CINXE.COM
Search results for: Decision Trees
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Decision Trees</title> <meta name="description" content="Search results for: Decision Trees"> <meta name="keywords" content="Decision Trees"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Decision Trees" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Decision Trees"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1592</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Decision Trees</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> Evolutionary Decision Trees and Software Metrics for Module Defects Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Monica%20Chi%C5%9F">Monica Chi艧</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software metric is a measure of some property of a piece of software or its specification. The aim of this paper is to present an application of evolutionary decision trees in software engineering in order to classify the software modules that have or have not one or more reported defects. For this some metrics are used for detecting the class of modules with defects or without defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Evolutionary%20decision%20trees" title="Evolutionary decision trees">Evolutionary decision trees</a>, <a href="https://publications.waset.org/search?q=decision%20trees" title=" decision trees"> decision trees</a>, <a href="https://publications.waset.org/search?q=softwaremetrics." title=" softwaremetrics."> softwaremetrics.</a> </p> <a href="https://publications.waset.org/8972/evolutionary-decision-trees-and-software-metrics-for-module-defects-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8972/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8972/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8972/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8972/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8972/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8972/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8972/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8972/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8972/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8972/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1752</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> Data Mining in Oral Medicine Using Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fahad%20Shahbaz%20Khan">Fahad Shahbaz Khan</a>, <a href="https://publications.waset.org/search?q=Rao%20Muhammad%20Anwer"> Rao Muhammad Anwer</a>, <a href="https://publications.waset.org/search?q=Olof%20Torgersson"> Olof Torgersson</a>, <a href="https://publications.waset.org/search?q=G%C3%B6ran%20Falkman"> G枚ran Falkman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining has been used very frequently to extract hidden information from large databases. This paper suggests the use of decision trees for continuously extracting the clinical reasoning in the form of medical expert-s actions that is inherent in large number of EMRs (Electronic Medical records). In this way the extracted data could be used to teach students of oral medicine a number of orderly processes for dealing with patients who represent with different problems within the practice context over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20mining" title="Data mining">Data mining</a>, <a href="https://publications.waset.org/search?q=Oral%20Medicine" title=" Oral Medicine"> Oral Medicine</a>, <a href="https://publications.waset.org/search?q=Decision%20Trees" title=" Decision Trees"> Decision Trees</a>, <a href="https://publications.waset.org/search?q=WEKA." title="WEKA.">WEKA.</a> </p> <a href="https://publications.waset.org/15032/data-mining-in-oral-medicine-using-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15032/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15032/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15032/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15032/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15032/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15032/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15032/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15032/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15032/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15032/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2501</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> Learning and Evaluating Possibilistic Decision Trees using Information Affinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ilyes%20Jenhani">Ilyes Jenhani</a>, <a href="https://publications.waset.org/search?q=Salem%20Benferhat"> Salem Benferhat</a>, <a href="https://publications.waset.org/search?q=Zied%20Elouedi"> Zied Elouedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20mining%20from%20uncertain%20data" title="Data mining from uncertain data">Data mining from uncertain data</a>, <a href="https://publications.waset.org/search?q=Decision%20Trees" title=" Decision Trees"> Decision Trees</a>, <a href="https://publications.waset.org/search?q=Possibility%20Theory." title="Possibility Theory.">Possibility Theory.</a> </p> <a href="https://publications.waset.org/5039/learning-and-evaluating-possibilistic-decision-trees-using-information-affinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5039/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5039/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5039/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5039/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5039/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5039/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5039/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5039/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5039/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5039/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1515</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Integrating Context Priors into a Decision Tree Classification Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kasim%20Terzic">Kasim Terzic</a>, <a href="https://publications.waset.org/search?q=Bernd%20Neumann"> Bernd Neumann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scene interpretation systems need to match (often ambiguous) low-level input data to concepts from a high-level ontology. In many domains, these decisions are uncertain and benefit greatly from proper context. This paper demonstrates the use of decision trees for estimating class probabilities for regions described by feature vectors, and shows how context can be introduced in order to improve the matching performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=Decision%20Trees" title=" Decision Trees"> Decision Trees</a>, <a href="https://publications.waset.org/search?q=Interpretation" title=" Interpretation"> Interpretation</a>, <a href="https://publications.waset.org/search?q=Vision" title=" Vision"> Vision</a> </p> <a href="https://publications.waset.org/10256/integrating-context-priors-into-a-decision-tree-classification-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10256/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10256/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10256/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10256/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10256/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10256/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10256/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10256/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10256/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10256/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1300</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Pruning Method of Belief Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Salsabil%20Trabelsi">Salsabil Trabelsi</a>, <a href="https://publications.waset.org/search?q=Zied%20Elouedi"> Zied Elouedi</a>, <a href="https://publications.waset.org/search?q=Khaled%20Mellouli"> Khaled Mellouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/search?q=belief%20function%20theory" title=" belief function theory"> belief function theory</a>, <a href="https://publications.waset.org/search?q=belief%20decision%20tree" title=" belief decision tree"> belief decision tree</a>, <a href="https://publications.waset.org/search?q=pruning." title=" pruning."> pruning.</a> </p> <a href="https://publications.waset.org/3379/pruning-method-of-belief-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3379/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3379/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3379/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3379/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3379/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3379/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3379/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3379/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3379/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3379/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1910</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> Spatial Data Mining by Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Oujdi">S. Oujdi</a>, <a href="https://publications.waset.org/search?q=H.%20Belbachir"> H. Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=C4.5%20Algorithm" title="C4.5 Algorithm">C4.5 Algorithm</a>, <a href="https://publications.waset.org/search?q=Decision%20trees" title=" Decision trees"> Decision trees</a>, <a href="https://publications.waset.org/search?q=S-CART" title=" S-CART"> S-CART</a>, <a href="https://publications.waset.org/search?q=Spatial%0D%0Adata%20mining." title=" Spatial data mining."> Spatial data mining.</a> </p> <a href="https://publications.waset.org/10000019/spatial-data-mining-by-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000019/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000019/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000019/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000019/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000019/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000019/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000019/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000019/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000019/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000019/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2986</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Calcification Classification in Mammograms Using Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Usha">S. Usha</a>, <a href="https://publications.waset.org/search?q=S.%20Arumugam"> S. Arumugam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Cancer affects people globally with breast cancer being a leading killer. Breast cancer is due to the uncontrollable multiplication of cells resulting in a tumour or neoplasm. Tumours are called ‘benign’ when cancerous cells do not ravage other body tissues and ‘malignant’ if they do so. As mammography is an effective breast cancer detection tool at an early stage which is the most treatable stage it is the primary imaging modality for screening and diagnosis of this cancer type. This paper presents an automatic mammogram classification technique using wavelet and Gabor filter. Correlation feature selection is used to reduce the feature set and selected features are classified using different decision trees.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Breast%20Cancer" title="Breast Cancer">Breast Cancer</a>, <a href="https://publications.waset.org/search?q=Mammogram" title=" Mammogram"> Mammogram</a>, <a href="https://publications.waset.org/search?q=Symlet%20Wavelets" title=" Symlet Wavelets"> Symlet Wavelets</a>, <a href="https://publications.waset.org/search?q=Gabor%20Filters" title=" Gabor Filters"> Gabor Filters</a>, <a href="https://publications.waset.org/search?q=Decision%20Trees" title=" Decision Trees"> Decision Trees</a> </p> <a href="https://publications.waset.org/10003918/calcification-classification-in-mammograms-using-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003918/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003918/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003918/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003918/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003918/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003918/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003918/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003918/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003918/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003918/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1751</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Comparative Study of Decision Trees and Rough Sets Theory as Knowledge ExtractionTools for Design and Control of Industrial Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Marcin%20Perzyk">Marcin Perzyk</a>, <a href="https://publications.waset.org/search?q=Artur%20Soroczynski"> Artur Soroczynski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> General requirements for knowledge representation in the form of logic rules, applicable to design and control of industrial processes, are formulated. Characteristic behavior of decision trees (DTs) and rough sets theory (RST) in rules extraction from recorded data is discussed and illustrated with simple examples. The significance of the models- drawbacks was evaluated, using simulated and industrial data sets. It is concluded that performance of DTs may be considerably poorer in several important aspects, compared to RST, particularly when not only a characterization of a problem is required, but also detailed and precise rules are needed, according to actual, specific problems to be solved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Knowledge%20extraction" title="Knowledge extraction">Knowledge extraction</a>, <a href="https://publications.waset.org/search?q=decision%20trees" title=" decision trees"> decision trees</a>, <a href="https://publications.waset.org/search?q=rough%20setstheory" title=" rough setstheory"> rough setstheory</a>, <a href="https://publications.waset.org/search?q=industrial%20processes." title=" industrial processes."> industrial processes.</a> </p> <a href="https://publications.waset.org/7119/comparative-study-of-decision-trees-and-rough-sets-theory-as-knowledge-extractiontools-for-design-and-control-of-industrial-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7119/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7119/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7119/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7119/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7119/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7119/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7119/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7119/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7119/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7119/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1633</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gonz%C3%A1lez%20A.%20Julio">Gonz谩lez A. Julio</a>, <a href="https://publications.waset.org/search?q=Ram%C3%ADrez%20L.%20Leonardo"> Ram铆rez L. Leonardo</a>, <a href="https://publications.waset.org/search?q=Puerta%20A.%20Gabriel"> Puerta A. Gabriel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cloud%20storage" title="Cloud storage">Cloud storage</a>, <a href="https://publications.waset.org/search?q=decision%20trees" title=" decision trees"> decision trees</a>, <a href="https://publications.waset.org/search?q=diagnostic%20image" title=" diagnostic image"> diagnostic image</a>, <a href="https://publications.waset.org/search?q=search" title=" search"> search</a>, <a href="https://publications.waset.org/search?q=telemedicine." title=" telemedicine."> telemedicine.</a> </p> <a href="https://publications.waset.org/10010143/performance-analysis-of-search-medical-imaging-service-on-cloud-storage-using-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010143/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010143/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010143/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010143/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010143/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010143/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010143/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010143/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010143/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010143/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">948</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Improving University Operations with Data Mining: Predicting Student Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mladen%20Dragi%C4%8Devi%C4%87">Mladen Dragi膷evi膰</a>, <a href="https://publications.waset.org/search?q=Mirjana%20Peji%C4%87%20Bach"> Mirjana Peji膰 Bach</a>, <a href="https://publications.waset.org/search?q=Vanja%20%C5%A0imi%C4%8Devi%C4%87"> Vanja 艩imi膷evi膰</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20mining" title="Data mining">Data mining</a>, <a href="https://publications.waset.org/search?q=knowledge%20discovery%20in%20databases" title=" knowledge discovery in databases"> knowledge discovery in databases</a>, <a href="https://publications.waset.org/search?q=prediction%20models" title=" prediction models"> prediction models</a>, <a href="https://publications.waset.org/search?q=student%20success." title=" student success."> student success.</a> </p> <a href="https://publications.waset.org/9998014/improving-university-operations-with-data-mining-predicting-student-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998014/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998014/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998014/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998014/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998014/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998014/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998014/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998014/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998014/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998014/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2540</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Djamila%20Benhaddouche">Djamila Benhaddouche</a>, <a href="https://publications.waset.org/search?q=Abdelkader%20Benyettou"> Abdelkader Benyettou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=A%20classifier" title="A classifier">A classifier</a>, <a href="https://publications.waset.org/search?q=Algorithms%20decision%20tree" title=" Algorithms decision tree"> Algorithms decision tree</a>, <a href="https://publications.waset.org/search?q=knowledge%0D%0Aextraction" title=" knowledge extraction"> knowledge extraction</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine." title=" Support Vector Machine."> Support Vector Machine.</a> </p> <a href="https://publications.waset.org/10000925/data-mining-in-medicine-domain-using-decision-trees-and-vector-support-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000925/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000925/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000925/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000925/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000925/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000925/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000925/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000925/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000925/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000925/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1870</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Decision Trees for Predicting Risk of Mortality using Routinely Collected Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tessy%20Badriyah">Tessy Badriyah</a>, <a href="https://publications.waset.org/search?q=Jim%20S.%20Briggs"> Jim S. Briggs</a>, <a href="https://publications.waset.org/search?q=Dave%20R.%20Prytherch"> Dave R. Prytherch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the 蠂2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (蠂2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Decision%20Trees" title="Decision Trees">Decision Trees</a>, <a href="https://publications.waset.org/search?q=Logistic%20Regression" title=" Logistic Regression"> Logistic Regression</a>, <a href="https://publications.waset.org/search?q=clinical%0D%0Aoutcome" title=" clinical outcome"> clinical outcome</a>, <a href="https://publications.waset.org/search?q=risk%20of%20mortality." title=" risk of mortality."> risk of mortality.</a> </p> <a href="https://publications.waset.org/248/decision-trees-for-predicting-risk-of-mortality-using-routinely-collected-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/248/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/248/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/248/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/248/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/248/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/248/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/248/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/248/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/248/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/248/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2523</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> Heritage Tree Expert Assessment and Classification: Malaysian Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.-Y.-S.%20Lau">B.-Y.-S. Lau</a>, <a href="https://publications.waset.org/search?q=Y.-C.-T.%20Jonathan"> Y.-C.-T. Jonathan</a>, <a href="https://publications.waset.org/search?q=M.-S.%20Alias"> M.-S. Alias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heritage trees are natural large, individual trees with exceptionally value due to association with age or event or distinguished people. In Malaysia, there is an abundance of tropical heritage trees throughout the country. It is essential to set up a repository of heritage trees to prevent valuable trees from being cut down. In this cross domain study, a web-based online expert system namely the Heritage Tree Expert Assessment and Classification (HTEAC) is developed and deployed for public to nominate potential heritage trees. Based on the nomination, tree care experts or arborists would evaluate and verify the nominated trees as heritage trees. The expert system automatically rates the approved heritage trees according to pre-defined grades via Delphi technique. Features and usability test of the expert system are presented. Preliminary result is promising for the system to be used as a full scale public system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Arboriculture" title="Arboriculture">Arboriculture</a>, <a href="https://publications.waset.org/search?q=Delphi" title=" Delphi"> Delphi</a>, <a href="https://publications.waset.org/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/search?q=heritage%20tree" title=" heritage tree"> heritage tree</a>, <a href="https://publications.waset.org/search?q=urban%20forestry." title=" urban forestry."> urban forestry.</a> </p> <a href="https://publications.waset.org/10007867/heritage-tree-expert-assessment-and-classification-malaysian-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007867/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007867/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007867/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007867/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007867/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007867/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007867/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007867/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007867/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007867/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1430</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> Evaluation of Hazardous Status of Avenue Trees in University of Port Harcourt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20S.%20Eguakun">F. S. Eguakun</a>, <a href="https://publications.waset.org/search?q=T.%20C.%20Nkwor"> T. C. Nkwor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Trees in the university environment are uniquely position; however, they can also present a millstone to the infrastructure and humans they coexist with. The numerous benefits of trees can be negated due to poor tree health and anthropogenic activities and as such can become hazardous. The study aims at evaluating the hazardous status of avenue trees in University of Port Harcourt. Data were collected from all the avenue trees within the selected major roads in the University. Tree growth variables were measured and health condition of the avenue trees were assessed as an indicator of some structural defects. The hazard status of the avenue trees was determined. Several tree species were used as avenue trees in the University however, <em>Azadirachta indica</em> (81%) was found to be most abundant. The result shows that only 0.3% avenue tree species was found to pose severe harzard in Abuja part of the University. Most avenue trees (55.2%) were rated as medium hazard status. Due to the danger and risk associated with hazardous trees, the study recommends that good and effective management strategies be implemented so as to prevent future damages from trees with small or medium hazard status.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Avenue%20tree" title="Avenue tree">Avenue tree</a>, <a href="https://publications.waset.org/search?q=hazard%20status" title=" hazard status"> hazard status</a>, <a href="https://publications.waset.org/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/search?q=urban." title=" urban. "> urban. </a> </p> <a href="https://publications.waset.org/10010560/evaluation-of-hazardous-status-of-avenue-trees-in-university-of-port-harcourt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010560/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010560/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010560/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010560/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010560/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010560/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010560/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010560/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010560/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010560/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">716</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> Distributed Data-Mining by Probability-Based Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Kargar">M. Kargar</a>, <a href="https://publications.waset.org/search?q=F.%20Gharbalchi"> F. Gharbalchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a new method is suggested for distributed data-mining by the probability patterns. These patterns use decision trees and decision graphs. The patterns are cared to be valid, novel, useful, and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. By using the suggested method we will be able to extract the useful information from massive and multi-relational data bases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data-mining" title="Data-mining">Data-mining</a>, <a href="https://publications.waset.org/search?q=Decision%20tree" title=" Decision tree"> Decision tree</a>, <a href="https://publications.waset.org/search?q=Decision%20graph" title=" Decision graph"> Decision graph</a>, <a href="https://publications.waset.org/search?q=Pattern" title=" Pattern"> Pattern</a>, <a href="https://publications.waset.org/search?q=Relationship." title="Relationship.">Relationship.</a> </p> <a href="https://publications.waset.org/7743/distributed-data-mining-by-probability-based-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7743/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7743/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7743/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7743/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7743/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7743/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7743/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7743/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7743/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7743/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1555</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Langa%20Hendrick%20Musawenkosi">Langa Hendrick Musawenkosi</a>, <a href="https://publications.waset.org/search?q=Twala%20Bhekisipho"> Twala Bhekisipho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Academic%20environment%20model" title="Academic environment model">Academic environment model</a>, <a href="https://publications.waset.org/search?q=decision%20trees" title=" decision trees"> decision trees</a>, <a href="https://publications.waset.org/search?q=FSASEC" title=" FSASEC"> FSASEC</a>, <a href="https://publications.waset.org/search?q=K-nearest%20neighbor" title=" K-nearest neighbor"> K-nearest neighbor</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=popularity%20index" title=" popularity index"> popularity index</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine." title=" support vector machine."> support vector machine.</a> </p> <a href="https://publications.waset.org/10008142/development-of-the-academic-model-to-predict-student-success-at-vut-fsasec-using-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008142/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008142/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008142/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008142/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008142/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008142/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008142/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008142/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008142/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008142/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1137</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1576</span> Determination of Water Pollution and Water Quality with Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=%C3%87i%C4%9Fdem%20Bak%C4%B1r">脟i臒dem Bak谋r</a>, <a href="https://publications.waset.org/search?q=Mecit%20Y%C3%BCzkat"> Mecit Y眉zkat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Decision%20tree" title="Decision tree">Decision tree</a>, <a href="https://publications.waset.org/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/search?q=water%20pollution" title=" water pollution"> water pollution</a>, <a href="https://publications.waset.org/search?q=machine%20learning." title=" machine learning."> machine learning.</a> </p> <a href="https://publications.waset.org/10013323/determination-of-water-pollution-and-water-quality-with-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013323/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013323/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013323/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013323/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013323/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013323/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013323/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013323/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013323/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013323/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1575</span> Churn Prediction: Does Technology Matter?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=John%20Hadden">John Hadden</a>, <a href="https://publications.waset.org/search?q=Ashutosh%20Tiwari"> Ashutosh Tiwari</a>, <a href="https://publications.waset.org/search?q=Rajkumar%20Roy"> Rajkumar Roy</a>, <a href="https://publications.waset.org/search?q=Dymitr%20Ruta"> Dymitr Ruta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Churn" title="Churn">Churn</a>, <a href="https://publications.waset.org/search?q=Decision%20Trees" title=" Decision Trees"> Decision Trees</a>, <a href="https://publications.waset.org/search?q=Neural%20Networks" title=" Neural Networks"> Neural Networks</a>, <a href="https://publications.waset.org/search?q=Regression." title="Regression.">Regression.</a> </p> <a href="https://publications.waset.org/1793/churn-prediction-does-technology-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1793/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1793/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1793/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1793/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1793/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1793/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1793/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1793/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1793/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1793/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3301</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1574</span> A Decision Boundary based Discretization Technique using Resampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Taimur%20Qureshi">Taimur Qureshi</a>, <a href="https://publications.waset.org/search?q=Djamel%20A%20Zighed"> Djamel A Zighed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many supervised induction algorithms require discrete data, even while real data often comes in a discrete and continuous formats. Quality discretization of continuous attributes is an important problem that has effects on speed, accuracy and understandability of the induction models. Usually, discretization and other types of statistical processes are applied to subsets of the population as the entire population is practically inaccessible. For this reason we argue that the discretization performed on a sample of the population is only an estimate of the entire population. Most of the existing discretization methods, partition the attribute range into two or several intervals using a single or a set of cut points. In this paper, we introduce a technique by using resampling (such as bootstrap) to generate a set of candidate discretization points and thus, improving the discretization quality by providing a better estimation towards the entire population. Thus, the goal of this paper is to observe whether the resampling technique can lead to better discretization points, which opens up a new paradigm to construction of soft decision trees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bootstrap" title="Bootstrap">Bootstrap</a>, <a href="https://publications.waset.org/search?q=discretization" title=" discretization"> discretization</a>, <a href="https://publications.waset.org/search?q=resampling" title=" resampling"> resampling</a>, <a href="https://publications.waset.org/search?q=soft%20decision%0Atrees." title=" soft decision trees."> soft decision trees.</a> </p> <a href="https://publications.waset.org/5248/a-decision-boundary-based-discretization-technique-using-resampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5248/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5248/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5248/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5248/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5248/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5248/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5248/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5248/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5248/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5248/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1434</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1573</span> Evaluation of Algorithms for Sequential Decision in Biosonar Target Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Turgay%20Temel">Turgay Temel</a>, <a href="https://publications.waset.org/search?q=John%20Hallam"> John Hallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A sequential decision problem, based on the task ofidentifying the species of trees given acoustic echo data collectedfrom them, is considered with well-known stochastic classifiers,including single and mixture Gaussian models. Echoes are processedwith a preprocessing stage based on a model of mammalian cochlearfiltering, using a new discrete low-pass filter characteristic. Stoppingtime performance of the sequential decision process is evaluated andcompared. It is observed that the new low pass filter processingresults in faster sequential decisions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=neuro-spike%20coding" title=" neuro-spike coding"> neuro-spike coding</a>, <a href="https://publications.waset.org/search?q=parametricmodel" title=" parametricmodel"> parametricmodel</a>, <a href="https://publications.waset.org/search?q=Gaussian%20mixture%20with%20EM%20algorithm" title=" Gaussian mixture with EM algorithm"> Gaussian mixture with EM algorithm</a>, <a href="https://publications.waset.org/search?q=sequential%20decision." title=" sequential decision."> sequential decision.</a> </p> <a href="https://publications.waset.org/8331/evaluation-of-algorithms-for-sequential-decision-in-biosonar-target-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8331/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8331/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8331/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8331/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8331/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8331/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8331/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8331/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8331/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8331/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1547</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1572</span> Historical Landscape Affects Present Tree Density in Paddy Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ha%20T.%20Pham">Ha T. Pham</a>, <a href="https://publications.waset.org/search?q=Shuichi%20Miyagawa"> Shuichi Miyagawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Ongoing landscape transformation is one of the major causes behind disappearance of traditional landscapes, and lead to species and resource loss. Tree in paddy fields in the northeast of Thailand is one of those traditional landscapes. Using three different historical time layers, we acknowledged the severe deforestation and rapid urbanization happened in the region. Despite the general thinking of decline in tree density as consequences, the heterogeneous trend of changes in total tree density in three studied landscapes denied the hypothesis that number of trees in paddy field depend on the length of land use practice. On the other hand, due to selection of planting new trees on levees, existence of trees in paddy field now relies on their values for human use. Besides, changes in land use and landscape structure had a significant impact on decision of which tree density level is considered as suitable for the landscape.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerial%20photographs" title="Aerial photographs">Aerial photographs</a>, <a href="https://publications.waset.org/search?q=land%20use%20change" title=" land use change"> land use change</a>, <a href="https://publications.waset.org/search?q=traditional%0D%0Alandscape" title=" traditional landscape"> traditional landscape</a>, <a href="https://publications.waset.org/search?q=tree%20in%20paddy%20fields." title=" tree in paddy fields."> tree in paddy fields.</a> </p> <a href="https://publications.waset.org/9999718/historical-landscape-affects-present-tree-density-in-paddy-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999718/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999718/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999718/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999718/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999718/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999718/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999718/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999718/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999718/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999718/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1864</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1571</span> DWT Based Image Steganalysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Indradip%20Banerjee">Indradip Banerjee</a>, <a href="https://publications.waset.org/search?q=Souvik%20Bhattacharyya"> Souvik Bhattacharyya</a>, <a href="https://publications.waset.org/search?q=Gautam%20Sanyal"> Gautam Sanyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>‘Steganalysis’ is one of the challenging and attractive interests for the researchers with the development of information hiding techniques. It is the procedure to detect the hidden information from the stego created by known steganographic algorithm. In this paper, a novel feature based image steganalysis technique is proposed. Various statistical moments have been used along with some similarity metric. The proposed steganalysis technique has been designed based on transformation in four wavelet domains, which include Haar, Daubechies, Symlets and Biorthogonal. Each domain is being subjected to various classifiers, namely K-nearest-neighbor, K* Classifier, Locally weighted learning, Naive Bayes classifier, Neural networks, Decision trees and Support vector machines. The experiments are performed on a large set of pictures which are available freely in image database. The system also predicts the different message length definitions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Steganalysis" title="Steganalysis">Steganalysis</a>, <a href="https://publications.waset.org/search?q=Moments" title=" Moments"> Moments</a>, <a href="https://publications.waset.org/search?q=Wavelet%20Domain" title=" Wavelet Domain"> Wavelet Domain</a>, <a href="https://publications.waset.org/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/search?q=K%2A" title=" K*"> K*</a>, <a href="https://publications.waset.org/search?q=LWL" title=" LWL"> LWL</a>, <a href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier" title=" Naive Bayes Classifier"> Naive Bayes Classifier</a>, <a href="https://publications.waset.org/search?q=Neural%20networks" title=" Neural networks"> Neural networks</a>, <a href="https://publications.waset.org/search?q=Decision%20trees" title=" Decision trees"> Decision trees</a>, <a href="https://publications.waset.org/search?q=SVM." title=" SVM. "> SVM. </a> </p> <a href="https://publications.waset.org/9999449/dwt-based-image-steganalysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999449/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999449/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999449/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999449/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999449/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999449/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999449/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999449/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999449/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999449/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2571</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1570</span> Empirical and Indian Automotive Equity Portfolio Decision Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Sankar">P. Sankar</a>, <a href="https://publications.waset.org/search?q=P.%20James%20Daniel%20Paul"> P. James Daniel Paul</a>, <a href="https://publications.waset.org/search?q=Siddhant%20Sahu"> Siddhant Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Indian%20Automotive%20Sector" title="Indian Automotive Sector">Indian Automotive Sector</a>, <a href="https://publications.waset.org/search?q=Stock%20Market%20Decisions" title=" Stock Market Decisions"> Stock Market Decisions</a>, <a href="https://publications.waset.org/search?q=Equity%20Portfolio%20Analysis" title=" Equity Portfolio Analysis"> Equity Portfolio Analysis</a>, <a href="https://publications.waset.org/search?q=Decision%20Tree%20Classifiers" title=" Decision Tree Classifiers"> Decision Tree Classifiers</a>, <a href="https://publications.waset.org/search?q=Statistical%20Data%20Analysis." title=" Statistical Data Analysis."> Statistical Data Analysis.</a> </p> <a href="https://publications.waset.org/9998554/empirical-and-indian-automotive-equity-portfolio-decision-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998554/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998554/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998554/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998554/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998554/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998554/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998554/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998554/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998554/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998554/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2036</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1569</span> The Mutated Distance between Two Mixture Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wan%20Chian%20Li">Wan Chian Li</a>, <a href="https://publications.waset.org/search?q=Justie%20Su-Tzu%20Juan"> Justie Su-Tzu Juan</a>, <a href="https://publications.waset.org/search?q=Yi-Chun%20Wang"> Yi-Chun Wang</a>, <a href="https://publications.waset.org/search?q=Shu-Chuan%20Chen"> Shu-Chuan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The evolutionary tree is an important topic in bioinformation. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences. Mixture tree is a new type evolutionary tree, and it has two additional information besides the information of ordinary evolutionary tree. One of the information is time parameter, and the other is the set of mutated sites. In 2008, Lin and Juan proposed an algorithm to compute the distance between two mixture trees. Their algorithm computes the distance with only considering the time parameter between two mixture trees. In this paper, we proposes a method to measure the similarity of two mixture trees with considering the set of mutated sites and develops two algorithm to compute the distance between two mixture trees. The time complexity of these two proposed algorithms are O(n2 × max{h(T1), h(T2)}) and O(n2), respectively</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=evolutionary%20tree" title="evolutionary tree">evolutionary tree</a>, <a href="https://publications.waset.org/search?q=mixture%20tree" title=" mixture tree"> mixture tree</a>, <a href="https://publications.waset.org/search?q=mutated%20site" title=" mutated site"> mutated site</a>, <a href="https://publications.waset.org/search?q=distance." title=" distance."> distance.</a> </p> <a href="https://publications.waset.org/14336/the-mutated-distance-between-two-mixture-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14336/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14336/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14336/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14336/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14336/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14336/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14336/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14336/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14336/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14336/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1416</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1568</span> Decision Tree for Competing Risks Survival Probability in Breast Cancer Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20A.%20Ibrahim">N. A. Ibrahim</a>, <a href="https://publications.waset.org/search?q=A.%20Kudus"> A. Kudus</a>, <a href="https://publications.waset.org/search?q=I.%20Daud"> I. Daud</a>, <a href="https://publications.waset.org/search?q=M.%20R.%20Abu%20Bakar"> M. R. Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Competing risks survival data that comprises of more than one type of event has been used in many applications, and one of these is in clinical study (e.g. in breast cancer study). The decision tree method can be extended to competing risks survival data by modifying the split function so as to accommodate two or more risks which might be dependent on each other. Recently, researchers have constructed some decision trees for recurrent survival time data using frailty and marginal modelling. We further extended the method for the case of competing risks. In this paper, we developed the decision tree method for competing risks survival time data based on proportional hazards for subdistribution of competing risks. In particular, we grow a tree by using deviance statistic. The application of breast cancer data is presented. Finally, to investigate the performance of the proposed method, simulation studies on identification of true group of observations were executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Competing%20risks" title="Competing risks">Competing risks</a>, <a href="https://publications.waset.org/search?q=Decision%20tree" title=" Decision tree"> Decision tree</a>, <a href="https://publications.waset.org/search?q=Simulation" title=" Simulation"> Simulation</a>, <a href="https://publications.waset.org/search?q=Subdistribution%20Proportional%20Hazard." title="Subdistribution Proportional Hazard.">Subdistribution Proportional Hazard.</a> </p> <a href="https://publications.waset.org/12319/decision-tree-for-competing-risks-survival-probability-in-breast-cancer-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12319/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12319/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12319/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12319/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12319/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12319/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12319/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12319/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12319/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12319/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2374</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1567</span> Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Omer%20Nebil%20Yaveroglu">Omer Nebil Yaveroglu</a>, <a href="https://publications.waset.org/search?q=Tolga%20Can"> Tolga Can</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93% <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Protein%20Interaction%20Prediction" title="Protein Interaction Prediction">Protein Interaction Prediction</a>, <a href="https://publications.waset.org/search?q=Phylogenetic%20Profile" title=" Phylogenetic Profile"> Phylogenetic Profile</a>, <a href="https://publications.waset.org/search?q=SVM" title=" SVM "> SVM </a>, <a href="https://publications.waset.org/search?q=ReliefF" title=" ReliefF"> ReliefF</a>, <a href="https://publications.waset.org/search?q=Decision%20Trees" title=" Decision Trees"> Decision Trees</a>, <a href="https://publications.waset.org/search?q=Random%20Forest%20Classification" title=" Random Forest Classification"> Random Forest Classification</a> </p> <a href="https://publications.waset.org/11139/predicting-protein-protein-interactions-from-protein-sequences-using-phylogenetic-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11139/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11139/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11139/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11139/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11139/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11139/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11139/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11139/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11139/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11139/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1566</span> Generating Concept Trees from Dynamic Self-organizing Map</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Norashikin%20Ahmad">Norashikin Ahmad</a>, <a href="https://publications.waset.org/search?q=Damminda%20Alahakoon"> Damminda Alahakoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=dynamic%20self-organizing%20map" title="dynamic self-organizing map">dynamic self-organizing map</a>, <a href="https://publications.waset.org/search?q=concept%20formation" title=" concept formation"> concept formation</a>, <a href="https://publications.waset.org/search?q=clustering." title=" clustering."> clustering.</a> </p> <a href="https://publications.waset.org/7922/generating-concept-trees-from-dynamic-self-organizing-map" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7922/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7922/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7922/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7922/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7922/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7922/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7922/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7922/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7922/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7922/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1459</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1565</span> Independent Spanning Trees on Systems-on-chip Hypercubes Routing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Eduardo%20Sant%27Ana%20da%20Silva">Eduardo Sant'Ana da Silva</a>, <a href="https://publications.waset.org/search?q=Andre%20Luiz%20Pires%20Guedes"> Andre Luiz Pires Guedes</a>, <a href="https://publications.waset.org/search?q=Eduardo%20Todt"> Eduardo Todt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Independent spanning trees (ISTs) provide a number of advantages in data broadcasting. One can cite the use in fault tolerance network protocols for distributed computing and bandwidth. However, the problem of constructing multiple ISTs is considered hard for arbitrary graphs. In this paper we present an efficient algorithm to construct ISTs on hypercubes that requires minimum resources to be performed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hypercube" title="Hypercube">Hypercube</a>, <a href="https://publications.waset.org/search?q=Independent%20Spanning%20Trees" title=" Independent Spanning Trees"> Independent Spanning Trees</a>, <a href="https://publications.waset.org/search?q=Networks%0D%0AOn%20Chip" title=" Networks On Chip"> Networks On Chip</a>, <a href="https://publications.waset.org/search?q=Systems%20On%20Chip." title=" Systems On Chip."> Systems On Chip.</a> </p> <a href="https://publications.waset.org/11659/independent-spanning-trees-on-systems-on-chip-hypercubes-routing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11659/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11659/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11659/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11659/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11659/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11659/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11659/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11659/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11659/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11659/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1886</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1564</span> Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaddouja%20Boujenfa">Khaddouja Boujenfa</a>, <a href="https://publications.waset.org/search?q=Nadia%20Essoussi"> Nadia Essoussi</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Limam"> Mohamed Limam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sequence alignment is a fundamental part in many bioinformatics applications such as phylogenetic analysis. Many alignment methods have been proposed. Each method gives a different result for the same data set, and consequently generates a different phylogenetic tree. Hence, the chosen alignment method affects the resulting tree. However in the literature, there is no evaluation of multiple alignment methods based on the comparison of their phylogenetic trees. This work evaluates the following eight aligners: ClustalX, T-Coffee, SAGA, MUSCLE, MAFFT, DIALIGN, ProbCons and Align-m, based on their phylogenetic trees (test trees) produced on a given data set. The Neighbor-Joining method is used to estimate trees. Three criteria, namely, the dNNI, the dRF and the Id_Tree are established to test the ability of different alignment methods to produce closer test tree compared to the reference one (true tree). Results show that the method which produces the most accurate alignment gives the nearest test tree to the reference tree. MUSCLE outperforms all aligners with respect to the three criteria and for all datasets, performing particularly better when sequence identities are within 10-20%. It is followed by T-Coffee at lower sequence identity (<10%), Align-m at 20-30% identity, and ClustalX and ProbCons at 30-50% identity. Also, it is noticed that when sequence identities are higher (>30%), trees scores of all methods become similar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multiple%20alignment%20methods" title="Multiple alignment methods">Multiple alignment methods</a>, <a href="https://publications.waset.org/search?q=phylogenetic%20trees" title=" phylogenetic trees"> phylogenetic trees</a>, <a href="https://publications.waset.org/search?q=Neighbor-Joining%20method" title=" Neighbor-Joining method"> Neighbor-Joining method</a>, <a href="https://publications.waset.org/search?q=Robinson-Foulds%20distance." title=" Robinson-Foulds distance."> Robinson-Foulds distance.</a> </p> <a href="https://publications.waset.org/4182/comparison-of-phylogenetic-trees-of-multiple-protein-sequence-alignment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4182/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4182/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4182/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4182/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4182/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4182/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4182/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4182/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4182/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4182/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1827</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1563</span> Extraction of Symbolic Rules from Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20M.%20Kamruzzaman">S. M. Kamruzzaman</a>, <a href="https://publications.waset.org/search?q=Md.%20Monirul%20Islam"> Md. Monirul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Backpropagation" title="Backpropagation">Backpropagation</a>, <a href="https://publications.waset.org/search?q=clustering%20algorithm" title=" clustering algorithm"> clustering algorithm</a>, <a href="https://publications.waset.org/search?q=constructivealgorithm" title=" constructivealgorithm"> constructivealgorithm</a>, <a href="https://publications.waset.org/search?q=continuous%20activation%20function" title=" continuous activation function"> continuous activation function</a>, <a href="https://publications.waset.org/search?q=pruning%20algorithm" title=" pruning algorithm"> pruning algorithm</a>, <a href="https://publications.waset.org/search?q=ruleextraction%20algorithm" title=" ruleextraction algorithm"> ruleextraction algorithm</a>, <a href="https://publications.waset.org/search?q=symbolic%20rules." title=" symbolic rules."> symbolic rules.</a> </p> <a href="https://publications.waset.org/8498/extraction-of-symbolic-rules-from-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8498/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8498/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8498/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8498/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8498/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8498/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8498/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8498/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8498/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8498/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1616</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Decision%20Trees&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>