CINXE.COM
Уточненный закон всемирного тяготения Ньютона. Cтатьи. Наука и техника
<!DOCTYPE html> <!--[if IE 7 ]><html class="ie7"> <![endif]--> <!--[if IE 8 ]><html class="ie8"> <![endif]--> <!--[if IE 9 ]><html class="ie9"> <![endif]--> <!--[if (gte IE 10)|!(IE)]><!--><html> <!--<![endif]--> <head><script type="text/javascript" src="/_static/js/bundle-playback.js?v=HxkREWBo" charset="utf-8"></script> <script type="text/javascript" src="/_static/js/wombat.js?v=txqj7nKC" charset="utf-8"></script> <script>window.RufflePlayer=window.RufflePlayer||{};window.RufflePlayer.config={"autoplay":"on","unmuteOverlay":"hidden"};</script> <script type="text/javascript" src="/_static/js/ruffle/ruffle.js"></script> <script type="text/javascript"> __wm.init("https://web.archive.org/web"); __wm.wombat("http://n-t.ru:80/tp/iz/uzn.htm","20181201003224","https://web.archive.org/","web","/_static/", "1543624344"); </script> <link rel="stylesheet" type="text/css" href="/_static/css/banner-styles.css?v=S1zqJCYt" /> <link rel="stylesheet" type="text/css" href="/_static/css/iconochive.css?v=3PDvdIFv" /> <!-- End Wayback Rewrite JS Include --> <title>Уточненный закон всемирного тяготения Ньютона. Cтатьи. Наука и техника</title> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="SKYPE_TOOLBAR" content="SKYPE_TOOLBAR_PARSER_COMPATIBLE"/> <!--[if lt IE 9]> <script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script> <script src="http://css3-mediaqueries-js.googlecode.com/svn/trunk/css3-mediaqueries.js"></script> <![endif]--> <meta property="og:title" content="Уточненный закон всемирного тяготения Ньютона"> <meta property="og:url" content="https://web.archive.org/web/20181201003224/http://n-t.ru/tp/iz/uzn.htm"> <meta property="og:image" content="https://web.archive.org/web/20181201003224im_/http://n-t.ru/n-t158.png"> <meta property="og:image:width" content="316"> <meta property="og:image:height" content="316"> <meta property="og:description" content="Гравитация остается самым загадочным природным явлением. Триумфальному шествию закона всемирного тяготения предшествовал нелегкий период его становления. Современники Ньютона не сразу осознали величие гравитации. После смерти Исаака Ньютона закон всемирного тяготения подвергся новым испытаниям. А. Клеро и Ж. Даламбер высказали сомнение: теория Ньютона не способна объяснить движение перигея Луны и требует внесения поправок. "> <link rel="icon" href="/web/20181201003224im_/http://n-t.ru/favicon.ico" type="image/x-icon"> <link href="/web/20181201003224cs_/http://n-t.ru/dz/nit.css" rel="stylesheet" type="text/css"> </head> <body> <!--LiveInternet counter--><script type="text/javascript"><!-- new Image().src = "//web.archive.org/web/20181201003224/http://counter.yadro.ru/hit?r"+ escape(document.referrer)+((typeof(screen)=="undefined")?"": ";s"+screen.width+"*"+screen.height+"*"+(screen.colorDepth? screen.colorDepth:screen.pixelDepth))+";u"+escape(document.URL)+ ";h"+escape(document.title.substring(0,80))+ ";"+Math.random();//--></script><!--/LiveInternet--> <div id="fb-root"></div> <script>(function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//web.archive.org/web/20181201003224/http://connect.facebook.net/ru_RU/sdk.js#xfbml=1&version=v2.4&appId=1615304618725556"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk'));</script> <!-- Верхний колонтитул --><div class="vk vkm"> <!-- Логотип --> <a href="/web/20181201003224/http://n-t.ru/"> <img class="il1" style="float: left;" src="/web/20181201003224im_/http://n-t.ru/dz/1024-logo.gif" border="0" width="208" height="72" alt="Перейти в начало сайта" title="Перейти в начало сайта"> <img class="il2" style="float: left;" src="/web/20181201003224im_/http://n-t.ru/dz/480-800-logo.gif" border="0" width="50" height="50" alt="Перейти в начало сайта" title="Перейти в начало сайта"> </a> <!-- Название --> <div class="nv nm1">Электронная библиотека «Наука и техника»</div> <div class="nv nm2">n-t.ru: Наука и техника</div> <!-- Навигация --> <div class="nv nv1"><a href="/web/20181201003224/http://n-t.ru/">Начало сайта</a> / <a href="/web/20181201003224/http://n-t.ru/tp/">Cтатьи</a> / <a href="/web/20181201003224/http://n-t.ru/tp/iz/">Измерения в технике</a></div> <div class="nv nv2"><a href="/web/20181201003224/http://n-t.ru/">Начало сайта</a> / <a href="/web/20181201003224/http://n-t.ru/tp/">Cтатьи</a> / <a href="/web/20181201003224/http://n-t.ru/tp/iz/">Измерения в технике</a></div> <!-- Форма поиска --><div class="fp1"><div class="ya-site-form ya-site-form_inited_no" onclick="return {'action':'https://web.archive.org/web/20181201003224/http://n-t.ru/sy.htm','arrow':false,'bg':'transparent','fontsize':14,'fg':'#000000','language':'ru','logo':'rb','publicname':'Поиск по n-t.ru','suggest':false,'target':'_self','tld':'ru','type':3,'usebigdictionary':true,'searchid':149297,'webopt':false,'websearch':false,'input_fg':'#a1aab3','input_bg':'#ffffff','input_fontStyle':'normal','input_fontWeight':'normal','input_placeholder':'Поиск по n-t.ru:','input_placeholderColor':'#a1aab3','input_borderColor':'#B8D9B8'}"><form action="https://web.archive.org/web/20181201003224/http://yandex.ru/sitesearch" method="get" target="_self"><input type="hidden" name="searchid" value="149297"/><input type="hidden" name="l10n" value="ru"/><input type="hidden" name="reqenc" value=""/><input type="search" name="text" value=""/><input type="submit" value="Найти"/></form></div><style type="text/css">.ya-page_js_yes .ya-site-form_inited_no { display: none; }</style><script type="text/javascript">(function(w,d,c){var s=d.createElement('script'),h=d.getElementsByTagName('script')[0],e=d.documentElement;if((' '+e.className+' ').indexOf(' ya-page_js_yes ')===-1){e.className+=' ya-page_js_yes';}s.type='text/javascript';s.async=true;s.charset='utf-8';s.src=(d.location.protocol==='https:'?'https:':'http:')+'//web.archive.org/web/20181201003224/http://site.yandex.net/v2.0/js/all.js';h.parentNode.insertBefore(s,h);(w[c]||(w[c]=[])).push(function(){Ya.Site.Form.init()})})(window,document,'yandex_site_callbacks');</script></div> </div> <!-- Полосы --><div class="pl plm"> <!-- Левая полоса --><div class="pll"> <p class="rz"><a href="/web/20181201003224/http://n-t.ru/ns/" class="arz">Научные статьи</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/ns/fz/" class="arb">Физика звёзд</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/ns/fm/" class="arb">Физика микромира</a></p> <p class="rz"><a href="/web/20181201003224/http://n-t.ru/nj/" class="arz">Журналы</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nj/pr/" class="arb">Природа</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nj/nz/" class="arb">Наука и жизнь</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nj/pl/" class="arb">Природа и люди</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nj/tm/" class="arb">Техника – молодёжи</a></p> <p class="rz"><a href="/web/20181201003224/http://n-t.ru/nl/" class="arz">Нобелевские лауреаты</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nl/fz/" class="arb">Премия по физике</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nl/hm/" class="arb">Премия по химии</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nl/lt/" class="arb">Премия по литературе</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nl/mf/" class="arb">Премия по медицине</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nl/ek/" class="arb">Премия по экономике</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/nl/mr/" class="arb">Премия мира</a></p> <p class="rz"><a href="/web/20181201003224/http://n-t.ru/ri/" class="arz">Книги</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/ri/zh/ar.htm" id="rb">Архимед</a> </p><p class="rb"><a href="/web/20181201003224/http://n-t.ru/ri/gn/kl.htm" id="rb">Как люди научились летать</a> </p><p class="rb"><a href="/web/20181201003224/http://n-t.ru/ri/mz/on.htm" id="rb">Обычное в необычном (Энциклопедия чудес. Книга первая)</a> </p><p class="rb"><a href="/web/20181201003224/http://n-t.ru/ri/sh/pn.htm" id="rb">Парадоксы науки</a> </p><p class="rb"><a href="/web/20181201003224/http://n-t.ru/ri/mk/sk.htm" id="rb">Смотри в корень!</a> </p><p class="rb"><a href="/web/20181201003224/http://n-t.ru/ri/gd/yd.htm" id="rb">Яды – вчера и сегодня</a></p> <p class="rz"><a href="/web/20181201003224/http://n-t.ru/ii/" class="arz">Издания НиТ</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/ii/ba/" class="arb">Батарейки и аккумуляторы</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/ii/os/" class="arb">Охранные системы</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/ii/ie/" class="arb">Источники энергии</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/ii/st/" class="arb">Свет и тепло</a></p> <p class="rz"><a href="/web/20181201003224/http://n-t.ru/tp/" class="arz">Научно-популярные статьи</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/ns/" class="arb">Наука сегодня</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/ng/" class="arb">Научные гипотезы</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/to/" class="arb">Теория относительности</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/in/" class="arb">История науки</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/nr/" class="arb">Научные развлечения</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/ts/" class="arb">Техника сегодня</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/it/" class="arb">История техники</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/iz/" class="arb">Измерения в технике</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/ie/" class="arb">Источники энергии</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/rn/" class="arb">Наука и религия</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/mr/" class="arb">Мир, в котором мы живём</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/lt/" class="arb">Лит. творчество ученых</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/br/" class="arb">Человек и общество</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/ob/" class="arb">Образование</a></p> <p class="rb"><a href="/web/20181201003224/http://n-t.ru/tp/rz/" class="arb">Разное</a></p> </div> <!-- Правая полоса --><div class="plp plpm"> <h1>Уточненный закон всемирного тяготения Ньютона</h1> <p class="at"><a href="https://web.archive.org/web/20181201003224/mailto:kaseke@kaznet.kz">Нурбек МАЖЕНОВ</a></p> <div style="overflow: hidden; margin: 0px 0px 20px 40%;"> <div style="float: right;"> <p class="sm">Бездельник натуральный!<br> Сидеть, ничего не делать,<br> целыми днями заниматься физикой!</p> <p class="sm"><i>Мысли жены вслух</i></p> </div></div> <p>На фоне впечатляющих успехов современной физики, гравитация остается самым загадочным природным явлением. Величие гравитации заключается в том, что ей подчиняется все существующее на свете, начиная от самой вселенной и кончая ее составляющими элементами. Впервые наиболее полно это было осознанно великим английским ученым Исааком Ньютоном (1643...1727). В 1687 г. Ньютон опубликовал свой знаменитый труд «Математические начала натуральной философии», раскрывший человечеству впервые теории движения планет и основы гравитации. Закон всемирного тяготения Ньютона, который стал первым научным законом, действующий во всей Вселенной гласит: каждые две частицы материи притягивают взаимно друг друга, или тяготеют друг другу, с силой, прямо пропорциональной произведению их масс и обратно пропорционально квадрату расстояния между ними:</p> <table width="580" border="0" cellspacing="0" cellpadding="4"> <tr><td align="center"><p><img src="/web/20181201003224im_/http://n-t.ru/tp/iz/uzn_e01.gif" width="93" height="42" border="0" alt="" align="absmiddle"> ,</p></td><td align="right"><p>(1)</p></td></tr> </table> <p>где <i>M</i> и <i>m</i> – массы частиц;<br> <i>R</i> – расстояние между ними;<br> γ – гравитационная постоянная.</p> <p>Современники Ньютона [1, с. 39...51] не сразу осознали величие гравитации. Христиан Гюйгенс, которого сам Ньютон называл великим ученым писал: «Мысль Ньютона о взаимном притяжении, я считаю нелепой и удивляюсь, как человек подобно Ньютона, мог сделать столь трудных исследований вычислений, не имеющих в основании ничего лучшего, чем эта мысль».</p> <p>Мысль о том, что небесные тела обладают свойством притягивать, высказывали ранее до Ньютона Николай Кузанский, Леонардо да Винчи, Коперник и Кеплер. «Тяжесть есть взаимная склонность между родственными телами, стремящими слиться, соединиться воедино... В какое место мы ни поместили бы Землю, тяжелые тела вследствие природной им способности будут всегда двигаться к ней... Если бы в каком-нибудь месте мира находились два камня на близком расстоянии друг от друга и вне сферы действия какого бы ни было родственного им тела, то эти камни стремились бы соединиться друг с другом подобно двум магнитам...» – писал в своей книге «Новая астрономия» Кеплер. Гениальные высказывания Кеплера были лишь только началом большого пути, которое стоило еще преодолеть. Из множества исследователей этот трудный путь суждено было пройти Ньютону.</p> <p>Триумфальному шествию закона всемирного тяготения предшествовал нелегкий период его становления. К идее всемирного тяготения несколько раньше Ньютона пришел Роберт Гук (1635...1703). Между Гуком и Ньютоном шел долгий спор о приоритете в открытии закона всемирного тяготения. В отличие от высказываний Гука, Ньютон разработал математическую теорию тяготения и доказал численными методами действие закона тяготения. Взгляды на гравитацию своих предшественников Ньютон отобразил одной формулой (1), которая является математической моделью гравитационного взаимодействия двух материальных тел.</p> <p>После смерти Исаака Ньютона (1727 г.) закон всемирного тяготения подвергся новым испытаниям. Последним серьезным возражением против закона всемирного тяготения считают публикацию французского математика и астронома Алексиса-Клода Клеро в 1745 г. Некоторые детали вычисленной им орбиты Луны, по его мнению, требуют исправления закона всемирного тяготения [2, с. 77...78].</p> <p>Одной из важнейших проблем А. Клеро считал теорию движения Луны на основе закона всемирного тяготения Ньютона, точнее – исследование того неравенства, «которое получило у Ньютона наиболее темное развитие, именно, движение лунного перигея». Оригинальный самостоятельный путь исследований А. Клеро приводит к тому же значению, которое получил в свое время сам Ньютон, расходившееся с наблюдаемыми данными почти в два раза. К таким же выводам пришел независимо другой исследователь Жан Лерон Даламбер (1717...1783). Он, как и А. Клеро пришел к выводу, что под действием ньютонова притяжения перигей орбиты Луны должен был завершать одно обращение за 18 лет, а не за 9 лет, как происходит в действительности.</p> <p>Независимо друг от друга А. Клеро и Ж. Даламбер, занимающиеся исследованием в области ньютоновской механики и теории тяготения, пришли к одинаковому выводу о том, что теория Ньютона не способна объяснить движение перигея Луны и требует внесения поправок. Такой путь подсказал еще сам Ньютон.</p> <p>Небольшая поправка А. Клеро [2, с. 79] формы всемирного закона тяготения Ньютона была представлена в следующем виде:</p> <table width="580" border="0" cellspacing="0" cellpadding="4"> <tr><td align="center"><p><img src="/web/20181201003224im_/http://n-t.ru/tp/iz/uzn_e02.gif" width="174" height="42" border="0" alt="" align="absmiddle"> ,</p></td><td align="right"><p>(2)</p></td></tr> </table> <p>где <i>M</i> и <i>m</i> – массы двух тел;<br> <i>R</i> – расстояние между ними;<br> γ – гравитационная постоянная;<br> <i>n</i> – <i>n</i> > 2 (например, <i>n</i> = 3, <i>n</i> = 4);<br> α – малая величина, подбираемая опытным путем.</p> <p>Высказывание Ж. Даламбера также свидетельствует о необходимости дополнительного члена: «Луна притягивается к Земле еще другой, небольшой по величине силой, действующей не по закону обратной пропорциональности квадратам расстояний».</p> <p>Против вывода А. Клеро и Ж. Даламбера выступил известный французский естествоиспытатель Жорж Бюффон (1707...1783). Он своим авторитетом спас формулу Ньютона от коррекции, заявив, что нам предлагают нечто произвольное, вместо того, чтобы воспроизводить истину». По его мнению после первого изменения впоследствии могли бы беспрепятственно возникнуть и последующие члены. «Всякий физический закон лишь потому является законом, что его выражение обладает единственностью и простотой» – заявил Ж. Бюффон.</p> <p>До настоящего времени считают, что Клеро перепроверил свои результаты и обнаружил ошибку. С этой точкой зрения мы не можем согласиться. В рамках своей чисто аналитической модели он действительно исправил противоречия в своей модели, и нетронутой оставил несовершенство в законе всемирного тяготения Ньютона. На наш взгляд А. Клеро не стал противопоставлять себя авторитету самого Ньютона, его последователям и вышел на самостоятельный путь исследования. Он не стал уточнять формулу закона всемирного тяготения и тем самым избежал ожидавших его в будущем возможных острых дискуссий. Как покажет история, данная стратегия оправдала себя. А. Клеро выиграет конкурс объявленный в 1750 г. Петербургской академией, получит восторженные отзывы современников, издаст книгу «Теория движения Луны, выведенная из единственного принципа притяжения, обратно пропорционально квадратам расстояний» в 1752 г. и будет избран член-корреспондентом Петербургской академии наук в 1754 г.</p> <p>Все силы А. Клеро были сосредоточены на выполнение собственной программы исследований: «После долгих размышлений над теорией Ньютона и не достигнув той степени убежденности, которой я ожидал, я решил больше ничего у него не заимствовать и самостоятельно искать определения движения небесных тел, при единственном допущении об их взаимном притяжении». Данный подход позволил ему построить чисто аналитическую модель гравитационного взаимодействия.</p> <p>С тех пор прошло 350 лет. Закон всемирного тяготения (1) в первозданном виде благополучно встретил 2000-летие. Сомнения А. Клеро и Ж. Даламбера относительно закона всемирного тяготения Ньютона, на наш взгляд, так и не рассеялись. Последовательность следующих рассуждений приводит нас к неожиданным результатам.</p> <p>Два материальных тела <i>М</i> и <i>m</i> притягивают друг друга с одинаковой силой <i>F</i>. Гравитационное поле массы <i>М</i> вызывает ускорение <i>m</i>:<br> <i>g</i> = γ · (<i>M </i>/ <i>R</i><sup>2</sup>). </p> <p>Соответственно масса <i>m</i> вызывает ускорение <i>М</i>:<br> <i>g</i> = γ · (<i>m </i>/ <i>R</i><sup>2</sup>).</p> <p>Относительное ускорение двух тел <i>М</i> и <i>m</i> <i>g</i><sub>от</sub> равное разности <i>g</i><sub>M</sub> – <i>g</i><sub>m</sub>, а так как <i>g</i><sub>M</sub> и <i>g</i><sub>m</sub> направлены в противоположные стороны, то <i>g</i><sub>от</sub> равно сумме ускорений <i>g</i><sub>M</sub> и <i>g</i><sub>m</sub> [3, с. 117...118]:</p> <table width="580" border="0" cellspacing="0" cellpadding="4"> <tr><td align="center"><p><img src="/web/20181201003224im_/http://n-t.ru/tp/iz/uzn_e03.gif" width="114" height="42" border="0" alt=""></p></td><td align="right"><p>(3)</p></td></tr> </table> <p>Следовательно, ускорение при относительном движении двух притягивающихся материальных тел <i>M</i> и <i>m</i> мы можем считать, что сила исходит из неподвижного центра и можно исследовать движение только одного тела.</p> <p>Поясним это на следующем примере и на практике проверим адекватность формулы (3) окружающей действительности. На поверхности Земли, то есть на расстоянии 6371,032 км от ее центра, ускорение <i>g</i><sub>Зем</sub> = 9,81 м/с<sup>2</sup>. Ускорение, вызываемое притяжением Земли на расстоянии <i>r</i> = 384400 км до Луны должно уменьшится в 384400<sup>2</sup> / 6371,032<sup>2</sup> = 3640,38 раз. Ускорение Луны, вызываемое притяжением Земли равно:</p> <p><i>g</i><sub>Земля-Луна</sub> = 9,81 м/с<sup>2</sup> / 3640,38 = 0,2695 см/с<sup>2</sup>.</p> <p>Соответственно на поверхности Луны, на расстоянии <i>r</i> = 1738 км от ее центра, ускорение <i>g</i><sub>Луна</sub> = 1,62 м/с<sup>2</sup>. Это ускорение, вызываемое притяжением Луны на расстоянии <i>r</i> = 384400 км до Земли должно уменьшится в 384400<sup>2</sup> / 1738<sup>2</sup> = 48917,83 раз.</p> <p>Ускорение Земли, вызываемое притяжением Луны равно:</p> <p><i>g</i><sub>Луна-Земля</sub> = 1,62 м/с<sup>2</sup> / 48917,83 = 0,0033 см/с<sup>2</sup>.</p> <p>Относительное ускорение Луны <i>g</i><sub>от</sub> будет равно сумме ускорений</p> <p><i>g</i><sub>от</sub> = <i>g</i><sub>Земля-Луна</sub> + <i>g</i><sub>Луна-Земля</sub> = 0,2695 см/с<sup>2</sup> + 0,0033 см/с<sup>2</sup> = 0,2728 см/с<sup>2</sup>.</p> <p>Полученное значение относительного ускорения Луны <i>g</i><sub>от</sub> можно проверить следующим способом. Предполагая, что Луна движется по окружности вычислим ее действительное ускорение по формуле:</p> <p><i>G</i><sub>от</sub> = <i>V</i><sup>2</sup> / <i>r</i> ,</p> <p>где <i>V</i> – скорость движения Луны по орбите;<br> <i>r</i> – расстояние от Земли до Луны.</p> <p>Скорость движения Луны по орбите <i>V</i> можно вычислить по формуле:</p> <p><i>V</i> = (2π<i>r</i>) / <i>T</i> ,</p> <p>где <i>T</i> – звездный период обращения Луны, <i>Т</i> = 27,3 суток;<br> <i>r</i> – расстояние от Земли до Луны (<i>r</i> = 384400 км).</p> <p>Вычислим значение <i>V</i> и <i>G</i><sub>от</sub>:</p> <p><i>V</i> = (2 · 3,14 · 384400 км) / 2358720 сек = 1,02345 км/сек</p> <p><i>G</i><sub>от</sub> = (1,02345 км/сек)<sup>2</sup> / 384400 км = 0,2725 см/сек<sup>2</sup>.</p> <p>Расчеты показывают, что <i>G</i><sub>от</sub> = <i>g</i><sub>от</sub> и относительная погрешность этих двух показателей составляет <i>G</i><sub>от</sub> – <i>g</i><sub>от</sub> = 0,2728 см/сек<sup>2</sup> – 0,2725 см/сек<sup>2</sup> = 0,0003 см/сек<sup>2</sup> или 0,12%.</p> <p>Численные расчеты <i>g</i><sub>от</sub> на реальных данных Земли и Луны подтверждают адекватность формулы (3) окружающему миру.</p> <p>Рассмотрим теперь движение тела <i>m</i> относительно <i>M</i>. Величина силы <i>F</i> действующая между <i>m</i> и <i>M</i> равна произведению массы <i>m</i> на относительное ускорение <i>g</i><sub>от:</p></sub> <table width="580" border="0" cellspacing="0" cellpadding="4"> <tr><td align="center"><p><img src="/web/20181201003224im_/http://n-t.ru/tp/iz/uzn_e04.gif" width="216" height="43" border="0" alt=""></p></td><td align="right"><p>(4)</p></td></tr> </table> <p>Формулу (4) можно представить в виде суммы двух членов:</p> <table width="580" border="0" cellspacing="0" cellpadding="4"> <tr><td align="center"><p><img src="/web/20181201003224im_/http://n-t.ru/tp/iz/uzn_e05.gif" width="168" height="42" border="0" alt=""></p></td><td align="right"><p>(5)</p></td></tr> </table> <p>Первый член совпадает с формулой (1) – закона всемирного тяготения, а в целом формула (5) напоминает формулу (2), которую в свое время предложил А. Клеро с целью корректировки всемирного закона Ньютона.</p> <p>Если <i>m</i> значительно меньше чем <i>M</i>, т.е. <i>m</i> << <i>M</i>, то значение второго члена относительно первого несущественна. Как известно, Ж. Бюффон в свое время отверг формулу (2) из-за того, что А. Клеро добавил второй член произвольно, то в нашем случае в формуле (5) первый и второй член выведены из окружающего нас мира. Поэтому мы вправе сказать о том, что закон всемирного тяготения Ньютона является частным случаем формулы (4) и (5).</p> <p>Первое слагаемое формулы (5) не вызывает вопросов. Это закон всемирного закон тяготения Ньютона. Перейдем к анализу второго слагаемого. Почему в числителе второго слагаемого произведение <i>m</i> · <i>m</i>, а не <i>M</i> · <i>M</i>? Действие <i>М</i> уже проявилось в первом слагаемом, оно породило гравитационный потенциал (γ · <i>М</i>) / <i>R</i><sup>2</sup> и на этом ее роль закончилась. Второе слагаемое раскрывает сущность гравитационного потенциала второго тела <i>m</i> и оно равно (γ · <i>m</i>) / <i>R</i><sup>2</sup>. Теперь осталось вычислить силу во втором слагаемом и для этого по традиционной схеме необходимо (γ · <i>m</i>) / <i>R</i><sup>2</sup> умножить на <i>М</i>, т.е. мы получим (γ · <i>m</i> · <i>М</i>) / <i>R</i><sup>2</sup> опять всемирный закон тяготения Ньютона! Но это противоречит формуле (4), который был получен нами аналитически из расчетов ускорений между Землей и Луной. На самом деле реальная сила будет равна (γ · <i>m</i> · <i>m</i>) / <i>R</i><sup>2</sup>. Здесь мы подходим к факту, гравитационный потенциал порождаемый телом <i>m</i> вызывает ускоренное движение самого тела <i>m</i> в сторону <i>М</i>. И это не противоречит третьему закону Ньютона. Тело <i>m</i> движется равноускоренно в сторону <i>М</i> и соответственной <i>М</i> движется равноускоренно в сторону <i>m</i>. Но так как <i>m</i> значительно меньше М сила выраженная в форме (γ · <i>m</i> · <i>m</i>) / <i>R</i><sup>2</sup> объективно отражает силу, которая порождается массой <i>m</i>. Массу <i>М</i> можно охарактеризовать как центральное тело, вокруг которого движется тело <i>m</i>. То тело, которое движется относительно центрального тела будет являться критерием выбора его во второе слагаемое.</p> <p>Теперь сформулируем новый уточненный закон всемирного тяготения:<br> <i>каждые две частицы материи притягивают взаимно друг друга, или тяготеют друг другу, с силой, прямо пропорциональной произведению суммы двух масс на массу тела, движущуюся относительно центральной массы и обратно пропорционально квадрату расстояния между ними </i>(4).</p> <p>С точки зрения теории и методологии изучения закона гравитации переход от формулы (1) к (4) наиболее полно раскрывает сущность закона всемирного тяготения. Из формулы (1) мы видим только гравитационное действие одного тела <i>M</i> либо <i>m</i>, в то же время формула (4) отражает взаимное гравитационное действие двух тел <i>M</i> и <i>m</i> одновременно.</p> <p>Небольшая поправка к закону всемирного тяготения Ньютона ведет к интересным последствиям. Что следует из формулы (4)? Для этого нам следует поспешить на знаменитую Пизанскую башню, пока она не упала и повторить опыт Галилея. Результат будет следующий – вопреки общепринятому мнению, более тяжелое тело достигнет Земли быстрее! Опыт осуществить несложно, только хлопоты будут создавать толпы туристов, которых не было в XVI веке.</p> <p>Наша поправка еще более ярко проявляется при <i>m</i> = <i>M</i>. Значение силы <i>F</i> вычисленное по формуле (4) <i>F</i> = γ · 2<i>М</i><sup>2</sup> / <i>r</i><sup>2</sup> больше в два раза чем значение силы рассчитанной по формуле (1) <i>F</i> = γ · <i>М</i><sup>2</sup> / <i>r</i><sup>2</sup>.</p> <p>Прав был Аристотель, утверждая, что падение массы золота или свинца, или какого-нибудь другого тела происходит тем быстрее, чем больше его размер! К этому выводу пришел и Леонардо да Винчи. Великий художник и ученный бросал тела разного веса и пришел к такому же результату: скорость падения тела зависит от веса тела.</p> <p>Из формулы (4) следует неаддитивность силы тяжести. Рассмотрим это на примере силы тяжести двух тел <i>m</i><sub>1</sub> и <i>m</i><sub>2</sub> относительно земли. Тело <i>m</i><sub>1</sub> действует на землю силой <i>F</i><sub>1</sub> и второе тело <i>m</i><sub>2</sub> действует соответственно с силой <i>F</i><sub>2</sub>. Складывая массы двух тел <i>m</i><sub>1</sub> и <i>m</i><sub>2</sub> получим третье тело <i>m</i><sub>3</sub>, где <i>m</i><sub>3</sub> = <i>m</i><sub>1</sub> + <i>m</i><sub>2.</sub> Оно также действует на землю силой равной <i>F</i><sub>3</sub>. Для нашего примера нарушение аддитивности силы тяжести означает:</p> <table width="580" border="0" cellspacing="0" cellpadding="4"> <tr><td align="center"><p><i>F</i><sub>1</sub> + <i>F</i><sub>2</sub> < <i>F</i><sub>3</sub></td><td align="right"><p>(6)</p></td></tr> </table> <p>Если придерживаться традиционной формулы (1), то аддитивность не нарушается и для сил тяжести выполняется условие:</p> <table width="580" border="0" cellspacing="0" cellpadding="4"> <tr><td align="center"><p><i>F</i><sub>1</sub> + <i>F</i><sub>2</sub> = <i>F</i><sub>3</sub></p></td><td align="right"><p>(7)</p></td></tr> </table> <p>С появлением формулы (4) равенство (7) уступает место неравенству (6), как следствие нового научного факта.</p> <p>Гениальный физик Эйнштейн придавал исключительное значение свойству тяготения следуя за Галилеем и утверждая, что все тела в данной точке пространства падают в поле тяготения с одинаковым ускорением. Это утверждение в классической физике являлось одним из фактов – в некотором смысле даже случайным и не играл высокой роли в том, что составляло идейную основу механики Галилея – Ньютона. Однако этому свойству Эйнштейн придает исключительно важное и самое общее значение, отводит ему место среди «принципиальных вещей» новейшей физики и ставит его рядом с принципом относительности.</p> <p>Интерес Эйнштейна к тяготению не случаен, ибо он связан непосредственно с принципом эквивалентности. Как известно массы в физике рассматриваются в двух формах: инертной и гравитационной. Падение всех тел с одинаковым ускорением является достаточным условием равенства гравитационной и инертной массы. Данное равенство возведено Эйнштейном в ранг фундаментального принципа его теории. Совпадение – эквивалентность этих масс составляет содержание эйнштейновского принципа эквивалентности.</p> <p>Это предположение с нашей точки зрения ошибочно. Из формул (4) и (7) следует, что разные тела в данной точке пространства падают в поле тяготения с разным ускорением и соответственно нарушается принцип эквивалентности.</p> <p>Чтобы внести ясность в наши утверждения воспользуемся мысленными экспериментами самого Эйнштейна [4, с. 178...184]. Поместим нашу испытательную лабораторию в кабину лифта. Представим себе, следуя Эйнштейну «огромный лифт в башне небоскреба... Внезапно канат, поддерживающий лифт, обрывается, и лифт свободно падает по направлению к земле. Экспериментатор в свой лаборатории проводит следующий опыт: «вынимает из своего кармана платок и часы и выпускает их из рук». Относительно небоскреба падает лифт с лабораторией, экспериментатор, часы и платок.</p> <p>Посмотрим, каким путем оба наблюдателя, внутренний и внешний, описывают то, что происходит в лифте.</p> <p>Внутренний наблюдатель – экспериментатор. Пол лифта медленно начинает уходить из-под ног. Часы с платком медленно движутся вверх относительно экспериментатора. Платок движется вверх быстрее чем часы. Экспериментатор делает вывод: все тела к земле движутся с разным ускорением. Самое большее ускорение у лифта, затем у него самого, после следуют часы и медленнее всех падает платок. Вывод – система неинерциальная.</p> <p>Внешний наблюдатель. Все четыре тела: лифт, экспериментатор, часы и платок падают с различным ускорением к земле. Его вывод также совпадает с мнением внутреннего наблюдателя – система неинерциальная.</p> <p>Внутренний и внешний наблюдатель Эйнштейна рассуждает иначе: «Внешний наблюдатель замечает движение лифта и всех тел в нем, и находит его соответствующим закону тяготения Ньютона. Для него движение является не равномерным, а ускоренным, вследствие поля тяготения земли.</p> <p>Однако, поколение физиков, рожденное и воспитанное в лифте, рассуждало бы совершенно иначе. Оно было бы уверено в том, что оно обладает инерциальной системой, и относило бы все законы природы к своему лифту, заявляя с уверенностью, что законы принимают особенно простую форму в их системе координат. Для них было бы естественным считать свой лифт покоящимся и свою систему координат инерциальной.</p> <p>Невозможно установить принципиальное различие между внешним и внутренним наблюдателем. Каждый из них мог бы претендовать на право отнести все события к своей системе координат. Оба описания событий можно было бы сделать одинаково последовательными. Из этого примера мы видим, что последовательное описание физических явлений в двух различных системах координат возможно, даже если они не движутся прямолинейно и равномерно друг относительно друга. Но для такого описания мы должны принять во внимание тяготение, создающее, так сказать «мост» позволяющий перейти от одной системы координат к другой. Поле тяготения существует для внешнего наблюдателя, для внутреннего наблюдателя оно не существует. Ускоренное движение лифта в поле тяготения существует для внешнего наблюдателя, для внутреннего же наблюдателя – покой и отсутствие поля тяготения. Но «мост», т.е. поле тяготения, делающее описание в обеих системах координат возможным, покоится на очень важной опоре: эквивалентности тяжелой и инертной масс. Без этой руководящей идеи, оставшейся незамеченной в классической механике, наши теперешние рассуждения полностью отпали бы» [4, с. 180...181]. Но из формулы (4) следует нарушение принципа эквивалентности тяжелой и инертной масс и следовательно рушится как ни печально «мост» Эйнштейна, ведущий в прекрасный замок общей теории относительности.</p> <p>Наш вывод можно также подтвердить следующим мысленным экспериментом. Из классической механики следует, что тело сохраняет состояние покоя или равномерного прямолинейного движения, если на него не воздействуют внешние силы.</p> <p>Рассмотрим тело <i>m</i>, которое находится в состоянии покоя. Это тело является образцом инерциальной массы по определению. Тело <i>m</i> можно считать и гравитационной массой, т.е. массой обладающей гравитационным полем и находящимся в состоянии покоя.</p> <p>Теперь рассмотрим тело <i>M</i>, которое находится в состоянии покоя на расстоянии <i>R</i> от <i>m</i>. Проведем аналогичные рассуждения и придем к такому же выводу: тело <i>M</i> является гравитационной и инертной массой. Пока мы рассматривали каждое тело в отдельности в наших рассуждениях не возникало противоречий.</p> <p>При рассмотрении двух тел <i>M</i> и <i>m</i> одновременно реальная картина изменится. Тела <i>M</i> и <i>m</i>, которые мы считали находящимися в покое, находятся на самом деле в ускоренном движении навстречу друг к другу вследствие их гравитационного взаимодействия. Они являются как и прежде гравитационными массами, но уже не являются инерционными массами, т.к. движутся ускоренно.</p> <p>Чтобы снять возникшее противоречие необходимо сделать следующие выводы. Во-первых, физическая картина мира состоит из множества гравитационных масс, которые не могут находиться в состоянии покоя и движутся, как правило, равноускоренно. Во-вторых, нет в природе реальных инерциальных масс. Инерциальная масса в физике – это идеальная модель – абстракция.</p> <p>Любая масса является гравитационной и находится постоянно во взаимодействии с окружающим миром. Только мысленным экспериментом мы можем снять гравитационное поле у массы и после этого ее можно считать инерциальной массой, которая могла бы покоиться или двигаться равномерно и прямолинейно.</p> <p>С этих позиций все усилия как теоретического, так и практического характера обоснования принципа эквивалентности сводятся к тщетной попытке установления эквивалентности реальной гравитационной и идеальной несуществующей в природе инерциальной массы.</p> <p>Как известно, с помощью метода Кавендиша была числено определена постоянная γ, входящая в формулу (1) – закона всемирного тяготения. Сегодня эта постоянная известна до четвертого знака. В.Д. Ляховец [5, с. 113] статье «Проблемы метрологического обеспечения измерений гравитационной постоянной» приводит таблицу:</p> <p class="data" id="r">Таблица 1</p> <table class="t0" id="tt" style="text-align: center;"> <tr><th>Страна</th><th>Год</th><th>Значение γ, 10<sup>–11</sup> м<sup>3</sup> (кг·с<sup>2</sup>)</th></tr> <tr><td>СССР</td><td>1977</td><td>6,6745 ± 0,0008</td></tr> <tr><td>Франция</td><td>1972</td><td>6,6714 ± 0,0006</td></tr> <tr><td>США</td><td>1982</td><td>6,6726 ± 0,0005</td></tr> </table> <p>Как считает В.Д. Ляховец, гравитационная постоянная γ остается до сих пор одной из наименее точно измеренных фундаментальных констант. Из таблицы следует, что хотя относительная погрешность отдельных измерений по странам составляет 10<sup>–4</sup>, само значение гравитационной определено с погрешностью 10<sup>–3</sup>. Задача о более точном определении γ еще далеко не снята с повестки дня. Такое положение заставляет задуматься о возможных факторах, влияющих на измеряемое значение гравитационной постоянной. На наш взгляд, одной из них является поправка (4) к формуле (1) – закона всемирного тяготения.</p> <p>Заканчивая наш маленький труд о большой гравитации подчеркнем решающую роль экспериментов в понимании гравитации. Поставить активный гравитационный эксперимент довольно сложно, т.к. слишком малы гравитационные массы в земной лаборатории. Поэтому наше внимание не случайно было приковано к Земле и Луне, как естественной природной лаборатории, которая могла бы служить для всех исследователей эталоном проверки любых гипотез в области гравитации.</p> <p> </p> <p class="data">Литература:</p> <ol> <li class="sm">Ю.А. Рябов. Движение небесных тел. – М.: Наука, 1988. – 238 с.</li> <li class="sm">В.А. Бронштэн. Как движется Луна? – М.: Наука, 1990. – 205 с.</li> <li class="sm">П.И. Бакулин, Э.В. Кононович, В.И. Мороз. Курс общей астрономии. – М.: Наука, 1966. – 527 с.</li> <li class="sm">А. Эйнштейн, А. Инфельд. Эволюция физики. – М.: Наука, 1965. – 326 с.</li> <li class="sm">О.А. Быковский. Проблемы современной физики. – Алма-Ата: Гылым. 1995. – 128 с.</li> </ol> <p class="data">Ранее опубликовано:</p> <p class="sm">Статья депонирована в КазГосИНТИ 02.03.2000,<br> регистрационный номер 8755-Ка 00</p> <!-- Дата публикации, эл. версия --> <div class="dk"> <div class="dp"> <p class="data nb">Дата публикации:</p> <p class="sm nb">23 мая 2000 года</p> </div> <div class="ev"> <p class="data">Электронная версия:</p> <p class="sm nb">© <a href="/web/20181201003224/http://n-t.ru/">НиТ</a>. <a href="/web/20181201003224/http://n-t.ru/tp/">Cтатьи</a>, 1997</p> </div> </div> <!-- Конец правой полосы --></div> <!-- Доп. полоса --> <!-- Конец полос --></div> <!-- Нижний колонтитул --> <div class="nk nkm"> <!-- Форма поиска --><div class="fp2"><div class="ya-site-form ya-site-form_inited_no" onclick="return {'action':'https://web.archive.org/web/20181201003224/http://n-t.ru/sy.htm','arrow':false,'bg':'transparent','fontsize':14,'fg':'#000000','language':'ru','logo':'rb','publicname':'Поиск по n-t.ru','suggest':false,'target':'_self','tld':'ru','type':3,'usebigdictionary':true,'searchid':149297,'webopt':false,'websearch':false,'input_fg':'#a1aab3','input_bg':'#ffffff','input_fontStyle':'normal','input_fontWeight':'normal','input_placeholder':'Поиск по n-t.ru:','input_placeholderColor':'#a1aab3','input_borderColor':'#B8D9B8'}"><form action="https://web.archive.org/web/20181201003224/http://yandex.ru/sitesearch" method="get" target="_self"><input type="hidden" name="searchid" value="149297"/><input type="hidden" name="l10n" value="ru"/><input type="hidden" name="reqenc" value=""/><input type="search" name="text" value=""/><input type="submit" value="Найти"/></form></div><style type="text/css">.ya-page_js_yes .ya-site-form_inited_no { display: none; }</style><script type="text/javascript">(function(w,d,c){var s=d.createElement('script'),h=d.getElementsByTagName('script')[0],e=d.documentElement;if((' '+e.className+' ').indexOf(' ya-page_js_yes ')===-1){e.className+=' ya-page_js_yes';}s.type='text/javascript';s.async=true;s.charset='utf-8';s.src=(d.location.protocol==='https:'?'https:':'http:')+'//web.archive.org/web/20181201003224/http://site.yandex.net/v2.0/js/all.js';h.parentNode.insertBefore(s,h);(w[c]||(w[c]=[])).push(function(){Ya.Site.Form.init()})})(window,document,'yandex_site_callbacks');</script></div> <div style="padding: 4px 0 6px 0; background: #f0faff;"><div class="fp2"><a href="/web/20181201003224/http://n-t.ru/">В начало сайта</a> | <a href="/web/20181201003224/http://n-t.ru/ri/">Книги</a> | <a href="/web/20181201003224/http://n-t.ru/tp/">Статьи</a> | <a href="/web/20181201003224/http://n-t.ru/nj/">Журналы</a> | <a href="/web/20181201003224/http://n-t.ru/nl/">Нобелевские лауреаты</a> | <a href="/web/20181201003224/http://n-t.ru/ii/">Издания НиТ</a> <br> <a href="/web/20181201003224/http://n-t.ru/ks.htm#n-t">Карта сайта</a> | <a href="/web/20181201003224/http://n-t.ru/sp/">Cовместные проекты</a> | <a href="https://web.archive.org/web/20181201003224/http://smbr.ru/">Журнал «Сумбур»</a> | <a href="https://web.archive.org/web/20181201003224/http://o-val.ru/">Игумен Валериан</a> </div></div> <div style="padding: 4px 0 6px 0; background: #fffceb; border-top: 1px solid #99D8FF;"><div class="fp2">© <a href="https://web.archive.org/web/20181201003224/http://n-t.ru/">МОО «Наука и техника»</a>, 1997...2018</div></div> <div style="padding: 4px 0 6px 0; background: #f0faff; border-top: 1px solid #99D8FF;"><div class="fp2"><a href="/web/20181201003224/http://n-t.ru/md.htm">Об организации</a> • <a href="/web/20181201003224/http://n-t.ru/ad.htm">Аудитория</a> • <a href="/web/20181201003224/http://n-t.ru/ki.htm">Связаться с нами</a> • <a href="/web/20181201003224/http://n-t.ru/rr.htm">Разместить рекламу</a> • <a href="/web/20181201003224/http://n-t.ru/pi.htm">Правовая информация</a> </div></div> </div> </body></html> <!-- FILE ARCHIVED ON 00:32:24 Dec 01, 2018 AND RETRIEVED FROM THE INTERNET ARCHIVE ON 08:38:22 Dec 15, 2024. JAVASCRIPT APPENDED BY WAYBACK MACHINE, COPYRIGHT INTERNET ARCHIVE. ALL OTHER CONTENT MAY ALSO BE PROTECTED BY COPYRIGHT (17 U.S.C. SECTION 108(a)(3)). --> <!-- playback timings (ms): captures_list: 0.719 exclusion.robots: 0.034 exclusion.robots.policy: 0.02 esindex: 0.014 cdx.remote: 16.287 LoadShardBlock: 225.063 (3) PetaboxLoader3.datanode: 103.013 (4) PetaboxLoader3.resolve: 288.212 (2) load_resource: 195.355 -->