375 -1.328125 0.984375 -1.703125 C 0.984375 -2.171875 1.0625 -2.5 1.25 -2.765625 C 1.4375 -3.0625 1.796875 -3.296875 2.203125 -3.296875 C 2.578125 -3.296875 2.96875 -3.09375 3.203125 -2.6875 Z M 3.203125 -0.984375 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-5-0"> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-5-1"> <path d="M 1.75 0 C 3.484375 0 5.546875 -1.015625 5.546875 -2.671875 C 5.546875 -3.25 5.25 -3.640625 4.609375 -3.890625 C 4.09375 -4.09375 3.484375 -4.09375 2.9375 -4.09375 C 2.375 -4.09375 1.859375 -4.09375 1.359375 -3.90625 C 0.359375 -3.53125 0.3125 -2.9375 0.3125 -2.9375 C 0.3125 -2.890625 0.34375 -2.859375 0.390625 -2.859375 C 0.484375 -2.859375 0.609375 -2.9375 0.703125 -2.984375 C 0.84375 -3.078125 0.859375 -3.125 0.890625 -3.25 C 0.96875 -3.453125 1.078125 -3.671875 2.0625 -3.703125 C 2.015625 -2.984375 1.9375 -1.96875 1.28125 -0.375 C 1.03125 -0.3125 0.859375 -0.140625 0.859375 -0.0625 C 0.859375 0 0.921875 0 1.015625 0 Z M 1.75 -0.390625 C 2.21875 -1.4375 2.546875 -2.546875 2.625 -3.703125 C 3.234375 -3.703125 4.96875 -3.703125 4.96875 -2.40625 C 4.96875 -2.125 4.90625 -1.390625 4.109375 -0.875 C 3.609375 -0.5625 2.8125 -0.390625 2.1875 -0.390625 Z M 1.75 -0.390625 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-5-2"> <path d="M 3.6875 -0.953125 C 3.6875 -1.015625 3.625 -1.015625 3.609375 -1.015625 C 3.578125 -1.015625 3.375 -1.015625 3.125 -0.71875 C 2.8125 -0.390625 2.46875 -0.25 2.125 -0.25 C 1.34375 -0.25 0.875 -0.84375 0.875 -1.640625 C 0.875 -2.21875 1.28125 -3.828125 2.78125 -3.828125 C 3.015625 -3.828125 3.234375 -3.78125 3.234375 -3.5 C 3.234375 -3.3125 3.046875 -2.984375 2.953125 -2.828125 C 2.921875 -2.78125 2.890625 -2.75 2.890625 -2.734375 C 2.890625 -2.671875 2.96875 -2.671875 2.984375 -2.671875 C 3.078125 -2.671875 3.265625 -2.734375 3.421875 -2.890625 C 3.421875 -2.90625 3.8125 -3.453125 3.8125 -3.78125 C 3.8125 -4.21875 3.359375 -4.21875 3.25 -4.21875 C 2.6875 -4.21875 1.859375 -4.03125 1.109375 -3.28125 C 0.640625 -2.8125 0.296875 -2.03125 0.296875 -1.359375 C 0.296875 -0.390625 0.921875 0.140625 1.671875 0.140625 C 2.78125 0.140625 3.6875 -0.8125 3.6875 -0.953125 Z M 3.6875 -0.953125 "></path> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-6-0"> </g> <g id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-6-1"> <path d="M 8.0625 -3.875 C 8.234375 -3.875 8.453125 -3.875 8.453125 -4.09375 C 8.453125 -4.3125 8.25 -4.3125 8.0625 -4.3125 L 1.03125 -4.3125 C 0.859375 -4.3125 0.640625 -4.3125 0.640625 -4.09375 C 0.640625 -3.875 0.84375 -3.875 1.03125 -3.875 Z M 8.0625 -1.65625 C 8.234375 -1.65625 8.453125 -1.65625 8.453125 -1.859375 C 8.453125 -2.09375 8.25 -2.09375 8.0625 -2.09375 L 1.03125 -2.09375 C 0.859375 -2.09375 0.640625 -2.09375 0.640625 -1.875 C 0.640625 -1.65625 0.84375 -1.65625 1.03125 -1.65625 Z M 8.0625 -1.65625 "></path> </g> </g> <clipPath id="HKLvz1jlcCVECKwgDoG7IJIYD3U=-clip-0"> <path clip-rule="nonzero" d="M 81 74 L 87 74 L 87 78.605469 L 81 78.605469 Z M 81 74 "></path> </clipPath> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-1" x="2.989" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-1" x="41.583" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 7.76525 0.00121875 L 31.464469 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-1" x="74.062" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-1" x="74.062" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 42.597281 0.00121875 L 66.2965 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-4-1" x="73.799" y="77.266"></use> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-4-2" x="76.150977" y="77.266"></use> </g> <g clip-path="url(#HKLvz1jlcCVECKwgDoG7IJIYD3U=-clip-0)"> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-5-1" x="80.856" y="78.605"></use> </g> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.32775 -5.963625 C 25.444938 -23.16675 44.562125 -32.948 63.679313 -35.303469 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-2" x="147.002" y="45.266"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-2" x="147.002" y="45.266"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 81.882437 -35.303469 C 100.999625 -32.948 120.116812 -23.16675 139.237906 -5.963625 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-2" x="77.05" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-2" x="113.417" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 79.26525 0.00121875 L 103.300406 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-1" x="145.561" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-1" x="145.561" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 113.761344 0.00121875 L 137.7965 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-4-1" x="147.387" y="5.535"></use> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-4-2" x="149.738977" y="5.535"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-5-2" x="154.444" y="6.874"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 79.249625 6.091062 C 98.589469 23.45825 117.929312 33.227781 137.269156 35.399656 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-3" x="219.64" y="33.211"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-3" x="219.64" y="33.211"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 153.855094 35.399656 C 173.194938 33.227781 192.534781 23.45825 211.874625 6.091062 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-1" x="148.55" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-1" x="187.144" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 153.32775 0.00121875 L 177.026969 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-1" x="219.623" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-1" x="219.623" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 188.159781 0.00121875 L 211.855094 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-2" x="222.612" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-6-1" x="294.111" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-1" x="367.724" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-1" x="406.318" y="42.025"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 372.499625 0.00121875 L 396.198844 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-1" x="438.797" y="39.302"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-1" x="438.797" y="39.302"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 407.331656 0.00121875 L 431.030875 0.00121875 " transform="matrix(1, 0, 0, -1, 7.766, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-0-2" x="441.785" y="42.291"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-3" x="156.316" y="21.54"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-4" x="153.327" y="29.103"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-4" x="153.327" y="29.103"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 145.562219 27.20825 L 145.562219 12.688719 " transform="matrix(1, 0, 0, -1, 8.762, 39.302)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 145.562031 27.20825 L 145.562031 12.688719 " transform="matrix(1, 0, 0, -1, 6.77, 39.302)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-1-4" x="83.535" y="59.722"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-2-4" x="80.547" y="66.51"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#HKLvz1jlcCVECKwgDoG7IJIYD3U=-glyph-3-4" x="80.547" y="66.51"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 72.780969 -10.201906 L 72.780969 -24.717531 " transform="matrix(1, 0, 0, -1, 8.762, 39.302)"></path> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 72.780781 -10.201906 L 72.780781 -24.717531 " transform="matrix(1, 0, 0, -1, 6.77, 39.302)"></path> </svg> <p>where on the right the <a class="existingWikiWord" href="/nlab/show/identity+morphism">identity</a> <a class="existingWikiWord" href="/nlab/show/2-morphisms">2-morphisms</a> are left notationally implicit.</p> <p>If we leave the <a class="existingWikiWord" href="/nlab/show/identity+morphism">identity</a> <a class="existingWikiWord" href="/nlab/show/1-morphisms">1-morphisms</a> on the left notationally implicit, then we get the following suggestive form of the triangle identities:</p> <center> <img src="https://ncatlab.org/nlab/files/Adjointness.jpg" width="540" /> </center> <p>(taken from <em><a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+categories+and+toposes">geometry of physics – categories and toposes</a></em>).</p> <h3 id="AsStringDiagrams">As string diagrams</h3> <p>As <a class="existingWikiWord" href="/nlab/show/string+diagrams">string diagrams</a>, the triangle identities appear as the action of “pulling zigzags straight” (hence the name):</p> <div style="text-align:center"> <p><span style="margin-right: 50px"><img src="/nlab/files/adjunction-up-string.png" alt="String diagram of first zigzag identity (for 'Adjunction')" /></span><img src="/nlab/files/adjunction-down-string.png" alt="" /></p> </div> <p>With labels left implicit, this notation becomes very economical:</p> <div style="text-align:center"> <p><span style="margin-right: 50px"><img src="/nlab/files/adjunction-up-string-minimal.png" alt="Minimal string diagram of first zigzag identity (for 'Adjunction')" /></span><img src="/nlab/files/adjunction-down-string-minimal.png" alt="Minimal string diagram of second zigzag identity (for 'Adjunction')" /></p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unit+of+an+adjunction">unit of an adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunct">adjunct</a></p> </li> </ul> <h2 id="references">References</h2> <p>Textbook accounts include</p> <ul> <li id="Borceux94"><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, Theorem 3.1.5 and Diagram 3.3 in: <em>Basic Category Theory</em>, Vol. 1 of <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a></em>, Cambridge University Press (1994)</li> </ul> <p>See the references at <em><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></em> for more.</p> </body></html> </div> <div class="revisedby"> <p> Last revised on June 22, 2023 at 16:20:30. See the <a href="/nlab/history/triangle+identities" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/triangle+identities" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/6020/#Item_12">Discuss</a><span class="backintime"><a href="/nlab/revision/triangle+identities/28" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/triangle+identities" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/triangle+identities" accesskey="S" class="navlink" id="history" rel="nofollow">History (28 revisions)</a> <a href="/nlab/show/triangle+identities/cite" style="color: black">Cite</a> <a href="/nlab/print/triangle+identities" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/triangle+identities" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>