CINXE.COM
Special relativity - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Special relativity - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"2c6c5575-bd9c-48f6-9a8f-4c93ba089504","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Special_relativity","wgTitle":"Special relativity","wgCurRevisionId":1259126276,"wgRevisionId":1259126276,"wgArticleId":26962,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Pages using multiple image with manual scaled images","Articles with Project Gutenberg links","Special relativity","Albert Einstein"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Special_relativity","wgRelevantArticleId":26962,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11455","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/1200px-Einstein_patentoffice.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1569"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/800px-Einstein_patentoffice.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1046"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/640px-Einstein_patentoffice.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="837"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Special relativity - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Special_relativity"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Special_relativity&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Special_relativity"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Special_relativity rootpage-Special_relativity skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Special+relativity" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Special+relativity" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Special+relativity" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Special+relativity" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Origins_and_significance" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Origins_and_significance"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Origins and significance</span> </div> </a> <ul id="toc-Origins_and_significance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Traditional_"two_postulates"_approach_to_special_relativity" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Traditional_"two_postulates"_approach_to_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Traditional "two postulates" approach to special relativity</span> </div> </a> <ul id="toc-Traditional_"two_postulates"_approach_to_special_relativity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Principle_of_relativity" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Principle_of_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Principle of relativity</span> </div> </a> <button aria-controls="toc-Principle_of_relativity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Principle of relativity subsection</span> </button> <ul id="toc-Principle_of_relativity-sublist" class="vector-toc-list"> <li id="toc-Reference_frames_and_relative_motion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reference_frames_and_relative_motion"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Reference frames and relative motion</span> </div> </a> <ul id="toc-Reference_frames_and_relative_motion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Standard_configuration" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Standard_configuration"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Standard configuration</span> </div> </a> <ul id="toc-Standard_configuration-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lack_of_an_absolute_reference_frame" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lack_of_an_absolute_reference_frame"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Lack of an absolute reference frame</span> </div> </a> <ul id="toc-Lack_of_an_absolute_reference_frame-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativity_without_the_second_postulate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativity_without_the_second_postulate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Relativity without the second postulate</span> </div> </a> <ul id="toc-Relativity_without_the_second_postulate-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lorentz_invariance_as_the_essential_core_of_special_relativity" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Lorentz_invariance_as_the_essential_core_of_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Lorentz invariance as the essential core of special relativity</span> </div> </a> <button aria-controls="toc-Lorentz_invariance_as_the_essential_core_of_special_relativity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lorentz invariance as the essential core of special relativity subsection</span> </button> <ul id="toc-Lorentz_invariance_as_the_essential_core_of_special_relativity-sublist" class="vector-toc-list"> <li id="toc-Alternative_approaches_to_special_relativity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Alternative_approaches_to_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Alternative approaches to special relativity</span> </div> </a> <ul id="toc-Alternative_approaches_to_special_relativity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorentz_transformation_and_its_inverse" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lorentz_transformation_and_its_inverse"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Lorentz transformation and its inverse</span> </div> </a> <ul id="toc-Lorentz_transformation_and_its_inverse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Graphical_representation_of_the_Lorentz_transformation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graphical_representation_of_the_Lorentz_transformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Graphical representation of the Lorentz transformation</span> </div> </a> <ul id="toc-Graphical_representation_of_the_Lorentz_transformation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Consequences_derived_from_the_Lorentz_transformation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Consequences_derived_from_the_Lorentz_transformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Consequences derived from the Lorentz transformation</span> </div> </a> <button aria-controls="toc-Consequences_derived_from_the_Lorentz_transformation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Consequences derived from the Lorentz transformation subsection</span> </button> <ul id="toc-Consequences_derived_from_the_Lorentz_transformation-sublist" class="vector-toc-list"> <li id="toc-Invariant_interval" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Invariant_interval"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Invariant interval</span> </div> </a> <ul id="toc-Invariant_interval-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativity_of_simultaneity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativity_of_simultaneity"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Relativity of simultaneity</span> </div> </a> <ul id="toc-Relativity_of_simultaneity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time_dilation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time_dilation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Time dilation</span> </div> </a> <ul id="toc-Time_dilation-sublist" class="vector-toc-list"> <li id="toc-Langevin's_light-clock" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Langevin's_light-clock"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3.1</span> <span>Langevin's light-clock</span> </div> </a> <ul id="toc-Langevin's_light-clock-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reciprocal_time_dilation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Reciprocal_time_dilation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3.2</span> <span>Reciprocal time dilation</span> </div> </a> <ul id="toc-Reciprocal_time_dilation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Twin_paradox" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Twin_paradox"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Twin paradox</span> </div> </a> <ul id="toc-Twin_paradox-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Length_contraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Length_contraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Length contraction</span> </div> </a> <ul id="toc-Length_contraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorentz_transformation_of_velocities" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lorentz_transformation_of_velocities"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Lorentz transformation of velocities</span> </div> </a> <ul id="toc-Lorentz_transformation_of_velocities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thomas_rotation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thomas_rotation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>Thomas rotation</span> </div> </a> <ul id="toc-Thomas_rotation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Causality_and_prohibition_of_motion_faster_than_light" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Causality_and_prohibition_of_motion_faster_than_light"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.8</span> <span>Causality and prohibition of motion faster than light</span> </div> </a> <ul id="toc-Causality_and_prohibition_of_motion_faster_than_light-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Optical_effects" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Optical_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Optical effects</span> </div> </a> <button aria-controls="toc-Optical_effects-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Optical effects subsection</span> </button> <ul id="toc-Optical_effects-sublist" class="vector-toc-list"> <li id="toc-Dragging_effects" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dragging_effects"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Dragging effects</span> </div> </a> <ul id="toc-Dragging_effects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_aberration_of_light" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativistic_aberration_of_light"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Relativistic aberration of light</span> </div> </a> <ul id="toc-Relativistic_aberration_of_light-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_Doppler_effect" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativistic_Doppler_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Relativistic Doppler effect</span> </div> </a> <ul id="toc-Relativistic_Doppler_effect-sublist" class="vector-toc-list"> <li id="toc-Relativistic_longitudinal_Doppler_effect" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Relativistic_longitudinal_Doppler_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3.1</span> <span>Relativistic longitudinal Doppler effect</span> </div> </a> <ul id="toc-Relativistic_longitudinal_Doppler_effect-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transverse_Doppler_effect" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Transverse_Doppler_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3.2</span> <span>Transverse Doppler effect</span> </div> </a> <ul id="toc-Transverse_Doppler_effect-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Measurement_versus_visual_appearance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measurement_versus_visual_appearance"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Measurement versus visual appearance</span> </div> </a> <ul id="toc-Measurement_versus_visual_appearance-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dynamics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dynamics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Dynamics</span> </div> </a> <button aria-controls="toc-Dynamics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Dynamics subsection</span> </button> <ul id="toc-Dynamics-sublist" class="vector-toc-list"> <li id="toc-Equivalence_of_mass_and_energy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equivalence_of_mass_and_energy"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Equivalence of mass and energy</span> </div> </a> <ul id="toc-Equivalence_of_mass_and_energy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Einstein's_1905_demonstration_of_E_=_mc2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Einstein's_1905_demonstration_of_E_=_mc2"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Einstein's 1905 demonstration of <i>E</i> = <i>mc</i><sup>2</sup></span> </div> </a> <ul id="toc-Einstein's_1905_demonstration_of_E_=_mc2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-How_far_can_you_travel_from_the_Earth?" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#How_far_can_you_travel_from_the_Earth?"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>How far can you travel from the Earth?</span> </div> </a> <ul id="toc-How_far_can_you_travel_from_the_Earth?-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Elastic_collisions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Elastic_collisions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Elastic collisions</span> </div> </a> <ul id="toc-Elastic_collisions-sublist" class="vector-toc-list"> <li id="toc-Newtonian_analysis" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Newtonian_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4.1</span> <span>Newtonian analysis</span> </div> </a> <ul id="toc-Newtonian_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_analysis" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Relativistic_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4.2</span> <span>Relativistic analysis</span> </div> </a> <ul id="toc-Relativistic_analysis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Beyond_the_basics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Beyond_the_basics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Beyond the basics</span> </div> </a> <button aria-controls="toc-Beyond_the_basics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Beyond the basics subsection</span> </button> <ul id="toc-Beyond_the_basics-sublist" class="vector-toc-list"> <li id="toc-Rapidity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rapidity"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Rapidity</span> </div> </a> <ul id="toc-Rapidity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-4‑vectors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#4‑vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>4‑vectors</span> </div> </a> <ul id="toc-4‑vectors-sublist" class="vector-toc-list"> <li id="toc-Definition_of_4-vectors" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Definition_of_4-vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.1</span> <span>Definition of 4-vectors</span> </div> </a> <ul id="toc-Definition_of_4-vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_of_4-vectors" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Properties_of_4-vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.2</span> <span>Properties of 4-vectors</span> </div> </a> <ul id="toc-Properties_of_4-vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_of_4-vectors" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_of_4-vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.3</span> <span>Examples of 4-vectors</span> </div> </a> <ul id="toc-Examples_of_4-vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-4-vectors_and_physical_law" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#4-vectors_and_physical_law"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.4</span> <span>4-vectors and physical law</span> </div> </a> <ul id="toc-4-vectors_and_physical_law-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Acceleration" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Acceleration"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Acceleration</span> </div> </a> <ul id="toc-Acceleration-sublist" class="vector-toc-list"> <li id="toc-Dewan–Beran–Bell_spaceship_paradox" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dewan–Beran–Bell_spaceship_paradox"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3.1</span> <span>Dewan–Beran–Bell spaceship paradox</span> </div> </a> <ul id="toc-Dewan–Beran–Bell_spaceship_paradox-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Accelerated_observer_with_horizon" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Accelerated_observer_with_horizon"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3.2</span> <span>Accelerated observer with horizon</span> </div> </a> <ul id="toc-Accelerated_observer_with_horizon-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Relativity_and_unifying_electromagnetism" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Relativity_and_unifying_electromagnetism"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Relativity and unifying electromagnetism</span> </div> </a> <ul id="toc-Relativity_and_unifying_electromagnetism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Theories_of_relativity_and_quantum_mechanics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Theories_of_relativity_and_quantum_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Theories of relativity and quantum mechanics</span> </div> </a> <ul id="toc-Theories_of_relativity_and_quantum_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Status" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Status"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Status</span> </div> </a> <ul id="toc-Status-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Technical_discussion_of_spacetime" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Technical_discussion_of_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Technical discussion of spacetime</span> </div> </a> <button aria-controls="toc-Technical_discussion_of_spacetime-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Technical discussion of spacetime subsection</span> </button> <ul id="toc-Technical_discussion_of_spacetime-sublist" class="vector-toc-list"> <li id="toc-Geometry_of_spacetime" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometry_of_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1</span> <span>Geometry of spacetime</span> </div> </a> <ul id="toc-Geometry_of_spacetime-sublist" class="vector-toc-list"> <li id="toc-Comparison_between_flat_Euclidean_space_and_Minkowski_space" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Comparison_between_flat_Euclidean_space_and_Minkowski_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1.1</span> <span>Comparison between flat Euclidean space and Minkowski space</span> </div> </a> <ul id="toc-Comparison_between_flat_Euclidean_space_and_Minkowski_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-3D_spacetime" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#3D_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1.2</span> <span>3D spacetime</span> </div> </a> <ul id="toc-3D_spacetime-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-4D_spacetime" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#4D_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1.3</span> <span>4D spacetime</span> </div> </a> <ul id="toc-4D_spacetime-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Physics_in_spacetime" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physics_in_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2</span> <span>Physics in spacetime</span> </div> </a> <ul id="toc-Physics_in_spacetime-sublist" class="vector-toc-list"> <li id="toc-Transformations_of_physical_quantities_between_reference_frames" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Transformations_of_physical_quantities_between_reference_frames"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2.1</span> <span>Transformations of physical quantities between reference frames</span> </div> </a> <ul id="toc-Transformations_of_physical_quantities_between_reference_frames-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metric" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Metric"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2.2</span> <span>Metric</span> </div> </a> <ul id="toc-Metric-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_kinematics_and_invariance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Relativistic_kinematics_and_invariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2.3</span> <span>Relativistic kinematics and invariance</span> </div> </a> <ul id="toc-Relativistic_kinematics_and_invariance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_dynamics_and_invariance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Relativistic_dynamics_and_invariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2.4</span> <span>Relativistic dynamics and invariance</span> </div> </a> <ul id="toc-Relativistic_dynamics_and_invariance-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Primary_sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Primary_sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Primary sources</span> </div> </a> <ul id="toc-Primary_sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>Further reading</span> </div> </a> <button aria-controls="toc-Further_reading-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further reading subsection</span> </button> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> <li id="toc-Texts_by_Einstein_and_text_about_history_of_special_relativity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Texts_by_Einstein_and_text_about_history_of_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.1</span> <span>Texts by Einstein and text about history of special relativity</span> </div> </a> <ul id="toc-Texts_by_Einstein_and_text_about_history_of_special_relativity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Textbooks" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Textbooks"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.2</span> <span>Textbooks</span> </div> </a> <ul id="toc-Textbooks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Journal_articles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Journal_articles"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.3</span> <span>Journal articles</span> </div> </a> <ul id="toc-Journal_articles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">18</span> <span>External links</span> </div> </a> <button aria-controls="toc-External_links-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle External links subsection</span> </button> <ul id="toc-External_links-sublist" class="vector-toc-list"> <li id="toc-Original_works" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Original_works"> <div class="vector-toc-text"> <span class="vector-toc-numb">18.1</span> <span>Original works</span> </div> </a> <ul id="toc-Original_works-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_relativity_for_a_general_audience_(no_mathematical_knowledge_required)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special_relativity_for_a_general_audience_(no_mathematical_knowledge_required)"> <div class="vector-toc-text"> <span class="vector-toc-numb">18.2</span> <span>Special relativity for a general audience (no mathematical knowledge required)</span> </div> </a> <ul id="toc-Special_relativity_for_a_general_audience_(no_mathematical_knowledge_required)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_relativity_explained_(using_simple_or_more_advanced_mathematics)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special_relativity_explained_(using_simple_or_more_advanced_mathematics)"> <div class="vector-toc-text"> <span class="vector-toc-numb">18.3</span> <span>Special relativity explained (using simple or more advanced mathematics)</span> </div> </a> <ul id="toc-Special_relativity_explained_(using_simple_or_more_advanced_mathematics)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Visualization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Visualization"> <div class="vector-toc-text"> <span class="vector-toc-numb">18.4</span> <span>Visualization</span> </div> </a> <ul id="toc-Visualization-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Special relativity</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 110 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-110" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">110 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Spesiale_relatiwiteit" title="Spesiale relatiwiteit – Afrikaans" lang="af" hreflang="af" data-title="Spesiale relatiwiteit" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Spezielle_Relativit%C3%A4tstheorie" title="Spezielle Relativitätstheorie – Alemannic" lang="gsw" hreflang="gsw" data-title="Spezielle Relativitätstheorie" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%8D%E1%8B%A9_%E1%8A%A0%E1%8A%95%E1%8C%BB%E1%88%AB%E1%8B%8A%E1%8A%90%E1%89%B5" title="ልዩ አንጻራዊነት – Amharic" lang="am" hreflang="am" data-title="ልዩ አንጻራዊነት" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D9%86%D8%B3%D8%A8%D9%8A%D8%A9_%D8%A7%D9%84%D8%AE%D8%A7%D8%B5%D8%A9" title="النسبية الخاصة – Arabic" lang="ar" hreflang="ar" data-title="النسبية الخاصة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Relatividat_especial" title="Relatividat especial – Aragonese" lang="an" hreflang="an" data-title="Relatividat especial" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BF%E0%A6%B6%E0%A7%87%E0%A6%B7_%E0%A6%86%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BF%E0%A6%95%E0%A6%A4%E0%A6%BE%E0%A6%AC%E0%A6%BE%E0%A6%A6_%E0%A6%A4%E0%A6%A4%E0%A7%8D%E0%A6%A4%E0%A7%8D%E0%A6%AC" title="বিশেষ আপেক্ষিকতাবাদ তত্ত্ব – Assamese" lang="as" hreflang="as" data-title="বিশেষ আপেক্ষিকতাবাদ তত্ত্ব" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Teor%C3%ADa_de_la_relativid%C3%A1_especial" title="Teoría de la relatividá especial – Asturian" lang="ast" hreflang="ast" data-title="Teoría de la relatividá especial" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-gn mw-list-item"><a href="https://gn.wikipedia.org/wiki/Mba%27ekuaar%C3%A3_joguerahavi%C3%A1rava_ijap%C3%BDva" title="Mba'ekuaarã joguerahaviárava ijapýva – Guarani" lang="gn" hreflang="gn" data-title="Mba'ekuaarã joguerahaviárava ijapýva" data-language-autonym="Avañe'ẽ" data-language-local-name="Guarani" class="interlanguage-link-target"><span>Avañe'ẽ</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/X%C3%BCsusi_nisbilik_n%C9%99z%C9%99riyy%C9%99si" title="Xüsusi nisbilik nəzəriyyəsi – Azerbaijani" lang="az" hreflang="az" data-title="Xüsusi nisbilik nəzəriyyəsi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%A7%D8%A4%D8%B2%D9%84_%D9%86%DB%8C%D8%B3%D8%A8%DB%8C%D8%AA" title="اؤزل نیسبیت – South Azerbaijani" lang="azb" hreflang="azb" data-title="اؤزل نیسبیت" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ban mw-list-item"><a href="https://ban.wikipedia.org/wiki/R%C3%A9lativitas_khusus" title="Rélativitas khusus – Balinese" lang="ban" hreflang="ban" data-title="Rélativitas khusus" data-language-autonym="Basa Bali" data-language-local-name="Balinese" class="interlanguage-link-target"><span>Basa Bali</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BF%E0%A6%B6%E0%A7%87%E0%A6%B7_%E0%A6%86%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BF%E0%A6%95%E0%A6%A4%E0%A6%BE" title="বিশেষ আপেক্ষিকতা – Bangla" lang="bn" hreflang="bn" data-title="বিশেষ আপেক্ষিকতা" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9C%D0%B0%D1%85%D1%81%D1%83%D1%81_%D1%81%D0%B0%D2%93%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D2%A1_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D2%BB%D1%8B" title="Махсус сағыштырмалыҡ теорияһы – Bashkir" lang="ba" hreflang="ba" data-title="Махсус сағыштырмалыҡ теорияһы" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D1%8D%D0%BE%D1%80%D1%8B%D1%8F_%D0%B0%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%B0%D1%81%D1%86%D1%96" title="Спецыяльная тэорыя адноснасці – Belarusian" lang="be" hreflang="be" data-title="Спецыяльная тэорыя адноснасці" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A1%D0%BF%D1%8D%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D1%8D%D0%BE%D1%80%D1%8B%D1%8F_%D0%B0%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%B0%D1%81%D1%8C%D1%86%D1%96" title="Спэцыяльная тэорыя адноснасьці – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Спэцыяльная тэорыя адноснасьці" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%AC%E0%A4%BF%E0%A4%B6%E0%A5%87%E0%A4%B8_%E0%A4%B8%E0%A4%BE%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%A4%E0%A4%BE" title="बिशेस सापेक्षता – Bhojpuri" lang="bh" hreflang="bh" data-title="बिशेस सापेक्षता" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D0%BD%D0%BE%D1%81%D1%82%D1%82%D0%B0" title="Специална теория на относителността – Bulgarian" lang="bg" hreflang="bg" data-title="Специална теория на относителността" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Spezieje_Relativitetstheorie" title="Spezieje Relativitetstheorie – Bavarian" lang="bar" hreflang="bar" data-title="Spezieje Relativitetstheorie" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti – Bosnian" lang="bs" hreflang="bs" data-title="Posebna teorija relativnosti" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%A5%D0%B0%D1%80%D0%B8%D1%81%D0%B0%D0%BD%D0%B3%D1%8B_%D0%B1%D0%B0%D0%B9%D0%B4%D0%B0%D0%BB%D0%B0%D0%B9_%D1%82%D1%83%D1%81%D1%85%D0%B0%D0%B9_%D0%BE%D0%BD%D0%BE%D0%BB" title="Харисангы байдалай тусхай онол – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Харисангы байдалай тусхай онол" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Relativitat_especial" title="Relativitat especial – Catalan" lang="ca" hreflang="ca" data-title="Relativitat especial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D0%B0%D0%BD%D0%BB%D0%B0%D1%88%D1%82%D0%B0%D1%80%D1%83%D0%BB%C4%83%D1%85%C4%83%D0%BD_%D1%8F%D1%82%D0%B0%D1%80%D0%BB%C4%83_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B9%C4%95" title="Танлаштарулăхăн ятарлă теорийĕ – Chuvash" lang="cv" hreflang="cv" data-title="Танлаштарулăхăн ятарлă теорийĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Speci%C3%A1ln%C3%AD_teorie_relativity" title="Speciální teorie relativity – Czech" lang="cs" hreflang="cs" data-title="Speciální teorie relativity" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Perthnasedd_arbennig" title="Perthnasedd arbennig – Welsh" lang="cy" hreflang="cy" data-title="Perthnasedd arbennig" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Speciel_relativitetsteori" title="Speciel relativitetsteori – Danish" lang="da" hreflang="da" data-title="Speciel relativitetsteori" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://de.wikipedia.org/wiki/Spezielle_Relativit%C3%A4tstheorie" title="Spezielle Relativitätstheorie – German" lang="de" hreflang="de" data-title="Spezielle Relativitätstheorie" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Erirelatiivsusteooria" title="Erirelatiivsusteooria – Estonian" lang="et" hreflang="et" data-title="Erirelatiivsusteooria" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%B9%CE%B4%CE%B9%CE%BA%CE%AE_%CF%83%CF%87%CE%B5%CF%84%CE%B9%CE%BA%CF%8C%CF%84%CE%B7%CF%84%CE%B1" title="Ειδική σχετικότητα – Greek" lang="el" hreflang="el" data-title="Ειδική σχετικότητα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teor%C3%ADa_de_la_relatividad_especial" title="Teoría de la relatividad especial – Spanish" lang="es" hreflang="es" data-title="Teoría de la relatividad especial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Speciala_teorio_de_relativeco" title="Speciala teorio de relativeco – Esperanto" lang="eo" hreflang="eo" data-title="Speciala teorio de relativeco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Erlatibitate_berezia" title="Erlatibitate berezia – Basque" lang="eu" hreflang="eu" data-title="Erlatibitate berezia" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%DB%8C%D8%AA_%D8%AE%D8%A7%D8%B5" title="نسبیت خاص – Persian" lang="fa" hreflang="fa" data-title="نسبیت خاص" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Special_relativity" title="Special relativity – Fiji Hindi" lang="hif" hreflang="hif" data-title="Special relativity" data-language-autonym="Fiji Hindi" data-language-local-name="Fiji Hindi" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Relativit%C3%A9_restreinte" title="Relativité restreinte – French" lang="fr" hreflang="fr" data-title="Relativité restreinte" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Te%C3%B2irig_sh%C3%B2nraichte_na_d%C3%A0imheachd" title="Teòirig shònraichte na dàimheachd – Scottish Gaelic" lang="gd" hreflang="gd" data-title="Teòirig shònraichte na dàimheachd" data-language-autonym="Gàidhlig" data-language-local-name="Scottish Gaelic" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Relatividade_especial" title="Relatividade especial – Galician" lang="gl" hreflang="gl" data-title="Relatividade especial" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8A%B9%EC%88%98_%EC%83%81%EB%8C%80%EC%84%B1%EC%9D%B4%EB%A1%A0" title="특수 상대성이론 – Korean" lang="ko" hreflang="ko" data-title="특수 상대성이론" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%A1%D6%80%D5%A1%D5%A2%D5%A5%D6%80%D5%A1%D5%AF%D5%A1%D5%B6%D5%B8%D6%82%D5%A9%D5%B5%D5%A1%D5%B6_%D5%B0%D5%A1%D5%BF%D5%B8%D6%82%D5%AF_%D5%BF%D5%A5%D5%BD%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Հարաբերականության հատուկ տեսություն – Armenian" lang="hy" hreflang="hy" data-title="Հարաբերականության հատուկ տեսություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A4%BF%E0%A4%B7%E0%A5%8D%E0%A4%9F_%E0%A4%86%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BF%E0%A4%95%E0%A4%A4%E0%A4%BE" title="विशिष्ट आपेक्षिकता – Hindi" lang="hi" hreflang="hi" data-title="विशिष्ट आपेक्षिकता" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://hr.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti – Croatian" lang="hr" hreflang="hr" data-title="Posebna teorija relativnosti" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Specala_relativeso" title="Specala relativeso – Ido" lang="io" hreflang="io" data-title="Specala relativeso" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Relativitas_khusus" title="Relativitas khusus – Indonesian" lang="id" hreflang="id" data-title="Relativitas khusus" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Relativitate_special" title="Relativitate special – Interlingua" lang="ia" hreflang="ia" data-title="Relativitate special" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Takmarka%C3%B0a_afst%C3%A6%C3%B0iskenningin" title="Takmarkaða afstæðiskenningin – Icelandic" lang="is" hreflang="is" data-title="Takmarkaða afstæðiskenningin" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Relativit%C3%A0_ristretta" title="Relatività ristretta – Italian" lang="it" hreflang="it" data-title="Relatività ristretta" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%AA%D7%95%D7%A8%D7%AA_%D7%94%D7%99%D7%97%D7%A1%D7%95%D7%AA_%D7%94%D7%A4%D7%A8%D7%98%D7%99%D7%AA" title="תורת היחסות הפרטית – Hebrew" lang="he" hreflang="he" data-title="תורת היחסות הפרטית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%90%E1%83%A0%E1%83%93%E1%83%9D%E1%83%91%E1%83%98%E1%83%97%E1%83%9D%E1%83%91%E1%83%98%E1%83%A1_%E1%83%A1%E1%83%9E%E1%83%94%E1%83%AA%E1%83%98%E1%83%90%E1%83%9A%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%97%E1%83%94%E1%83%9D%E1%83%A0%E1%83%98%E1%83%90" title="ფარდობითობის სპეციალური თეორია – Georgian" lang="ka" hreflang="ka" data-title="ფარდობითობის სპეციალური თეორია" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%90%D1%80%D0%BD%D0%B0%D0%B9%D1%8B_%D1%81%D0%B0%D0%BB%D1%8B%D1%81%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%8B%D0%BB%D1%8B%D2%9B_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D1%81%D1%8B" title="Арнайы салыстырмалылық теориясы – Kazakh" lang="kk" hreflang="kk" data-title="Арнайы салыстырмалылық теориясы" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Uhusianifu_maalumu" title="Uhusianifu maalumu – Swahili" lang="sw" hreflang="sw" data-title="Uhusianifu maalumu" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D1%82%D0%B0%D0%B9%D1%8B%D0%BD_%D1%81%D0%B0%D0%BB%D1%8B%D1%88%D1%82%D1%8B%D1%80%D0%BC%D0%B0%D0%BB%D1%83%D1%83%D0%BB%D1%83%D0%BA_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%D1%81%D1%8B" title="Атайын салыштырмалуулук теориясы – Kyrgyz" lang="ky" hreflang="ky" data-title="Атайын салыштырмалуулук теориясы" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://la.wikipedia.org/wiki/Relativitas_specialis" title="Relativitas specialis – Latin" lang="la" hreflang="la" data-title="Relativitas specialis" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Speci%C4%81l%C4%81_relativit%C4%81tes_teorija" title="Speciālā relativitātes teorija – Latvian" lang="lv" hreflang="lv" data-title="Speciālā relativitātes teorija" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Specialioji_reliatyvumo_teorija" title="Specialioji reliatyvumo teorija – Lithuanian" lang="lt" hreflang="lt" data-title="Specialioji reliatyvumo teorija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Speci%C3%A1lis_relativit%C3%A1selm%C3%A9let" title="Speciális relativitáselmélet – Hungarian" lang="hu" hreflang="hu" data-title="Speciális relativitáselmélet" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%98%D0%B0_%D0%B7%D0%B0_%D1%80%D0%B5%D0%BB%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B0" title="Специјална теорија за релативноста – Macedonian" lang="mk" hreflang="mk" data-title="Специјална теорија за релативноста" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B4%BF%E0%B4%B6%E0%B4%BF%E0%B4%B7%E0%B5%8D%E0%B4%9F_%E0%B4%86%E0%B4%AA%E0%B5%87%E0%B4%95%E0%B5%8D%E0%B4%B7%E0%B4%BF%E0%B4%95%E0%B4%A4%E0%B4%BE_%E0%B4%B8%E0%B4%BF%E0%B4%A6%E0%B5%8D%E0%B4%A7%E0%B4%BE%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B4%82" title="വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം – Malayalam" lang="ml" hreflang="ml" data-title="വിശിഷ്ട ആപേക്ഷികതാ സിദ്ധാന്തം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Relattivit%C3%A0_ristretta" title="Relattività ristretta – Maltese" lang="mt" hreflang="mt" data-title="Relattività ristretta" data-language-autonym="Malti" data-language-local-name="Maltese" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%B6%E0%A5%87%E0%A4%B7_%E0%A4%B8%E0%A4%BE%E0%A4%AA%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%A4%E0%A4%BE" title="विशेष सापेक्षता – Marathi" lang="mr" hreflang="mr" data-title="विशेष सापेक्षता" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%D9%8A%D9%87_%D8%AE%D8%A7%D8%B5%D9%87" title="نسبيه خاصه – Egyptian Arabic" lang="arz" hreflang="arz" data-title="نسبيه خاصه" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kerelatifan_khas" title="Kerelatifan khas – Malay" lang="ms" hreflang="ms" data-title="Kerelatifan khas" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D0%B0%D1%80%D1%8C%D1%86%D0%B0%D0%BD%D0%B3%D1%83%D0%B9%D0%BD_%D1%82%D1%83%D1%81%D0%B3%D0%B0%D0%B9_%D0%BE%D0%BD%D0%BE%D0%BB" title="Харьцангуйн тусгай онол – Mongolian" lang="mn" hreflang="mn" data-title="Харьцангуйн тусгай онол" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%91%E1%80%B0%E1%80%B8%E1%80%94%E1%80%BE%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%B8%E1%80%9B%E1%80%9E%E1%80%AE%E1%80%A1%E1%80%AD%E1%80%AF%E1%80%9B%E1%80%AE" title="အထူးနှိုင်းရသီအိုရီ – Burmese" lang="my" hreflang="my" data-title="အထူးနှိုင်းရသီအိုရီ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Speciale_relativiteitstheorie" title="Speciale relativiteitstheorie – Dutch" lang="nl" hreflang="nl" data-title="Speciale relativiteitstheorie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%89%B9%E6%AE%8A%E7%9B%B8%E5%AF%BE%E6%80%A7%E7%90%86%E8%AB%96" title="特殊相対性理論 – Japanese" lang="ja" hreflang="ja" data-title="特殊相対性理論" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Den_spesielle_relativitetsteorien" title="Den spesielle relativitetsteorien – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Den spesielle relativitetsteorien" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Den_spesielle_relativitetsteorien" title="Den spesielle relativitetsteorien – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Den spesielle relativitetsteorien" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Relativitat_especiala" title="Relativitat especiala – Occitan" lang="oc" hreflang="oc" data-title="Relativitat especiala" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AC%E0%AC%BF%E0%AC%B6%E0%AD%87%E0%AC%B7_%E0%AC%86%E0%AC%AA%E0%AD%87%E0%AC%95%E0%AD%8D%E0%AC%B7%E0%AC%BF%E0%AC%95_%E0%AC%A4%E0%AC%A4%E0%AD%8D%E0%AC%A4%E0%AD%8D%E0%AD%B1" title="ବିଶେଷ ଆପେକ୍ଷିକ ତତ୍ତ୍ୱ – Odia" lang="or" hreflang="or" data-title="ବିଶେଷ ଆପେକ୍ଷିକ ତତ୍ତ୍ୱ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Maxsus_nisbiylik_nazariyasi" title="Maxsus nisbiylik nazariyasi – Uzbek" lang="uz" hreflang="uz" data-title="Maxsus nisbiylik nazariyasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B5%E0%A8%BF%E0%A8%B8%E0%A8%BC%E0%A9%87%E0%A8%B8%E0%A8%BC_%E0%A8%B8%E0%A8%BE%E0%A8%AA%E0%A9%87%E0%A8%96%E0%A8%A4%E0%A8%BE" title="ਵਿਸ਼ੇਸ਼ ਸਾਪੇਖਤਾ – Punjabi" lang="pa" hreflang="pa" data-title="ਵਿਸ਼ੇਸ਼ ਸਾਪੇਖਤਾ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B3%D9%BE%DB%8C%D8%B4%D9%84_%D8%B1%DB%8C%D9%84%DB%8C%D9%B9%DB%8C%D9%88%D9%B9%DB%8C" title="سپیشل ریلیٹیوٹی – Western Punjabi" lang="pnb" hreflang="pnb" data-title="سپیشل ریلیٹیوٹی" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%DA%81%D8%A7%D9%86%DA%AB%DA%93%DB%8C_%D9%86%D8%B3%D8%A8%D9%8A%D8%AA" title="ځانګړی نسبيت – Pashto" lang="ps" hreflang="ps" data-title="ځانګړی نسبيت" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Teor%C3%ACa_dla_relativit%C3%A0_limit%C3%A0" title="Teorìa dla relatività limità – Piedmontese" lang="pms" hreflang="pms" data-title="Teorìa dla relatività limità" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Spetschale_Relativit%C3%A4tstheorie" title="Spetschale Relativitätstheorie – Low German" lang="nds" hreflang="nds" data-title="Spetschale Relativitätstheorie" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Szczeg%C3%B3lna_teoria_wzgl%C4%99dno%C5%9Bci" title="Szczególna teoria względności – Polish" lang="pl" hreflang="pl" data-title="Szczególna teoria względności" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Relatividade_restrita" title="Relatividade restrita – Portuguese" lang="pt" hreflang="pt" data-title="Relatividade restrita" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teoria_relativit%C4%83%C8%9Bii_restr%C3%A2nse" title="Teoria relativității restrânse – Romanian" lang="ro" hreflang="ro" data-title="Teoria relativității restrânse" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Специальная теория относительности – Russian" lang="ru" hreflang="ru" data-title="Специальная теория относительности" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Special_relativity" title="Special relativity – Scots" lang="sco" hreflang="sco" data-title="Special relativity" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Teoria_speciale_e_relativitetit" title="Teoria speciale e relativitetit – Albanian" lang="sq" hreflang="sq" data-title="Teoria speciale e relativitetit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Tiur%C3%ACa_di_la_rilativitati_spiciali" title="Tiurìa di la rilativitati spiciali – Sicilian" lang="scn" hreflang="scn" data-title="Tiurìa di la rilativitati spiciali" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%80%E0%B7%92%E0%B7%81%E0%B7%9A%E0%B7%82_%E0%B7%83%E0%B7%8F%E0%B6%B4%E0%B7%9A%E0%B6%9A%E0%B7%8A%E0%B7%82%E0%B6%AD%E0%B7%8F%E0%B7%80%E0%B7%8F%E0%B6%AF%E0%B6%BA" title="විශේෂ සාපේක්ෂතාවාදය – Sinhala" lang="si" hreflang="si" data-title="විශේෂ සාපේක්ෂතාවාදය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Special_relativity" title="Special relativity – Simple English" lang="en-simple" hreflang="en-simple" data-title="Special relativity" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%D8%AE%D8%A7%D8%B5_%D9%86%D8%B3%D8%A8%D8%AA_%D8%AC%D9%88_%D9%86%D8%B8%D8%B1%D9%8A%D9%88" title="خاص نسبت جو نظريو – Sindhi" lang="sd" hreflang="sd" data-title="خاص نسبت جو نظريو" data-language-autonym="سنڌي" data-language-local-name="Sindhi" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sk badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://sk.wikipedia.org/wiki/%C5%A0peci%C3%A1lna_te%C3%B3ria_relativity" title="Špeciálna teória relativity – Slovak" lang="sk" hreflang="sk" data-title="Špeciálna teória relativity" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Posebna_teorija_relativnosti" title="Posebna teorija relativnosti – Slovenian" lang="sl" hreflang="sl" data-title="Posebna teorija relativnosti" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%DB%8E%DA%98%DB%95%DB%8C%DB%8C%DB%8C_%D8%AA%D8%A7%DB%8C%D8%A8%DB%95%D8%AA" title="ڕێژەییی تایبەت – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ڕێژەییی تایبەت" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Specijalna_teorija_relativnosti" title="Specijalna teorija relativnosti – Serbian" lang="sr" hreflang="sr" data-title="Specijalna teorija relativnosti" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Specijalna_teorija_relativnosti" title="Specijalna teorija relativnosti – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Specijalna teorija relativnosti" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Teori_Relativitas_Khusus" title="Teori Relativitas Khusus – Sundanese" lang="su" hreflang="su" data-title="Teori Relativitas Khusus" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Erityinen_suhteellisuusteoria" title="Erityinen suhteellisuusteoria – Finnish" lang="fi" hreflang="fi" data-title="Erityinen suhteellisuusteoria" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Speciella_relativitetsteorin" title="Speciella relativitetsteorin – Swedish" lang="sv" hreflang="sv" data-title="Speciella relativitetsteorin" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Teorya_ng_natatanging_relatibidad" title="Teorya ng natatanging relatibidad – Tagalog" lang="tl" hreflang="tl" data-title="Teorya ng natatanging relatibidad" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%BF%E0%AE%B1%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%9A%E0%AF%8D_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%95%E0%AF%8D_%E0%AE%95%E0%AF%8B%E0%AE%9F%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="சிறப்புச் சார்புக் கோட்பாடு – Tamil" lang="ta" hreflang="ta" data-title="சிறப்புச் சார்புக் கோட்பாடு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://tt.wikipedia.org/wiki/Maxsus_%C3%A7a%C4%9F%C4%B1%C5%9Ft%C4%B1rmal%C4%B1l%C4%B1q_teori%C3%A4se" title="Maxsus çağıştırmalılıq teoriäse – Tatar" lang="tt" hreflang="tt" data-title="Maxsus çağıştırmalılıq teoriäse" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%97%E0%B8%A4%E0%B8%A9%E0%B8%8E%E0%B8%B5%E0%B8%AA%E0%B8%B1%E0%B8%A1%E0%B8%9E%E0%B8%B1%E0%B8%97%E0%B8%98%E0%B8%A0%E0%B8%B2%E0%B8%9E%E0%B8%9E%E0%B8%B4%E0%B9%80%E0%B8%A8%E0%B8%A9" title="ทฤษฎีสัมพัทธภาพพิเศษ – Thai" lang="th" hreflang="th" data-title="ทฤษฎีสัมพัทธภาพพิเศษ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%96zel_g%C3%B6relilik" title="Özel görelilik – Turkish" lang="tr" hreflang="tr" data-title="Özel görelilik" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D0%B2%D1%96%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D0%BE%D1%81%D1%82%D1%96" title="Спеціальна теорія відносності – Ukrainian" lang="uk" hreflang="uk" data-title="Спеціальна теорія відносності" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B6%D8%A7%D9%81%DB%8C%D8%AA_%D9%85%D8%AE%D8%B5%D9%88%D8%B5%DB%81" title="اضافیت مخصوصہ – Urdu" lang="ur" hreflang="ur" data-title="اضافیت مخصوصہ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Specialine_rel%C3%A4tivi%C5%BEusen_teorii" title="Specialine relätivižusen teorii – Veps" lang="vep" hreflang="vep" data-title="Specialine relätivižusen teorii" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Thuy%E1%BA%BFt_t%C6%B0%C6%A1ng_%C4%91%E1%BB%91i_h%E1%BA%B9p" title="Thuyết tương đối hẹp – Vietnamese" lang="vi" hreflang="vi" data-title="Thuyết tương đối hẹp" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Erirelatiivsusteooria" title="Erirelatiivsusteooria – Võro" lang="vro" hreflang="vro" data-title="Erirelatiivsusteooria" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="狹義相對論" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Pinaurog_nga_relatibidad" title="Pinaurog nga relatibidad – Waray" lang="war" hreflang="war" data-title="Pinaurog nga relatibidad" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论 – Wu" lang="wuu" hreflang="wuu" data-title="狭义相对论" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A1%D7%A4%D7%A2%D7%A6%D7%99%D7%A2%D7%9C%D7%A2_%D7%98%D7%A2%D7%90%D7%A8%D7%99%D7%A2_%D7%A4%D7%95%D7%9F_%D7%A8%D7%A2%D7%9C%D7%90%D7%98%D7%99%D7%95%D7%95%D7%99%D7%98%D7%A2%D7%98" title="ספעציעלע טעאריע פון רעלאטיוויטעט – Yiddish" lang="yi" hreflang="yi" data-title="ספעציעלע טעאריע פון רעלאטיוויטעט" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論 – Cantonese" lang="yue" hreflang="yue" data-title="狹義相對論" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Teoriya_Relatifiya_X%C4%B1susiye" title="Teoriya Relatifiya Xısusiye – Zazaki" lang="diq" hreflang="diq" data-title="Teoriya Relatifiya Xısusiye" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/Spec%C4%93liuoj%C4%97_rel%C4%93t%C4%ABvoma_teuor%C4%97j%C4%97" title="Specēliuojė relētīvoma teuorėjė – Samogitian" lang="sgs" hreflang="sgs" data-title="Specēliuojė relētīvoma teuorėjė" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论 – Chinese" lang="zh" hreflang="zh" data-title="狭义相对论" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11455#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Special_relativity" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Special_relativity" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Special_relativity"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Special_relativity&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Special_relativity&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Special_relativity"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Special_relativity&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Special_relativity&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Special_relativity" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Special_relativity" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Special_relativity&oldid=1259126276" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Special_relativity&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Special_relativity&id=1259126276&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpecial_relativity"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpecial_relativity"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Special_relativity&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Special_relativity&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Special_relativity" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Special_Relativity" hreflang="en"><span>Wikibooks</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Special_relativity" hreflang="en"><span>Wikiquote</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Special_relativity_(MIT)" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11455" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Theory of interwoven space and time by Albert Einstein</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Einstein_patentoffice.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/220px-Einstein_patentoffice.jpg" decoding="async" width="220" height="288" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/330px-Einstein_patentoffice.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/440px-Einstein_patentoffice.jpg 2x" data-file-width="4360" data-file-height="5699" /></a><figcaption><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> around 1905, the year his "<a href="/wiki/Annus_Mirabilis_papers" class="mw-redirect" title="Annus Mirabilis papers"><i>Annus Mirabilis</i> papers</a>" were published. These included <i>Zur Elektrodynamik bewegter Körper</i>, the paper founding special relativity.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title"><a class="mw-selflink selflink">Special relativity</a></th></tr><tr><td class="sidebar-image"><span class="notpageimage" typeof="mw:File"><a href="/wiki/File:World_line.svg" class="mw-file-description" title="The world line: a diagrammatic representation of spacetime"><img alt="The world line: a diagrammatic representation of spacetime" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/16/World_line.svg/200px-World_line.svg.png" decoding="async" width="200" height="204" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/16/World_line.svg/300px-World_line.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/16/World_line.svg/400px-World_line.svg.png 2x" data-file-width="481" data-file-height="491" /></a></span></td></tr><tr><td class="sidebar-content" style="padding-bottom:0.6em;"> <ul><li><a href="/wiki/Principle_of_relativity" title="Principle of relativity">Principle of relativity</a></li> <li><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Theory of relativity</a></li> <li><a href="/wiki/Formulations_of_special_relativity" title="Formulations of special relativity">Formulations</a></li></ul></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)"><div class="sidebar-list-title-c"><span style="font-size:120%">Foundations</span></div></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Postulates_of_special_relativity" title="Postulates of special relativity">Einstein's postulates</a></li> <li><a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">Inertial frame of reference</a></li> <li><a href="/wiki/Speed_of_light" title="Speed of light">Speed of light</a></li> <li><a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a></li> <li><a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)"><div class="sidebar-list-title-c"><span style="font-size:120%">Consequences</span></div></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a></li> <li><a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a></li> <li><a href="/wiki/Mass_in_special_relativity" title="Mass in special relativity">Relativistic mass</a></li> <li><a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence</a></li> <li><a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">Relativity of simultaneity</a></li> <li><a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">Relativistic Doppler effect</a></li> <li><a href="/wiki/Thomas_precession" title="Thomas precession">Thomas precession</a></li> <li><a href="/wiki/Relativistic_disk" title="Relativistic disk">Relativistic disk</a></li> <li><a href="/wiki/Bell%27s_spaceship_paradox" title="Bell's spaceship paradox">Bell's spaceship paradox</a></li> <li><a href="/wiki/Ehrenfest_paradox" title="Ehrenfest paradox">Ehrenfest paradox</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)"><div class="sidebar-list-title-c"><span style="font-size:120%"><a href="/wiki/Spacetime" title="Spacetime">Spacetime</a></span></div></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski spacetime</a></li> <li><a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Spacetime diagram</a></li> <li><a href="/wiki/World_line" title="World line">World line</a></li> <li><a href="/wiki/Light_cone" title="Light cone">Light cone</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)"><div class="sidebar-list-title-c"><span style="font-size:120%"><a href="/wiki/Dynamics_(mechanics)" class="mw-redirect" title="Dynamics (mechanics)">Dynamics</a></span></div></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Proper_time" title="Proper time">Proper time</a></li> <li><a href="/wiki/Invariant_mass" title="Invariant mass">Proper mass</a></li> <li><a href="/wiki/Four-momentum" title="Four-momentum">Four-momentum</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)"><div class="sidebar-list-title-c"><div class="hlist" style="font-size:110%;"><ul><li><a href="/wiki/History_of_special_relativity" title="History of special relativity">History</a></li><li>Precursors</li></ul></div></div></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Galilean_invariance" title="Galilean invariance">Galilean relativity</a></li> <li><a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformation</a></li> <li><a href="/wiki/Aether_theories" title="Aether theories">Aether theories</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)"><div class="sidebar-list-title-c"><span style="font-size:120%">People</span></div></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist"> <ul><li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Sommerfeld</a></li> <li><a href="/wiki/Albert_A._Michelson" title="Albert A. Michelson">Michelson</a></li> <li><a href="/wiki/Edward_W._Morley" title="Edward W. Morley">Morley</a></li> <li><a href="/wiki/George_Francis_FitzGerald" title="George Francis FitzGerald">FitzGerald</a></li> <li><a href="/wiki/Gustav_Herglotz" title="Gustav Herglotz">Herglotz</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a></li> <li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski</a></li> <li><a href="/wiki/Hippolyte_Fizeau" title="Hippolyte Fizeau">Fizeau</a></li> <li><a href="/wiki/Max_Abraham" title="Max Abraham">Abraham</a></li> <li><a href="/wiki/Max_Born" title="Max Born">Born</a></li> <li><a href="/wiki/Max_Planck" title="Max Planck">Planck</a></li> <li><a href="/wiki/Max_von_Laue" title="Max von Laue">von Laue</a></li> <li><a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Ehrenfest</a></li> <li><a href="/wiki/Richard_C._Tolman" title="Richard C. Tolman">Tolman</a></li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below hlist" style="background-color: transparent; border-color: #A2B8BF"> <ul><li><span class="nowrap"><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/14px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="14" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/21px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/28px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Special_relativity" title="Category:Special relativity">Category</a></span></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Special_relativity_sidebar" title="Template:Special relativity sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Special_relativity_sidebar" title="Template talk:Special relativity sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Special_relativity_sidebar" title="Special:EditPage/Template:Special relativity sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Physics" title="Physics">physics</a>, the <b>special theory of relativity</b>, or <b>special relativity</b> for short, is a scientific theory of the relationship between <a href="/wiki/Spacetime" title="Spacetime">space and time</a>. In <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>'s 1905 paper, <a href="/wiki/Annus_Mirabilis_papers#Special_relativity" class="mw-redirect" title="Annus Mirabilis papers">On the Electrodynamics of Moving Bodies</a>, the theory is presented as being based on just <a href="/wiki/Postulates_of_special_relativity" title="Postulates of special relativity">two postulates</a>:<sup id="cite_ref-electro_1-0" class="reference"><a href="#cite_note-electro-1"><span class="cite-bracket">[</span>p 1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Griffiths-2013_2-0" class="reference"><a href="#cite_note-Griffiths-2013-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Jackson-1999_3-0" class="reference"><a href="#cite_note-Jackson-1999-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <ol><li>The <a href="/wiki/Laws_of_physics" class="mw-redirect" title="Laws of physics">laws of physics</a> are <a href="/wiki/Invariant_(physics)" title="Invariant (physics)">invariant</a> (identical) in all <a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">inertial frames of reference</a> (that is, <a href="/wiki/Frame_of_reference" title="Frame of reference">frames of reference</a> with no <a href="/wiki/Acceleration" title="Acceleration">acceleration</a>). This is known as the <a href="/wiki/Principle_of_relativity" title="Principle of relativity">principle of relativity</a>.</li> <li>The <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a> in <a href="/wiki/Vacuum" title="Vacuum">vacuum</a> is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.</li></ol> <p>The first postulate was first formulated by <a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galileo Galilei</a> (see <i><a href="/wiki/Galilean_invariance" title="Galilean invariance">Galilean invariance</a></i>). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Origins_and_significance">Origins and significance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=1" title="Edit section: Origins and significance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/History_of_special_relativity" title="History of special relativity">History of special relativity</a></div> <p>Special relativity was described by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies".<sup id="cite_ref-electro_1-1" class="reference"><a href="#cite_note-electro-1"><span class="cite-bracket">[</span>p 1<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a> of <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> appeared to be incompatible with <a href="/wiki/Newtonian_mechanics" class="mw-redirect" title="Newtonian mechanics">Newtonian mechanics</a>, and the <a href="/wiki/Michelson%E2%80%93Morley_experiment" title="Michelson–Morley experiment">Michelson–Morley experiment</a> failed to detect the Earth's motion against the hypothesized <a href="/wiki/Luminiferous_aether" title="Luminiferous aether">luminiferous aether</a>. These led to the development of the <a href="/wiki/Lorentz_transformations" class="mw-redirect" title="Lorentz transformations">Lorentz transformations</a>, by <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a>, which adjust distances and times for moving objects. Special relativity corrects the hitherto laws of mechanics to handle situations involving all motions and especially those at a speed close to that of light (known as <i><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="relativistic_velocities"></span><span id="relativistic_velocity"></span><span class="vanchor-text">relativistic velocities</span></span></i>). Today, special relativity is proven to be the most accurate model of motion at any speed when gravitational and quantum effects are negligible.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Lanczos-1970_5-0" class="reference"><a href="#cite_note-Lanczos-1970-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Even so, the Newtonian model is still valid as a simple and accurate approximation at low velocities (relative to the speed of light), for example, everyday motions on Earth. </p><p>Special relativity has a wide range of consequences that have been experimentally verified.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> These include the <a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">relativity of simultaneity</a>, <a href="/wiki/Length_contraction" title="Length contraction">length contraction</a>, <a href="/wiki/Time_dilation" title="Time dilation">time dilation</a>, the relativistic velocity addition formula, the relativistic <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a>, <a href="/wiki/Mass_in_special_relativity" title="Mass in special relativity">relativistic mass</a>, <a href="/wiki/Speed_of_light#Upper_limit_on_speeds" title="Speed of light">a universal speed limit</a>, <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">mass–energy equivalence</a>, the speed of causality and the <a href="/wiki/Thomas_precession" title="Thomas precession">Thomas precession</a>.<sup id="cite_ref-Griffiths-2013_2-1" class="reference"><a href="#cite_note-Griffiths-2013-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Jackson-1999_3-1" class="reference"><a href="#cite_note-Jackson-1999-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> It has, for example, replaced the conventional notion of an absolute universal time with the notion of a time that is dependent on reference frame and <a href="/wiki/Space" title="Space">spatial</a> position. Rather than an invariant time interval between two events, there is an invariant <a href="/wiki/Spacetime_interval" class="mw-redirect" title="Spacetime interval">spacetime interval</a>. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of <a href="/wiki/Mass" title="Mass">mass</a> and <a href="/wiki/Energy" title="Energy">energy</a>, as expressed in the <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">mass–energy equivalence</a> formula <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span>⁠</span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> is the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a> in vacuum.<sup id="cite_ref-relativity_7-0" class="reference"><a href="#cite_note-relativity-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Feynman_8-0" class="reference"><a href="#cite_note-Feynman-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> It also explains how the phenomena of electricity and magnetism are related.<sup id="cite_ref-Griffiths-2013_2-2" class="reference"><a href="#cite_note-Griffiths-2013-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Jackson-1999_3-2" class="reference"><a href="#cite_note-Jackson-1999-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>A defining feature of special relativity is the replacement of the <a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformations</a> of Newtonian mechanics with the <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformations</a>. Time and space cannot be defined separately from each other (as was previously thought to be the case). Rather, space and time are interwoven into <a href="/wiki/Spacetime" title="Spacetime">a single continuum known as "spacetime"</a>. Events that occur at the same time for one observer can occur at different times for another. </p><p>Until several years later when Einstein developed <a href="/wiki/General_relativity" title="General relativity">general relativity</a>, which introduced a curved spacetime to incorporate gravity, the phrase "special relativity" was not used. A translation sometimes used is "restricted relativity"; "special" really means "special case".<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>p 2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>p 3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>p 4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup> Some of the work of Albert Einstein in special relativity is built on the earlier work by <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a> and <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a>. The theory became essentially complete in 1907, with <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a>'s papers on spacetime.<sup id="cite_ref-Lanczos-1970_5-1" class="reference"><a href="#cite_note-Lanczos-1970-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>The theory is "special" in that it only applies in the <a href="/wiki/Special_case" title="Special case">special case</a> where the spacetime is "flat", that is, where the <a href="/wiki/Curvature_of_spacetime" class="mw-redirect" title="Curvature of spacetime">curvature of spacetime</a> (a consequence of the <a href="/wiki/Energy%E2%80%93momentum_tensor" class="mw-redirect" title="Energy–momentum tensor">energy–momentum tensor</a> and representing <a href="/wiki/Gravity" title="Gravity">gravity</a>) is negligible.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>note 2<span class="cite-bracket">]</span></a></sup> To correctly accommodate gravity, Einstein formulated general relativity in 1915. Special relativity, contrary to some historical descriptions, does accommodate <a href="/wiki/Acceleration_(special_relativity)" title="Acceleration (special relativity)">accelerations</a> as well as <a href="/wiki/Rindler_coordinates" title="Rindler coordinates">accelerating frames of reference</a>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>Just as <a href="/wiki/Galilean_invariance" title="Galilean invariance">Galilean relativity</a> is now accepted to be an approximation of special relativity that is valid for low speeds, special relativity is considered an approximation of general relativity that is valid for weak <a href="/wiki/Gravitational_field" title="Gravitational field">gravitational fields</a>, that is, at a sufficiently small scale (e.g., when <a href="/wiki/Tidal_force" title="Tidal force">tidal forces</a> are negligible) and in conditions of <a href="/wiki/Free_fall" title="Free fall">free fall</a>. But general relativity incorporates <a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean geometry</a> to represent gravitational effects as the geometric curvature of spacetime. Special relativity is restricted to the flat spacetime known as <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a>. As long as the universe can be modeled as a <a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">pseudo-Riemannian manifold</a>, a Lorentz-invariant frame that abides by special relativity can be defined for a sufficiently small neighborhood of each point in this <a href="/wiki/Curved_spacetime" title="Curved spacetime">curved spacetime</a>. </p><p><a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galileo Galilei</a> had already postulated that there is no absolute and well-defined state of rest (no <a href="/wiki/Preferred_frame" title="Preferred frame">privileged reference frames</a>), a principle now called <a href="/wiki/Galilean_invariance" title="Galilean invariance">Galileo's principle of relativity</a>. Einstein extended this principle so that it accounted for the constant speed of light,<sup id="cite_ref-Taylor_1992_17-0" class="reference"><a href="#cite_note-Taylor_1992-17"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> a phenomenon that had been observed in the Michelson–Morley experiment. He also postulated that it holds for all the <a href="/wiki/Laws_of_physics" class="mw-redirect" title="Laws of physics">laws of physics</a>, including both the laws of mechanics and of <a href="/wiki/Electrodynamics" class="mw-redirect" title="Electrodynamics">electrodynamics</a>.<sup id="cite_ref-Rindler0_18-0" class="reference"><a href="#cite_note-Rindler0-18"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Traditional_"two_postulates"_approach_to_special_relativity"><span id="Traditional_.22two_postulates.22_approach_to_special_relativity"></span>Traditional "two postulates" approach to special relativity <span class="anchor" id="Postulates"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=2" title="Edit section: Traditional "two postulates" approach to special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1224211176">.mw-parser-output .quotebox{background-color:#F9F9F9;border:1px solid #aaa;box-sizing:border-box;padding:10px;font-size:88%;max-width:100%}.mw-parser-output .quotebox.floatleft{margin:.5em 1.4em .8em 0}.mw-parser-output .quotebox.floatright{margin:.5em 0 .8em 1.4em}.mw-parser-output .quotebox.centered{overflow:hidden;position:relative;margin:.5em auto .8em auto}.mw-parser-output .quotebox.floatleft span,.mw-parser-output .quotebox.floatright span{font-style:inherit}.mw-parser-output .quotebox>blockquote{margin:0;padding:0;border-left:0;font-family:inherit;font-size:inherit}.mw-parser-output .quotebox-title{text-align:center;font-size:110%;font-weight:bold}.mw-parser-output .quotebox-quote>:first-child{margin-top:0}.mw-parser-output .quotebox-quote:last-child>:last-child{margin-bottom:0}.mw-parser-output .quotebox-quote.quoted:before{font-family:"Times New Roman",serif;font-weight:bold;font-size:large;color:gray;content:" “ ";vertical-align:-45%;line-height:0}.mw-parser-output .quotebox-quote.quoted:after{font-family:"Times New Roman",serif;font-weight:bold;font-size:large;color:gray;content:" ” ";line-height:0}.mw-parser-output .quotebox .left-aligned{text-align:left}.mw-parser-output .quotebox .right-aligned{text-align:right}.mw-parser-output .quotebox .center-aligned{text-align:center}.mw-parser-output .quotebox .quote-title,.mw-parser-output .quotebox .quotebox-quote{display:block}.mw-parser-output .quotebox cite{display:block;font-style:normal}@media screen and (max-width:640px){.mw-parser-output .quotebox{width:100%!important;margin:0 0 .8em!important;float:none!important}}</style><div class="quotebox pullquote floatright" style="width:40%; ;"> <blockquote class="quotebox-quote left-aligned" style=""> <p>"Reflections of this type made it clear to me as long ago as shortly after 1900, i.e., shortly after Planck's trailblazing work, that neither mechanics nor electrodynamics could (except in limiting cases) claim exact validity. Gradually I despaired of the possibility of discovering the true laws by means of constructive efforts based on known facts. The longer and the more desperately I tried, the more I came to the conviction that only the discovery of a universal formal principle could lead us to assured results ... How, then, could such a universal principle be found?" </p> </blockquote> <p style="padding-bottom: 0;"><cite class="left-aligned" style="">Albert Einstein: <i>Autobiographical Notes</i><sup id="cite_ref-autogenerated1_19-0" class="reference"><a href="#cite_note-autogenerated1-19"><span class="cite-bracket">[</span>p 5<span class="cite-bracket">]</span></a></sup></cite></p> </div><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Postulates_of_special_relativity" title="Postulates of special relativity">Postulates of special relativity</a></div> <p>Einstein discerned two fundamental propositions that seemed to be the most assured, regardless of the exact validity of the (then) known laws of either mechanics or electrodynamics. These propositions were the constancy of the speed of light in vacuum and the independence of physical laws (especially the constancy of the speed of light) from the choice of inertial system. In his initial presentation of special relativity in 1905 he expressed these postulates as:<sup id="cite_ref-electro_1-2" class="reference"><a href="#cite_note-electro-1"><span class="cite-bracket">[</span>p 1<span class="cite-bracket">]</span></a></sup> </p> <ul><li>The <a href="/wiki/Principle_of_relativity" title="Principle of relativity">principle of relativity</a> – the laws by which the states of physical systems undergo change are not affected, whether these changes of state be referred to the one or the other of two systems in uniform translatory motion relative to each other.<sup id="cite_ref-electro_1-3" class="reference"><a href="#cite_note-electro-1"><span class="cite-bracket">[</span>p 1<span class="cite-bracket">]</span></a></sup></li> <li>The principle of invariant light speed – "... light is always propagated in empty space with a definite velocity [speed] <i>c</i> which is independent of the state of motion of the emitting body" (from the preface).<sup id="cite_ref-electro_1-4" class="reference"><a href="#cite_note-electro-1"><span class="cite-bracket">[</span>p 1<span class="cite-bracket">]</span></a></sup> That is, light in vacuum propagates with the speed <i>c</i> (a fixed constant, independent of direction) in at least one system of inertial coordinates (the "stationary system"), regardless of the state of motion of the light source.</li></ul> <p>The constancy of the speed of light was motivated by <a href="/wiki/Maxwell%27s_theory_of_electromagnetism" class="mw-redirect" title="Maxwell's theory of electromagnetism">Maxwell's theory of electromagnetism</a><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> and the lack of evidence for the <a href="/wiki/Luminiferous_ether" class="mw-redirect" title="Luminiferous ether">luminiferous ether</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> There is conflicting evidence on the extent to which Einstein was influenced by the null result of the Michelson–Morley experiment.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-mM1905_23-0" class="reference"><a href="#cite_note-mM1905-23"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> In any case, the null result of the Michelson–Morley experiment helped the notion of the constancy of the speed of light gain widespread and rapid acceptance. </p><p>The derivation of special relativity depends not only on these two explicit postulates, but also on several tacit assumptions (<a href="/wiki/Duhem%E2%80%93Quine_thesis" title="Duhem–Quine thesis">made in almost all theories of physics</a>), including the <a href="/wiki/Isotropy" title="Isotropy">isotropy</a> and <a href="/wiki/Homogeneity_(physics)" title="Homogeneity (physics)">homogeneity</a> of space and the independence of measuring rods and clocks from their past history.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>p 6<span class="cite-bracket">]</span></a></sup> </p><p>Following Einstein's original presentation of special relativity in 1905, many different sets of postulates have been proposed in various alternative derivations.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> But the most common set of postulates remains those employed by Einstein in his original paper. A more mathematical statement of the principle of relativity made later by Einstein, which introduces the concept of simplicity not mentioned above is: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p><i>Special principle of relativity</i>: If a system of coordinates <i>K</i> is chosen so that, in relation to it, physical laws hold good in their simplest form, the <i>same</i> laws hold good in relation to any other system of coordinates <i>K</i><span class="nowrap" style="padding-left:0.1em;">′</span> moving in uniform translation relatively to <i>K</i>.<sup id="cite_ref-Einstein_26-0" class="reference"><a href="#cite_note-Einstein-26"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></p></blockquote> <p><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> provided the mathematical framework for relativity theory by proving that <a href="/wiki/Lorentz_transformations" class="mw-redirect" title="Lorentz transformations">Lorentz transformations</a> are a subset of his <a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré group</a> of symmetry transformations. Einstein later derived these transformations from his axioms. </p><p>Many of Einstein's papers present derivations of the Lorentz transformation based upon these two principles.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>p 7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Principle_of_relativity">Principle of relativity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=3" title="Edit section: Principle of relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Principle_of_relativity" title="Principle of relativity">Principle of relativity</a></div> <div class="mw-heading mw-heading3"><h3 id="Reference_frames_and_relative_motion">Reference frames and relative motion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=4" title="Edit section: Reference frames and relative motion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Frames_of_reference_in_relative_motion.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Frames_of_reference_in_relative_motion.svg/300px-Frames_of_reference_in_relative_motion.svg.png" decoding="async" width="300" height="178" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Frames_of_reference_in_relative_motion.svg/450px-Frames_of_reference_in_relative_motion.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Frames_of_reference_in_relative_motion.svg/600px-Frames_of_reference_in_relative_motion.svg.png 2x" data-file-width="478" data-file-height="283" /></a><figcaption>Figure 2–1. The primed system is in motion relative to the unprimed system with constant velocity <i>v</i> only along the <i>x</i>-axis, from the perspective of an observer stationary in the unprimed system. By the <a href="/wiki/Principle_of_relativity" title="Principle of relativity">principle of relativity</a>, an observer stationary in the primed system will view a likewise construction except that the velocity they record will be −<i>v</i>. The changing of the speed of propagation of interaction from infinite in non-relativistic mechanics to a finite value will require a modification of the transformation equations mapping events in one frame to another.</figcaption></figure> <p><a href="/wiki/Frame_of_reference" title="Frame of reference">Reference frames</a> play a crucial role in relativity theory. The term reference frame as used here is an observational perspective in space that is not undergoing any change in motion (acceleration), from which a position can be measured along 3 spatial axes (so, at rest or constant velocity). In addition, a reference frame has the ability to determine measurements of the time of events using a "clock" (any reference device with uniform periodicity). </p><p>An <a href="/wiki/Event_(relativity)" title="Event (relativity)">event</a> is an occurrence that can be assigned a single unique moment and location in space relative to a reference frame: it is a "point" in <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>. Since the speed of light is constant in relativity irrespective of the reference frame, pulses of light can be used to unambiguously measure distances and refer back to the times that events occurred to the clock, even though light takes time to reach the clock after the event has transpired. </p><p>For example, the explosion of a firecracker may be considered to be an "event". We can completely specify an event by its four spacetime coordinates: The time of occurrence and its 3-dimensional spatial location define a reference point. Let's call this reference frame <i>S</i>. </p><p>In relativity theory, we often want to calculate the coordinates of an event from differing reference frames. The equations that relate measurements made in different frames are called <i>transformation equations</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Standard_configuration">Standard configuration</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=5" title="Edit section: Standard configuration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To gain insight into how the spacetime coordinates measured by observers in different <a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">reference frames</a> compare with each other, it is useful to work with a simplified setup with frames in a <i>standard configuration</i>.<sup id="cite_ref-Collier_28-0" class="reference"><a href="#cite_note-Collier-28"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 107">: 107 </span></sup> With care, this allows simplification of the math with no loss of generality in the conclusions that are reached. In Fig. 2-1, two <a href="/wiki/Galilean_reference_frame" class="mw-redirect" title="Galilean reference frame">Galilean reference frames</a> (i.e., conventional 3-space frames) are displayed in relative motion. Frame S belongs to a first observer <i>O</i>, and frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> (pronounced "S prime" or "S dash") belongs to a second observer <i>O</i><span class="nowrap" style="padding-left:0.1em;">′</span>. </p> <ul><li>The <i>x</i>, <i>y</i>, <i>z</i> axes of frame S are oriented parallel to the respective primed axes of frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>.</li> <li>Frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> moves, for simplicity, in a single direction: the <i>x</i>-direction of frame S with a constant velocity <i>v</i> as measured in frame <i>S</i>.</li> <li>The origins of frames S and S<span class="nowrap" style="padding-left:0.05em;">′</span> are coincident when time <span class="nowrap"><i>t</i> = 0</span> for frame S and <span class="nowrap"><i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> = 0</span> for frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>.</li></ul> <p>Since there is no absolute reference frame in relativity theory, a concept of "moving" does not strictly exist, as everything may be moving with respect to some other reference frame. Instead, any two frames that move at the same speed in the same direction are said to be <i>comoving</i>. Therefore, <i>S</i> and <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> are not <i>comoving</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Lack_of_an_absolute_reference_frame">Lack of an absolute reference frame</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=6" title="Edit section: Lack of an absolute reference frame"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Principle_of_relativity" title="Principle of relativity">principle of relativity</a>, which states that physical laws have the same form in each <a href="/wiki/Inertial_reference_frame" class="mw-redirect" title="Inertial reference frame">inertial reference frame</a>, dates back to <a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galileo</a>, and was incorporated into Newtonian physics. But in the late 19th century the existence of <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic waves</a> led some physicists to suggest that the universe was filled with a substance they called "<a href="/wiki/Luminiferous_aether" title="Luminiferous aether">aether</a>", which, they postulated, would act as the medium through which these waves, or vibrations, propagated (in many respects similar to the way sound propagates through air). The aether was thought to be an <a href="/wiki/Preferred_frame" title="Preferred frame">absolute reference frame</a> against which all speeds could be measured, and could be considered fixed and motionless relative to Earth or some other fixed reference point. The aether was supposed to be sufficiently elastic to support electromagnetic waves, while those waves could interact with matter, yet offering no resistance to bodies passing through it (its one property was that it allowed electromagnetic waves to propagate). The results of various experiments, including the Michelson–Morley experiment in 1887 (subsequently verified with more accurate and innovative experiments), led to the theory of special relativity, by showing that the aether did not exist.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Einstein's solution was to discard the notion of an aether and the absolute state of rest. In relativity, any reference frame moving with uniform motion will observe the same laws of physics. In particular, the speed of light in vacuum is always measured to be <i>c</i>, even when measured by multiple systems that are moving at different (but constant) velocities. </p> <div class="mw-heading mw-heading3"><h3 id="Relativity_without_the_second_postulate">Relativity without the second postulate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=7" title="Edit section: Relativity without the second postulate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From the principle of relativity alone without assuming the constancy of the speed of light (i.e., using the isotropy of space and the symmetry implied by the principle of special relativity) <a href="/wiki/Derivations_of_the_Lorentz_transformations#From_group_postulates" title="Derivations of the Lorentz transformations">it can be shown</a> that the spacetime transformations between inertial frames are either Euclidean, Galilean, or Lorentzian. In the Lorentzian case, one can then obtain relativistic interval conservation and a certain finite limiting speed. Experiments suggest that this speed is the speed of light in vacuum.<sup id="cite_ref-Friedman_30-0" class="reference"><a href="#cite_note-Friedman-30"><span class="cite-bracket">[</span>p 8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Morin2007_31-0" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Lorentz_invariance_as_the_essential_core_of_special_relativity">Lorentz invariance as the essential core of special relativity <span class="anchor" id="Lorentz_transformation"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=8" title="Edit section: Lorentz invariance as the essential core of special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a></div> <div class="mw-heading mw-heading3"><h3 id="Alternative_approaches_to_special_relativity">Alternative approaches to special relativity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=9" title="Edit section: Alternative approaches to special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Derivations_of_the_Lorentz_transformations" title="Derivations of the Lorentz transformations">Derivations of the Lorentz transformations</a></div> <p>Einstein consistently based the derivation of Lorentz invariance (the essential core of special relativity) on just the two basic principles of: relativity and invariance of the speed of light. He wrote: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>The insight fundamental for the special theory of relativity is this: The assumptions relativity and light speed invariance are compatible if relations of a new type ("Lorentz transformation") are postulated for the conversion of coordinates and times of events ... The universal principle of the special theory of relativity is contained in the postulate: The laws of physics are invariant with respect to Lorentz transformations (for the transition from one inertial system to any other arbitrarily chosen inertial system). This is a restricting principle for natural laws ...<sup id="cite_ref-autogenerated1_19-1" class="reference"><a href="#cite_note-autogenerated1-19"><span class="cite-bracket">[</span>p 5<span class="cite-bracket">]</span></a></sup></p></blockquote> <p>Thus many modern treatments of special relativity base it on the single postulate of universal Lorentz covariance, or, equivalently, on the single postulate of <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>p 9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>p 10<span class="cite-bracket">]</span></a></sup> </p><p>Rather than considering universal Lorentz covariance to be a derived principle, this article considers it to be the fundamental postulate of special relativity. The traditional two-postulate approach to special relativity is presented in innumerable college textbooks and popular presentations.<sup id="cite_ref-Miller2009_34-0" class="reference"><a href="#cite_note-Miller2009-34"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Textbooks starting with the single postulate of Minkowski spacetime include those by Taylor and Wheeler<sup id="cite_ref-Taylor_1992_17-1" class="reference"><a href="#cite_note-Taylor_1992-17"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> and by Callahan.<sup id="cite_ref-Callahan_35-0" class="reference"><a href="#cite_note-Callahan-35"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> This is also the approach followed by the Wikipedia articles <a href="/wiki/Spacetime" title="Spacetime">Spacetime</a> and <a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagram</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Lorentz_transformation_and_its_inverse">Lorentz transformation and its inverse</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=10" title="Edit section: Lorentz transformation and its inverse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Define an <a href="/wiki/Spacetime#Basic_concepts" title="Spacetime">event</a> to have spacetime coordinates <span class="nowrap">(<i>t</i>, <i>x</i>, <i>y</i>, <i>z</i>)</span> in system <i>S</i> and <span class="nowrap">(<i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>y</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>z</i><span class="nowrap" style="padding-left:0.1em;">′</span>)</span> in a reference frame moving at a velocity <i>v</i> on the <i>x</i>-axis with respect to that frame, <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>. Then the <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a> specifies that these coordinates are related in the following way: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}t'&=\gamma \ (t-vx/c^{2})\\x'&=\gamma \ (x-vt)\\y'&=y\\z'&=z,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>t</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}t'&=\gamma \ (t-vx/c^{2})\\x'&=\gamma \ (x-vt)\\y'&=y\\z'&=z,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae4f6066009b1535e4856fecbd58921b8de48ccc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:18.877ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}t'&=\gamma \ (t-vx/c^{2})\\x'&=\gamma \ (x-vt)\\y'&=y\\z'&=z,\end{aligned}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b130ec5e5e9586833b7888f7cbe2433f1e295e3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:16.929ex; height:6.509ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}}"></span> is the <a href="/wiki/Lorentz_factor" title="Lorentz factor">Lorentz factor</a> and <i>c</i> is the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a> in vacuum, and the velocity <i>v</i> of <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>, relative to <i>S</i>, is parallel to the <i>x</i>-axis. For simplicity, the <i>y</i> and <i>z</i> coordinates are unaffected; only the <i>x</i> and <i>t</i> coordinates are transformed. These Lorentz transformations form a <a href="/wiki/One-parameter_group" title="One-parameter group">one-parameter group</a> of <a href="/wiki/Linear_mapping" class="mw-redirect" title="Linear mapping">linear mappings</a>, that parameter being called <a href="/wiki/Rapidity" title="Rapidity">rapidity</a>. </p><p>Solving the four transformation equations above for the unprimed coordinates yields the inverse Lorentz transformation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}t&=\gamma (t'+vx'/c^{2})\\x&=\gamma (x'+vt')\\y&=y'\\z&=z'.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>z</mi> <mo>′</mo> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}t&=\gamma (t'+vx'/c^{2})\\x&=\gamma (x'+vt')\\y&=y'\\z&=z'.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d661443f4fe56eab9d5b9209391d5481deb2ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:18.982ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}t&=\gamma (t'+vx'/c^{2})\\x&=\gamma (x'+vt')\\y&=y'\\z&=z'.\end{aligned}}}"></span> </p><p>This shows that the unprimed frame is moving with the velocity −<i>v</i>, as measured in the primed frame.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p><p>There is nothing special about the <i>x</i>-axis. The transformation can apply to the <i>y</i>- or <i>z</i>-axis, or indeed in any direction parallel to the motion (which are warped by the <i>γ</i> factor) and perpendicular; see the article <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a> for details. </p><p>A quantity that is invariant under <a href="/wiki/Lorentz_transformations" class="mw-redirect" title="Lorentz transformations">Lorentz transformations</a> is known as a <a href="/wiki/Lorentz_scalar" title="Lorentz scalar">Lorentz scalar</a>. </p><p>Writing the Lorentz transformation and its inverse in terms of coordinate differences, where one event has coordinates <span class="nowrap">(<i>x</i><sub>1</sub>, <i>t</i><sub>1</sub>)</span> and <span class="nowrap">(<i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span><sub>1</sub>, <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span><sub>1</sub>)</span>, another event has coordinates <span class="nowrap">(<i>x</i><sub>2</sub>, <i>t</i><sub>2</sub>)</span> and <span class="nowrap">(<i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span><sub>2</sub>, <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span><sub>2</sub>)</span>, and the differences are defined as </p> <ul><li><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">Eq. 1:</span>    <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x'=x'_{2}-x'_{1}\ ,\ \Delta t'=t'_{2}-t'_{1}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x'=x'_{2}-x'_{1}\ ,\ \Delta t'=t'_{2}-t'_{1}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568223f2885721b0a8f0442e723780462d305533" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.266ex; height:3.176ex;" alt="{\displaystyle \Delta x'=x'_{2}-x'_{1}\ ,\ \Delta t'=t'_{2}-t'_{1}\ .}"></span></li> <li><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">Eq. 2:</span>    <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x=x_{2}-x_{1}\ ,\ \ \Delta t=t_{2}-t_{1}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x=x_{2}-x_{1}\ ,\ \ \Delta t=t_{2}-t_{1}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a3c81cd5e1a3c738c63e1b55e085dcba51f72ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:30.478ex; height:2.509ex;" alt="{\displaystyle \Delta x=x_{2}-x_{1}\ ,\ \ \Delta t=t_{2}-t_{1}\ .}"></span></li></ul> <p>we get </p> <ul><li><span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">Eq. 3:</span>    <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x'=\gamma \ (\Delta x-v\,\Delta t)\ ,\ \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x'=\gamma \ (\Delta x-v\,\Delta t)\ ,\ \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70bf86b3cdce212f0e8d3227bdde155a2a65bd2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.873ex; height:3.009ex;" alt="{\displaystyle \Delta x'=\gamma \ (\Delta x-v\,\Delta t)\ ,\ \ }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'=\gamma \ \left(\Delta t-v\ \Delta x/c^{2}\right)\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'=\gamma \ \left(\Delta t-v\ \Delta x/c^{2}\right)\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8129c910ae372135cf81cf89e982907c1d2b1f84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.346ex; height:3.343ex;" alt="{\displaystyle \Delta t'=\gamma \ \left(\Delta t-v\ \Delta x/c^{2}\right)\ .}"></span></li> <li><span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">Eq. 4:</span>    <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x=\gamma \ (\Delta x'+v\,\Delta t')\ ,\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x=\gamma \ (\Delta x'+v\,\Delta t')\ ,\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fbbbce3c4c6d0e32a6cdca0a7018bddd95757c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.977ex; height:3.009ex;" alt="{\displaystyle \Delta x=\gamma \ (\Delta x'+v\,\Delta t')\ ,\ }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t=\gamma \ \left(\Delta t'+v\ \Delta x'/c^{2}\right)\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t=\gamma \ \left(\Delta t'+v\ \Delta x'/c^{2}\right)\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e67e882d66376bd3170df90945ffe4cf4603c8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.031ex; height:3.343ex;" alt="{\displaystyle \Delta t=\gamma \ \left(\Delta t'+v\ \Delta x'/c^{2}\right)\ .}"></span></li></ul> <p>If we take differentials instead of taking differences, we get </p> <ul><li><span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">Eq. 5:</span>    <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx'=\gamma \ (dx-v\,dt)\ ,\ \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx'=\gamma \ (dx-v\,dt)\ ,\ \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69aec35a89bc0eab2766e33b188d649b6ace16ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.713ex; height:3.009ex;" alt="{\displaystyle dx'=\gamma \ (dx-v\,dt)\ ,\ \ }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dt'=\gamma \ \left(dt-v\ dx/c^{2}\right)\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <mi>t</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mtext> </mtext> <mi>d</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dt'=\gamma \ \left(dt-v\ dx/c^{2}\right)\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e103e5c426a1349efd51885e7a1d96fe57f7a3fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.186ex; height:3.343ex;" alt="{\displaystyle dt'=\gamma \ \left(dt-v\ dx/c^{2}\right)\ .}"></span></li> <li><span id="math_6" class="reference nourlexpansion" style="font-weight:bold;">Eq. 6:</span>    <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx=\gamma \ (dx'+v\,dt')\ ,\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx=\gamma \ (dx'+v\,dt')\ ,\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ed2f958a99ff20bb81deb94d6151f73c37ad1fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.817ex; height:3.009ex;" alt="{\displaystyle dx=\gamma \ (dx'+v\,dt')\ ,\ }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dt=\gamma \ \left(dt'+v\ dx'/c^{2}\right)\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <mtext> </mtext> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dt=\gamma \ \left(dt'+v\ dx'/c^{2}\right)\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f65ee47b4da221c155e9ff3f66fe985df1d6baf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.871ex; height:3.343ex;" alt="{\displaystyle dt=\gamma \ \left(dt'+v\ dx'/c^{2}\right)\ .}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Graphical_representation_of_the_Lorentz_transformation">Graphical representation of the Lorentz transformation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=11" title="Edit section: Graphical representation of the Lorentz transformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:392px;max-width:392px"><div class="trow"><div class="tsingle" style="width:194px;max-width:194px"><div class="thumbimage" style="height:192px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Spacetime_diagram_development_A.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Spacetime_diagram_development_A.svg/192px-Spacetime_diagram_development_A.svg.png" decoding="async" width="192" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Spacetime_diagram_development_A.svg/288px-Spacetime_diagram_development_A.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Spacetime_diagram_development_A.svg/384px-Spacetime_diagram_development_A.svg.png 2x" data-file-width="535" data-file-height="535" /></a></span></div></div><div class="tsingle" style="width:194px;max-width:194px"><div class="thumbimage" style="height:192px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Spacetime_diagram_development_B.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Spacetime_diagram_development_B.svg/192px-Spacetime_diagram_development_B.svg.png" decoding="async" width="192" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/84/Spacetime_diagram_development_B.svg/288px-Spacetime_diagram_development_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Spacetime_diagram_development_B.svg/384px-Spacetime_diagram_development_B.svg.png 2x" data-file-width="535" data-file-height="535" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:194px;max-width:194px"><div class="thumbimage" style="height:192px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Spacetime_diagram_development_C.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Spacetime_diagram_development_C.svg/192px-Spacetime_diagram_development_C.svg.png" decoding="async" width="192" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Spacetime_diagram_development_C.svg/288px-Spacetime_diagram_development_C.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Spacetime_diagram_development_C.svg/384px-Spacetime_diagram_development_C.svg.png 2x" data-file-width="535" data-file-height="535" /></a></span></div></div><div class="tsingle" style="width:194px;max-width:194px"><div class="thumbimage" style="height:192px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Spacetime_diagram_development_D.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Spacetime_diagram_development_D.svg/192px-Spacetime_diagram_development_D.svg.png" decoding="async" width="192" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Spacetime_diagram_development_D.svg/288px-Spacetime_diagram_development_D.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Spacetime_diagram_development_D.svg/384px-Spacetime_diagram_development_D.svg.png 2x" data-file-width="535" data-file-height="535" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Figure 3-1. Drawing a Minkowski spacetime diagram to illustrate a Lorentz transformation.</div></div></div></div> <p>Spacetime diagrams (<a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagrams</a>) are an extremely useful aid to visualizing how coordinates transform between different reference frames. Although it is not as easy to perform exact computations using them as directly invoking the Lorentz transformations, their main power is their ability to provide an intuitive grasp of the results of a relativistic scenario.<sup id="cite_ref-Morin2007_31-1" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>To draw a spacetime diagram, begin by considering two Galilean reference frames, S and S′, in standard configuration, as shown in Fig. 2-1.<sup id="cite_ref-Morin2007_31-2" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Mermin1968_37-0" class="reference"><a href="#cite_note-Mermin1968-37"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 155–199">: 155–199 </span></sup> </p><p><b>Fig. 3-1a</b>. Draw the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> axes of frame S. The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> axis is horizontal and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> (actually <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72479bb6f1dc1b592b57dd9fed06d5f50030a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.846ex; height:2.009ex;" alt="{\displaystyle ct}"></span>) axis is vertical, which is the opposite of the usual convention in kinematics. The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72479bb6f1dc1b592b57dd9fed06d5f50030a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.846ex; height:2.009ex;" alt="{\displaystyle ct}"></span> axis is scaled by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> so that both axes have common units of length. In the diagram shown, the gridlines are spaced one unit distance apart. The 45° diagonal lines represent the <i>worldlines</i> of two photons passing through the origin at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9248d91021260015d75d2b7540612616bbb36b88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.747ex; height:2.176ex;" alt="{\displaystyle t=0.}"></span> The slope of these worldlines is 1 because the photons advance one unit in space per unit of time. Two events, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>A</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a3d98083f2be1ce5c681190df371d29455c2d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle {\text{A}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{B}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{B}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb2ddddccead55f997b42d41c75bc6d4e525781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.292ex; height:2.509ex;" alt="{\displaystyle {\text{B}},}"></span> have been plotted on this graph so that their coordinates may be compared in the S and S' frames. </p><p><b>Fig. 3-1b</b>. Draw the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x'}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23969b00bf6d4ac97e6b4058b9af2eb87ee3bf96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.531ex; height:2.509ex;" alt="{\displaystyle ct'}"></span> axes of frame S'. The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23969b00bf6d4ac97e6b4058b9af2eb87ee3bf96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.531ex; height:2.509ex;" alt="{\displaystyle ct'}"></span> axis represents the worldline of the origin of the S' coordinate system as measured in frame S. In this figure, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=c/2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=c/2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4730c201ece9c4cdda275cb7a3ae623f7b53cfb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.205ex; height:2.843ex;" alt="{\displaystyle v=c/2.}"></span> Both the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23969b00bf6d4ac97e6b4058b9af2eb87ee3bf96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.531ex; height:2.509ex;" alt="{\displaystyle ct'}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x'}"></span> axes are tilted from the unprimed axes by an angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\tan ^{-1}(\beta ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>=</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =\tan ^{-1}(\beta ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295c2e4be7b7b821a6a2b161fb994939e278b029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.067ex; height:3.176ex;" alt="{\displaystyle \alpha =\tan ^{-1}(\beta ),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =v/c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>=</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =v/c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/358f21f49108a1ee981d4a38e963c02c4d28e8be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.374ex; height:2.843ex;" alt="{\displaystyle \beta =v/c.}"></span> The primed and unprimed axes share a common origin because frames S and S' had been set up in standard configuration, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ad4572232dcdaadc4a1d2cc438996ec27ca6224" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.432ex; height:2.509ex;" alt="{\displaystyle t'=0.}"></span> </p><p><b>Fig. 3-1c</b>. Units in the primed axes have a different scale from units in the unprimed axes. From the Lorentz transformations, we observe that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x',ct')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>,</mo> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x',ct')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3007fde756a005e6784e4d609189b1faf174af9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.389ex; height:3.009ex;" alt="{\displaystyle (x',ct')}"></span> coordinates of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c79c6838e423c1ed3c7ea532a56dc9f9dae8290b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (0,1)}"></span> in the primed coordinate system transform to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\beta \gamma ,\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\beta \gamma ,\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c330f35cf90e5c7b710d67814bab8c5bc365f68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.7ex; height:2.843ex;" alt="{\displaystyle (\beta \gamma ,\gamma )}"></span> in the unprimed coordinate system. Likewise, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x',ct')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>,</mo> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x',ct')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3007fde756a005e6784e4d609189b1faf174af9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.389ex; height:3.009ex;" alt="{\displaystyle (x',ct')}"></span> coordinates of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b53cc1773694affcc1d4d6c2c778d43156a1206" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (1,0)}"></span> in the primed coordinate system transform to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\gamma ,\beta \gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\gamma ,\beta \gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e574b0e57933bb22498e9d6aba5e559986a5c606" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.7ex; height:2.843ex;" alt="{\displaystyle (\gamma ,\beta \gamma )}"></span> in the unprimed system. Draw gridlines parallel with the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23969b00bf6d4ac97e6b4058b9af2eb87ee3bf96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.531ex; height:2.509ex;" alt="{\displaystyle ct'}"></span> axis through points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k\gamma ,k\beta \gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>k</mi> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k\gamma ,k\beta \gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d533b78efc7460c32ca80517ca6c3057e25ade89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.122ex; height:2.843ex;" alt="{\displaystyle (k\gamma ,k\beta \gamma )}"></span> as measured in the unprimed frame, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is an integer. Likewise, draw gridlines parallel with the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x'}"></span> axis through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k\beta \gamma ,k\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>k</mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k\beta \gamma ,k\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d49b28ad7efea06285f6188b8a5ffd4b7634809" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.122ex; height:2.843ex;" alt="{\displaystyle (k\beta \gamma ,k\gamma )}"></span> as measured in the unprimed frame. Using the Pythagorean theorem, we observe that the spacing between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23969b00bf6d4ac97e6b4058b9af2eb87ee3bf96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.531ex; height:2.509ex;" alt="{\displaystyle ct'}"></span> units equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {(1+\beta ^{2})/(1-\beta ^{2})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {(1+\beta ^{2})/(1-\beta ^{2})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fee2f7395cfed9371f1fad8cf7852583e3f78d04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.893ex; height:3.343ex;" alt="{\textstyle {\sqrt {(1+\beta ^{2})/(1-\beta ^{2})}}}"></span> times the spacing between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72479bb6f1dc1b592b57dd9fed06d5f50030a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.846ex; height:2.009ex;" alt="{\displaystyle ct}"></span> units, as measured in frame S. This ratio is always greater than 1, and ultimately it approaches infinity as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta \to 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta \to 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b75626015c0357be299fd7300820d9783bee5a3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.755ex; height:2.509ex;" alt="{\displaystyle \beta \to 1.}"></span> </p><p><b>Fig. 3-1d</b>. Since the speed of light is an invariant, the <i>worldlines</i> of two photons passing through the origin at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/485223d4a356b062533d406614af224efa771628" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.785ex; height:2.509ex;" alt="{\displaystyle t'=0}"></span> still plot as 45° diagonal lines. The primed coordinates of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>A</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a3d98083f2be1ce5c681190df371d29455c2d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle {\text{A}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37cc047f094c36c6d6e6f5dbf1700583b6f66938" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.646ex; height:2.176ex;" alt="{\displaystyle {\text{B}}}"></span> are related to the unprimed coordinates through the Lorentz transformations and <i>could</i> be approximately measured from the graph (assuming that it has been plotted accurately enough), but the real merit of a Minkowski diagram is its granting us a geometric view of the scenario. For example, in this figure, we observe that the two timelike-separated events that had different x-coordinates in the unprimed frame are now at the same position in space. </p><p>While the unprimed frame is drawn with space and time axes that meet at right angles, the primed frame is drawn with axes that meet at acute or obtuse angles. This asymmetry is due to unavoidable distortions in how spacetime coordinates map onto a <a href="/wiki/Cartesian_plane" class="mw-redirect" title="Cartesian plane">Cartesian plane</a>, but the frames are actually equivalent. </p> <div class="mw-heading mw-heading2"><h2 id="Consequences_derived_from_the_Lorentz_transformation">Consequences derived from the Lorentz transformation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=12" title="Edit section: Consequences derived from the Lorentz transformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Twin_paradox" title="Twin paradox">Twin paradox</a> and <a href="/wiki/Relativistic_mechanics" title="Relativistic mechanics">Relativistic mechanics</a></div> <p>The consequences of special relativity can be derived from the <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a> equations.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> These transformations, and hence special relativity, lead to different physical predictions than those of Newtonian mechanics at all relative velocities, and most pronounced when relative velocities become comparable to the speed of light. The speed of light is so much larger than anything most humans encounter that some of the effects predicted by relativity are initially <a href="/wiki/Counterintuitive" class="mw-redirect" title="Counterintuitive">counterintuitive</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Invariant_interval">Invariant interval</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=13" title="Edit section: Invariant interval"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In Galilean relativity, an object's length (<span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc4f36cb1759b5dbc5003f91e305d51f58205200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.985ex; height:2.176ex;" alt="{\displaystyle \Delta r}"></span>⁠</span>)<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>note 3<span class="cite-bracket">]</span></a></sup> and the temporal separation between two events (<span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c28867ecd34e2caed12cf38feadf6a81a7ee542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.775ex; height:2.176ex;" alt="{\displaystyle \Delta t}"></span>⁠</span>) are independent invariants, the values of which do not change when observed from different frames of reference.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>note 4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>note 5<span class="cite-bracket">]</span></a></sup> </p><p>In special relativity, however, the interweaving of spatial and temporal coordinates generates the concept of an <b>invariant interval</b>, denoted as <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d76e6fc5f1353a997222afbf3f50f1e57731a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.676ex;" alt="{\displaystyle \Delta s^{2}}"></span>⁠</span>:<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>note 6<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}\;{\overset {\text{def}}{=}}\;c^{2}\Delta t^{2}-(\Delta x^{2}+\Delta y^{2}+\Delta z^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>=</mo> <mtext>def</mtext> </mover> </mrow> <mspace width="thickmathspace" /> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}\;{\overset {\text{def}}{=}}\;c^{2}\Delta t^{2}-(\Delta x^{2}+\Delta y^{2}+\Delta z^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f53a989fbfd98b36341494b61fe4d14164d9c4af" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.29ex; height:3.843ex;" alt="{\displaystyle \Delta s^{2}\;{\overset {\text{def}}{=}}\;c^{2}\Delta t^{2}-(\Delta x^{2}+\Delta y^{2}+\Delta z^{2})}"></span> </p><p>The interweaving of space and time revokes the implicitly assumed concepts of absolute simultaneity and synchronization across non-comoving frames. </p><p>The form of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d76e6fc5f1353a997222afbf3f50f1e57731a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.676ex;" alt="{\displaystyle \Delta s^{2}}"></span>⁠</span>, being the <i>difference</i> of the squared time lapse and the squared spatial distance, demonstrates a fundamental discrepancy between Euclidean and spacetime distances.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>note 7<span class="cite-bracket">]</span></a></sup> The invariance of this interval is a property of the <i>general</i> Lorentz transform (also called the <a href="/wiki/Poincar%C3%A9_transformation" class="mw-redirect" title="Poincaré transformation">Poincaré transformation</a>), making it an <a href="/wiki/Isometry" title="Isometry">isometry</a> of spacetime. The general Lorentz transform extends the standard Lorentz transform (which deals with translations without rotation, that is, <a href="/wiki/Lorentz_boost" class="mw-redirect" title="Lorentz boost">Lorentz boosts</a>, in the x-direction) with all other <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translations</a>, <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflections</a>, and <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a> between any Cartesian inertial frame.<sup id="cite_ref-Rindler1977_50-0" class="reference"><a href="#cite_note-Rindler1977-50"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 33–34">: 33–34 </span></sup> </p><p>In the analysis of simplified scenarios, such as spacetime diagrams, a reduced-dimensionality form of the invariant interval is often employed: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}\,=\,c^{2}\Delta t^{2}-\Delta x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}\,=\,c^{2}\Delta t^{2}-\Delta x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9d2843330f7657b08e59cc4420cc96bcbf74368" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:21.004ex; height:2.843ex;" alt="{\displaystyle \Delta s^{2}\,=\,c^{2}\Delta t^{2}-\Delta x^{2}}"></span> </p><p>Demonstrating that the interval is invariant is straightforward for the reduced-dimensionality case and with frames in standard configuration:<sup id="cite_ref-Morin2007_31-3" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}c^{2}\Delta t^{2}-\Delta x^{2}&=c^{2}\gamma ^{2}\left(\Delta t'+{\dfrac {v\Delta x'}{c^{2}}}\right)^{2}-\gamma ^{2}\ (\Delta x'+v\Delta t')^{2}\\&=\gamma ^{2}\left(c^{2}\Delta t'^{\,2}+2v\Delta x'\Delta t'+{\dfrac {v^{2}\Delta x'^{\,2}}{c^{2}}}\right)-\gamma ^{2}\ (\Delta x'^{\,2}+2v\Delta x'\Delta t'+v^{2}\Delta t'^{\,2})\\&=\gamma ^{2}c^{2}\Delta t'^{\,2}-\gamma ^{2}v^{2}\Delta t'^{\,2}-\gamma ^{2}\Delta x'^{\,2}+\gamma ^{2}{\dfrac {v^{2}\Delta x'^{\,2}}{c^{2}}}\\&=\gamma ^{2}c^{2}\Delta t'^{\,2}\left(1-{\dfrac {v^{2}}{c^{2}}}\right)-\gamma ^{2}\Delta x'^{\,2}\left(1-{\dfrac {v^{2}}{c^{2}}}\right)\\&=c^{2}\Delta t'^{\,2}-\Delta x'^{\,2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>v</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>v</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>v</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}c^{2}\Delta t^{2}-\Delta x^{2}&=c^{2}\gamma ^{2}\left(\Delta t'+{\dfrac {v\Delta x'}{c^{2}}}\right)^{2}-\gamma ^{2}\ (\Delta x'+v\Delta t')^{2}\\&=\gamma ^{2}\left(c^{2}\Delta t'^{\,2}+2v\Delta x'\Delta t'+{\dfrac {v^{2}\Delta x'^{\,2}}{c^{2}}}\right)-\gamma ^{2}\ (\Delta x'^{\,2}+2v\Delta x'\Delta t'+v^{2}\Delta t'^{\,2})\\&=\gamma ^{2}c^{2}\Delta t'^{\,2}-\gamma ^{2}v^{2}\Delta t'^{\,2}-\gamma ^{2}\Delta x'^{\,2}+\gamma ^{2}{\dfrac {v^{2}\Delta x'^{\,2}}{c^{2}}}\\&=\gamma ^{2}c^{2}\Delta t'^{\,2}\left(1-{\dfrac {v^{2}}{c^{2}}}\right)-\gamma ^{2}\Delta x'^{\,2}\left(1-{\dfrac {v^{2}}{c^{2}}}\right)\\&=c^{2}\Delta t'^{\,2}-\Delta x'^{\,2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bcc8d4f5514d1d42a9f138446511f1acec7a978" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.671ex; width:88.289ex; height:28.509ex;" alt="{\displaystyle {\begin{aligned}c^{2}\Delta t^{2}-\Delta x^{2}&=c^{2}\gamma ^{2}\left(\Delta t'+{\dfrac {v\Delta x'}{c^{2}}}\right)^{2}-\gamma ^{2}\ (\Delta x'+v\Delta t')^{2}\\&=\gamma ^{2}\left(c^{2}\Delta t'^{\,2}+2v\Delta x'\Delta t'+{\dfrac {v^{2}\Delta x'^{\,2}}{c^{2}}}\right)-\gamma ^{2}\ (\Delta x'^{\,2}+2v\Delta x'\Delta t'+v^{2}\Delta t'^{\,2})\\&=\gamma ^{2}c^{2}\Delta t'^{\,2}-\gamma ^{2}v^{2}\Delta t'^{\,2}-\gamma ^{2}\Delta x'^{\,2}+\gamma ^{2}{\dfrac {v^{2}\Delta x'^{\,2}}{c^{2}}}\\&=\gamma ^{2}c^{2}\Delta t'^{\,2}\left(1-{\dfrac {v^{2}}{c^{2}}}\right)-\gamma ^{2}\Delta x'^{\,2}\left(1-{\dfrac {v^{2}}{c^{2}}}\right)\\&=c^{2}\Delta t'^{\,2}-\Delta x'^{\,2}\end{aligned}}}"></span> </p><p>The value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d76e6fc5f1353a997222afbf3f50f1e57731a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.676ex;" alt="{\displaystyle \Delta s^{2}}"></span> is hence independent of the frame in which it is measured. </p><p>In considering the physical significance of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d76e6fc5f1353a997222afbf3f50f1e57731a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.676ex;" alt="{\displaystyle \Delta s^{2}}"></span>⁠</span>, there are three cases to note:<sup id="cite_ref-Morin2007_31-4" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Taylor1966_51-0" class="reference"><a href="#cite_note-Taylor1966-51"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 25–39">: 25–39 </span></sup> </p> <ul><li><b>Δs<sup>2</sup> > 0:</b> In this case, the two events are separated by more time than space, and they are hence said to be <i>timelike</i> separated. This implies that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vert \Delta x/\Delta t\vert <c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">|</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo fence="false" stretchy="false">|</mo> <mo><</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vert \Delta x/\Delta t\vert <c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77b3527a4b04b18b725fa0fb6d08d66dc784a452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.602ex; height:2.843ex;" alt="{\displaystyle \vert \Delta x/\Delta t\vert <c}"></span>⁠</span>, and given the Lorentz transformation <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x'=\gamma \ (\Delta x-v\ \Delta t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mtext> </mtext> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x'=\gamma \ (\Delta x-v\ \Delta t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe78c2bf9bafe8dd192b53f66859fcc982bff76d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.291ex; height:3.009ex;" alt="{\displaystyle \Delta x'=\gamma \ (\Delta x-v\ \Delta t)}"></span>⁠</span>, it is evident that there exists a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> for which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x'=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x'=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13efc239af4739c8857438b3aebf273a2edd4266" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.211ex; height:2.509ex;" alt="{\displaystyle \Delta x'=0}"></span> (in particular, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=\Delta x/\Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=\Delta x/\Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dced72fdf712754acc3ee84c950f882909bdb4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.43ex; height:2.843ex;" alt="{\displaystyle v=\Delta x/\Delta t}"></span>⁠</span>). In other words, given two events that are timelike separated, it is possible to find a frame in which the two events happen at the same place. In this frame, the separation in time, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bd532bc5b666192d6cac502a6c694a82e4101e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.196ex; height:2.843ex;" alt="{\displaystyle \Delta s/c}"></span>⁠</span>, is called the <i>proper time</i>.</li> <li><b>Δs<sup>2</sup> < 0:</b> In this case, the two events are separated by more space than time, and they are hence said to be <i>spacelike</i> separated. This implies that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vert \Delta x/\Delta t\vert >c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">|</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo fence="false" stretchy="false">|</mo> <mo>></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vert \Delta x/\Delta t\vert >c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4c9ec708a1135ea0d2e023be2d76c0862b4a3f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.602ex; height:2.843ex;" alt="{\displaystyle \vert \Delta x/\Delta t\vert >c}"></span>⁠</span>, and given the Lorentz transformation <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'=\gamma \ (\Delta t-v\Delta x/c^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'=\gamma \ (\Delta t-v\Delta x/c^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d76202856d3cd6ef93aa1c2cebf6e8dc08ef9c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.444ex; height:3.176ex;" alt="{\displaystyle \Delta t'=\gamma \ (\Delta t-v\Delta x/c^{2})}"></span>⁠</span>, there exists a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> for which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79312af2caef81493091b785626154e3b97c172c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.721ex; height:2.509ex;" alt="{\displaystyle \Delta t'=0}"></span> (in particular, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=c^{2}\Delta t/\Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=c^{2}\Delta t/\Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3e18d875265386f590cf5016a44358c43590d3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.491ex; height:3.176ex;" alt="{\displaystyle v=c^{2}\Delta t/\Delta x}"></span>⁠</span>). In other words, given two events that are spacelike separated, it is possible to find a frame in which the two events happen at the same time. In this frame, the separation in space, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\sqrt {-\Delta s^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\sqrt {-\Delta s^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d33552c15c81e40910239dd328666fe67023d6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.212ex; height:3.509ex;" alt="{\displaystyle \textstyle {\sqrt {-\Delta s^{2}}}}"></span>⁠</span>, is called the <i>proper distance</i>, or <i>proper length</i>. For values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> greater than and less than <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}\Delta t/\Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}\Delta t/\Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f9edf99cb4c2d855f683f5d86ce5a21d01930c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.265ex; height:3.176ex;" alt="{\displaystyle c^{2}\Delta t/\Delta x}"></span>⁠</span>, the sign of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50ea24905e052383d75e10e87e33a3d805d39b43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.46ex; height:2.509ex;" alt="{\displaystyle \Delta t'}"></span> changes, meaning that the temporal order of spacelike-separated events changes depending on the frame in which the events are viewed. But the temporal order of timelike-separated events is absolute, since the only way that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> could be greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}\Delta t/\Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}\Delta t/\Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0f9edf99cb4c2d855f683f5d86ce5a21d01930c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.265ex; height:3.176ex;" alt="{\displaystyle c^{2}\Delta t/\Delta x}"></span> would be if <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v>c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v>c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd68cc1d60b0f5aadc893dcc3fae7bb50f0c9eae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.233ex; height:1.843ex;" alt="{\displaystyle v>c}"></span>⁠</span>.</li> <li><b>Δs<sup>2</sup> = 0:</b> In this case, the two events are said to be <i>lightlike</i> separated. This implies that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vert \Delta x/\Delta t\vert =c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">|</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo fence="false" stretchy="false">|</mo> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vert \Delta x/\Delta t\vert =c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6db88008a09a68b061c82868c0e666e192a938c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.602ex; height:2.843ex;" alt="{\displaystyle \vert \Delta x/\Delta t\vert =c}"></span>⁠</span>, and this relationship is frame independent due to the invariance of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d7841cee3671436949ee789b84a848fd150bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle s^{2}}"></span>⁠</span>. From this, we observe that the speed of light is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> in every inertial frame. In other words, starting from the assumption of universal Lorentz covariance, the constant speed of light is a derived result, rather than a postulate as in the two-postulates formulation of the special theory.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Relativity_of_simultaneity">Relativity of simultaneity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=14" title="Edit section: Relativity of simultaneity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">Relativity of simultaneity</a> and <a href="/wiki/Ladder_paradox" title="Ladder paradox">Ladder paradox</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relativity_of_Simultaneity_Animation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Relativity_of_Simultaneity_Animation.gif/220px-Relativity_of_Simultaneity_Animation.gif" decoding="async" width="220" height="237" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Relativity_of_Simultaneity_Animation.gif/330px-Relativity_of_Simultaneity_Animation.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/7/78/Relativity_of_Simultaneity_Animation.gif 2x" data-file-width="400" data-file-height="430" /></a><figcaption>Figure 4–1. The three events (A, B, C) are simultaneous in the reference frame of some observer <b>O</b>. In a reference frame moving at <i>v</i> = 0.3<i>c</i>, as measured by <b>O</b>, the events occur in the order C, B, A. In a reference frame moving at <span class="nowrap"><i>v</i> = −0.5<i>c</i></span> with respect to <b>O</b>, the events occur in the order A, B, C. The white lines, the <i>lines of simultaneity</i>, move from the past to the future in the respective frames (green coordinate axes), highlighting events residing on them. They are the locus of all events occurring at the same time in the respective frame. The gray area is the <a href="/wiki/Light_cone" title="Light cone">light cone</a> with respect to the origin of all considered frames.</figcaption></figure> <p>Consider two events happening in two different locations that occur simultaneously in the reference frame of one inertial observer. They may occur non-simultaneously in the reference frame of another inertial observer (lack of <a href="/wiki/Absolute_simultaneity" class="mw-redirect" title="Absolute simultaneity">absolute simultaneity</a>). </p><p>From <b><a href="#math_3">Equation 3</a></b> (the forward Lorentz transformation in terms of coordinate differences) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'=\gamma \left(\Delta t-{\frac {v\,\Delta x}{c^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'=\gamma \left(\Delta t-{\frac {v\,\Delta x}{c^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac5082c4895196aa92bc26edc9bb606b7669fb1f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.862ex; height:6.176ex;" alt="{\displaystyle \Delta t'=\gamma \left(\Delta t-{\frac {v\,\Delta x}{c^{2}}}\right)}"></span> </p><p>It is clear that the two events that are simultaneous in frame <i>S</i> (satisfying <span class="nowrap">Δ<i>t</i> = 0</span>), are not necessarily simultaneous in another inertial frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> (satisfying <span class="nowrap">Δ<i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> = 0</span>). Only if these events are additionally co-local in frame <i>S</i> (satisfying <span class="nowrap">Δ<i>x</i> = 0</span>), will they be simultaneous in another frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>. </p><p>The <a href="/wiki/Sagnac_effect" title="Sagnac effect">Sagnac effect</a> can be considered a manifestation of the relativity of simultaneity.<sup id="cite_ref-Ashby2003_52-0" class="reference"><a href="#cite_note-Ashby2003-52"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> Since relativity of simultaneity is a first order effect in <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span>⁠</span>,<sup id="cite_ref-Morin2007_31-5" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> instruments based on the Sagnac effect for their operation, such as <a href="/wiki/Ring_laser_gyroscope" title="Ring laser gyroscope">ring laser gyroscopes</a> and <a href="/wiki/Fiber_optic_gyroscope" class="mw-redirect" title="Fiber optic gyroscope">fiber optic gyroscopes</a>, are capable of extreme levels of sensitivity.<sup id="cite_ref-Lin1979_53-0" class="reference"><a href="#cite_note-Lin1979-53"><span class="cite-bracket">[</span>p 14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Time_dilation">Time dilation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=15" title="Edit section: Time dilation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a></div> <p>The time lapse between two events is not invariant from one observer to another, but is dependent on the relative speeds of the observers' reference frames. </p><p>Suppose a <a href="/wiki/Clock" title="Clock">clock</a> is at rest in the unprimed system <i>S</i>. The location of the clock on two different ticks is then characterized by <span class="nowrap">Δ<i>x</i> = 0</span>. To find the relation between the times between these ticks as measured in both systems, <b><a href="#math_3">Equation 3</a></b> can be used to find: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'=\gamma \,\Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'=\gamma \,\Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97f216b0be7c75fbdddecc96761aa6bb08ec6f03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.984ex; height:3.009ex;" alt="{\displaystyle \Delta t'=\gamma \,\Delta t}"></span><span style="padding-left:4;"> </span>for events satisfying<span style="padding-left:4;"> </span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x=0\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x=0\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcaea5f99fa8bf00b7aff6f5a919e63d085a97a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.754ex; height:2.176ex;" alt="{\displaystyle \Delta x=0\ .}"></span></dd></dl> <p>This shows that the time (Δ<i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span>) between the two ticks as seen in the frame in which the clock is moving (<i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>), is <i>longer</i> than the time (Δ<i>t</i>) between these ticks as measured in the rest frame of the clock (<i>S</i>). Time dilation explains a number of physical phenomena; for example, the lifetime of high speed <a href="/wiki/Muon" title="Muon">muons</a> created by the collision of cosmic rays with particles in the Earth's outer atmosphere and moving towards the surface is greater than the lifetime of slowly moving muons, created and decaying in a laboratory.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Observer_in_special_relativity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Observer_in_special_relativity.svg/220px-Observer_in_special_relativity.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Observer_in_special_relativity.svg/330px-Observer_in_special_relativity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Observer_in_special_relativity.svg/440px-Observer_in_special_relativity.svg.png 2x" data-file-width="605" data-file-height="605" /></a><figcaption>Figure 4–2. Hypothetical infinite array of synchronized clocks associated with an observer's reference frame</figcaption></figure> <p>Whenever one hears a statement to the effect that "moving clocks run slow", one should envision an inertial reference frame thickly populated with identical, synchronized clocks. As a moving clock travels through this array, its reading at any particular point is compared with a stationary clock at the same point.<sup id="cite_ref-French_1968_55-0" class="reference"><a href="#cite_note-French_1968-55"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 149–152">: 149–152 </span></sup> </p><p>The measurements that we would get if we actually <i>looked</i> at a moving clock would, in general, not at all be the same thing, because the time that we would see would be delayed by the finite speed of light, i.e. the times that we see would be distorted by the <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a>. Measurements of relativistic effects must always be understood as having been made after finite speed-of-light effects have been factored out.<sup id="cite_ref-French_1968_55-1" class="reference"><a href="#cite_note-French_1968-55"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 149–152">: 149–152 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Langevin's_light-clock"><span id="Langevin.27s_light-clock"></span>Langevin's light-clock</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=16" title="Edit section: Langevin's light-clock"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Langevin's_Light-Clock"></span> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Langevin_Light_Clock.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Langevin_Light_Clock.gif/320px-Langevin_Light_Clock.gif" decoding="async" width="320" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Langevin_Light_Clock.gif/480px-Langevin_Light_Clock.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/a/ae/Langevin_Light_Clock.gif 2x" data-file-width="510" data-file-height="302" /></a><figcaption>Figure 4–3. Thought experiment using a light-clock to explain time dilation</figcaption></figure> <p><a href="/wiki/Paul_Langevin" title="Paul Langevin">Paul Langevin</a>, an early proponent of the theory of relativity, did much to popularize the theory in the face of resistance by many physicists to Einstein's revolutionary concepts. Among his numerous contributions to the foundations of special relativity were independent work on the mass–energy relationship, a thorough examination of the twin paradox, and investigations into rotating coordinate systems. His name is frequently attached to a hypothetical construct called a "light-clock" (originally developed by Lewis and Tolman in 1909<sup id="cite_ref-Lewis_Tolman_1909_56-0" class="reference"><a href="#cite_note-Lewis_Tolman_1909-56"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup>), which he used to perform a novel derivation of the Lorentz transformation.<sup id="cite_ref-Cuvaj_1971_57-0" class="reference"><a href="#cite_note-Cuvaj_1971-57"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>A light-clock is imagined to be a box of perfectly reflecting walls wherein a light signal reflects back and forth from opposite faces. The concept of time dilation is frequently taught using a light-clock that is traveling in uniform inertial motion perpendicular to a line connecting the two mirrors.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Feynman_Lectures_1_61-0" class="reference"><a href="#cite_note-Feynman_Lectures_1-61"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> (Langevin himself made use of a light-clock oriented parallel to its line of motion.<sup id="cite_ref-Cuvaj_1971_57-1" class="reference"><a href="#cite_note-Cuvaj_1971-57"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup>) </p><p>Consider the scenario illustrated in <span class="nowrap">Fig. 4-3A.</span> Observer A holds a light-clock of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> as well as an electronic timer with which she measures how long it takes a pulse to make a round trip up and down along the light-clock. Although observer A is traveling rapidly along a train, from her point of view the emission and receipt of the pulse occur at the same place, and she measures the interval using a single clock located at the precise position of these two events. For the interval between these two events, observer A finds <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{\text{A}}=2L/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>A</mtext> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{\text{A}}=2L/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16010dfcc3b3036fb58e341793f713d4916cbcc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.317ex; height:2.843ex;" alt="{\displaystyle t_{\text{A}}=2L/c}"></span>⁠</span>. A time interval measured using a single clock that is motionless in a particular reference frame is called a <i><a href="/wiki/Proper_time_interval" class="mw-redirect" title="Proper time interval">proper time interval</a></i>.<sup id="cite_ref-Halliday_1988_62-0" class="reference"><a href="#cite_note-Halliday_1988-62"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> </p><p>Fig. 4-3B illustrates these same two events from the standpoint of observer B, who is parked by the tracks as the train goes by at a speed of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span>⁠</span>. Instead of making straight up-and-down motions, observer B sees the pulses moving along a zig-zag line. However, because of the postulate of the constancy of the speed of light, the speed of the pulses along these diagonal lines is the same <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> that observer A saw for her up-and-down pulses. B measures the speed of the vertical component of these pulses as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \pm {\sqrt {c^{2}-v^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>±<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \pm {\sqrt {c^{2}-v^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b995584110eb04dc3dfe15c594927952430e514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.862ex; height:3.509ex;" alt="{\textstyle \pm {\sqrt {c^{2}-v^{2}}},}"></span> so that the total round-trip time of the pulses is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle t_{\text{B}}=2L{\big /}{\sqrt {c^{2}-v^{2}}}={}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>B</mtext> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" stretchy="true" symmetric="true" maxsize="1.2em" minsize="1.2em">/</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle t_{\text{B}}=2L{\big /}{\sqrt {c^{2}-v^{2}}}={}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a549a9d2b1e23a53419f82beac5c749dc762d26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.928ex; height:3.676ex;" alt="{\textstyle t_{\text{B}}=2L{\big /}{\sqrt {c^{2}-v^{2}}}={}}"></span><span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle t_{\text{A}}{\big /}{\sqrt {1-v^{2}/c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>A</mtext> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" stretchy="true" symmetric="true" maxsize="1.2em" minsize="1.2em">/</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle t_{\text{A}}{\big /}{\sqrt {1-v^{2}/c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7219111c066a3702ca1b3cab14deeb58b58e2c72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.38ex; height:3.343ex;" alt="{\displaystyle \textstyle t_{\text{A}}{\big /}{\sqrt {1-v^{2}/c^{2}}}}"></span>⁠</span>. Note that for observer B, the emission and receipt of the light pulse occurred at different places, and he measured the interval using two stationary and synchronized clocks located at two different positions in his reference frame. The interval that B measured was therefore <i>not</i> a proper time interval because he did not measure it with a single resting clock.<sup id="cite_ref-Halliday_1988_62-1" class="reference"><a href="#cite_note-Halliday_1988-62"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Reciprocal_time_dilation">Reciprocal time dilation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=17" title="Edit section: Reciprocal time dilation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the above description of the Langevin light-clock, the labeling of one observer as stationary and the other as in motion was completely arbitrary. One could just as well have observer B carrying the light-clock and moving at a speed of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> to the left, in which case observer A would perceive B's clock as running slower than her local clock. </p><p>There is no paradox here, because there is no independent observer C who will agree with both A and B. Observer C necessarily makes his measurements from his own reference frame. If that reference frame coincides with A's reference frame, then C will agree with A's measurement of time. If C's reference frame coincides with B's reference frame, then C will agree with B's measurement of time. If C's reference frame coincides with neither A's frame nor B's frame, then C's measurement of time will disagree with <i>both</i> A's and B's measurement of time.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Twin_paradox">Twin paradox</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=18" title="Edit section: Twin paradox"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Twin_paradox" title="Twin paradox">Twin paradox</a></div> <p>The reciprocity of time dilation between two observers in separate inertial frames leads to the so-called <a href="/wiki/Twin_paradox" title="Twin paradox">twin paradox</a>, articulated in its present form by Langevin in 1911.<sup id="cite_ref-Langevin_1911_64-0" class="reference"><a href="#cite_note-Langevin_1911-64"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> Langevin imagined an adventurer wishing to explore the future of the Earth. This traveler boards a projectile capable of traveling at 99.995% of the speed of light. After making a round-trip journey to and from a nearby star lasting only two years of his own life, he returns to an Earth that is two hundred years older. </p><p>This result appears puzzling because both the traveler and an Earthbound observer would see the other as moving, and so, because of the reciprocity of time dilation, one might initially expect that each should have found the other to have aged less. In reality, there is no paradox at all, because in order for the two observers to perform side-by-side comparisons of their elapsed proper times, the symmetry of the situation must be broken: At least one of the two observers must change their state of motion to match that of the other.<sup id="cite_ref-Debs_Redhead_65-0" class="reference"><a href="#cite_note-Debs_Redhead-65"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Twin_paradox_Doppler_analysis.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Twin_paradox_Doppler_analysis.svg/220px-Twin_paradox_Doppler_analysis.svg.png" decoding="async" width="220" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Twin_paradox_Doppler_analysis.svg/330px-Twin_paradox_Doppler_analysis.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Twin_paradox_Doppler_analysis.svg/440px-Twin_paradox_Doppler_analysis.svg.png 2x" data-file-width="870" data-file-height="840" /></a><figcaption>Figure 4-4. Doppler analysis of twin paradox</figcaption></figure> <p>Knowing the general resolution of the paradox, however, does not immediately yield the ability to calculate correct quantitative results. Many solutions to this puzzle have been provided in the literature and have been reviewed in the <a href="/wiki/Twin_paradox" title="Twin paradox">Twin paradox</a> article. We will examine in the following one such solution to the paradox. </p><p>Our basic aim will be to demonstrate that, after the trip, both twins are in perfect agreement about who aged by how much, regardless of their different experiences. <span class="nowrap">Fig 4-4</span> illustrates a scenario where the traveling twin flies at <span class="nowrap">0.6 c</span> to and from a star <span class="nowrap">3 ly</span> distant. During the trip, each twin sends yearly time signals (measured in their own proper times) to the other. After the trip, the cumulative counts are compared. On the outward phase of the trip, each twin receives the other's signals at the lowered rate of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle f'=f{\sqrt {(1-\beta )/(1+\beta )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle f'=f{\sqrt {(1-\beta )/(1+\beta )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43d956c649f7e2ab654a1c31694f163ebfbaa86f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.157ex; height:3.343ex;" alt="{\displaystyle \textstyle f'=f{\sqrt {(1-\beta )/(1+\beta )}}}"></span>⁠</span>. Initially, the situation is perfectly symmetric: note that each twin receives the other's one-year signal at two years measured on their own clock. The symmetry is broken when the traveling twin turns around at the four-year mark as measured by her clock. During the remaining four years of her trip, she receives signals at the enhanced rate of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle f''=f{\sqrt {(1+\beta )/(1-\beta )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo>=</mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle f''=f{\sqrt {(1+\beta )/(1-\beta )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43967e02e29d320a5070d0f25d94bfbc2374305e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.609ex; height:3.343ex;" alt="{\displaystyle \textstyle f''=f{\sqrt {(1+\beta )/(1-\beta )}}}"></span>⁠</span>. The situation is quite different with the stationary twin. Because of light-speed delay, he does not see his sister turn around until eight years have passed on his own clock. Thus, he receives enhanced-rate signals from his sister for only a relatively brief period. Although the twins disagree in their respective measures of total time, we see in the following table, as well as by simple observation of the Minkowski diagram, that each twin is in total agreement with the other as to the total number of signals sent from one to the other. There is hence no paradox.<sup id="cite_ref-French_1968_55-2" class="reference"><a href="#cite_note-French_1968-55"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 152–159">: 152–159 </span></sup> </p> <table class="wikitable"> <tbody><tr> <th>Item</th> <th>Measured by the<br />stay-at-home</th> <th>Fig 4-4</th> <th>Measured by<br />the traveler</th> <th>Fig 4-4 </th></tr> <tr> <td>Total time of trip </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\frac {2L}{v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\frac {2L}{v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faa027081ef36e4c3ba0519ce0e8e4a818c51e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.316ex; height:5.176ex;" alt="{\displaystyle T={\frac {2L}{v}}}"></span> </td> <td><span class="nowrap">10 yr</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T'={\frac {2L}{\gamma v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> </mrow> <mrow> <mi>γ<!-- γ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T'={\frac {2L}{\gamma v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/990d9233674c0064ae9c6f122084c4c0487b50b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.085ex; height:5.676ex;" alt="{\displaystyle T'={\frac {2L}{\gamma v}}}"></span> </td> <td><span class="nowrap">8 yr</span> </td></tr> <tr> <td>Total number of pulses sent </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fT={\frac {2fL}{v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fT={\frac {2fL}{v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7e887faf8a4a46e8d218081912de74dccaf6679" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.873ex; height:5.343ex;" alt="{\displaystyle fT={\frac {2fL}{v}}}"></span> </td> <td>10 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fT'={\frac {2fL}{\gamma v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>f</mi> <mi>L</mi> </mrow> <mrow> <mi>γ<!-- γ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fT'={\frac {2fL}{\gamma v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef54fafd6d4dcb67739439ecc256a7f1b34322ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.642ex; height:5.843ex;" alt="{\displaystyle fT'={\frac {2fL}{\gamma v}}}"></span> </td> <td>8 </td></tr> <tr> <td>Time when traveler's turnaround is <b>detected</b> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1}={\frac {L}{v}}+{\frac {L}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mi>v</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1}={\frac {L}{v}}+{\frac {L}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1f5d79091d28c376cf88936745fab274ab22afa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.671ex; height:5.176ex;" alt="{\displaystyle t_{1}={\frac {L}{v}}+{\frac {L}{c}}}"></span> </td> <td><span class="nowrap">8 yr</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1}'={\frac {L}{\gamma v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mrow> <mi>γ<!-- γ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1}'={\frac {L}{\gamma v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ebb090072e6115de6b0520dce6c0f3a0b437e47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.218ex; height:5.676ex;" alt="{\displaystyle t_{1}'={\frac {L}{\gamma v}}}"></span> </td> <td><span class="nowrap">4 yr</span> </td></tr> <tr> <td>Number of pulses received at initial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span> rate </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f't_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f't_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46ec22055c2c9f49b2532b60ea49b3bbf90850e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.899ex; height:2.843ex;" alt="{\displaystyle f't_{1}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1+\beta )\left({\frac {1-\beta }{1+\beta }}\right)^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1+\beta )\left({\frac {1-\beta }{1+\beta }}\right)^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/117525a822c99df5a523361df56417e7ab7962b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.585ex; height:6.676ex;" alt="{\displaystyle ={\frac {fL}{v}}(1+\beta )\left({\frac {1-\beta }{1+\beta }}\right)^{1/2}}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6c5e0c902c4a3a75bb4b4ba8908a75a829ee710" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.052ex; height:5.343ex;" alt="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}}"></span> </td> <td>4 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f't_{1}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f't_{1}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50bf4dae052d97e4fbd0356bd5f59acfa9d26cba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.899ex; height:3.176ex;" alt="{\displaystyle f't_{1}'}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}\left({\frac {1-\beta }{1+\beta }}\right)^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}\left({\frac {1-\beta }{1+\beta }}\right)^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08ac03531f28e65d3f5e762fb9ce43a7bd908a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.343ex; height:6.676ex;" alt="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}\left({\frac {1-\beta }{1+\beta }}\right)^{1/2}}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1-\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1-\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29f1ed616f9660f5ea85ff5055826d844239475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.295ex; height:5.343ex;" alt="{\displaystyle ={\frac {fL}{v}}(1-\beta )}"></span> </td> <td>2 </td></tr> <tr> <td>Time for remainder of trip </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{2}={\frac {L}{v}}-{\frac {L}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mi>v</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{2}={\frac {L}{v}}-{\frac {L}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69524cbdae74c2e1f9faea3e5d7fe6a4b481405b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.671ex; height:5.176ex;" alt="{\displaystyle t_{2}={\frac {L}{v}}-{\frac {L}{c}}}"></span> </td> <td><span class="nowrap">2 yr</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{2}'={\frac {L}{\gamma v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <mrow> <mi>γ<!-- γ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{2}'={\frac {L}{\gamma v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85a133848607084f8024f8b581db7384476cfa84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.218ex; height:5.676ex;" alt="{\displaystyle t_{2}'={\frac {L}{\gamma v}}}"></span> </td> <td><span class="nowrap">4 yr</span> </td></tr> <tr> <td>Number of signals received at final <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbbdf186092f4353b7630fa8dda903e493cbbdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.458ex; height:2.843ex;" alt="{\displaystyle f''}"></span> rate </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''t_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''t_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b5b8514126102f9782992c0b7852019d664c466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.352ex; height:2.843ex;" alt="{\displaystyle f''t_{2}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1-\beta )\left({\frac {1+\beta }{1-\beta }}\right)^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1-\beta )\left({\frac {1+\beta }{1-\beta }}\right)^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c188b7c14b08f3fc6ef967f9e45e707d8a128e56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.585ex; height:6.676ex;" alt="{\displaystyle ={\frac {fL}{v}}(1-\beta )\left({\frac {1+\beta }{1-\beta }}\right)^{1/2}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6c5e0c902c4a3a75bb4b4ba8908a75a829ee710" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.052ex; height:5.343ex;" alt="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}}"></span> </td> <td>4 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''t_{2}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''t_{2}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0996d7cc735a333bf7118cc1450d086677283acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.352ex; height:3.176ex;" alt="{\displaystyle f''t_{2}'}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}\left({\frac {1+\beta }{1-\beta }}\right)^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}\left({\frac {1+\beta }{1-\beta }}\right)^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41edd4caf8a03c886ee83537192d5f5fafaf7500" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.343ex; height:6.676ex;" alt="{\displaystyle ={\frac {fL}{v}}(1-\beta ^{2})^{1/2}\left({\frac {1+\beta }{1-\beta }}\right)^{1/2}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {fL}{v}}(1+\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {fL}{v}}(1+\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb1a554ab6c1a173b6ee22370bf87df4d7acbe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.295ex; height:5.343ex;" alt="{\displaystyle ={\frac {fL}{v}}(1+\beta )}"></span> </td> <td>8 </td></tr> <tr> <td>Total number of received pulses </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2fL}{v}}(1-\beta ^{2})^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2fL}{v}}(1-\beta ^{2})^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d46601c273574f9ed809c7ef755009b46040eb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.762ex; height:5.343ex;" alt="{\displaystyle {\frac {2fL}{v}}(1-\beta ^{2})^{1/2}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {2fL}{\gamma v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>f</mi> <mi>L</mi> </mrow> <mrow> <mi>γ<!-- γ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {2fL}{\gamma v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a80319eb3a9b346bcdcba858e2061e962f0a94e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:7.313ex; height:5.843ex;" alt="{\displaystyle ={\frac {2fL}{\gamma v}}}"></span> </td> <td>8 </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2fL}{v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>f</mi> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2fL}{v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7099a8000e545c5e75448c622abc907b9efe7b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.86ex; height:5.343ex;" alt="{\displaystyle {\frac {2fL}{v}}}"></span> </td> <td>10 </td></tr> <tr> <td>Twin's calculation as to how much the <i><b>other</b></i> twin should have aged </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T'={\frac {2L}{\gamma v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> </mrow> <mrow> <mi>γ<!-- γ --></mi> <mi>v</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T'={\frac {2L}{\gamma v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/990d9233674c0064ae9c6f122084c4c0487b50b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.085ex; height:5.676ex;" alt="{\displaystyle T'={\frac {2L}{\gamma v}}}"></span> </td> <td><span class="nowrap">8 yr</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\frac {2L}{v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>L</mi> </mrow> <mi>v</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\frac {2L}{v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faa027081ef36e4c3ba0519ce0e8e4a818c51e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.316ex; height:5.176ex;" alt="{\displaystyle T={\frac {2L}{v}}}"></span> </td> <td><span class="nowrap">10 yr</span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Length_contraction">Length contraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=19" title="Edit section: Length contraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Lorentz_contraction" class="mw-redirect" title="Lorentz contraction">Lorentz contraction</a></div> <p>The dimensions (e.g., length) of an object as measured by one observer may be smaller than the results of measurements of the same object made by another observer (e.g., the <a href="/wiki/Ladder_paradox" title="Ladder paradox">ladder paradox</a> involves a long ladder traveling near the speed of light and being contained within a smaller garage). </p><p>Similarly, suppose a <a href="/wiki/Measuring_rod" title="Measuring rod">measuring rod</a> is at rest and aligned along the <i>x</i>-axis in the unprimed system <i>S</i>. In this system, the length of this rod is written as Δ<i>x</i>. To measure the length of this rod in the system <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>, in which the rod is moving, the distances <i>x<span class="nowrap" style="padding-left:0.05em;">′</span></i> to the end points of the rod must be measured simultaneously in that system <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>. In other words, the measurement is characterized by <span class="nowrap">Δ<i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> = 0</span>, which can be combined with <b><a href="#math_4">Equation 4</a></b> to find the relation between the lengths Δ<i>x</i> and Δ<i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x'={\frac {\Delta x}{\gamma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> <mi>γ<!-- γ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x'={\frac {\Delta x}{\gamma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8187d1893fb6b7efb0d681c4b47531b4707341e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.15ex; height:5.843ex;" alt="{\displaystyle \Delta x'={\frac {\Delta x}{\gamma }}}"></span><span style="padding-left:4;"> </span><span style="padding-left:4;"> </span>for events satisfying<span style="padding-left:4;"> </span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'=0\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'=0\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0826d5835ba3c1661c6d5d607755e074ab01d85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.949ex; height:2.509ex;" alt="{\displaystyle \Delta t'=0\ .}"></span></dd></dl> <p>This shows that the length (Δ<i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>) of the rod as measured in the frame in which it is moving (<i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>), is <i>shorter</i> than its length (Δ<i>x</i>) in its own rest frame (<i>S</i>). </p><p>Time dilation and length contraction are not merely appearances. Time dilation is explicitly related to our way of measuring <i>time intervals</i> between events that occur at the same place in a given coordinate system (called "co-local" events). These time intervals (which can be, and are, actually measured experimentally by relevant observers) are <i>different</i> in another coordinate system moving with respect to the first, unless the events, in addition to being co-local, are also simultaneous. Similarly, length contraction relates to our measured distances between separated but simultaneous events in a given coordinate system of choice. If these events are not co-local, but are separated by distance (space), they will <i>not</i> occur at the same <i>spatial distance</i> from each other when seen from another moving coordinate system. </p> <div class="mw-heading mw-heading3"><h3 id="Lorentz_transformation_of_velocities">Lorentz transformation of velocities</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=20" title="Edit section: Lorentz transformation of velocities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Velocity-addition_formula" title="Velocity-addition formula">Velocity-addition formula</a></div> <p>Consider two frames <i>S</i> and <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> in standard configuration. A particle in <i>S</i> moves in the x direction with velocity vector <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"></span>⁠</span>. What is its velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u'} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">u</mi> <mo>′</mo> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u'} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1517e7ccf782a3519acbc06b4b883a840b4d0459" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.17ex; height:2.509ex;" alt="{\displaystyle \mathbf {u'} }"></span> in frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>? </p><p>We can write </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {|u|} =u=dx/dt\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="bold" stretchy="false">|</mo> </mrow> <mi mathvariant="bold">u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="bold" stretchy="false">|</mo> </mrow> </mrow> <mo>=</mo> <mi>u</mi> <mo>=</mo> <mi>d</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {|u|} =u=dx/dt\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c72dd41de286498dfe7b26ec75da9d077e75e42" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.293ex; height:2.843ex;" alt="{\displaystyle \mathbf {|u|} =u=dx/dt\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_7" class="reference nourlexpansion" style="font-weight:bold;">7</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {|u'|} =u'=dx'/dt'\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="bold" stretchy="false">|</mo> </mrow> <msup> <mi mathvariant="bold">u</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="bold" stretchy="false">|</mo> </mrow> </mrow> <mo>=</mo> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {|u'|} =u'=dx'/dt'\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6165b6151c53a183922284310dce6f32dcfb65cc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.032ex; height:3.009ex;" alt="{\displaystyle \mathbf {|u'|} =u'=dx'/dt'\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_8" class="reference nourlexpansion" style="font-weight:bold;">8</span>)</b></td></tr></tbody></table> <p>Substituting expressions for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9ddc78263ecbad98bf1f9b504531d0de37d614e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.23ex; height:2.509ex;" alt="{\displaystyle dx'}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dt'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dt'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ffce1e90f72ed15a6afcd4be6fe28ac13fdc88e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.74ex; height:2.509ex;" alt="{\displaystyle dt'}"></span> from <b><a href="#math_5">Equation 5</a></b> into <b><a href="#math_8">Equation 8</a></b>, followed by straightforward mathematical manipulations and back-substitution from <b><a href="#math_7">Equation 7</a></b> yields the Lorentz transformation of the speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> to <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bee645f272e64333868e2baa275419eca4ee0718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle u'}"></span>⁠</span>: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'={\frac {dx'}{dt'}}={\frac {\gamma (dx-v\,dt)}{\gamma \left(dt-{\dfrac {v\,dx}{c^{2}}}\right)}}={\frac {{\dfrac {dx}{dt}}-v}{1-{\dfrac {v}{c^{2}}}\,{\dfrac {dx}{dt}}}}={\frac {u-v}{1-{\dfrac {uv}{c^{2}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <mi>t</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>v</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>−<!-- − --></mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mstyle> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>u</mi> <mo>−<!-- − --></mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>u</mi> <mi>v</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u'={\frac {dx'}{dt'}}={\frac {\gamma (dx-v\,dt)}{\gamma \left(dt-{\dfrac {v\,dx}{c^{2}}}\right)}}={\frac {{\dfrac {dx}{dt}}-v}{1-{\dfrac {v}{c^{2}}}\,{\dfrac {dx}{dt}}}}={\frac {u-v}{1-{\dfrac {uv}{c^{2}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27bf35c6151c71c5eb19029ce3262c5f28da70c5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:54.458ex; height:12.176ex;" alt="{\displaystyle u'={\frac {dx'}{dt'}}={\frac {\gamma (dx-v\,dt)}{\gamma \left(dt-{\dfrac {v\,dx}{c^{2}}}\right)}}={\frac {{\dfrac {dx}{dt}}-v}{1-{\dfrac {v}{c^{2}}}\,{\dfrac {dx}{dt}}}}={\frac {u-v}{1-{\dfrac {uv}{c^{2}}}}}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_9" class="reference nourlexpansion" style="font-weight:bold;">9</span>)</b></td></tr></tbody></table> <p>The inverse relation is obtained by interchanging the primed and unprimed symbols and replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> with <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05d12e513906523af26c5372b10aee063aa11926" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.936ex; height:2.176ex;" alt="{\displaystyle -v}"></span>⁠</span>. </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u={\frac {u'+v}{1+u'v/c^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>u</mi> <mo>′</mo> </msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u={\frac {u'+v}{1+u'v/c^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bd11fda494417d40d6492961920b6ace1ab0f94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.28ex; height:6.343ex;" alt="{\displaystyle u={\frac {u'+v}{1+u'v/c^{2}}}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_10" class="reference nourlexpansion" style="font-weight:bold;">10</span>)</b></td></tr></tbody></table> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"></span> not aligned along the x-axis, we write:<sup id="cite_ref-Rindler0_18-1" class="reference"><a href="#cite_note-Rindler0-18"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 47–49">: 47–49 </span></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} =(u_{1},\ u_{2},\ u_{3})=(dx/dt,\ dy/dt,\ dz/dt)\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>,</mo> <mtext> </mtext> <mi>d</mi> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>,</mo> <mtext> </mtext> <mi>d</mi> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} =(u_{1},\ u_{2},\ u_{3})=(dx/dt,\ dy/dt,\ dz/dt)\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f893791837973ee622cc0c8a97a3fa9b812bb7e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.013ex; height:2.843ex;" alt="{\displaystyle \mathbf {u} =(u_{1},\ u_{2},\ u_{3})=(dx/dt,\ dy/dt,\ dz/dt)\ .}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_11" class="reference nourlexpansion" style="font-weight:bold;">11</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u'} =(u_{1}',\ u_{2}',\ u_{3}')=(dx'/dt',\ dy'/dt',\ dz'/dt')\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">u</mi> <mo>′</mo> </msup> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <mtext> </mtext> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>,</mo> <mtext> </mtext> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>,</mo> <mtext> </mtext> <mi>d</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>,</mo> <mtext> </mtext> <mi>d</mi> <msup> <mi>z</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u'} =(u_{1}',\ u_{2}',\ u_{3}')=(dx'/dt',\ dy'/dt',\ dz'/dt')\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6395f7b466f525c52a6829ce22deaa606ebfded6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:47.813ex; height:3.176ex;" alt="{\displaystyle \mathbf {u'} =(u_{1}',\ u_{2}',\ u_{3}')=(dx'/dt',\ dy'/dt',\ dz'/dt')\ .}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_12" class="reference nourlexpansion" style="font-weight:bold;">12</span>)</b></td></tr></tbody></table> <p>The forward and inverse transformations for this case are: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}'={\frac {u_{1}-v}{1-u_{1}v/c^{2}}}\ ,\qquad u_{2}'={\frac {u_{2}}{\gamma \left(1-u_{1}v/c^{2}\right)}}\ ,\qquad u_{3}'={\frac {u_{3}}{\gamma \left(1-u_{1}v/c^{2}\right)}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> <mspace width="2em" /> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> <mspace width="2em" /> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}'={\frac {u_{1}-v}{1-u_{1}v/c^{2}}}\ ,\qquad u_{2}'={\frac {u_{2}}{\gamma \left(1-u_{1}v/c^{2}\right)}}\ ,\qquad u_{3}'={\frac {u_{3}}{\gamma \left(1-u_{1}v/c^{2}\right)}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89f97f9f38602360f5cf95cd61315e79dc36529e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:71.834ex; height:5.843ex;" alt="{\displaystyle u_{1}'={\frac {u_{1}-v}{1-u_{1}v/c^{2}}}\ ,\qquad u_{2}'={\frac {u_{2}}{\gamma \left(1-u_{1}v/c^{2}\right)}}\ ,\qquad u_{3}'={\frac {u_{3}}{\gamma \left(1-u_{1}v/c^{2}\right)}}\ .}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_13" class="reference nourlexpansion" style="font-weight:bold;">13</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}={\frac {u_{1}'+v}{1+u_{1}'v/c^{2}}}\ ,\qquad u_{2}={\frac {u_{2}'}{\gamma \left(1+u_{1}'v/c^{2}\right)}}\ ,\qquad u_{3}={\frac {u_{3}'}{\gamma \left(1+u_{1}'v/c^{2}\right)}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>+</mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> <mspace width="2em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> <mrow> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>,</mo> <mspace width="2em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <mrow> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}={\frac {u_{1}'+v}{1+u_{1}'v/c^{2}}}\ ,\qquad u_{2}={\frac {u_{2}'}{\gamma \left(1+u_{1}'v/c^{2}\right)}}\ ,\qquad u_{3}={\frac {u_{3}'}{\gamma \left(1+u_{1}'v/c^{2}\right)}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2dbcd650693f03df7d21c552f94f2d4b7f16fef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:71.834ex; height:6.676ex;" alt="{\displaystyle u_{1}={\frac {u_{1}'+v}{1+u_{1}'v/c^{2}}}\ ,\qquad u_{2}={\frac {u_{2}'}{\gamma \left(1+u_{1}'v/c^{2}\right)}}\ ,\qquad u_{3}={\frac {u_{3}'}{\gamma \left(1+u_{1}'v/c^{2}\right)}}\ .}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_14" class="reference nourlexpansion" style="font-weight:bold;">14</span>)</b></td></tr></tbody></table> <p><b><a href="#math_10">Equation 10</a></b> and <b><a href="#math_14">Equation 14</a></b> can be interpreted as giving the <i>resultant</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"></span> of the two velocities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u'} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">u</mi> <mo>′</mo> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u'} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1517e7ccf782a3519acbc06b4b883a840b4d0459" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.17ex; height:2.509ex;" alt="{\displaystyle \mathbf {u'} }"></span>⁠</span>, and they replace the formula <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u=u'+v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> <mo mathvariant="bold">=</mo> <msup> <mi mathvariant="bold">u</mi> <mo>′</mo> </msup> <mo mathvariant="bold">+</mo> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u=u'+v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9160bf66391ca30a404c05c7cd565fd2f4151fbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.544ex; height:2.676ex;" alt="{\displaystyle \mathbf {u=u'+v} }"></span>⁠</span>. which is valid in Galilean relativity. Interpreted in such a fashion, they are commonly referred to as the <i>relativistic velocity addition (or composition) formulas</i>, valid for the three axes of <i>S</i> and <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> being aligned with each other (although not necessarily in standard configuration).<sup id="cite_ref-Rindler0_18-2" class="reference"><a href="#cite_note-Rindler0-18"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 47–49">: 47–49 </span></sup> </p><p>We note the following points: </p> <ul><li>If an object (e.g., a <a href="/wiki/Photon" title="Photon">photon</a>) were moving at the speed of light in one frame <span class="nowrap">(i.e., <i>u</i> = ±<i>c</i></span> <span class="nowrap">or <i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span> = ±<i>c</i>)</span>, then it would also be moving at the speed of light in any other frame, moving at <span class="nowrap">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>v</i></span>| < <i>c</i></span>.</li> <li>The resultant speed of two velocities with magnitude less than <i>c</i> is always a velocity with magnitude less than <i>c</i>.</li> <li>If both |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>u</i></span>| and |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>v</i></span>| (and then also |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span></span>| and |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>v</i><span class="nowrap" style="padding-left:0.1em;">′</span></span>|) are small with respect to the speed of light (that is, e.g., <span class="nowrap">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num"><i>u</i></span><span class="sr-only">/</span><span class="den"><i>c</i></span></span>⁠</span></span>| ≪ <span class="texhtml">1</span>)</span>, then the intuitive Galilean transformations are recovered from the transformation equations for special relativity</li> <li>Attaching a frame to a photon (<i>riding a light beam</i> like Einstein considers) requires special treatment of the transformations.</li></ul> <p>There is nothing special about the <i>x</i> direction in the standard configuration. The above <a href="/wiki/Formalism_(mathematics)" class="mw-redirect" title="Formalism (mathematics)">formalism</a> applies to any direction; and three orthogonal directions allow dealing with all directions in space by decomposing the velocity vectors to their components in these directions. See <i><a href="/wiki/Velocity-addition_formula" title="Velocity-addition formula">Velocity-addition formula</a></i> for details. </p> <div class="mw-heading mw-heading3"><h3 id="Thomas_rotation">Thomas rotation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=21" title="Edit section: Thomas rotation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Thomas_rotation" class="mw-redirect" title="Thomas rotation">Thomas rotation</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:224px;max-width:224px"><div class="trow"><div class="tsingle" style="width:222px;max-width:222px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Thomas-Wigner_Rotation_1.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Thomas-Wigner_Rotation_1.svg/220px-Thomas-Wigner_Rotation_1.svg.png" decoding="async" width="220" height="97" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Thomas-Wigner_Rotation_1.svg/330px-Thomas-Wigner_Rotation_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Thomas-Wigner_Rotation_1.svg/440px-Thomas-Wigner_Rotation_1.svg.png 2x" data-file-width="485" data-file-height="213" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:222px;max-width:222px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Thomas-Wigner_Rotation_2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Thomas-Wigner_Rotation_2.svg/220px-Thomas-Wigner_Rotation_2.svg.png" decoding="async" width="220" height="97" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Thomas-Wigner_Rotation_2.svg/330px-Thomas-Wigner_Rotation_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Thomas-Wigner_Rotation_2.svg/440px-Thomas-Wigner_Rotation_2.svg.png 2x" data-file-width="485" data-file-height="213" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Figure 4-5. Thomas–Wigner rotation</div></div></div></div> <p>The composition of two non-collinear Lorentz boosts (i.e., two non-collinear Lorentz transformations, neither of which involve rotation) results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. </p><p>Thomas rotation results from the relativity of simultaneity. In Fig. 4-5a, a rod of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> in its rest frame (i.e., having a <a href="/wiki/Proper_length" title="Proper length">proper length</a> of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>⁠</span>) rises vertically along the y-axis in the ground frame. </p><p>In Fig. 4-5b, the same rod is observed from the frame of a rocket moving at speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> to the right. If we imagine two clocks situated at the left and right ends of the rod that are synchronized <i>in the frame of the rod</i>, relativity of simultaneity causes the observer in the rocket frame to observe (not <a href="#Measurement_versus_visual_appearance"><i>see</i></a>) the clock at the right end of the rod as being advanced in time by <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Lv/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Lv/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22d977d7a03406747cf1d73b4fc0326f5f5a7fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.934ex; height:3.176ex;" alt="{\displaystyle Lv/c^{2}}"></span>⁠</span>, and the rod is correspondingly observed as tilted.<sup id="cite_ref-Taylor1966_51-1" class="reference"><a href="#cite_note-Taylor1966-51"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 98–99">: 98–99 </span></sup> </p><p>Unlike second-order relativistic effects such as length contraction or time dilation, this effect becomes quite significant even at fairly low velocities. For example, this can be seen in the <a href="/wiki/Spin%E2%80%93orbit_interaction" title="Spin–orbit interaction">spin of moving particles</a>, where <a href="/wiki/Thomas_precession" title="Thomas precession">Thomas precession</a> is a relativistic correction that applies to the <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> of an elementary particle or the rotation of a macroscopic <a href="/wiki/Gyroscope" title="Gyroscope">gyroscope</a>, relating the <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a> of the spin of a particle following a <a href="/wiki/Curvilinear" class="mw-redirect" title="Curvilinear">curvilinear</a> orbit to the angular velocity of the orbital motion.<sup id="cite_ref-Taylor1966_51-2" class="reference"><a href="#cite_note-Taylor1966-51"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 169–174">: 169–174 </span></sup> </p><p>Thomas rotation provides the resolution to the well-known "meter stick and hole paradox".<sup id="cite_ref-Shaw_66-0" class="reference"><a href="#cite_note-Shaw-66"><span class="cite-bracket">[</span>p 15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Taylor1966_51-3" class="reference"><a href="#cite_note-Taylor1966-51"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 98–99">: 98–99 </span></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Causality_and_prohibition_of_motion_faster_than_light">Causality and prohibition of motion faster than light</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=22" title="Edit section: Causality and prohibition of motion faster than light"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Causality_(physics)" title="Causality (physics)">Causality (physics)</a> and <a href="/wiki/Tachyonic_antitelephone" title="Tachyonic antitelephone">Tachyonic antitelephone</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Simple_light_cone_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Simple_light_cone_diagram.svg/220px-Simple_light_cone_diagram.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Simple_light_cone_diagram.svg/330px-Simple_light_cone_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/Simple_light_cone_diagram.svg/440px-Simple_light_cone_diagram.svg.png 2x" data-file-width="306" data-file-height="306" /></a><figcaption>Figure 4–6. <a href="/wiki/Light_cone" title="Light cone">Light cone</a></figcaption></figure> <p>In Fig. 4-6, the time interval between the events A (the "cause") and B (the "effect") is 'timelike'; that is, there is a frame of reference in which events A and B occur at the <i>same location in space</i>, separated only by occurring at different times. If A precedes B in that frame, then A precedes B in all frames accessible by a Lorentz transformation. It is possible for matter (or information) to travel (below light speed) from the location of A, starting at the time of A, to the location of B, arriving at the time of B, so there can be a causal relationship (with A the cause and B the effect). </p><p>The interval AC in the diagram is 'spacelike'; that is, there is a frame of reference in which events A and C occur simultaneously, separated only in space. There are also frames in which A precedes C (as shown) and frames in which C precedes A. But no frames are accessible by a Lorentz transformation, in which events A and C occur at the same location. If it were possible for a cause-and-effect relationship to exist between events A and C, paradoxes of causality would result. </p><p>For example, if signals could be sent faster than light, then signals could be sent into the sender's past (observer B in the diagrams).<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>p 16<span class="cite-bracket">]</span></a></sup> A variety of causal paradoxes could then be constructed. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:331px;max-width:331px"><div class="trow"><div class="tsingle" style="margin-right:4px;width:162px;max-width:162px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Causality_violation_1.svg" class="mw-file-description"><img alt="Causality violation: Beginning of scenario resulting from use of a fictitious instantaneous communicator" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Causality_violation_1.svg/160px-Causality_violation_1.svg.png" decoding="async" width="160" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Causality_violation_1.svg/240px-Causality_violation_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Causality_violation_1.svg/320px-Causality_violation_1.svg.png 2x" data-file-width="378" data-file-height="390" /></a></span></div></div><div class="tsingle" style="width:162px;max-width:162px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Causality_violation_2.svg" class="mw-file-description"><img alt="Causality violation: B receives the message before having sent it." src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Causality_violation_2.svg/160px-Causality_violation_2.svg.png" decoding="async" width="160" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Causality_violation_2.svg/240px-Causality_violation_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Causality_violation_2.svg/320px-Causality_violation_2.svg.png 2x" data-file-width="378" data-file-height="390" /></a></span></div></div></div><div class="trow" style="display:flow-root"><div class="thumbcaption" style="text-align:center">Figure 4-7. Causality violation by the use of fictitious<br />"instantaneous communicators"</div></div></div></div> <p>Consider the spacetime diagrams in Fig. 4-7. A and B stand alongside a railroad track, when a high-speed train passes by, with C riding in the last car of the train and D riding in the leading car. The <a href="/wiki/World_lines" class="mw-redirect" title="World lines">world lines</a> of A and B are vertical (<i>ct</i>), distinguishing the stationary position of these observers on the ground, while the world lines of C and D are tilted forwards (<i>ct<span class="nowrap" style="padding-left:0.05em;">′</span></i>), reflecting the rapid motion of the observers C and D stationary in their train, as observed from the ground. </p> <ol><li>Fig. 4-7a. The event of "B passing a message to D", as the leading car passes by, is at the origin of D's frame. D sends the message along the train to C in the rear car, using a fictitious "instantaneous communicator". The worldline of this message is the fat red arrow along the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48546807c94ca901131ea91fb0b2e64646d2d8d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.823ex; height:2.676ex;" alt="{\displaystyle -x'}"></span> axis, which is a line of simultaneity in the primed frames of C and D. In the (unprimed) ground frame the signal arrives <i>earlier</i> than it was sent.</li> <li>Fig. 4-7b. The event of "C passing the message to A", who is standing by the railroad tracks, is at the origin of their frames. Now A sends the message along the tracks to B via an "instantaneous communicator". The worldline of this message is the blue fat arrow, along the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2112b13188089a9983fb5b92fd192b21772d0dcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.138ex; height:2.176ex;" alt="{\displaystyle +x}"></span> axis, which is a line of simultaneity for the frames of A and B. As seen from the spacetime diagram, B will receive the message before having sent it out, a violation of causality.<sup id="cite_ref-Takeuchi_69-0" class="reference"><a href="#cite_note-Takeuchi-69"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup></li></ol> <p>It is not necessary for signals to be instantaneous to violate causality. Even if the signal from D to C were slightly shallower than the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x'}"></span> axis (and the signal from A to B slightly steeper than the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> axis), it would still be possible for B to receive his message before he had sent it. By increasing the speed of the train to near light speeds, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23969b00bf6d4ac97e6b4058b9af2eb87ee3bf96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.531ex; height:2.509ex;" alt="{\displaystyle ct'}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac74959896052e160a5953102e4bc3850fe93b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.014ex; height:2.509ex;" alt="{\displaystyle x'}"></span> axes can be squeezed very close to the dashed line representing the speed of light. With this modified setup, it can be demonstrated that even signals only <i>slightly</i> faster than the speed of light will result in causality violation.<sup id="cite_ref-Morin2017_70-0" class="reference"><a href="#cite_note-Morin2017-70"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>Therefore, <b>if</b> <a href="/wiki/Causality" title="Causality">causality</a> is to be preserved, one of the consequences of special relativity is that no information signal or material object can travel <a href="/wiki/Faster_than_light" class="mw-redirect" title="Faster than light">faster than light</a> in vacuum. </p><p>This is not to say that <i>all</i> faster than light speeds are impossible. Various trivial situations can be described where some "things" (not actual matter or energy) move faster than light.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> For example, the location where the beam of a search light hits the bottom of a cloud can move faster than light when the search light is turned rapidly (although this does not violate causality or any other relativistic phenomenon).<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Optical_effects">Optical effects</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=23" title="Edit section: Optical effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Dragging_effects">Dragging effects</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=24" title="Edit section: Dragging effects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Fizeau_experiment" title="Fizeau experiment">Fizeau experiment</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Fizeau_experiment_schematic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Fizeau_experiment_schematic.svg/300px-Fizeau_experiment_schematic.svg.png" decoding="async" width="300" height="163" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Fizeau_experiment_schematic.svg/450px-Fizeau_experiment_schematic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Fizeau_experiment_schematic.svg/600px-Fizeau_experiment_schematic.svg.png 2x" data-file-width="815" data-file-height="443" /></a><figcaption>Figure 5–1. Highly simplified diagram of Fizeau's 1851 experiment.</figcaption></figure> <p>In 1850, <a href="/wiki/Hippolyte_Fizeau" title="Hippolyte Fizeau">Hippolyte Fizeau</a> and <a href="/wiki/L%C3%A9on_Foucault" title="Léon Foucault">Léon Foucault</a> independently established that light travels more slowly in water than in air, thus validating a prediction of <a href="/wiki/Augustin-Jean_Fresnel" title="Augustin-Jean Fresnel">Fresnel's</a> <a href="/wiki/Wave_theory_of_light" class="mw-redirect" title="Wave theory of light">wave theory of light</a> and invalidating the corresponding prediction of Newton's <a href="/wiki/Corpuscular_theory_of_light" title="Corpuscular theory of light">corpuscular theory</a>.<sup id="cite_ref-Lauginie2004_74-0" class="reference"><a href="#cite_note-Lauginie2004-74"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> The speed of light was measured in still water. What would be the speed of light in flowing water? </p><p>In 1851, Fizeau conducted an experiment to answer this question, a simplified representation of which is illustrated in Fig. 5-1. A beam of light is divided by a beam splitter, and the split beams are passed in opposite directions through a tube of flowing water. They are recombined to form interference fringes, indicating a difference in optical path length, that an observer can view. The experiment demonstrated that dragging of the light by the flowing water caused a displacement of the fringes, showing that the motion of the water had affected the speed of the light. </p><p>According to the theories prevailing at the time, light traveling through a moving medium would be a simple sum of its speed <i>through</i> the medium plus the speed <i>of</i> the medium. Contrary to expectation, Fizeau found that although light appeared to be dragged by the water, the magnitude of the dragging was much lower than expected. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'=c/n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u'=c/n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58b3d46bcc8e549a628d05451b79b566b35b386a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.677ex; height:3.009ex;" alt="{\displaystyle u'=c/n}"></span> is the speed of light in still water, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> is the speed of the water, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{\pm }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>±<!-- ± --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{\pm }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4b35ae55d98b0339fccf145688295eef24812dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.84ex; height:2.009ex;" alt="{\displaystyle u_{\pm }}"></span> is the water-borne speed of light in the lab frame with the flow of water adding to or subtracting from the speed of light, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{\pm }={\frac {c}{n}}\pm v\left(1-{\frac {1}{n^{2}}}\right)\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>±<!-- ± --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>n</mi> </mfrac> </mrow> <mo>±<!-- ± --></mo> <mi>v</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{\pm }={\frac {c}{n}}\pm v\left(1-{\frac {1}{n^{2}}}\right)\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600c359886ff9335f50b778121b56c2c1577af9f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.849ex; height:6.176ex;" alt="{\displaystyle u_{\pm }={\frac {c}{n}}\pm v\left(1-{\frac {1}{n^{2}}}\right)\ .}"></span> </p><p>Fizeau's results, although consistent with Fresnel's earlier hypothesis of <a href="/wiki/Aether_drag_hypothesis" title="Aether drag hypothesis">partial aether dragging</a>, were extremely disconcerting to physicists of the time. Among other things, the presence of an index of refraction term meant that, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> depends on wavelength, <i>the aether must be capable of sustaining different motions at the same time</i>.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>note 8<span class="cite-bracket">]</span></a></sup> A variety of theoretical explanations were proposed to explain <a href="/wiki/Fizeau_experiment#Fresnel_drag_coefficient" title="Fizeau experiment">Fresnel's dragging coefficient</a>, that were completely at odds with each other. Even before the Michelson–Morley experiment, Fizeau's experimental results were among a number of observations that created a critical situation in explaining the optics of moving bodies.<sup id="cite_ref-Stachel2005_78-0" class="reference"><a href="#cite_note-Stachel2005-78"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p>From the point of view of special relativity, Fizeau's result is nothing but an approximation to <b><a href="#math_10">Equation 10</a></b>, the relativistic formula for composition of velocities.<sup id="cite_ref-Rindler1977_50-1" class="reference"><a href="#cite_note-Rindler1977-50"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{\pm }={\frac {u'\pm v}{1\pm u'v/c^{2}}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>±<!-- ± --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>±<!-- ± --></mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>±<!-- ± --></mo> <msup> <mi>u</mi> <mo>′</mo> </msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{\pm }={\frac {u'\pm v}{1\pm u'v/c^{2}}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/223e20e02edd4e5f50666b06d1845b5309ca45aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.597ex; height:6.343ex;" alt="{\displaystyle u_{\pm }={\frac {u'\pm v}{1\pm u'v/c^{2}}}=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {c/n\pm v}{1\pm v/cn}}\approx }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>±<!-- ± --></mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>±<!-- ± --></mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {c/n\pm v}{1\pm v/cn}}\approx }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1685d33df0cb48b28b8e4093e0a55cbd03314069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.984ex; height:6.509ex;" alt="{\displaystyle {\frac {c/n\pm v}{1\pm v/cn}}\approx }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\left({\frac {1}{n}}\pm {\frac {v}{c}}\right)\left(1\mp {\frac {v}{cn}}\right)\approx }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>±<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>∓<!-- ∓ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mrow> <mi>c</mi> <mi>n</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>≈<!-- ≈ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\left({\frac {1}{n}}\pm {\frac {v}{c}}\right)\left(1\mp {\frac {v}{cn}}\right)\approx }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c6891709b6af36fa9ec88a9a4564eaedbbf7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.707ex; height:6.176ex;" alt="{\displaystyle c\left({\frac {1}{n}}\pm {\frac {v}{c}}\right)\left(1\mp {\frac {v}{cn}}\right)\approx }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {c}{n}}\pm v\left(1-{\frac {1}{n^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>n</mi> </mfrac> </mrow> <mo>±<!-- ± --></mo> <mi>v</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {c}{n}}\pm v\left(1-{\frac {1}{n^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/489bb82f15c4e859f93249175b315300df290b9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.295ex; height:6.176ex;" alt="{\displaystyle {\frac {c}{n}}\pm v\left(1-{\frac {1}{n^{2}}}\right)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Relativistic_aberration_of_light">Relativistic aberration of light</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=25" title="Edit section: Relativistic aberration of light"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Aberration_of_light" class="mw-redirect" title="Aberration of light">Aberration of light</a> and <a href="/wiki/Light-time_correction" title="Light-time correction">Light-time correction</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Stellar_aberration_illustration.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Stellar_aberration_illustration.svg/220px-Stellar_aberration_illustration.svg.png" decoding="async" width="220" height="246" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Stellar_aberration_illustration.svg/330px-Stellar_aberration_illustration.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/Stellar_aberration_illustration.svg/440px-Stellar_aberration_illustration.svg.png 2x" data-file-width="301" data-file-height="337" /></a><figcaption>Figure 5–2. Illustration of stellar aberration</figcaption></figure> <p>Because of the finite speed of light, if the relative motions of a source and receiver include a transverse component, then the direction from which light arrives at the receiver will be displaced from the geometric position in space of the source relative to the receiver. The classical calculation of the displacement takes two forms and makes different predictions depending on whether the receiver, the source, or both are in motion with respect to the medium. (1) If the receiver is in motion, the displacement would be the consequence of the <a href="/wiki/Aberration_of_light" class="mw-redirect" title="Aberration of light">aberration of light</a>. The incident angle of the beam relative to the receiver would be calculable from the vector sum of the receiver's motions and the velocity of the incident light.<sup id="cite_ref-Mould_79-0" class="reference"><a href="#cite_note-Mould-79"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> (2) If the source is in motion, the displacement would be the consequence of <a href="/wiki/Light-time_correction" title="Light-time correction">light-time correction</a>. The displacement of the apparent position of the source from its geometric position would be the result of the source's motion during the time that its light takes to reach the receiver.<sup id="cite_ref-Seidelmann_80-0" class="reference"><a href="#cite_note-Seidelmann-80"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p>The classical explanation failed experimental test. Since the aberration angle depends on the relationship between the velocity of the receiver and the speed of the incident light, passage of the incident light through a refractive medium should change the aberration angle. In 1810, <a href="/wiki/Fran%C3%A7ois_Arago" title="François Arago">Arago</a> used this expected phenomenon in a failed attempt to measure the speed of light,<sup id="cite_ref-Ferraro_81-0" class="reference"><a href="#cite_note-Ferraro-81"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> and in 1870, <a href="/wiki/George_Airy" class="mw-redirect" title="George Airy">George Airy</a> tested the hypothesis using a water-filled telescope, finding that, against expectation, the measured aberration was identical to the aberration measured with an air-filled telescope.<sup id="cite_ref-Dolan_82-0" class="reference"><a href="#cite_note-Dolan-82"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> A "cumbrous" attempt to explain these results used the hypothesis of partial aether-drag,<sup id="cite_ref-Hollis_83-0" class="reference"><a href="#cite_note-Hollis-83"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> but was incompatible with the results of the Michelson–Morley experiment, which apparently demanded <i>complete</i> aether-drag.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> </p><p>Assuming inertial frames, the relativistic expression for the aberration of light is applicable to both the receiver moving and source moving cases. A variety of trigonometrically equivalent formulas have been published. Expressed in terms of the variables in Fig. 5-2, these include<sup id="cite_ref-Rindler1977_50-2" class="reference"><a href="#cite_note-Rindler1977-50"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 57–60">: 57–60 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta '={\frac {\cos \theta +v/c}{1+(v/c)\cos \theta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <msup> <mi>θ<!-- θ --></mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta '={\frac {\cos \theta +v/c}{1+(v/c)\cos \theta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/841d5e8247bcff5b34ec7fe4199135c5c803cdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.293ex; height:6.509ex;" alt="{\displaystyle \cos \theta '={\frac {\cos \theta +v/c}{1+(v/c)\cos \theta }}}"></span>   <b>OR</b>   <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \theta '={\frac {\sin \theta }{\gamma [1+(v/c)\cos \theta ]}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <msup> <mi>θ<!-- θ --></mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mrow> <mrow> <mi>γ<!-- γ --></mi> <mo stretchy="false">[</mo> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \theta '={\frac {\sin \theta }{\gamma [1+(v/c)\cos \theta ]}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04b1d959a5aa9840f249611011e804cba5079e53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.593ex; height:6.176ex;" alt="{\displaystyle \sin \theta '={\frac {\sin \theta }{\gamma [1+(v/c)\cos \theta ]}}}"></span>   <b>OR</b>   <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan {\frac {\theta '}{2}}=\left({\frac {c-v}{c+v}}\right)^{1/2}\tan {\frac {\theta }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>θ<!-- θ --></mi> <mo>′</mo> </msup> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mo>−<!-- − --></mo> <mi>v</mi> </mrow> <mrow> <mi>c</mi> <mo>+</mo> <mi>v</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>θ<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan {\frac {\theta '}{2}}=\left({\frac {c-v}{c+v}}\right)^{1/2}\tan {\frac {\theta }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/356f6b461b30d528c5a79ad0ab3d0cdc9329043e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.519ex; height:6.676ex;" alt="{\displaystyle \tan {\frac {\theta '}{2}}=\left({\frac {c-v}{c+v}}\right)^{1/2}\tan {\frac {\theta }{2}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Relativistic_Doppler_effect">Relativistic Doppler effect</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=26" title="Edit section: Relativistic Doppler effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">Relativistic Doppler effect</a></div> <div class="mw-heading mw-heading4"><h4 id="Relativistic_longitudinal_Doppler_effect">Relativistic longitudinal Doppler effect</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=27" title="Edit section: Relativistic longitudinal Doppler effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The classical Doppler effect depends on whether the source, receiver, or both are in motion with respect to the medium. The relativistic Doppler effect is independent of any medium. Nevertheless, relativistic Doppler shift for the longitudinal case, with source and receiver moving directly towards or away from each other, can be derived as if it were the classical phenomenon, but modified by the addition of a <a href="/wiki/Time_dilation" title="Time dilation">time dilation</a> term, and that is the treatment described here.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Gill_86-0" class="reference"><a href="#cite_note-Gill-86"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>Assume the receiver and the source are moving <i>away</i> from each other with a relative speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> as measured by an observer on the receiver or the source (The sign convention adopted here is that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> is <i>negative</i> if the receiver and the source are moving <i>towards</i> each other). Assume that the source is stationary in the medium. Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{r}=\left(1-{\frac {v}{c_{s}}}\right)f_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{r}=\left(1-{\frac {v}{c_{s}}}\right)f_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59644b2d90379fa4e587f199754c62a1e31ba50b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.011ex; height:6.176ex;" alt="{\displaystyle f_{r}=\left(1-{\frac {v}{c_{s}}}\right)f_{s}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75b83e050da28fa0d83e2aa786963805742ab756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.01ex; height:2.009ex;" alt="{\displaystyle c_{s}}"></span> is the speed of sound. </p><p>For light, and with the receiver moving at relativistic speeds, clocks on the receiver are <a href="/wiki/Time_dilation" title="Time dilation">time dilated</a> relative to clocks at the source. The receiver will measure the received frequency to be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{r}=\gamma \left(1-\beta \right)f_{s}={\sqrt {\frac {1-\beta }{1+\beta }}}\,f_{s}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mrow> <mo>)</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> </mrow> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{r}=\gamma \left(1-\beta \right)f_{s}={\sqrt {\frac {1-\beta }{1+\beta }}}\,f_{s}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6a61ea004a5731152e17e3b2fee73b3da52c289" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.304ex; height:7.509ex;" alt="{\displaystyle f_{r}=\gamma \left(1-\beta \right)f_{s}={\sqrt {\frac {1-\beta }{1+\beta }}}\,f_{s}.}"></span> where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =v/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>=</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =v/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c09197ac61cf6c55baab7eaaf25cbde57010efd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.727ex; height:2.843ex;" alt="{\displaystyle \beta =v/c}"></span>  and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fb91924eaa6e5a593ba98cc7e2dfda04f764f07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:13.915ex; height:6.509ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}}"></span> is the <a href="/wiki/Lorentz_factor" title="Lorentz factor">Lorentz factor</a>.</li></ul> <p>An identical expression for relativistic Doppler shift is obtained when performing the analysis in the reference frame of the <i>receiver</i> with a moving source.<sup id="cite_ref-Feynman1977_87-0" class="reference"><a href="#cite_note-Feynman1977-87"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Morin2007_31-6" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Transverse_Doppler_effect">Transverse Doppler effect</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=28" title="Edit section: Transverse Doppler effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Transverse_Doppler_effect_scenarios_5.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/Transverse_Doppler_effect_scenarios_5.svg/300px-Transverse_Doppler_effect_scenarios_5.svg.png" decoding="async" width="300" height="134" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/be/Transverse_Doppler_effect_scenarios_5.svg/450px-Transverse_Doppler_effect_scenarios_5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/be/Transverse_Doppler_effect_scenarios_5.svg/600px-Transverse_Doppler_effect_scenarios_5.svg.png 2x" data-file-width="536" data-file-height="240" /></a><figcaption>Figure 5–3. Transverse Doppler effect for two scenarios: (a) receiver moving in a circle around the source; (b) source moving in a circle around the receiver.</figcaption></figure> <p>The transverse <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a> is one of the main novel predictions of the special theory of relativity. </p><p>Classically, one might expect that if source and receiver are moving transversely with respect to each other with no longitudinal component to their relative motions, that there should be no Doppler shift in the light arriving at the receiver. </p><p>Special relativity predicts otherwise. Fig. 5-3 illustrates two common variants of this scenario. Both variants can be analyzed using simple time dilation arguments.<sup id="cite_ref-Morin2007_31-7" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> In Fig. 5-3a, the receiver observes light from the source as being blueshifted by a factor of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>⁠</span>. In Fig. 5-3b, the light is redshifted by the same factor. </p> <div class="mw-heading mw-heading3"><h3 id="Measurement_versus_visual_appearance">Measurement versus visual appearance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=29" title="Edit section: Measurement versus visual appearance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Terrell_rotation" title="Terrell rotation">Terrell rotation</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Animated_Terrell_Rotation_-_Cube.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Animated_Terrell_Rotation_-_Cube.gif/330px-Animated_Terrell_Rotation_-_Cube.gif" decoding="async" width="330" height="162" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Animated_Terrell_Rotation_-_Cube.gif/495px-Animated_Terrell_Rotation_-_Cube.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/d/d4/Animated_Terrell_Rotation_-_Cube.gif 2x" data-file-width="640" data-file-height="315" /></a><figcaption>Figure 5–4. Comparison of the measured length contraction of a cube versus its visual appearance.</figcaption></figure> <p>Time dilation and length contraction are not optical illusions, but genuine effects. Measurements of these effects are not an artifact of <a href="/wiki/Doppler_shift" class="mw-redirect" title="Doppler shift">Doppler shift</a>, nor are they the result of neglecting to take into account the time it takes light to travel from an event to an observer. </p><p>Scientists make a fundamental distinction between <i>measurement</i> or <i>observation</i> on the one hand, versus <i>visual appearance</i>, or what one <i>sees</i>. The measured shape of an object is a hypothetical snapshot of all of the object's points as they exist at a single moment in time. But the visual appearance of an object is affected by the varying lengths of time that light takes to travel from different points on the object to one's eye. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Terrell_Rotation_Sphere.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Terrell_Rotation_Sphere.gif/330px-Terrell_Rotation_Sphere.gif" decoding="async" width="330" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Terrell_Rotation_Sphere.gif/495px-Terrell_Rotation_Sphere.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Terrell_Rotation_Sphere.gif/660px-Terrell_Rotation_Sphere.gif 2x" data-file-width="1080" data-file-height="560" /></a><figcaption>Figure 5–5. Comparison of the measured length contraction of a globe versus its visual appearance, as viewed from a distance of three diameters of the globe from the eye to the red cross.</figcaption></figure> <p>For many years, the distinction between the two had not been generally appreciated, and it had generally been thought that a length contracted object passing by an observer would in fact actually be <i>seen</i> as length contracted. In 1959, James Terrell and <a href="/wiki/Roger_Penrose" title="Roger Penrose">Roger Penrose</a> independently pointed out that differential time lag effects in signals reaching the observer from the different parts of a moving object result in a fast moving object's visual appearance being quite different from its measured shape. For example, a receding object would <i>appear</i> contracted, an approaching object would <i>appear</i> elongated, and a passing object would have a skew appearance that has been likened to a rotation.<sup id="cite_ref-Terrell_88-0" class="reference"><a href="#cite_note-Terrell-88"><span class="cite-bracket">[</span>p 19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Penrose_89-0" class="reference"><a href="#cite_note-Penrose-89"><span class="cite-bracket">[</span>p 20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> A sphere in motion retains the circular outline for all speeds, for any distance, and for all view angles, although the surface of the sphere and the images on it will appear distorted.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Boas_1961_93-0" class="reference"><a href="#cite_note-Boas_1961-93"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:M87_jet_(1).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/M87_jet_%281%29.jpg/220px-M87_jet_%281%29.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/M87_jet_%281%29.jpg/330px-M87_jet_%281%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/M87_jet_%281%29.jpg/440px-M87_jet_%281%29.jpg 2x" data-file-width="1222" data-file-height="916" /></a><figcaption>Figure 5–6. Galaxy <a href="/wiki/Messier_87" title="Messier 87">M87</a> sends out a black-hole-powered jet of electrons and other sub-atomic particles traveling at nearly the speed of light.</figcaption></figure> <p>Both Fig. 5-4 and Fig. 5-5 illustrate objects moving transversely to the line of sight. In Fig. 5-4, a cube is viewed from a distance of four times the length of its sides. At high speeds, the sides of the cube that are perpendicular to the direction of motion appear hyperbolic in shape. The cube is actually not rotated. Rather, light from the rear of the cube takes longer to reach one's eyes compared with light from the front, during which time the cube has moved to the right. At high speeds, the sphere in Fig. 5-5 takes on the appearance of a flattened disk tilted up to 45° from the line of sight. If the objects' motions are not strictly transverse but instead include a longitudinal component, exaggerated distortions in perspective may be seen.<sup id="cite_ref-Muller_2014_94-0" class="reference"><a href="#cite_note-Muller_2014-94"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> This illusion has come to be known as <i><a href="/wiki/Terrell_rotation" title="Terrell rotation">Terrell rotation</a></i> or the <i>Terrell–Penrose effect</i>.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>note 9<span class="cite-bracket">]</span></a></sup> </p><p>Another example where visual appearance is at odds with measurement comes from the observation of apparent <a href="/wiki/Superluminal_motion" title="Superluminal motion">superluminal motion</a> in various <a href="/wiki/Radio_galaxies" class="mw-redirect" title="Radio galaxies">radio galaxies</a>, <a href="/wiki/BL_Lac_objects" class="mw-redirect" title="BL Lac objects">BL Lac objects</a>, <a href="/wiki/Quasars" class="mw-redirect" title="Quasars">quasars</a>, and other astronomical objects that eject <a href="/wiki/Astrophysical_jet" title="Astrophysical jet">relativistic-speed jets</a> of matter at narrow angles with respect to the viewer. An apparent optical illusion results giving the appearance of faster than light travel.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> In Fig. 5-6, galaxy <a href="/wiki/Messier_87" title="Messier 87">M87</a> streams out a high-speed jet of subatomic particles almost directly towards us, but Penrose–Terrell rotation causes the jet to appear to be moving laterally in the same manner that the appearance of the cube in Fig. 5-4 has been stretched out.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Dynamics">Dynamics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=30" title="Edit section: Dynamics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Section <i><a href="#Consequences_derived_from_the_Lorentz_transformation">§ Consequences derived from the Lorentz transformation</a></i> dealt strictly with <a href="/wiki/Kinematics" title="Kinematics">kinematics</a>, the study of the motion of points, bodies, and systems of bodies without considering the forces that caused the motion. This section discusses masses, forces, energy and so forth, and as such requires consideration of physical effects beyond those encompassed by the Lorentz transformation itself. </p> <div class="mw-heading mw-heading3"><h3 id="Equivalence_of_mass_and_energy">Equivalence of mass and energy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=31" title="Edit section: Equivalence of mass and energy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence</a></div> <p>As an object's speed approaches the speed of light from an observer's point of view, its <a href="/wiki/Relativistic_mass" class="mw-redirect" title="Relativistic mass">relativistic mass</a> increases thereby making it more and more difficult to accelerate it from within the observer's frame of reference. </p><p>The energy content of an object at rest with mass <i>m</i> equals <i>mc</i><sup>2</sup>. Conservation of energy implies that, in any reaction, a decrease of the sum of the masses of particles must be accompanied by an increase in kinetic energies of the particles after the reaction. Similarly, the mass of an object can be increased by taking in kinetic energies. </p><p>In addition to the papers referenced above – which give derivations of the Lorentz transformation and describe the foundations of special relativity—Einstein also wrote at least four papers giving <a href="/wiki/Heuristic" title="Heuristic">heuristic</a> arguments for the equivalence (and transmutability) of mass and energy, for <span class="nowrap"><i>E</i> = <i>mc</i><sup>2</sup></span>. </p><p>Mass–energy equivalence is a consequence of special relativity. The energy and momentum, which are separate in Newtonian mechanics, form a <a href="/wiki/Four-vector" title="Four-vector">four-vector</a> in relativity, and this relates the time component (the energy) to the space components (the momentum) in a non-trivial way. For an object at rest, the energy–momentum four-vector is <span class="nowrap">(<i>E</i>/<i>c</i>, 0, 0, 0)</span>: it has a time component, which is the energy, and three space components, which are zero. By changing frames with a Lorentz transformation in the x direction with a small value of the velocity v, the energy momentum four-vector becomes <span class="nowrap">(<i>E</i>/<i>c</i>, <i>Ev</i>/<i>c</i><sup>2</sup>, 0, 0)</span>. The momentum is equal to the energy multiplied by the velocity divided by <i>c</i><sup>2</sup>. As such, the Newtonian mass of an object, which is the ratio of the momentum to the velocity for slow velocities, is equal to <i>E</i>/<i>c</i><sup>2</sup>. </p><p>The energy and momentum are properties of matter and radiation, and it is impossible to deduce that they form a four-vector just from the two basic postulates of special relativity by themselves, because these do not talk about matter or radiation, they only talk about space and time. The derivation therefore requires some additional physical reasoning. In his 1905 paper, Einstein used the additional principles that Newtonian mechanics should hold for slow velocities, so that there is one energy scalar and one three-vector momentum at slow velocities, and that the conservation law for energy and momentum is exactly true in relativity. Furthermore, he assumed that the energy of light is transformed by the same Doppler-shift factor as its frequency, which he had previously shown to be true based on Maxwell's equations.<sup id="cite_ref-electro_1-5" class="reference"><a href="#cite_note-electro-1"><span class="cite-bracket">[</span>p 1<span class="cite-bracket">]</span></a></sup> The first of Einstein's papers on this subject was "Does the Inertia of a Body Depend upon its Energy Content?" in 1905.<sup id="cite_ref-inertia_100-0" class="reference"><a href="#cite_note-inertia-100"><span class="cite-bracket">[</span>p 21<span class="cite-bracket">]</span></a></sup> Although Einstein's argument in this paper is nearly universally accepted by physicists as correct, even self-evident, many authors over the years have suggested that it is wrong.<sup id="cite_ref-Jammer_101-0" class="reference"><a href="#cite_note-Jammer-101"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> Other authors suggest that the argument was merely inconclusive because it relied on some implicit assumptions.<sup id="cite_ref-Stachel_102-0" class="reference"><a href="#cite_note-Stachel-102"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> </p><p>Einstein acknowledged the controversy over his derivation in his 1907 survey paper on special relativity. There he notes that it is problematic to rely on Maxwell's equations for the heuristic mass–energy argument. The argument in his 1905 paper can be carried out with the emission of any massless particles, but the Maxwell equations are implicitly used to make it obvious that the emission of light in particular can be achieved only by doing work. To emit electromagnetic waves, all you have to do is shake a charged particle, and this is clearly doing work, so that the emission is of energy.<sup id="cite_ref-survey_103-0" class="reference"><a href="#cite_note-survey-103"><span class="cite-bracket">[</span>p 22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>note 10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Einstein's_1905_demonstration_of_E_=_mc2"><span id="Einstein.27s_1905_demonstration_of_E_.3D_mc2"></span>Einstein's 1905 demonstration of <i>E</i> = <i>mc</i><sup>2</sup></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=32" title="Edit section: Einstein's 1905 demonstration of E = mc2"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In his fourth of his 1905 <a href="/wiki/Annus_mirabilis_papers" title="Annus mirabilis papers">Annus mirabilis papers</a>,<sup id="cite_ref-inertia_100-1" class="reference"><a href="#cite_note-inertia-100"><span class="cite-bracket">[</span>p 21<span class="cite-bracket">]</span></a></sup> Einstein presented a heuristic argument for the equivalence of mass and energy. Although, as discussed above, subsequent scholarship has established that his arguments fell short of a broadly definitive proof, the conclusions that he reached in this paper have stood the test of time. </p><p>Einstein took as starting assumptions his recently discovered formula for <a href="/wiki/Relativistic_Doppler_shift" class="mw-redirect" title="Relativistic Doppler shift">relativistic Doppler shift</a>, the laws of <a href="/wiki/Conservation_of_energy" title="Conservation of energy">conservation of energy</a> and <a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">conservation of momentum</a>, and the relationship between the frequency of light and its energy as implied by <a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a>. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:225px;max-width:225px"><div class="trow"><div class="tsingle" style="width:223px;max-width:223px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Einstein%27s_derivation_of_E%3Dmc2_Part_1.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Einstein%27s_derivation_of_E%3Dmc2_Part_1.svg/221px-Einstein%27s_derivation_of_E%3Dmc2_Part_1.svg.png" decoding="async" width="221" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Einstein%27s_derivation_of_E%3Dmc2_Part_1.svg/332px-Einstein%27s_derivation_of_E%3Dmc2_Part_1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Einstein%27s_derivation_of_E%3Dmc2_Part_1.svg/442px-Einstein%27s_derivation_of_E%3Dmc2_Part_1.svg.png 2x" data-file-width="621" data-file-height="359" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:223px;max-width:223px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Einstein%27s_derivation_of_E%3Dmc2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Einstein%27s_derivation_of_E%3Dmc2.svg/221px-Einstein%27s_derivation_of_E%3Dmc2.svg.png" decoding="async" width="221" height="130" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Einstein%27s_derivation_of_E%3Dmc2.svg/332px-Einstein%27s_derivation_of_E%3Dmc2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Einstein%27s_derivation_of_E%3Dmc2.svg/442px-Einstein%27s_derivation_of_E%3Dmc2.svg.png 2x" data-file-width="602" data-file-height="354" /></a></span></div><div class="thumbcaption">Figure 6-1. Einstein's 1905 derivation of <i>E</i> = <i>mc</i><sup>2</sup></div></div></div></div></div> <p>Fig. 6-1 (top). Consider a system of plane waves of light having frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> traveling in direction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> relative to the x-axis of reference frame <i>S</i>. The frequency (and hence energy) of the waves as measured in frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> that is moving along the x-axis at velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> is given by the relativistic Doppler shift formula that Einstein had developed in his 1905 paper on special relativity:<sup id="cite_ref-electro_1-6" class="reference"><a href="#cite_note-electro-1"><span class="cite-bracket">[</span>p 1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f'}{f}}={\frac {1-(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>f</mi> <mo>′</mo> </msup> <mi>f</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f'}{f}}={\frac {1-(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1cc8eb121cf6ef9256b8ae7f482117f3e279fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.156ex; height:7.009ex;" alt="{\displaystyle {\frac {f'}{f}}={\frac {1-(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}}"></span></dd></dl> <p>Fig. 6-1 (bottom). Consider an arbitrary body that is stationary in reference frame <i>S</i>. Let this body emit a pair of equal-energy light-pulses in opposite directions at angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> with respect to the x-axis. Each pulse has energy <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7038820602ce88d26af4c7080e13d129b552c75e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.908ex; height:2.843ex;" alt="{\displaystyle L/2}"></span>⁠</span>. Because of conservation of momentum, the body remains stationary in <i>S</i> after emission of the two pulses. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411d268de7b1cf300d7481e3fe59f3b20887e0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{0}}"></span> be the energy of the body before emission of the two pulses and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ac42446bcd2cbb76ec8fe2895635d328da22e26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{1}}"></span> after their emission. </p><p>Next, consider the same system observed from frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> that is moving along the x-axis at speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> relative to frame <i>S</i>. In this frame, light from the forwards and reverse pulses will be relativistically Doppler-shifted. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43910602a221b7a4c373791f94793e3008622070" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.985ex; height:2.509ex;" alt="{\displaystyle H_{0}}"></span> be the energy of the body measured in reference frame <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span> before emission of the two pulses and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d4d9a872a55b209f2eb7cc23a71e5e1541bd1f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.985ex; height:2.509ex;" alt="{\displaystyle H_{1}}"></span> after their emission. We obtain the following relationships:<sup id="cite_ref-inertia_100-2" class="reference"><a href="#cite_note-inertia-100"><span class="cite-bracket">[</span>p 21<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}E_{0}&=E_{1}+{\tfrac {1}{2}}L+{\tfrac {1}{2}}L=E_{1}+L\\[5mu]H_{0}&=H_{1}+{\tfrac {1}{2}}L{\frac {1-(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}+{\tfrac {1}{2}}L{\frac {1+(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}=H_{1}+{\frac {L}{\sqrt {1-v^{2}/c^{2}}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.578em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>L</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>L</mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}E_{0}&=E_{1}+{\tfrac {1}{2}}L+{\tfrac {1}{2}}L=E_{1}+L\\[5mu]H_{0}&=H_{1}+{\tfrac {1}{2}}L{\frac {1-(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}+{\tfrac {1}{2}}L{\frac {1+(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}=H_{1}+{\frac {L}{\sqrt {1-v^{2}/c^{2}}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/343ffb26e1d6fe9149832c6e8b3f2ef79fecad0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:73.908ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}E_{0}&=E_{1}+{\tfrac {1}{2}}L+{\tfrac {1}{2}}L=E_{1}+L\\[5mu]H_{0}&=H_{1}+{\tfrac {1}{2}}L{\frac {1-(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}+{\tfrac {1}{2}}L{\frac {1+(v/c)\cos {\phi }}{\sqrt {1-v^{2}/c^{2}}}}=H_{1}+{\frac {L}{\sqrt {1-v^{2}/c^{2}}}}\end{aligned}}}"></span></dd></dl> <p>From the above equations, we obtain the following: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad (H_{0}-E_{0})-(H_{1}-E_{1})=L\left({\frac {1}{\sqrt {1-v^{2}/c^{2}}}}-1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <mo stretchy="false">(</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>L</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad (H_{0}-E_{0})-(H_{1}-E_{1})=L\left({\frac {1}{\sqrt {1-v^{2}/c^{2}}}}-1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fec8300f302a4fcab7a132f24185bb2bd5b1924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:53.616ex; height:7.509ex;" alt="{\displaystyle \quad \quad (H_{0}-E_{0})-(H_{1}-E_{1})=L\left({\frac {1}{\sqrt {1-v^{2}/c^{2}}}}-1\right)}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-1" class="reference nourlexpansion" style="font-weight:bold;">6-1</span>)</b></td></tr></tbody></table> <p>The two differences of form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H-E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>−<!-- − --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H-E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ffaed429ed8ba5adb9afca43994b7dd6d7cca40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.68ex; height:2.343ex;" alt="{\displaystyle H-E}"></span> seen in the above equation have a straightforward physical interpretation. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> are the energies of the arbitrary body in the moving and stationary frames, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{0}-E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{0}-E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/125a7afbc64e7125307f1128629b4ca3c0aa10e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.595ex; height:2.509ex;" alt="{\displaystyle H_{0}-E_{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{1}-E_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{1}-E_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/427c6c94c535e68c0856e4a2abdfe112341c6fa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.595ex; height:2.509ex;" alt="{\displaystyle H_{1}-E_{1}}"></span> represents the kinetic energies of the bodies before and after the emission of light (except for an additive constant that fixes the zero point of energy and is conventionally set to zero). Hence, </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad K_{0}-K_{1}=L\left({\frac {1}{\sqrt {1-v^{2}/c^{2}}}}-1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>L</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad K_{0}-K_{1}=L\left({\frac {1}{\sqrt {1-v^{2}/c^{2}}}}-1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ce2d1cc99f632810f5db717bcf01ce579f9e14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.861ex; height:7.509ex;" alt="{\displaystyle \quad \quad K_{0}-K_{1}=L\left({\frac {1}{\sqrt {1-v^{2}/c^{2}}}}-1\right)}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-2" class="reference nourlexpansion" style="font-weight:bold;">6-2</span>)</b></td></tr></tbody></table> <p>Taking a Taylor series expansion and neglecting higher order terms, he obtained </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad K_{0}-K_{1}={\frac {1}{2}}{\frac {L}{c^{2}}}v^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad K_{0}-K_{1}={\frac {1}{2}}{\frac {L}{c^{2}}}v^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3283c693d60ef334f3ef866124b203f16c479045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:23.716ex; height:5.509ex;" alt="{\displaystyle \quad \quad K_{0}-K_{1}={\frac {1}{2}}{\frac {L}{c^{2}}}v^{2}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-3" class="reference nourlexpansion" style="font-weight:bold;">6-3</span>)</b></td></tr></tbody></table> <p>Comparing the above expression with the classical expression for kinetic energy, <i>K.E.</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span><i>mv</i><sup>2</sup>, Einstein then noted: "If a body gives off the energy <i>L</i> in the form of radiation, its mass diminishes by <i>L</i>/<i>c</i><sup>2</sup>." </p><p>Rindler has observed that Einstein's heuristic argument suggested merely that energy <i>contributes</i> to mass. In 1905, Einstein's cautious expression of the mass–energy relationship allowed for the possibility that "dormant" mass might exist that would remain behind after all the energy of a body was removed. By 1907, however, Einstein was ready to assert that <i>all</i> inertial mass represented a reserve of energy. "To equate <i>all</i> mass with energy required an act of aesthetic faith, very characteristic of Einstein."<sup id="cite_ref-Rindler0_18-3" class="reference"><a href="#cite_note-Rindler0-18"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 81–84">: 81–84 </span></sup> Einstein's bold hypothesis has been amply confirmed in the years subsequent to his original proposal. </p><p>For a variety of reasons, Einstein's original derivation is currently seldom taught. Besides the vigorous debate that continues until this day as to the formal correctness of his original derivation, the recognition of special relativity as being what Einstein called a "principle theory" has led to a shift away from reliance on electromagnetic phenomena to purely dynamic methods of proof.<sup id="cite_ref-Fernflores_2018_105-0" class="reference"><a href="#cite_note-Fernflores_2018-105"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="How_far_can_you_travel_from_the_Earth?"><span id="How_far_can_you_travel_from_the_Earth.3F"></span>How far can you travel from the Earth?</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=33" title="Edit section: How far can you travel from the Earth?"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Space_travel_under_constant_acceleration" title="Space travel under constant acceleration">Space travel under constant acceleration</a></div> <p>Since nothing can travel faster than light, one might conclude that a human can never travel farther from Earth than ~ 100 light years. You would easily think that a traveler would never be able to reach more than the few solar systems that exist within the limit of 100 light years from Earth. However, because of time dilation, a hypothetical spaceship can travel thousands of light years during a passenger's lifetime. If a spaceship could be built that accelerates at a constant <a href="/wiki/Gravity_of_Earth" title="Gravity of Earth">1<i>g</i></a>, it will, after one year, be travelling at almost the speed of light as seen from Earth. This is described by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(t)={\frac {at}{\sqrt {1+a^{2}t^{2}/c^{2}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>t</mi> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v(t)={\frac {at}{\sqrt {1+a^{2}t^{2}/c^{2}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c30dbd1d68869634d015a276a37f8e5379a9242f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.086ex; height:6.509ex;" alt="{\displaystyle v(t)={\frac {at}{\sqrt {1+a^{2}t^{2}/c^{2}}}},}"></span> where <i>v</i>(<i>t</i>) is the velocity at a time <i>t</i>, <i>a</i> is the acceleration of the spaceship and <i>t</i> is the coordinate time as measured by people on Earth.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>p 23<span class="cite-bracket">]</span></a></sup> Therefore, after one year of accelerating at 9.81 m/s<sup>2</sup>, the spaceship will be travelling at <span class="nowrap"><i>v</i> = 0.712 <i>c</i></span> and <span class="nowrap">0.946 <i>c</i></span> after three years, relative to Earth. After three years of this acceleration, with the spaceship achieving a velocity of 94.6% of the speed of light relative to Earth, time dilation will result in each second experienced on the spaceship corresponding to 3.1 seconds back on Earth. During their journey, people on Earth will experience more time than they do – since their clocks (all physical phenomena) would really be ticking 3.1 times faster than those of the spaceship. A 5-year round trip for the traveller will take 6.5 Earth years and cover a distance of over 6 light-years. A 20-year round trip for them (5 years accelerating, 5 decelerating, twice each) will land them back on Earth having travelled for 335 Earth years and a distance of 331 light years.<sup id="cite_ref-gibbskoks_107-0" class="reference"><a href="#cite_note-gibbskoks-107"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> A full 40-year trip at 1<i>g</i> will appear on Earth to last 58,000 years and cover a distance of 55,000 light years. A 40-year trip at <span class="nowrap">1.1 <i>g</i></span> will take <span class="nowrap"><span data-sort-value="7005148000000000000♠"></span>148<span style="margin-left:.25em;">000</span></span> years and cover about <span class="nowrap"><span data-sort-value="7005140000000000000♠"></span>140<span style="margin-left:.25em;">000</span></span> light years. A one-way 28 year (14 years accelerating, 14 decelerating as measured with the astronaut's clock) trip at 1<i>g</i> acceleration could reach 2,000,000 light-years to the Andromeda Galaxy.<sup id="cite_ref-gibbskoks_107-1" class="reference"><a href="#cite_note-gibbskoks-107"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> This same time dilation is why a muon travelling close to <i>c</i> is observed to travel much farther than <i>c</i> times its <a href="/wiki/Half-life" title="Half-life">half-life</a> (when at rest).<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Elastic_collisions">Elastic collisions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=34" title="Edit section: Elastic collisions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Examination of the collision products generated by particle accelerators around the world provides scientists evidence of the structure of the subatomic world and the natural laws governing it. Analysis of the collision products, the sum of whose masses may vastly exceed the masses of the incident particles, requires special relativity.<sup id="cite_ref-Idema_2022_109-0" class="reference"><a href="#cite_note-Idema_2022-109"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p><p>In Newtonian mechanics, analysis of collisions involves use of the <a href="/wiki/Conservation_of_mass" title="Conservation of mass">conservation laws for mass</a>, <a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">momentum</a> and <a href="/wiki/Conservation_of_energy" title="Conservation of energy">energy</a>. In relativistic mechanics, mass is not independently conserved, because it has been subsumed into the total relativistic energy. We illustrate the differences that arise between the Newtonian and relativistic treatments of particle collisions by examining the simple case of two perfectly elastic colliding particles of equal mass. (<i>Inelastic</i> collisions are discussed in <a href="/wiki/Spacetime#Conservation_laws" title="Spacetime">Spacetime#Conservation laws</a>. Radioactive decay may be considered a sort of time-reversed inelastic collision.<sup id="cite_ref-Idema_2022_109-1" class="reference"><a href="#cite_note-Idema_2022-109"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup>) </p><p>Elastic scattering of charged elementary particles deviates from ideality due to the production of <a href="/wiki/Bremsstrahlung" title="Bremsstrahlung">Bremsstrahlung</a> radiation.<sup id="cite_ref-Nakel_1994_110-0" class="reference"><a href="#cite_note-Nakel_1994-110"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Newtonian_analysis">Newtonian analysis</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=35" title="Edit section: Newtonian analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Elastic_collision_of_moving_particle_with_equal_mass_stationary_particle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Elastic_collision_of_moving_particle_with_equal_mass_stationary_particle.svg/220px-Elastic_collision_of_moving_particle_with_equal_mass_stationary_particle.svg.png" decoding="async" width="220" height="303" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Elastic_collision_of_moving_particle_with_equal_mass_stationary_particle.svg/330px-Elastic_collision_of_moving_particle_with_equal_mass_stationary_particle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Elastic_collision_of_moving_particle_with_equal_mass_stationary_particle.svg/440px-Elastic_collision_of_moving_particle_with_equal_mass_stationary_particle.svg.png 2x" data-file-width="496" data-file-height="684" /></a><figcaption>Figure 6–2. Newtonian analysis of the elastic collision of a moving particle with an equal mass stationary particle</figcaption></figure> <p>Fig. 6-2 provides a demonstration of the result, familiar to billiard players, that if a stationary ball is struck elastically by another one of the same mass (assuming no sidespin, or "English"), then after collision, the diverging paths of the two balls will subtend a right angle. (a) In the stationary frame, an incident sphere traveling at 2<b>v</b> strikes a stationary sphere. (b) In the center of momentum frame, the two spheres approach each other symmetrically at ±<b>v</b>. After elastic collision, the two spheres rebound from each other with equal and opposite velocities ±<b>u</b>. Energy conservation requires that |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>u</b></span>| = |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>v</b></span>|. (c) Reverting to the stationary frame, the rebound velocities are <span class="nowrap"><b>v</b> ± <b>u</b></span>. The dot product <span class="nowrap">(<b>v</b> + <b>u</b>) ⋅ (<b>v</b> − <b>u</b>) = <b>v</b><sup>2</sup> − <b>u</b><sup>2</sup> = 0</span>, indicating that the vectors are orthogonal.<sup id="cite_ref-Rindler0_18-4" class="reference"><a href="#cite_note-Rindler0-18"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 26–27">: 26–27 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Relativistic_analysis">Relativistic analysis</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=36" title="Edit section: Relativistic analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relativistic_elastic_collision_of_equal_mass_particles.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Relativistic_elastic_collision_of_equal_mass_particles.svg/220px-Relativistic_elastic_collision_of_equal_mass_particles.svg.png" decoding="async" width="220" height="105" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Relativistic_elastic_collision_of_equal_mass_particles.svg/330px-Relativistic_elastic_collision_of_equal_mass_particles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/Relativistic_elastic_collision_of_equal_mass_particles.svg/440px-Relativistic_elastic_collision_of_equal_mass_particles.svg.png 2x" data-file-width="709" data-file-height="337" /></a><figcaption>Figure 6–3. Relativistic elastic collision between a moving particle incident upon an equal mass stationary particle</figcaption></figure> <p>Consider the elastic collision scenario in Fig. 6-3 between a moving particle colliding with an equal mass stationary particle. Unlike the Newtonian case, the angle between the two particles after collision is less than 90°, is dependent on the angle of scattering, and becomes smaller and smaller as the velocity of the incident particle approaches the speed of light: </p><p>The relativistic momentum and total relativistic energy of a particle are given by </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad {\vec {p}}=\gamma m{\vec {v}}\quad {\text{and}}\quad E=\gamma mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad {\vec {p}}=\gamma m{\vec {v}}\quad {\text{and}}\quad E=\gamma mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2fc1824e008290d09f0eedf852c22b9a327394e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.177ex; height:3.176ex;" alt="{\displaystyle \quad \quad {\vec {p}}=\gamma m{\vec {v}}\quad {\text{and}}\quad E=\gamma mc^{2}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-4" class="reference nourlexpansion" style="font-weight:bold;">6-4</span>)</b></td></tr></tbody></table> <p>Conservation of momentum dictates that the sum of the momenta of the incoming particle and the stationary particle (which initially has momentum = 0) equals the sum of the momenta of the emergent particles: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \gamma _{1}m{\vec {v_{1}}}+0=\gamma _{2}m{\vec {v_{2}}}+\gamma _{3}m{\vec {v_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mn>0</mn> <mo>=</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \gamma _{1}m{\vec {v_{1}}}+0=\gamma _{2}m{\vec {v_{2}}}+\gamma _{3}m{\vec {v_{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac2cb144607317b2c2e3ec806cfbb155f466e56b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.455ex; height:3.509ex;" alt="{\displaystyle \quad \quad \gamma _{1}m{\vec {v_{1}}}+0=\gamma _{2}m{\vec {v_{2}}}+\gamma _{3}m{\vec {v_{3}}}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-5" class="reference nourlexpansion" style="font-weight:bold;">6-5</span>)</b></td></tr></tbody></table> <p>Likewise, the sum of the total relativistic energies of the incoming particle and the stationary particle (which initially has total energy mc<sup>2</sup>) equals the sum of the total energies of the emergent particles: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \gamma _{1}mc^{2}+mc^{2}=\gamma _{2}mc^{2}+\gamma _{3}mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \gamma _{1}mc^{2}+mc^{2}=\gamma _{2}mc^{2}+\gamma _{3}mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d26a8718dbddd1cde0caf91839d74f0f8b1a446" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.606ex; height:3.176ex;" alt="{\displaystyle \quad \quad \gamma _{1}mc^{2}+mc^{2}=\gamma _{2}mc^{2}+\gamma _{3}mc^{2}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-6" class="reference nourlexpansion" style="font-weight:bold;">6-6</span>)</b></td></tr></tbody></table> <p>Breaking down (<b><a href="#math_6-5">6-5</a></b>) into its components, replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> with the dimensionless <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span>⁠</span>, and factoring out common terms from (<b><a href="#math_6-5">6-5</a></b>) and (<b><a href="#math_6-6">6-6</a></b>) yields the following:<sup id="cite_ref-Champion_1932_112-0" class="reference"><a href="#cite_note-Champion_1932-112"><span class="cite-bracket">[</span>p 24<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \beta _{1}\gamma _{1}=\beta _{2}\gamma _{2}\cos {\theta }+\beta _{3}\gamma _{3}\cos {\phi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> <mo>+</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \beta _{1}\gamma _{1}=\beta _{2}\gamma _{2}\cos {\theta }+\beta _{3}\gamma _{3}\cos {\phi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0954390ac1934bcabb52b221a75b542a1e9cab11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.716ex; height:2.676ex;" alt="{\displaystyle \quad \quad \beta _{1}\gamma _{1}=\beta _{2}\gamma _{2}\cos {\theta }+\beta _{3}\gamma _{3}\cos {\phi }}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-7" class="reference nourlexpansion" style="font-weight:bold;">6-7</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \beta _{2}\gamma _{2}\sin {\theta }=\beta _{3}\gamma _{3}\sin {\phi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> <mo>=</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \beta _{2}\gamma _{2}\sin {\theta }=\beta _{3}\gamma _{3}\sin {\phi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cea69e193495c1c20e5f2c3238ea2571c91c89f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.736ex; height:2.676ex;" alt="{\displaystyle \quad \quad \beta _{2}\gamma _{2}\sin {\theta }=\beta _{3}\gamma _{3}\sin {\phi }}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-8" class="reference nourlexpansion" style="font-weight:bold;">6-8</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \gamma _{1}+1=\gamma _{2}+\gamma _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>=</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \gamma _{1}+1=\gamma _{2}+\gamma _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ae3b647d7cc30437fd30c440ee3fb4e94834503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.362ex; height:2.676ex;" alt="{\displaystyle \quad \quad \gamma _{1}+1=\gamma _{2}+\gamma _{3}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-9" class="reference nourlexpansion" style="font-weight:bold;">6-9</span>)</b></td></tr></tbody></table> <p>From these we obtain the following relationships:<sup id="cite_ref-Champion_1932_112-1" class="reference"><a href="#cite_note-Champion_1932-112"><span class="cite-bracket">[</span>p 24<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \beta _{2}={\frac {\beta _{1}\sin {\phi }}{\{\beta _{1}^{2}\sin ^{2}{\phi }+\sin ^{2}(\phi +\theta )/\gamma _{1}^{2}\}^{1/2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </mrow> <mrow> <mo fence="false" stretchy="false">{</mo> <msubsup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \beta _{2}={\frac {\beta _{1}\sin {\phi }}{\{\beta _{1}^{2}\sin ^{2}{\phi }+\sin ^{2}(\phi +\theta )/\gamma _{1}^{2}\}^{1/2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e6db5a9c294cec068283e91d8b67a9a0dc4d82f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.806ex; height:6.509ex;" alt="{\displaystyle \quad \quad \beta _{2}={\frac {\beta _{1}\sin {\phi }}{\{\beta _{1}^{2}\sin ^{2}{\phi }+\sin ^{2}(\phi +\theta )/\gamma _{1}^{2}\}^{1/2}}}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-10" class="reference nourlexpansion" style="font-weight:bold;">6-10</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \beta _{3}={\frac {\beta _{1}\sin {\theta }}{\{\beta _{1}^{2}\sin ^{2}{\theta }+\sin ^{2}(\phi +\theta )/\gamma _{1}^{2}\}^{1/2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> </mrow> <mrow> <mo fence="false" stretchy="false">{</mo> <msubsup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> <mo>+</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \beta _{3}={\frac {\beta _{1}\sin {\theta }}{\{\beta _{1}^{2}\sin ^{2}{\theta }+\sin ^{2}(\phi +\theta )/\gamma _{1}^{2}\}^{1/2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/239260685a782b104b3cdb3211b2bfaa12c35506" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.511ex; height:6.509ex;" alt="{\displaystyle \quad \quad \beta _{3}={\frac {\beta _{1}\sin {\theta }}{\{\beta _{1}^{2}\sin ^{2}{\theta }+\sin ^{2}(\phi +\theta )/\gamma _{1}^{2}\}^{1/2}}}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-11" class="reference nourlexpansion" style="font-weight:bold;">6-11</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \cos {(\phi +\theta )}={\frac {(\gamma _{1}-1)\sin {\theta }\cos {\theta }}{\{(\gamma _{1}+1)^{2}\sin ^{2}\theta +4\cos ^{2}\theta \}^{1/2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>+</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> </mrow> <mrow> <mo fence="false" stretchy="false">{</mo> <mo stretchy="false">(</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>+</mo> <mn>4</mn> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \cos {(\phi +\theta )}={\frac {(\gamma _{1}-1)\sin {\theta }\cos {\theta }}{\{(\gamma _{1}+1)^{2}\sin ^{2}\theta +4\cos ^{2}\theta \}^{1/2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd820b1054d2c3aa0a333311be4bef11faa016d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:49.159ex; height:6.676ex;" alt="{\displaystyle \quad \quad \cos {(\phi +\theta )}={\frac {(\gamma _{1}-1)\sin {\theta }\cos {\theta }}{\{(\gamma _{1}+1)^{2}\sin ^{2}\theta +4\cos ^{2}\theta \}^{1/2}}}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-12" class="reference nourlexpansion" style="font-weight:bold;">6-12</span>)</b></td></tr></tbody></table> <p>For the symmetrical case in which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi =\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi =\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b97060ee8346b6526b71ad2d4d3eeb922633e2d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.574ex; height:2.509ex;" alt="{\displaystyle \phi =\theta }"></span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta _{2}=\beta _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta _{2}=\beta _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b997bdc2be2de75f7ba6fa02038b31c3ac1bbd1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.838ex; height:2.509ex;" alt="{\displaystyle \beta _{2}=\beta _{3}}"></span>⁠</span>, (<b><a href="#math_6-12">6-12</a></b>) takes on the simpler form:<sup id="cite_ref-Champion_1932_112-2" class="reference"><a href="#cite_note-Champion_1932-112"><span class="cite-bracket">[</span>p 24<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad \quad \cos {\theta }={\frac {\beta _{1}}{\{2/\gamma _{1}+3\beta _{1}^{2}-2\}^{1/2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mspace width="1em" /> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msubsup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad \quad \cos {\theta }={\frac {\beta _{1}}{\{2/\gamma _{1}+3\beta _{1}^{2}-2\}^{1/2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05850f06888f7043811c3ace47e8e6fca12c5222" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:33.172ex; height:6.343ex;" alt="{\displaystyle \quad \quad \cos {\theta }={\frac {\beta _{1}}{\{2/\gamma _{1}+3\beta _{1}^{2}-2\}^{1/2}}}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6-13" class="reference nourlexpansion" style="font-weight:bold;">6-13</span>)</b></td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Beyond_the_basics">Beyond the basics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=37" title="Edit section: Beyond the basics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Rapidity">Rapidity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=38" title="Edit section: Rapidity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Rapidity" title="Rapidity">Rapidity</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:333px;max-width:333px"><div class="trow"><div class="tsingle" style="width:137px;max-width:137px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Trig_functions_(sine_and_cosine).svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Trig_functions_%28sine_and_cosine%29.svg/135px-Trig_functions_%28sine_and_cosine%29.svg.png" decoding="async" width="135" height="107" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Trig_functions_%28sine_and_cosine%29.svg/203px-Trig_functions_%28sine_and_cosine%29.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Trig_functions_%28sine_and_cosine%29.svg/270px-Trig_functions_%28sine_and_cosine%29.svg.png 2x" data-file-width="465" data-file-height="370" /></a></span></div><div class="thumbcaption">Figure 7-1a. A ray through the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> <span class="nowrap"><i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> = 1</span> in the point <span class="nowrap">(cos <i>a</i>, sin <i>a</i>)</span>, where <i>a</i> is twice the area between the ray, the circle, and the <i>x</i>-axis.</div></div><div class="tsingle" style="width:192px;max-width:192px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Hyperbolic_functions-2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Hyperbolic_functions-2.svg/190px-Hyperbolic_functions-2.svg.png" decoding="async" width="190" height="166" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Hyperbolic_functions-2.svg/285px-Hyperbolic_functions-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Hyperbolic_functions-2.svg/380px-Hyperbolic_functions-2.svg.png 2x" data-file-width="500" data-file-height="437" /></a></span></div><div class="thumbcaption">Figure 7-1b. A ray through the <a href="/wiki/Unit_hyperbola" title="Unit hyperbola">unit hyperbola</a> <span class="nowrap"><i>x</i><sup>2</sup> − <i>y</i><sup>2</sup> = 1</span> in the point <span class="nowrap">(cosh <i>a</i>, sinh <i>a</i>)</span>, where <i>a</i> is twice the area between the ray, the hyperbola, and the <i>x</i>-axis.</div></div></div></div></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Sinh%2Bcosh%2Btanh.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Sinh%2Bcosh%2Btanh.svg/180px-Sinh%2Bcosh%2Btanh.svg.png" decoding="async" width="180" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Sinh%2Bcosh%2Btanh.svg/270px-Sinh%2Bcosh%2Btanh.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/29/Sinh%2Bcosh%2Btanh.svg/360px-Sinh%2Bcosh%2Btanh.svg.png 2x" data-file-width="400" data-file-height="500" /></a><figcaption>Figure 7–2. Plot of the three basic <a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">Hyperbolic functions</a>: hyperbolic sine (<a href="/wiki/File:Hyperbolic_Sine.svg" title="File:Hyperbolic Sine.svg">sinh</a>), hyperbolic cosine (<a href="/wiki/File:Hyperbolic_Cosine.svg" title="File:Hyperbolic Cosine.svg">cosh</a>) and hyperbolic tangent (<a href="/wiki/File:Hyperbolic_Tangent.svg" title="File:Hyperbolic Tangent.svg">tanh</a>). Sinh is red, cosh is blue and tanh is green.</figcaption></figure> <p>Lorentz transformations relate coordinates of events in one reference frame to those of another frame. Relativistic composition of velocities is used to add two velocities together. The formulas to perform the latter computations are nonlinear, making them more complex than the corresponding Galilean formulas. </p><p>This nonlinearity is an artifact of our choice of parameters.<sup id="cite_ref-Taylor_1992_17-2" class="reference"><a href="#cite_note-Taylor_1992-17"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 47–59">: 47–59 </span></sup> We have previously noted that in an <span class="nowrap"><i>x</i>–<i>ct</i></span> spacetime diagram, the points at some constant spacetime interval from the origin form an invariant hyperbola. We have also noted that the coordinate systems of two spacetime reference frames in standard configuration are hyperbolically rotated with respect to each other. </p><p>The natural functions for expressing these relationships are the <a href="/wiki/Hyperbolic_functions" title="Hyperbolic functions">hyperbolic analogs of the trigonometric functions</a>. Fig. 7-1a shows a <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> with sin(<i>a</i>) and cos(<i>a</i>), the only difference between this diagram and the familiar unit circle of elementary trigonometry being that <i>a</i> is interpreted, not as the angle between the ray and the <span class="nowrap"><i>x</i>-axis</span>, but as twice the area of the sector swept out by the ray from the <span class="nowrap"><i>x</i>-axis</span>. Numerically, the angle and <span class="nowrap">2 × area</span> measures for the unit circle are identical. Fig. 7-1b shows a <a href="/wiki/Unit_hyperbola" title="Unit hyperbola">unit hyperbola</a> with sinh(<i>a</i>) and cosh(<i>a</i>), where <i>a</i> is likewise interpreted as twice the tinted area.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> Fig. 7-2 presents plots of the sinh, cosh, and tanh functions. </p><p>For the unit circle, the slope of the ray is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{slope}}=\tan a={\frac {\sin a}{\cos a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>slope</mtext> </mrow> <mo>=</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>a</mi> </mrow> <mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{slope}}=\tan a={\frac {\sin a}{\cos a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1f6609bda2483876ea13240bbbe2561142409a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.435ex; height:5.176ex;" alt="{\displaystyle {\text{slope}}=\tan a={\frac {\sin a}{\cos a}}.}"></span></dd></dl> <p>In the Cartesian plane, rotation of point <span class="nowrap">(<i>x</i>, <i>y</i>)</span> into point <span class="nowrap">(<i>x</i><span class="nowrap" style="padding-left:0.1em;">'</span>, <i>y</i><span class="nowrap" style="padding-left:0.1em;">'</span>)</span> by angle <i>θ</i> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}x'\\y'\\\end{pmatrix}}={\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \\\end{pmatrix}}{\begin{pmatrix}x\\y\\\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>x</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}x'\\y'\\\end{pmatrix}}={\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \\\end{pmatrix}}{\begin{pmatrix}x\\y\\\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfef0d0bb123d93a39b080b594edda14494e39ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.047ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}x'\\y'\\\end{pmatrix}}={\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \\\end{pmatrix}}{\begin{pmatrix}x\\y\\\end{pmatrix}}.}"></span></dd></dl> <p>In a spacetime diagram, the velocity parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> is the analog of slope. The <i>rapidity</i>, <i>φ</i>, is defined by<sup id="cite_ref-Morin2007_31-8" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 96–99">: 96–99 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta \equiv \tanh \phi \equiv {\frac {v}{c}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>≡<!-- ≡ --></mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta \equiv \tanh \phi \equiv {\frac {v}{c}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf4d43a1585b97e5e65068d70c5075552c646da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.564ex; height:4.676ex;" alt="{\displaystyle \beta \equiv \tanh \phi \equiv {\frac {v}{c}},}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tanh \phi ={\frac {\sinh \phi }{\cosh \phi }}={\frac {e^{\phi }-e^{-\phi }}{e^{\phi }+e^{-\phi }}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tanh \phi ={\frac {\sinh \phi }{\cosh \phi }}={\frac {e^{\phi }-e^{-\phi }}{e^{\phi }+e^{-\phi }}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7417028559d0a363e089049293018665cb25b363" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.827ex; height:6.176ex;" alt="{\displaystyle \tanh \phi ={\frac {\sinh \phi }{\cosh \phi }}={\frac {e^{\phi }-e^{-\phi }}{e^{\phi }+e^{-\phi }}}.}"></span></dd></dl> <p>The rapidity defined above is very useful in special relativity because many expressions take on a considerably simpler form when expressed in terms of it. For example, rapidity is simply additive in the collinear velocity-addition formula;<sup id="cite_ref-Taylor_1992_17-3" class="reference"><a href="#cite_note-Taylor_1992-17"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 47–59">: 47–59 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ={\frac {\beta _{1}+\beta _{2}}{1+\beta _{1}\beta _{2}}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ={\frac {\beta _{1}+\beta _{2}}{1+\beta _{1}\beta _{2}}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e1d04c777c76f770f7d7630394a32985568a7f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.463ex; height:5.843ex;" alt="{\displaystyle \beta ={\frac {\beta _{1}+\beta _{2}}{1+\beta _{1}\beta _{2}}}=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\tanh \phi _{1}+\tanh \phi _{2}}{1+\tanh \phi _{1}\tanh \phi _{2}}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tanh</mi> <mo>⁡<!-- --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>tanh</mi> <mo>⁡<!-- --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>tanh</mi> <mo>⁡<!-- --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\tanh \phi _{1}+\tanh \phi _{2}}{1+\tanh \phi _{1}\tanh \phi _{2}}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b472e444bcc4c8e7731cff0a78ea05154d29bb85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.637ex; height:5.843ex;" alt="{\displaystyle {\frac {\tanh \phi _{1}+\tanh \phi _{2}}{1+\tanh \phi _{1}\tanh \phi _{2}}}=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tanh(\phi _{1}+\phi _{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tanh(\phi _{1}+\phi _{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44d64ad79bebdd63cbc635ef9191d648247f579b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.828ex; height:2.843ex;" alt="{\displaystyle \tanh(\phi _{1}+\phi _{2}),}"></span></dd></dl> <p>or in other words, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi =\phi _{1}+\phi _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi =\phi _{1}+\phi _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48df15a50be29636192ed28865856453c5d2470c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.204ex; height:2.509ex;" alt="{\displaystyle \phi =\phi _{1}+\phi _{2}}"></span>⁠</span>. </p><p>The Lorentz transformations take a simple form when expressed in terms of rapidity. The <i>γ</i> factor can be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}={\frac {1}{\sqrt {1-\tanh ^{2}\phi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}={\frac {1}{\sqrt {1-\tanh ^{2}\phi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76e7fe3704ea5200e804296d23aff6dde0c16d89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:31.655ex; height:8.009ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}={\frac {1}{\sqrt {1-\tanh ^{2}\phi }}}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\cosh \phi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\cosh \phi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/581f147045df45196174212022b899d3184a1eb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.276ex; height:2.509ex;" alt="{\displaystyle =\cosh \phi ,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \beta ={\frac {\beta }{\sqrt {1-\beta ^{2}}}}={\frac {\tanh \phi }{\sqrt {1-\tanh ^{2}\phi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mi>β<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>β<!-- β --></mi> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \beta ={\frac {\beta }{\sqrt {1-\beta ^{2}}}}={\frac {\tanh \phi }{\sqrt {1-\tanh ^{2}\phi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d576400646418d0d23493b1c673b4eb077533cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:32.987ex; height:8.176ex;" alt="{\displaystyle \gamma \beta ={\frac {\beta }{\sqrt {1-\beta ^{2}}}}={\frac {\tanh \phi }{\sqrt {1-\tanh ^{2}\phi }}}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\sinh \phi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\sinh \phi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f028a8659c371941df6ae7f68c3fdc43efa249b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.021ex; height:2.509ex;" alt="{\displaystyle =\sinh \phi .}"></span></dd></dl> <p>Transformations describing relative motion with uniform velocity and without rotation of the space coordinate axes are called <i>boosts</i>. </p><p>Substituting <i>γ</i> and <i>γβ</i> into the transformations as previously presented and rewriting in matrix form, the Lorentz boost in the <span class="nowrap"><i>x</i>-direction</span> may be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}ct'\\x'\end{pmatrix}}={\begin{pmatrix}\cosh \phi &-\sinh \phi \\-\sinh \phi &\cosh \phi \end{pmatrix}}{\begin{pmatrix}ct\\x\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> <mtd> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>c</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}ct'\\x'\end{pmatrix}}={\begin{pmatrix}\cosh \phi &-\sinh \phi \\-\sinh \phi &\cosh \phi \end{pmatrix}}{\begin{pmatrix}ct\\x\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f219d2e3bdb6c0091c27f73a22bb8e8e646187e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.195ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}ct'\\x'\end{pmatrix}}={\begin{pmatrix}\cosh \phi &-\sinh \phi \\-\sinh \phi &\cosh \phi \end{pmatrix}}{\begin{pmatrix}ct\\x\end{pmatrix}},}"></span></dd></dl> <p>and the inverse Lorentz boost in the <span class="nowrap"><i>x</i>-direction</span> may be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}ct\\x\end{pmatrix}}={\begin{pmatrix}\cosh \phi &\sinh \phi \\\sinh \phi &\cosh \phi \end{pmatrix}}{\begin{pmatrix}ct'\\x'\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>c</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> <mtd> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> <mtd> <mi>cosh</mi> <mo>⁡<!-- --></mo> <mi>ϕ<!-- ϕ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}ct\\x\end{pmatrix}}={\begin{pmatrix}\cosh \phi &\sinh \phi \\\sinh \phi &\cosh \phi \end{pmatrix}}{\begin{pmatrix}ct'\\x'\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e567efa9fbd722ca41aec53f7addb90af802bc0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.316ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}ct\\x\end{pmatrix}}={\begin{pmatrix}\cosh \phi &\sinh \phi \\\sinh \phi &\cosh \phi \end{pmatrix}}{\begin{pmatrix}ct'\\x'\end{pmatrix}}.}"></span></dd></dl> <p>In other words, Lorentz boosts represent <a href="/wiki/Hyperbolic_rotation" class="mw-redirect" title="Hyperbolic rotation">hyperbolic rotations</a> in Minkowski spacetime.<sup id="cite_ref-Morin2007_31-9" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 96–99">: 96–99 </span></sup> </p><p>The advantages of using hyperbolic functions are such that some textbooks such as the classic ones by Taylor and Wheeler introduce their use at a very early stage.<sup id="cite_ref-Taylor_1992_17-4" class="reference"><a href="#cite_note-Taylor_1992-17"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>note 11<span class="cite-bracket">]</span></a></sup> <span class="anchor" id="4‑vectors"></span> </p> <div class="mw-heading mw-heading3"><h3 id="4‑vectors"><span id="4.E2.80.91vectors"></span>4‑vectors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=39" title="Edit section: 4‑vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Four-vector" title="Four-vector">Four-vector</a></div> <p>Four‑vectors have been mentioned above in context of the energy–momentum <span class="nowrap">4‑vector</span>, but without any great emphasis. Indeed, none of the elementary derivations of special relativity require them. But once understood, <span class="nowrap">4‑vectors</span>, and more generally <a href="/wiki/Tensors" class="mw-redirect" title="Tensors">tensors</a>, greatly simplify the mathematics and conceptual understanding of special relativity. Working exclusively with such objects leads to formulas that are <i>manifestly</i> relativistically invariant, which is a considerable advantage in non-trivial contexts. For instance, demonstrating relativistic invariance of <a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a> in their usual form is not trivial, while it is merely a routine calculation, really no more than an observation, using the <a href="/wiki/Field_strength_tensor" class="mw-redirect" title="Field strength tensor">field strength tensor</a> formulation.<sup id="cite_ref-Post_1962_115-0" class="reference"><a href="#cite_note-Post_1962-115"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> </p><p>On the other hand, general relativity, from the outset, relies heavily on <span class="nowrap">4‑vectors</span>, and more generally tensors, representing physically relevant entities. Relating these via equations that do not rely on specific coordinates requires tensors, capable of connecting such <span class="nowrap">4‑vectors</span> even within a <i>curved</i> spacetime, and not just within a <i>flat</i> one as in special relativity. The study of tensors is outside the scope of this article, which provides only a basic discussion of spacetime. </p> <div class="mw-heading mw-heading4"><h4 id="Definition_of_4-vectors">Definition of 4-vectors</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=40" title="Edit section: Definition of 4-vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A 4-tuple, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\left(A_{0},A_{1},A_{2},A_{3}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\left(A_{0},A_{1},A_{2},A_{3}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6977eff100ca73c0428f61c0687393d1c3a2941a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.942ex; height:2.843ex;" alt="{\displaystyle A=\left(A_{0},A_{1},A_{2},A_{3}\right)}"></span>⁠</span> is a "4-vector" if its component <i>A<sub>i</sub></i> transform between frames according to the Lorentz transformation. </p><p>If using <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ct,x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ct,x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6eac3c6402a2569f6196eae23de908484737e5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.331ex; height:2.843ex;" alt="{\displaystyle (ct,x,y,z)}"></span>⁠</span> coordinates, <i>A</i> is a <span class="nowrap">4–vector</span> if it transforms (in the <span class="nowrap"><i>x</i>-direction</span>) according to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}A_{0}'&=\gamma \left(A_{0}-(v/c)A_{1}\right)\\A_{1}'&=\gamma \left(A_{1}-(v/c)A_{0}\right)\\A_{2}'&=A_{2}\\A_{3}'&=A_{3}\end{aligned}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}A_{0}'&=\gamma \left(A_{0}-(v/c)A_{1}\right)\\A_{1}'&=\gamma \left(A_{1}-(v/c)A_{0}\right)\\A_{2}'&=A_{2}\\A_{3}'&=A_{3}\end{aligned}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b37fcc22c3fefc43d265f24264191d03df0b3fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.646ex; margin-bottom: -0.192ex; width:24.294ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}A_{0}'&=\gamma \left(A_{0}-(v/c)A_{1}\right)\\A_{1}'&=\gamma \left(A_{1}-(v/c)A_{0}\right)\\A_{2}'&=A_{2}\\A_{3}'&=A_{3}\end{aligned}},}"></span></dd></dl> <p>which comes from simply replacing <i>ct</i> with <i>A</i><sub>0</sub> and <i>x</i> with <i>A</i><sub>1</sub> in the earlier presentation of the <a href="#Lorentz_transformations"><b>Lorentz transformation.</b></a> </p><p>As usual, when we write <i>x</i>, <i>t</i>, etc. we generally mean Δ<i>x</i>, Δ<i>t</i> etc. </p><p>The last three components of a <span class="nowrap">4–vector</span> must be a standard vector in three-dimensional space. Therefore, a <span class="nowrap">4–vector</span> must transform like <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (c\Delta t,\Delta x,\Delta y,\Delta z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>,</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>,</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> <mo>,</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (c\Delta t,\Delta x,\Delta y,\Delta z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb8632412b69ddb9ff27f0e7b67d9a4da7c59e09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.074ex; height:2.843ex;" alt="{\displaystyle (c\Delta t,\Delta x,\Delta y,\Delta z)}"></span>⁠</span> under Lorentz transformations as well as rotations.<sup id="cite_ref-Schutz1985_116-0" class="reference"><a href="#cite_note-Schutz1985-116"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 36–59">: 36–59 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Properties_of_4-vectors">Properties of 4-vectors</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=41" title="Edit section: Properties of 4-vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b>Closure under linear combination:</b> If <i>A</i> and <i>B</i> are <span class="nowrap">4-vectors</span>, then <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=aA+aB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mi>a</mi> <mi>A</mi> <mo>+</mo> <mi>a</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=aA+aB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/081a920cedf371e2b6e8e0ff292c0939394aaec5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.672ex; height:2.343ex;" alt="{\displaystyle C=aA+aB}"></span>⁠</span> is also a <span class="nowrap">4-vector</span>.</li> <li><b>Inner-product invariance:</b> If <i>A</i> and <i>B</i> are <span class="nowrap">4-vectors</span>, then their inner product (scalar product) is invariant, i.e. their inner product is independent of the frame in which it is calculated. Note how the calculation of inner product differs from the calculation of the inner product of a <span class="nowrap">3-vector</span>. In the following, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391292ffadc65b0cde3e96f23afcdb811619dd95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:3.009ex;" alt="{\displaystyle {\vec {A}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ae7d80cab55b606de217162280b2279142bbb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.843ex;" alt="{\displaystyle {\vec {B}}}"></span> are <span class="nowrap">3-vectors</span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cdot B\equiv }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⋅<!-- ⋅ --></mo> <mi>B</mi> <mo>≡<!-- ≡ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cdot B\equiv }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/714623f18dc4d4dfdb22fe50222807ecaef8d0c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.64ex; height:2.176ex;" alt="{\displaystyle A\cdot B\equiv }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{0}B_{0}-A_{1}B_{1}-A_{2}B_{2}-A_{3}B_{3}\equiv }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>≡<!-- ≡ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{0}B_{0}-A_{1}B_{1}-A_{2}B_{2}-A_{3}B_{3}\equiv }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63734a2b20fd3493a10e2ee165f8f511c5ee40e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:33.437ex; height:2.509ex;" alt="{\displaystyle A_{0}B_{0}-A_{1}B_{1}-A_{2}B_{2}-A_{3}B_{3}\equiv }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{0}B_{0}-{\vec {A}}\cdot {\vec {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{0}B_{0}-{\vec {A}}\cdot {\vec {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d1ee238b44ba58c2d6beea16d2bb14c984699bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.642ex; height:3.343ex;" alt="{\displaystyle A_{0}B_{0}-{\vec {A}}\cdot {\vec {B}}}"></span></dd></dl></li></ul> <dl><dd>In addition to being invariant under Lorentz transformation, the above inner product is also invariant under rotation in <span class="nowrap">3-space</span>.</dd> <dd>Two vectors are said to be <i>orthogonal</i> if <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cdot B=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⋅<!-- ⋅ --></mo> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cdot B=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5efc0cb2fe9ce4180033bd44b4514b0582e7745c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.447ex; height:2.176ex;" alt="{\displaystyle A\cdot B=0}"></span>⁠</span>. Unlike the case with <span class="nowrap">3-vectors</span>, orthogonal <span class="nowrap">4-vectors</span> are not necessarily at right angles to each other. The rule is that two <span class="nowrap">4-vectors</span> are orthogonal if they are offset by equal and opposite angles from the 45° line, which is the world line of a light ray. This implies that a lightlike <span class="nowrap">4-vector</span> is orthogonal to <i>itself</i>.</dd></dl> <ul><li><b>Invariance of the magnitude of a vector:</b> The magnitude of a vector is the inner product of a <span class="nowrap">4-vector</span> with itself, and is a frame-independent property. As with intervals, the magnitude may be positive, negative or zero, so that the vectors are referred to as timelike, spacelike or null (lightlike). Note that a null vector is not the same as a zero vector. A null vector is one for which <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cdot A=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⋅<!-- ⋅ --></mo> <mi>A</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cdot A=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4df9f840dad7c9eab62aa2e1e701a6eb4ac01bbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.426ex; height:2.176ex;" alt="{\displaystyle A\cdot A=0}"></span>⁠</span>, while a zero vector is one whose components are all zero. Special cases illustrating the invariance of the norm include the invariant interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}t^{2}-x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}t^{2}-x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1544614c40e69f73aa27510e20ccff546b7295ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.179ex; height:2.843ex;" alt="{\displaystyle c^{2}t^{2}-x^{2}}"></span> and the invariant length of the relativistic momentum vector <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E^{2}-p^{2}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E^{2}-p^{2}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5edae8db2fa783bae8dcd1a9dbaaae868effca45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.973ex; height:3.009ex;" alt="{\displaystyle E^{2}-p^{2}c^{2}}"></span>⁠</span>.<sup id="cite_ref-Morin2007_31-10" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 178–181">: 178–181 </span></sup><sup id="cite_ref-Schutz1985_116-1" class="reference"><a href="#cite_note-Schutz1985-116"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 36–59">: 36–59 </span></sup></li></ul> <div class="mw-heading mw-heading4"><h4 id="Examples_of_4-vectors">Examples of 4-vectors</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=42" title="Edit section: Examples of 4-vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b>Displacement 4-vector:</b> Otherwise known as the <i>spacetime separation</i>, this is <span class="nowrap">(<i>Δt, Δx, Δy, Δz</i>),</span> or for infinitesimal separations, <span class="nowrap">(<i>dt</i>, <i>dx</i>, <i>dy</i>, <i>dz</i>)</span>. <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dS\equiv (dt,dx,dy,dz)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>S</mi> <mo>≡<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mi>t</mi> <mo>,</mo> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>y</mi> <mo>,</mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dS\equiv (dt,dx,dy,dz)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9b3a79e09e4f53baf6731e650bd2d58d872ccb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.001ex; height:2.843ex;" alt="{\displaystyle dS\equiv (dt,dx,dy,dz)}"></span></dd></dl></li> <li><b>Velocity 4-vector:</b> This results when the displacement <span class="nowrap">4-vector</span> is divided by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00568785317ea373b90759c05c67d795b57b3194" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.418ex; height:2.176ex;" alt="{\displaystyle d\tau }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00568785317ea373b90759c05c67d795b57b3194" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.418ex; height:2.176ex;" alt="{\displaystyle d\tau }"></span> is the proper time between the two events that yield <i>dt</i>, <i>dx</i>, <i>dy</i>, and <i>dz</i>. <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\equiv {\frac {dS}{d\tau }}={\frac {(dt,dx,dy,dz)}{dt/\gamma }}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>S</mi> </mrow> <mrow> <mi>d</mi> <mi>τ<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mi>t</mi> <mo>,</mo> <mi>d</mi> <mi>x</mi> <mo>,</mo> <mi>d</mi> <mi>y</mi> <mo>,</mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>γ<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\equiv {\frac {dS}{d\tau }}={\frac {(dt,dx,dy,dz)}{dt/\gamma }}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ced520060ffa46a43ff5e545c21bc2e343e488a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.012ex; height:6.509ex;" alt="{\displaystyle V\equiv {\frac {dS}{d\tau }}={\frac {(dt,dx,dy,dz)}{dt/\gamma }}=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \left(1,{\frac {dx}{dt}},{\frac {dy}{dt}},{\frac {dz}{dt}}\right)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \left(1,{\frac {dx}{dt}},{\frac {dy}{dt}},{\frac {dz}{dt}}\right)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3faeae5799fe72ffb1a83426b6f4f793b9a02026" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.517ex; height:6.176ex;" alt="{\displaystyle \gamma \left(1,{\frac {dx}{dt}},{\frac {dy}{dt}},{\frac {dz}{dt}}\right)=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\gamma ,\gamma {\vec {v}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\gamma ,\gamma {\vec {v}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f508c32712542569af0975918323d4bb95d8b221" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.543ex; height:2.843ex;" alt="{\displaystyle (\gamma ,\gamma {\vec {v}})}"></span></dd></dl></li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:308px;max-width:308px"><div class="trow"><div class="tsingle" style="width:152px;max-width:152px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Momentarily_Comoving_Reference_Frame.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Momentarily_Comoving_Reference_Frame.gif/150px-Momentarily_Comoving_Reference_Frame.gif" decoding="async" width="150" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Momentarily_Comoving_Reference_Frame.gif/225px-Momentarily_Comoving_Reference_Frame.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Momentarily_Comoving_Reference_Frame.gif/300px-Momentarily_Comoving_Reference_Frame.gif 2x" data-file-width="501" data-file-height="501" /></a></span></div><div class="thumbcaption">Figure 7-3a. The momentarily comoving reference frames of an accelerating particle as observed from a stationary frame.</div></div><div class="tsingle" style="width:152px;max-width:152px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Lorentz_transform_of_world_line.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Lorentz_transform_of_world_line.gif/150px-Lorentz_transform_of_world_line.gif" decoding="async" width="150" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/e/e4/Lorentz_transform_of_world_line.gif 1.5x" data-file-width="200" data-file-height="200" /></a></span></div><div class="thumbcaption">Figure 7-3b. The momentarily comoving reference frames along the trajectory of an accelerating observer (center).</div></div></div></div></div> <dl><dd>The <span class="nowrap">4-velocity</span> is tangent to the world line of a particle, and has a length equal to one unit of time in the frame of the particle.</dd> <dd>An accelerated particle does not have an inertial frame in which it is always at rest. However, an inertial frame can always be found that is momentarily comoving with the particle. This frame, the <i>momentarily comoving reference frame</i> (MCRF), enables application of special relativity to the analysis of accelerated particles.</dd> <dd>Since photons move on null lines, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\tau =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>τ<!-- τ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\tau =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0e31de179716bd64a2eebbc949157606a284867" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.679ex; height:2.176ex;" alt="{\displaystyle d\tau =0}"></span> for a photon, and a <span class="nowrap">4-velocity</span> cannot be defined. There is no frame in which a photon is at rest, and no MCRF can be established along a photon's path.</dd></dl> <ul><li><b>Energy–momentum 4-vector:</b> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\equiv (E/c,{\vec {p}})=(E/c,p_{x},p_{y},p_{z})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>≡<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\equiv (E/c,{\vec {p}})=(E/c,p_{x},p_{y},p_{z})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ea11788251b3afe169700725c8da2a385069b49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.643ex; height:3.009ex;" alt="{\displaystyle P\equiv (E/c,{\vec {p}})=(E/c,p_{x},p_{y},p_{z})}"></span></dd></dl></li></ul> <dl><dd>As indicated before, there are varying treatments for the energy–momentum <span class="nowrap">4-vector</span> so that one may also see it expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,{\vec {p}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,{\vec {p}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e1445539d4823c2a52fdef0ee636fc353828634" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.944ex; height:2.843ex;" alt="{\displaystyle (E,{\vec {p}})}"></span> or <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,{\vec {p}}c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,{\vec {p}}c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/154187fb8caab04245c2594ebba8c99407056fe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.951ex; height:2.843ex;" alt="{\displaystyle (E,{\vec {p}}c)}"></span>⁠</span>. The first component is the total energy (including mass) of the particle (or system of particles) in a given frame, while the remaining components are its spatial momentum. The energy–momentum <span class="nowrap">4-vector</span> is a conserved quantity.</dd></dl> <ul><li><b>Acceleration 4-vector:</b> This results from taking the derivative of the velocity <span class="nowrap">4-vector</span> with respect to <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"></span>⁠</span>. <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\equiv {\frac {dV}{d\tau }}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>V</mi> </mrow> <mrow> <mi>d</mi> <mi>τ<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\equiv {\frac {dV}{d\tau }}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6190373cbee3695a4a1b9b2d2e4287ad1a6619a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.134ex; height:5.509ex;" alt="{\displaystyle A\equiv {\frac {dV}{d\tau }}=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{d\tau }}(\gamma ,\gamma {\vec {v}})=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>τ<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{d\tau }}(\gamma ,\gamma {\vec {v}})=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97dbdcaa5e12f5b1aa1d610f16633ed36b1dce00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.25ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{d\tau }}(\gamma ,\gamma {\vec {v}})=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \left({\frac {d\gamma }{dt}},{\frac {d(\gamma {\vec {v}})}{dt}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>γ<!-- γ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \left({\frac {d\gamma }{dt}},{\frac {d(\gamma {\vec {v}})}{dt}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03dcac87d0f6bfec3985bde98ae636462d9829a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.718ex; height:6.343ex;" alt="{\displaystyle \gamma \left({\frac {d\gamma }{dt}},{\frac {d(\gamma {\vec {v}})}{dt}}\right)}"></span></dd></dl></li> <li><b>Force 4-vector:</b> This is the derivative of the momentum <span class="nowrap">4-vector</span> with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/871bb01391136d3551c8ea59059e106be2a403cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.849ex; height:1.676ex;" alt="{\displaystyle \tau .}"></span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\equiv {\frac {dP}{d\tau }}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>P</mi> </mrow> <mrow> <mi>d</mi> <mi>τ<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\equiv {\frac {dP}{d\tau }}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa7a8df77288382a82487f11e4e3487053fbd040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.09ex; height:5.509ex;" alt="{\displaystyle F\equiv {\frac {dP}{d\tau }}=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \left({\frac {dE}{dt}},{\frac {d{\vec {p}}}{dt}}\right)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \left({\frac {dE}{dt}},{\frac {d{\vec {p}}}{dt}}\right)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7b5a1b00f67805678a7839394cb8b87669f16e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.763ex; height:6.176ex;" alt="{\displaystyle \gamma \left({\frac {dE}{dt}},{\frac {d{\vec {p}}}{dt}}\right)=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \left({\frac {dE}{dt}},{\vec {f}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \left({\frac {dE}{dt}},{\vec {f}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a8cb90349202634bbc78bdea3e4ea8c8a6bc4c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.597ex; height:6.176ex;" alt="{\displaystyle \gamma \left({\frac {dE}{dt}},{\vec {f}}\right)}"></span></dd></dl></li></ul> <p>As expected, the final components of the above <span class="nowrap">4-vectors</span> are all standard <span class="nowrap">3-vectors</span> corresponding to spatial <span class="nowrap">3-momentum</span>, <span class="nowrap">3-force</span> etc.<sup id="cite_ref-Morin2007_31-11" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 178–181">: 178–181 </span></sup><sup id="cite_ref-Schutz1985_116-2" class="reference"><a href="#cite_note-Schutz1985-116"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 36–59">: 36–59 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="4-vectors_and_physical_law">4-vectors and physical law</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=43" title="Edit section: 4-vectors and physical law"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first postulate of special relativity declares the equivalency of all inertial frames. A physical law holding in one frame must apply in all frames, since otherwise it would be possible to differentiate between frames. Newtonian momenta fail to behave properly under Lorentzian transformation, and Einstein preferred to change the definition of momentum to one involving <span class="nowrap">4-vectors</span> rather than give up on conservation of momentum. </p><p>Physical laws must be based on constructs that are frame independent. This means that physical laws may take the form of equations connecting scalars, which are always frame independent. However, equations involving <span class="nowrap">4-vectors</span> require the use of tensors with appropriate rank, which themselves can be thought of as being built up from <span class="nowrap">4-vectors</span>.<sup id="cite_ref-Morin2007_31-12" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 186">: 186 </span></sup> <span class="anchor" id="Acceleration"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Acceleration">Acceleration</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=44" title="Edit section: Acceleration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Acceleration_(special_relativity)" title="Acceleration (special relativity)">Acceleration (special relativity)</a></div> <p>It is a common misconception that special relativity is applicable only to inertial frames, and that it is unable to handle accelerating objects or accelerating reference frames. Actually, accelerating objects can generally be analyzed without needing to deal with accelerating frames at all. It is only when gravitation is significant that general relativity is required.<sup id="cite_ref-PhysicsFAQ_117-0" class="reference"><a href="#cite_note-PhysicsFAQ-117"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> </p><p>Properly handling accelerating frames does require some care, however. The difference between special and general relativity is that (1) In special relativity, all velocities are relative, but acceleration is absolute. (2) In general relativity, all motion is relative, whether inertial, accelerating, or rotating. To accommodate this difference, general relativity uses curved spacetime.<sup id="cite_ref-PhysicsFAQ_117-1" class="reference"><a href="#cite_note-PhysicsFAQ-117"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> </p><p>In this section, we analyze several scenarios involving accelerated reference frames. </p><p><span class="anchor" id="Dewan–Beran–Bell_spaceship_paradox"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Dewan–Beran–Bell_spaceship_paradox"><span id="Dewan.E2.80.93Beran.E2.80.93Bell_spaceship_paradox"></span>Dewan–Beran–Bell spaceship paradox</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=45" title="Edit section: Dewan–Beran–Bell spaceship paradox"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bell%27s_spaceship_paradox" title="Bell's spaceship paradox">Bell's spaceship paradox</a></div> <p>The Dewan–Beran–Bell spaceship paradox (<a href="/wiki/Bell%27s_spaceship_paradox" title="Bell's spaceship paradox">Bell's spaceship paradox</a>) is a good example of a problem where intuitive reasoning unassisted by the geometric insight of the spacetime approach can lead to issues. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Bell%27s_spaceship_paradox_-_two_spaceships_-_initial_setup.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Bell%27s_spaceship_paradox_-_two_spaceships_-_initial_setup.png/220px-Bell%27s_spaceship_paradox_-_two_spaceships_-_initial_setup.png" decoding="async" width="220" height="71" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Bell%27s_spaceship_paradox_-_two_spaceships_-_initial_setup.png/330px-Bell%27s_spaceship_paradox_-_two_spaceships_-_initial_setup.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/56/Bell%27s_spaceship_paradox_-_two_spaceships_-_initial_setup.png/440px-Bell%27s_spaceship_paradox_-_two_spaceships_-_initial_setup.png 2x" data-file-width="956" data-file-height="308" /></a><figcaption>Figure 7–4. Dewan–Beran–Bell spaceship paradox</figcaption></figure> <p>In Fig. 7-4, two identical spaceships float in space and are at rest relative to each other. They are connected by a string that is capable of only a limited amount of stretching before breaking. At a given instant in our frame, the observer frame, both spaceships accelerate in the same direction along the line between them with the same constant proper acceleration.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>note 12<span class="cite-bracket">]</span></a></sup> Will the string break? </p><p>When the paradox was new and relatively unknown, even professional physicists had difficulty working out the solution. Two lines of reasoning lead to opposite conclusions. Both arguments, which are presented below, are flawed even though one of them yields the correct answer.<sup id="cite_ref-Morin2007_31-13" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 106, 120–122">: 106, 120–122 </span></sup> </p> <ol><li>To observers in the rest frame, the spaceships start a distance <i>L</i> apart and remain the same distance apart during acceleration. During acceleration, <i>L</i> is a length contracted distance of the distance <span class="nowrap"><i>L<span class="nowrap" style="padding-left:0.1em;">'</span> = γL</i></span> in the frame of the accelerating spaceships. After a sufficiently long time, <i>γ</i> will increase to a sufficiently large factor that the string must break.</li> <li>Let <i>A</i> and <i>B</i> be the rear and front spaceships. In the frame of the spaceships, each spaceship sees the other spaceship doing the same thing that it is doing. <i>A</i> says that <i>B</i> has the same acceleration that he has, and <i>B</i> sees that <i>A</i> matches her every move. So the spaceships stay the same distance apart, and the string does not break.<sup id="cite_ref-Morin2007_31-14" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 106, 120–122">: 106, 120–122 </span></sup></li></ol> <p>The problem with the first argument is that there is no "frame of the spaceships." There cannot be, because the two spaceships measure a growing distance between the two. Because there is no common frame of the spaceships, the length of the string is ill-defined. Nevertheless, the conclusion is correct, and the argument is mostly right. The second argument, however, completely ignores the relativity of simultaneity.<sup id="cite_ref-Morin2007_31-15" class="reference"><a href="#cite_note-Morin2007-31"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 106, 120–122">: 106, 120–122 </span></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Bell_spaceship_paradox.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Bell_spaceship_paradox.svg/220px-Bell_spaceship_paradox.svg.png" decoding="async" width="220" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Bell_spaceship_paradox.svg/330px-Bell_spaceship_paradox.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Bell_spaceship_paradox.svg/440px-Bell_spaceship_paradox.svg.png 2x" data-file-width="641" data-file-height="684" /></a><figcaption>Figure 7–5. The curved lines represent the world lines of two observers A and B who accelerate in the same direction with the same constant magnitude acceleration. At A' and B', the observers stop accelerating. The dashed lines are lines of simultaneity for either observer before acceleration begins and after acceleration stops.</figcaption></figure> <p>A spacetime diagram (Fig. 7-5) makes the correct solution to this paradox almost immediately evident. Two observers in Minkowski spacetime accelerate with constant magnitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> acceleration for proper time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> (acceleration and elapsed time measured by the observers themselves, not some inertial observer). They are comoving and inertial before and after this phase. In Minkowski geometry, the length along the line of simultaneity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'B''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <msup> <mi>B</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'B''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3479b3a2b0bffc34034797643226936b0db651da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.329ex; height:2.509ex;" alt="{\displaystyle A'B''}"></span> turns out to be greater than the length along the line of simultaneity <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span>⁠</span>. </p><p>The length increase can be calculated with the help of the Lorentz transformation. If, as illustrated in Fig. 7-5, the acceleration is finished, the ships will remain at a constant offset in some frame <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf9961844d1f539adee019e432dc18aa2a7ede59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.206ex; height:2.509ex;" alt="{\displaystyle S'}"></span>⁠</span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/131920dc49fade5cd528c48af190e33e3c7e0a6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.795ex; height:2.009ex;" alt="{\displaystyle x_{A}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{B}=x_{A}+L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{B}=x_{A}+L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99ca40362eb910abee23b6229bb4fe4038238f1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.125ex; height:2.509ex;" alt="{\displaystyle x_{B}=x_{A}+L}"></span> are the ships' positions in <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>⁠</span>, the positions in frame <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf9961844d1f539adee019e432dc18aa2a7ede59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.206ex; height:2.509ex;" alt="{\displaystyle S'}"></span> are:<sup id="cite_ref-Franklin_119-0" class="reference"><a href="#cite_note-Franklin-119"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x'_{A}&=\gamma \left(x_{A}-vt\right)\\x'_{B}&=\gamma \left(x_{A}+L-vt\right)\\L'&=x'_{B}-x'_{A}=\gamma L\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mo>′</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <mi>L</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>L</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mo>′</mo> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>L</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x'_{A}&=\gamma \left(x_{A}-vt\right)\\x'_{B}&=\gamma \left(x_{A}+L-vt\right)\\L'&=x'_{B}-x'_{A}=\gamma L\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/496a005e5342d2fd9da69a82534aed90081ba1b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.083ex; margin-bottom: -0.255ex; width:22.143ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}x'_{A}&=\gamma \left(x_{A}-vt\right)\\x'_{B}&=\gamma \left(x_{A}+L-vt\right)\\L'&=x'_{B}-x'_{A}=\gamma L\end{aligned}}}"></span></dd></dl> <p>The "paradox", as it were, comes from the way that Bell constructed his example. In the usual discussion of Lorentz contraction, the rest length is fixed and the moving length shortens as measured in frame <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>⁠</span>. As shown in Fig. 7-5, Bell's example asserts the moving lengths <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'B'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <msup> <mi>B</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'B'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eab528dd0aeadceb425686e73e3c71f2de09cf0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.877ex; height:2.509ex;" alt="{\displaystyle A'B'}"></span> measured in frame <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> to be fixed, thereby forcing the rest frame length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A'B''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <msup> <mi>B</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A'B''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3479b3a2b0bffc34034797643226936b0db651da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.329ex; height:2.509ex;" alt="{\displaystyle A'B''}"></span> in frame <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf9961844d1f539adee019e432dc18aa2a7ede59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.206ex; height:2.509ex;" alt="{\displaystyle S'}"></span> to increase. </p><p><span class="anchor" id="Accelerated_observer_with_horizon"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Accelerated_observer_with_horizon">Accelerated observer with horizon</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=46" title="Edit section: Accelerated observer with horizon"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Event_horizon#Apparent_horizon_of_an_accelerated_particle" title="Event horizon">Event horizon § Apparent horizon of an accelerated particle</a>, and <a href="/wiki/Rindler_coordinates" title="Rindler coordinates">Rindler coordinates</a></div> <p>Certain special relativity problem setups can lead to insight about phenomena normally associated with general relativity, such as <a href="/wiki/Event_horizons" class="mw-redirect" title="Event horizons">event horizons</a>. In the text accompanying <a href="/wiki/Spacetime#Invariant_hyperbola" title="Spacetime">Section "Invariant hyperbola" of the article Spacetime</a>, the magenta hyperbolae represented actual paths that are tracked by a constantly accelerating traveler in spacetime. During periods of positive acceleration, the traveler's velocity just <i>approaches</i> the speed of light, while, measured in our frame, the traveler's acceleration constantly decreases. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Accelerated_relativistic_observer_with_horizon.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Accelerated_relativistic_observer_with_horizon.png/220px-Accelerated_relativistic_observer_with_horizon.png" decoding="async" width="220" height="223" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Accelerated_relativistic_observer_with_horizon.png/330px-Accelerated_relativistic_observer_with_horizon.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Accelerated_relativistic_observer_with_horizon.png/440px-Accelerated_relativistic_observer_with_horizon.png 2x" data-file-width="640" data-file-height="650" /></a><figcaption>Figure 7–6. Accelerated relativistic observer with horizon. Another well-drawn illustration of the same topic may be viewed <a href="/wiki/File:ConstantAcceleration02.jpg" title="File:ConstantAcceleration02.jpg"><b>here</b></a>. </figcaption></figure> <p>Fig. 7-6 details various features of the traveler's motions with more specificity. At any given moment, her space axis is formed by a line passing through the origin and her current position on the hyperbola, while her time axis is the tangent to the hyperbola at her position. The velocity parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> approaches a limit of one as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72479bb6f1dc1b592b57dd9fed06d5f50030a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.846ex; height:2.009ex;" alt="{\displaystyle ct}"></span> increases. Likewise, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> approaches infinity. </p><p>The shape of the invariant hyperbola corresponds to a path of constant proper acceleration. This is demonstrable as follows: </p> <ol><li>We remember that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =ct/x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>=</mo> <mi>c</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =ct/x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9028066e4aaa8e00264f13231010cb7e07742d63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.769ex; height:2.843ex;" alt="{\displaystyle \beta =ct/x}"></span>⁠</span>.</li> <li>Since <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{2}t^{2}-x^{2}=s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{2}t^{2}-x^{2}=s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f371a4dc1d1a8c82fff3a5de6dc0751d525b8e8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.422ex; height:2.843ex;" alt="{\displaystyle c^{2}t^{2}-x^{2}=s^{2}}"></span>⁠</span>, we conclude that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta (ct)=ct/{\sqrt {c^{2}t^{2}-s^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>c</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta (ct)=ct/{\sqrt {c^{2}t^{2}-s^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c63d7c189ed809ffaf894f7ade5eff84b9183344" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.359ex; height:3.509ex;" alt="{\displaystyle \beta (ct)=ct/{\sqrt {c^{2}t^{2}-s^{2}}}}"></span>⁠</span>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =1/{\sqrt {1-\beta ^{2}}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =1/{\sqrt {1-\beta ^{2}}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/441cf3700702a16e7ecbf12fb692635c9eb2790d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:17.857ex; height:4.843ex;" alt="{\displaystyle \gamma =1/{\sqrt {1-\beta ^{2}}}=}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {c^{2}t^{2}-s^{2}}}/s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {c^{2}t^{2}-s^{2}}}/s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a9d06b9f142f43072a75083274073b7fe5a690c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.517ex; height:3.509ex;" alt="{\displaystyle {\sqrt {c^{2}t^{2}-s^{2}}}/s}"></span></li> <li>From the relativistic force law, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=dp/dt=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mi>d</mi> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=dp/dt=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/678f7e4d2661575eedd51a210a7dfe0bce46a7f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.896ex; height:2.843ex;" alt="{\displaystyle F=dp/dt=}"></span><span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dpc/d(ct)=d(\beta \gamma mc^{2})/d(ct)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>p</mi> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dpc/d(ct)=d(\beta \gamma mc^{2})/d(ct)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6c7ff89052b20b434248374a5bd58f714a1e31f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.28ex; height:3.176ex;" alt="{\displaystyle dpc/d(ct)=d(\beta \gamma mc^{2})/d(ct)}"></span>⁠</span>.</li> <li>Substituting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta (ct)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta (ct)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61835779ef98de2a8a6e7b236da575b96d573a99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.988ex; height:2.843ex;" alt="{\displaystyle \beta (ct)}"></span> from step 2 and the expression for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> from step 3 yields <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=mc^{2}/s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=mc^{2}/s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54b990106c0e01a704134bd43b78a2d48a669c69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.194ex; height:3.176ex;" alt="{\displaystyle F=mc^{2}/s}"></span>⁠</span>, which is a constant expression.<sup id="cite_ref-Bais_120-0" class="reference"><a href="#cite_note-Bais-120"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 110–113">: 110–113 </span></sup></li></ol> <p>Fig. 7-6 illustrates a specific calculated scenario. Terence (A) and Stella (B) initially stand together 100 light hours from the origin. Stella lifts off at time 0, her spacecraft accelerating at 0.01 <i>c</i> per hour. Every twenty hours, Terence radios updates to Stella about the situation at home (solid green lines). Stella receives these regular transmissions, but the increasing distance (offset in part by time dilation) causes her to receive Terence's communications later and later as measured on her clock, and she <i>never</i> receives any communications from Terence after 100 hours on his clock (dashed green lines).<sup id="cite_ref-Bais_120-1" class="reference"><a href="#cite_note-Bais-120"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 110–113">: 110–113 </span></sup> </p><p>After 100 hours according to Terence's clock, Stella enters a dark region. She has traveled outside Terence's timelike future. On the other hand, Terence can continue to <b>receive</b> Stella's messages to him indefinitely. He just has to wait long enough. Spacetime has been divided into distinct regions separated by an <i>apparent</i> event horizon. So long as Stella continues to accelerate, she can never know what takes place behind this horizon.<sup id="cite_ref-Bais_120-2" class="reference"><a href="#cite_note-Bais-120"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 110–113">: 110–113 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Relativity_and_unifying_electromagnetism">Relativity and unifying electromagnetism</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=47" title="Edit section: Relativity and unifying electromagnetism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Classical_electromagnetism_and_special_relativity" title="Classical electromagnetism and special relativity">Classical electromagnetism and special relativity</a> and <a href="/wiki/Covariant_formulation_of_classical_electromagnetism" title="Covariant formulation of classical electromagnetism">Covariant formulation of classical electromagnetism</a></div> <p>Theoretical investigation in <a href="/wiki/Classical_electromagnetism" title="Classical electromagnetism">classical electromagnetism</a> led to the discovery of wave propagation. Equations generalizing the electromagnetic effects found that finite propagation speed of the <b>E</b> and <b>B</b> fields required certain behaviors on charged particles. The general study of moving charges forms the <a href="/wiki/Li%C3%A9nard%E2%80%93Wiechert_potential" title="Liénard–Wiechert potential">Liénard–Wiechert potential</a>, which is a step towards special relativity. </p><p>The Lorentz transformation of the <a href="/wiki/Electric_field" title="Electric field">electric field</a> of a moving charge into a non-moving observer's reference frame results in the appearance of a mathematical term commonly called the <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>. Conversely, the <i>magnetic</i> field generated by a moving charge disappears and becomes a purely <i>electrostatic</i> field in a comoving frame of reference. <a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a> are thus simply an empirical fit to special relativistic effects in a classical model of the Universe. As electric and magnetic fields are reference frame dependent and thus intertwined, one speaks of <i>electromagnetic</i> fields. Special relativity provides the transformation rules for how an electromagnetic field in one inertial frame appears in another inertial frame. </p><p><a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a> in the 3D form are already consistent with the physical content of special relativity, although they are easier to manipulate in a <a href="/wiki/Manifestly_covariant" class="mw-redirect" title="Manifestly covariant">manifestly covariant</a> form, that is, in the language of <a href="/wiki/Tensor" title="Tensor">tensor</a> calculus.<sup id="cite_ref-Post_1962_115-1" class="reference"><a href="#cite_note-Post_1962-115"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Theories_of_relativity_and_quantum_mechanics">Theories of relativity and quantum mechanics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=48" title="Edit section: Theories of relativity and quantum mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Special</i> relativity can be combined with <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> to form <a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">relativistic quantum mechanics</a> and <a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">quantum electrodynamics</a>. How <a href="/wiki/General_relativity" title="General relativity"><i>general</i> relativity</a> and quantum mechanics can be unified is <a href="/wiki/List_of_unsolved_problems_in_physics" title="List of unsolved problems in physics">one of the unsolved problems in physics</a>; <a href="/wiki/Quantum_gravity" title="Quantum gravity">quantum gravity</a> and a "<a href="/wiki/Theory_of_everything" title="Theory of everything">theory of everything</a>", which require a unification including general relativity too, are active and ongoing areas in theoretical research. </p><p>The early <a href="/wiki/Bohr_model#Refinements" title="Bohr model">Bohr–Sommerfeld atomic model</a> explained the <a href="/wiki/Fine_structure" title="Fine structure">fine structure</a> of <a href="/wiki/Alkali_metal" title="Alkali metal">alkali metal</a> atoms using both special relativity and the preliminary knowledge on <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> of the time.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> </p><p>In 1928, <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> constructed an influential <a href="/wiki/Relativistic_wave_equation" class="mw-redirect" title="Relativistic wave equation">relativistic wave equation</a>, now known as the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> in his honour,<sup id="cite_ref-Dirac_122-0" class="reference"><a href="#cite_note-Dirac-122"><span class="cite-bracket">[</span>p 25<span class="cite-bracket">]</span></a></sup> that is fully compatible both with special relativity and with the final version of quantum theory existing after 1926. This equation not only described the intrinsic angular momentum of the electrons called <i><a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a></i>, it also led to the prediction of the <a href="/wiki/Antiparticle" title="Antiparticle">antiparticle</a> of the electron (the <a href="/wiki/Positron" title="Positron">positron</a>),<sup id="cite_ref-Dirac_122-1" class="reference"><a href="#cite_note-Dirac-122"><span class="cite-bracket">[</span>p 25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>p 26<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Fine_structure" title="Fine structure">fine structure</a> could only be fully explained with special relativity. It was the first foundation of <i><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">relativistic quantum mechanics</a></i>. </p><p>On the other hand, the existence of antiparticles leads to the conclusion that relativistic quantum mechanics is not enough for a more accurate and complete theory of particle interactions. Instead, a theory of particles interpreted as quantized fields, called <i><a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a></i>, becomes necessary; in which particles can be <a href="/wiki/Annihilation" title="Annihilation">created and destroyed</a> throughout space and time. </p> <div class="mw-heading mw-heading2"><h2 id="Status">Status</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=49" title="Edit section: Status"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Tests_of_special_relativity" title="Tests of special relativity">Tests of special relativity</a> and <a href="/wiki/Criticism_of_the_theory_of_relativity" title="Criticism of the theory of relativity">Criticism of the theory of relativity</a></div> <p>Special relativity in its <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a> is accurate only when the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of the <a href="/wiki/Gravitational_potential" title="Gravitational potential">gravitational potential</a> is much less than <i>c</i><sup>2</sup> in the region of interest.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> In a strong gravitational field, one must use <a href="/wiki/General_relativity" title="General relativity">general relativity</a>. General relativity becomes special relativity at the limit of a weak field. At very small scales, such as at the <a href="/wiki/Planck_length" class="mw-redirect" title="Planck length">Planck length</a> and below, quantum effects must be taken into consideration resulting in <a href="/wiki/Quantum_gravity" title="Quantum gravity">quantum gravity</a>. But at macroscopic scales and in the absence of strong gravitational fields, special relativity is experimentally tested to extremely high degree of accuracy (10<sup>−20</sup>)<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> and thus accepted by the physics community. Experimental results that appear to contradict it are not reproducible and are thus widely believed to be due to experimental errors.<sup id="cite_ref-Roberts_2007_126-0" class="reference"><a href="#cite_note-Roberts_2007-126"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> </p><p>Special relativity is mathematically self-consistent, and it is an organic part of all modern physical theories, most notably <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, <a href="/wiki/String_theory" title="String theory">string theory</a>, and general relativity (in the limiting case of negligible gravitational fields). </p><p>Newtonian mechanics mathematically follows from special relativity at small velocities (compared to the speed of light) – thus Newtonian mechanics can be considered as a special relativity of slow moving bodies. See <i><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></i> for a more detailed discussion. </p><p>Several experiments predating Einstein's 1905 paper are now interpreted as evidence for relativity. Of these it is known Einstein was aware of the Fizeau experiment before 1905,<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> and historians have concluded that Einstein was at least aware of the Michelson–Morley experiment as early as 1899 despite claims he made in his later years that it played no role in his development of the theory.<sup id="cite_ref-mM1905_23-1" class="reference"><a href="#cite_note-mM1905-23"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <ul><li>The <a href="/wiki/Fizeau_experiment" title="Fizeau experiment">Fizeau experiment</a> (1851, repeated by Michelson and Morley in 1886) measured the speed of light in moving media, with results that are consistent with relativistic addition of colinear velocities.</li> <li>The famous Michelson–Morley experiment (1881, 1887) gave further support to the postulate that detecting an absolute reference velocity was not achievable. It should be stated here that, contrary to many alternative claims, it said little about the invariance of the speed of light with respect to the source and observer's velocity, as both source and observer were travelling together at the same velocity at all times.</li> <li>The <a href="/wiki/Trouton%E2%80%93Noble_experiment" title="Trouton–Noble experiment">Trouton–Noble experiment</a> (1903) showed that the torque on a capacitor is independent of position and inertial reference frame.</li> <li>The <a href="/wiki/Experiments_of_Rayleigh_and_Brace" title="Experiments of Rayleigh and Brace">Experiments of Rayleigh and Brace</a> (1902, 1904) showed that length contraction does not lead to birefringence for a co-moving observer, in accordance with the relativity principle.</li></ul> <p><a href="/wiki/Particle_accelerator" title="Particle accelerator">Particle accelerators</a> accelerate and measure the properties of particles moving at near the speed of light, where their behavior is consistent with relativity theory and inconsistent with the earlier <a href="/wiki/Newtonian_mechanics" class="mw-redirect" title="Newtonian mechanics">Newtonian mechanics</a>. These machines would simply not work if they were not engineered according to relativistic principles. In addition, a considerable number of modern experiments have been conducted to test special relativity. Some examples: </p> <ul><li><a href="/wiki/Tests_of_relativistic_energy_and_momentum" title="Tests of relativistic energy and momentum">Tests of relativistic energy and momentum</a> – testing the limiting speed of particles</li> <li><a href="/wiki/Ives%E2%80%93Stilwell_experiment" title="Ives–Stilwell experiment">Ives–Stilwell experiment</a> – testing relativistic Doppler effect and time dilation</li> <li><a href="/wiki/Experimental_testing_of_time_dilation" title="Experimental testing of time dilation">Experimental testing of time dilation</a> – relativistic effects on a fast-moving particle's half-life</li> <li><a href="/wiki/Kennedy%E2%80%93Thorndike_experiment" title="Kennedy–Thorndike experiment">Kennedy–Thorndike experiment</a> – time dilation in accordance with Lorentz transformations</li> <li><a href="/wiki/Hughes%E2%80%93Drever_experiment" title="Hughes–Drever experiment">Hughes–Drever experiment</a> – testing isotropy of space and mass</li> <li><a href="/wiki/Modern_searches_for_Lorentz_violation" title="Modern searches for Lorentz violation">Modern searches for Lorentz violation</a> – various modern tests</li> <li>Experiments to test <a href="/wiki/Emission_theory_(relativity)" title="Emission theory (relativity)">emission theory</a> demonstrated that the speed of light is independent of the speed of the emitter.</li> <li>Experiments to test the <a href="/wiki/Aether_drag_hypothesis" title="Aether drag hypothesis">aether drag hypothesis</a> – no "aether flow obstruction".</li></ul> <div class="mw-heading mw-heading2"><h2 id="Technical_discussion_of_spacetime">Technical discussion of spacetime</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=50" title="Edit section: Technical discussion of spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a></div> <div class="mw-heading mw-heading3"><h3 id="Geometry_of_spacetime">Geometry of spacetime</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=51" title="Edit section: Geometry of spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Comparison_between_flat_Euclidean_space_and_Minkowski_space">Comparison between flat Euclidean space and Minkowski space</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=52" title="Edit section: Comparison between flat Euclidean space and Minkowski space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Line_element" title="Line element">line element</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Orthogonality_and_rotation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Orthogonality_and_rotation.svg/350px-Orthogonality_and_rotation.svg.png" decoding="async" width="350" height="182" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Orthogonality_and_rotation.svg/525px-Orthogonality_and_rotation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Orthogonality_and_rotation.svg/700px-Orthogonality_and_rotation.svg.png 2x" data-file-width="1154" data-file-height="601" /></a><figcaption>Figure 10–1. Orthogonality and rotation of coordinate systems compared between <b>left:</b> <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> through circular <a href="/wiki/Angle" title="Angle">angle</a> <i>φ</i>, <b>right:</b> in <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a> through <a href="/wiki/Hyperbolic_angle" title="Hyperbolic angle">hyperbolic angle</a> <i>φ</i> (red lines labelled <i>c</i> denote the <a href="/wiki/Worldline" class="mw-redirect" title="Worldline">worldlines</a> of a light signal, a vector is orthogonal to itself if it lies on this line).<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>Special relativity uses a "flat" 4-dimensional Minkowski space – an example of a <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>. Minkowski spacetime appears to be very similar to the standard 3-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, but there is a crucial difference with respect to time. </p><p>In 3D space, the <a href="/wiki/Differential_(infinitesimal)" class="mw-redirect" title="Differential (infinitesimal)">differential</a> of distance (line element) <i>ds</i> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=d\mathbf {x} \cdot d\mathbf {x} =dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=d\mathbf {x} \cdot d\mathbf {x} =dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92a5eca9bd44fe2aa0e966708eec74d1170b3e77" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.617ex; height:3.343ex;" alt="{\displaystyle ds^{2}=d\mathbf {x} \cdot d\mathbf {x} =dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2},}"></span> where <span class="nowrap"><i>d</i><b>x</b> = (<i>dx</i><sub>1</sub>, <i>dx</i><sub>2</sub>, <i>dx</i><sub>3</sub>)</span> are the differentials of the three spatial dimensions. In Minkowski geometry, there is an extra dimension with coordinate <i>X</i><sup>0</sup> derived from time, such that the distance differential fulfills <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=-dX_{0}^{2}+dX_{1}^{2}+dX_{2}^{2}+dX_{3}^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mi>d</mi> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=-dX_{0}^{2}+dX_{1}^{2}+dX_{2}^{2}+dX_{3}^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/873a8c616f9cd684cb8643e2e26b51c10cc0d62c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.503ex; height:3.343ex;" alt="{\displaystyle ds^{2}=-dX_{0}^{2}+dX_{1}^{2}+dX_{2}^{2}+dX_{3}^{2},}"></span> where <span class="nowrap"><i>d</i><b>X</b> = (<i>dX</i><sub>0</sub>, <i>dX</i><sub>1</sub>, <i>dX</i><sub>2</sub>, <i>dX</i><sub>3</sub>)</span> are the differentials of the four spacetime dimensions. This suggests a deep theoretical insight: special relativity is simply a <a href="/wiki/Rotational_symmetry" title="Rotational symmetry">rotational symmetry</a> of our spacetime, analogous to the rotational symmetry of Euclidean space (see Fig. 10-1).<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> Just as Euclidean space uses a <a href="/wiki/Euclidean_metric" class="mw-redirect" title="Euclidean metric">Euclidean metric</a>, so spacetime uses a <a href="/wiki/Minkowski_metric" class="mw-redirect" title="Minkowski metric">Minkowski metric</a>. <span class="anchor" id="interval"></span>Basically, special relativity can be stated as the <i>invariance of any spacetime interval</i> (that is the 4D distance between any two events) when viewed from <i>any inertial reference frame</i>. All equations and effects of special relativity can be derived from this rotational symmetry (the <a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré group</a>) of Minkowski spacetime. </p><p>The actual form of <i>ds</i> above depends on the metric and on the choices for the <i>X</i><sup>0</sup> coordinate. To make the time coordinate look like the space coordinates, it can be treated as <a href="/wiki/Imaginary_number" title="Imaginary number">imaginary</a>: <span class="nowrap"><i>X</i><sub>0</sub> = <i>ict</i></span> (this is called a <a href="/wiki/Wick_rotation" title="Wick rotation">Wick rotation</a>). According to <a href="/wiki/Gravitation_(book)" title="Gravitation (book)">Misner, Thorne and Wheeler</a> (1971, §2.3), ultimately the deeper understanding of both special and general relativity will come from the study of the Minkowski metric (described below) and to take <span class="nowrap"><i>X</i><sup>0</sup> = <i>ct</i></span>, rather than a "disguised" Euclidean metric using <i>ict</i> as the time coordinate. </p><p>Some authors use <span class="nowrap"><i>X</i><sup>0</sup> = <i>t</i></span>, with factors of <i>c</i> elsewhere to compensate; for instance, spatial coordinates are divided by <i>c</i> or factors of <i>c</i><sup>±2</sup> are included in the metric tensor.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> These numerous conventions can be superseded by using <a href="/wiki/Natural_units" title="Natural units">natural units</a> where <span class="nowrap"><i>c</i> = 1</span>. Then space and time have equivalent units, and no factors of <i>c</i> appear anywhere. </p> <div class="mw-heading mw-heading4"><h4 id="3D_spacetime">3D spacetime</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=53" title="Edit section: 3D spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Special_relativity-_Three_dimensional_dual-cone.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Special_relativity-_Three_dimensional_dual-cone.svg/220px-Special_relativity-_Three_dimensional_dual-cone.svg.png" decoding="async" width="220" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Special_relativity-_Three_dimensional_dual-cone.svg/330px-Special_relativity-_Three_dimensional_dual-cone.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/76/Special_relativity-_Three_dimensional_dual-cone.svg/440px-Special_relativity-_Three_dimensional_dual-cone.svg.png 2x" data-file-width="134" data-file-height="112" /></a><figcaption>Figure 10–2. Three-dimensional dual-cone.</figcaption></figure> <p>If we reduce the spatial dimensions to 2, so that we can represent the physics in a 3D space <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d60ef63b9b06797f84052a0ff8dfcb5ec7d44ba6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.157ex; height:3.343ex;" alt="{\displaystyle ds^{2}=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2},}"></span> we see that the <a href="/wiki/Null_geodesic" class="mw-redirect" title="Null geodesic">null</a> <a href="/wiki/Geodesic" title="Geodesic">geodesics</a> lie along a dual-cone (see Fig. 10-2) defined by the equation; <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo>=</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e43aa213a6206f390257013d99ba7b7c2a33fe2d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.771ex; height:3.343ex;" alt="{\displaystyle ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}-c^{2}dt^{2}}"></span> or simply <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx_{1}^{2}+dx_{2}^{2}=c^{2}dt^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx_{1}^{2}+dx_{2}^{2}=c^{2}dt^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f136fee2656c3a7d7f608b4732671b36a7a3edc1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.956ex; height:3.343ex;" alt="{\displaystyle dx_{1}^{2}+dx_{2}^{2}=c^{2}dt^{2},}"></span> which is the equation of a circle of radius <i>c dt</i>. </p> <div class="mw-heading mw-heading4"><h4 id="4D_spacetime">4D spacetime</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=54" title="Edit section: 4D spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If we extend this to three spatial dimensions, the null geodesics are the 4-dimensional cone: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}-c^{2}dt^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo>=</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}-c^{2}dt^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/651ec5a5c69df295c86316d566133dfec28b076f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.211ex; height:3.343ex;" alt="{\displaystyle ds^{2}=0=dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}-c^{2}dt^{2}}"></span> so <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}=c^{2}dt^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}=c^{2}dt^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48b222cb673f2908faef27a39bc8dc0456ac2971" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.396ex; height:3.343ex;" alt="{\displaystyle dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}=c^{2}dt^{2}.}"></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Concentric_Spheres.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Concentric_Spheres.svg/220px-Concentric_Spheres.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Concentric_Spheres.svg/330px-Concentric_Spheres.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Concentric_Spheres.svg/440px-Concentric_Spheres.svg.png 2x" data-file-width="500" data-file-height="500" /></a><figcaption>Figure 10–3. Concentric spheres, illustrating in 3-space the null geodesics of a 4-dimensional cone in spacetime.</figcaption></figure> <p>As illustrated in Fig. 10-3, the null geodesics can be visualized as a set of continuous concentric spheres with radii = <i>c dt</i>. </p><p>This null dual-cone represents the "line of sight" of a point in space. That is, when we look at the <a href="/wiki/Star" title="Star">stars</a> and say "The light from that star that I am receiving is <i>X</i> years old", we are looking down this line of sight: a null geodesic. We are looking at an event a distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle d={\sqrt {x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle d={\sqrt {x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad565b128dfdb6fb79ed3ddd90557276826b419a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.471ex; height:4.843ex;" alt="{\textstyle d={\sqrt {x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}}"></span> away and a time <i>d</i>/<i>c</i> in the past. For this reason the null dual cone is also known as the "light cone". (The point in the lower left of the Fig. 10-2 represents the star, the origin represents the observer, and the line represents the null geodesic "line of sight".) </p><p>The cone in the −<i>t</i> region is the information that the point is "receiving", while the cone in the +<i>t</i> section is the information that the point is "sending". </p><p>The geometry of Minkowski space can be depicted using <a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagrams</a>, which are useful also in understanding many of the <a href="/wiki/Thought_experiment" title="Thought experiment">thought experiments</a> in special relativity. </p> <div class="mw-heading mw-heading3"><h3 id="Physics_in_spacetime">Physics in spacetime</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=55" title="Edit section: Physics in spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Transformations_of_physical_quantities_between_reference_frames">Transformations of physical quantities between reference frames</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=56" title="Edit section: Transformations of physical quantities between reference frames"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Above, the Lorentz transformation for the time coordinate and three space coordinates illustrates that they are intertwined. This is true more generally: certain pairs of "timelike" and "spacelike" quantities naturally combine on equal footing under the same Lorentz transformation. </p><p>The Lorentz transformation in standard configuration above, that is, for a boost in the <i>x</i>-direction, can be recast into matrix form as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}ct'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}={\begin{pmatrix}\gamma ct-\gamma \beta x\\\gamma x-\beta \gamma ct\\y\\z\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>c</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>c</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>γ<!-- γ --></mi> <mi>c</mi> <mi>t</mi> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mi>β<!-- β --></mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>γ<!-- γ --></mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mi>c</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}ct'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}={\begin{pmatrix}\gamma ct-\gamma \beta x\\\gamma x-\beta \gamma ct\\y\\z\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f9925a7c7193cc464d3f4f2f08dc9838f3d3578" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:58.466ex; height:12.676ex;" alt="{\displaystyle {\begin{pmatrix}ct'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}\gamma &-\beta \gamma &0&0\\-\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}}{\begin{pmatrix}ct\\x\\y\\z\end{pmatrix}}={\begin{pmatrix}\gamma ct-\gamma \beta x\\\gamma x-\beta \gamma ct\\y\\z\end{pmatrix}}.}"></span> </p><p>In Newtonian mechanics, quantities that have magnitude and direction are mathematically described as 3d vectors in Euclidean space, and in general they are parametrized by time. In special relativity, this notion is extended by adding the appropriate timelike quantity to a spacelike vector quantity, and we have 4d vectors, or "<a href="/wiki/Four-vector" title="Four-vector">four-vectors</a>", in Minkowski spacetime. The components of vectors are written using <a href="/wiki/Tensor_index_notation" class="mw-redirect" title="Tensor index notation">tensor index notation</a>, as this has numerous advantages. The notation makes it clear the equations are <a href="/wiki/Manifestly_covariant" class="mw-redirect" title="Manifestly covariant">manifestly covariant</a> under the <a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré group</a>, thus bypassing the tedious calculations to check this fact. In constructing such equations, we often find that equations previously thought to be unrelated are, in fact, closely connected being part of the same tensor equation. Recognizing other <a href="/wiki/Physical_quantities" class="mw-redirect" title="Physical quantities">physical quantities</a> as <a href="/wiki/Tensors" class="mw-redirect" title="Tensors">tensors</a> simplifies their transformation laws. Throughout, upper indices (superscripts) are contravariant indices rather than exponents except when they indicate a square (this should be clear from the context), and lower indices (subscripts) are covariant indices. For simplicity and consistency with the earlier equations, Cartesian coordinates will be used. </p><p>The simplest example of a four-vector is the position of an event in spacetime, which constitutes a timelike component <i>ct</i> and spacelike component <span class="nowrap"><b>x</b> = (<i>x</i>, <i>y</i>, <i>z</i>)</span>, in a <a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">contravariant</a> <a href="/wiki/Position_vector" class="mw-redirect" title="Position vector">position</a> <a href="/wiki/Four-vector" title="Four-vector">four-vector</a> with components: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\nu }=(X^{0},X^{1},X^{2},X^{3})=(ct,x,y,z)=(ct,\mathbf {x} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\nu }=(X^{0},X^{1},X^{2},X^{3})=(ct,x,y,z)=(ct,\mathbf {x} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28b03fe11c51c95eb4b6374e5c57d32acabed31e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.59ex; height:3.176ex;" alt="{\displaystyle X^{\nu }=(X^{0},X^{1},X^{2},X^{3})=(ct,x,y,z)=(ct,\mathbf {x} ).}"></span> where we define <span class="nowrap"><i>X</i><sup>0</sup> = <i>ct</i></span> so that the time coordinate has the same dimension of distance as the other spatial dimensions; so that space and time are treated equally.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> Now the transformation of the contravariant components of the position 4-vector can be compactly written as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\mu '}=\Lambda ^{\mu '}{}_{\nu }X^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <mo>=</mo> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\mu '}=\Lambda ^{\mu '}{}_{\nu }X^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5d6fd26cf16f7e2e7c5203e697a39db4a7f584b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.422ex; height:3.176ex;" alt="{\displaystyle X^{\mu '}=\Lambda ^{\mu '}{}_{\nu }X^{\nu }}"></span> where there is an <a href="/wiki/Einstein_notation" title="Einstein notation">implied summation</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span> from 0 to 3, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda ^{\mu '}{}_{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda ^{\mu '}{}_{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0e3a041aa2487f306dd7bf63846c9ba35a96274" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.472ex; height:3.176ex;" alt="{\displaystyle \Lambda ^{\mu '}{}_{\nu }}"></span> is a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>. </p><p>More generally, all contravariant components of a <a href="/wiki/Four-vector" title="Four-vector">four-vector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/293379ba9ad58721f0b5347a8cab23e574fc307e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.824ex; height:2.343ex;" alt="{\displaystyle T^{\nu }}"></span> transform from one frame to another frame by a <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\mu '}=\Lambda ^{\mu '}{}_{\nu }T^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <mo>=</mo> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\mu '}=\Lambda ^{\mu '}{}_{\nu }T^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2485400dac7d84c23938a74c83a84c8afd124c1b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.868ex; height:3.176ex;" alt="{\displaystyle T^{\mu '}=\Lambda ^{\mu '}{}_{\nu }T^{\nu }}"></span> </p><p>Examples of other 4-vectors include the <a href="/wiki/Four-velocity" title="Four-velocity">four-velocity</a> <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b33064d7e323692b286ae8f79f19d2613f184f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.065ex; height:2.343ex;" alt="{\displaystyle U^{\mu }}"></span>⁠</span>, defined as the derivative of the position 4-vector with respect to <a href="/wiki/Proper_time" title="Proper time">proper time</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\mu }={\frac {dX^{\mu }}{d\tau }}=\gamma (v)(c,v_{x},v_{y},v_{z})=\gamma (v)(c,\mathbf {v} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>τ<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\mu }={\frac {dX^{\mu }}{d\tau }}=\gamma (v)(c,v_{x},v_{y},v_{z})=\gamma (v)(c,\mathbf {v} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74f69f85bec48f1ccc29d785ac37175dcb30902c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:44.463ex; height:5.509ex;" alt="{\displaystyle U^{\mu }={\frac {dX^{\mu }}{d\tau }}=\gamma (v)(c,v_{x},v_{y},v_{z})=\gamma (v)(c,\mathbf {v} ).}"></span> where the Lorentz factor is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (v)={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}\qquad v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="2em" /> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (v)={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}\qquad v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22946535faa5d862d9139f4faf11a13036593fd9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.783ex; height:6.509ex;" alt="{\displaystyle \gamma (v)={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}\qquad v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}.}"></span> </p><p>The <a href="/wiki/Mass_in_special_relativity" title="Mass in special relativity">relativistic energy</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\gamma (v)mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\gamma (v)mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/058efaf198edf9b9bd3dbee82cfb069b92e74f7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.175ex; height:3.176ex;" alt="{\displaystyle E=\gamma (v)mc^{2}}"></span> and <a href="/wiki/Relativistic_momentum" class="mw-redirect" title="Relativistic momentum">relativistic momentum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =\gamma (v)m\mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =\gamma (v)m\mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f4c4610fb0b3233484f6d731c45e969d572ac11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.234ex; height:2.843ex;" alt="{\displaystyle \mathbf {p} =\gamma (v)m\mathbf {v} }"></span> of an object are respectively the timelike and spacelike components of a <a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">contravariant</a> <a href="/wiki/Four-momentum" title="Four-momentum">four-momentum</a> vector: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{\mu }=mU^{\mu }=m\gamma (v)(c,v_{x},v_{y},v_{z})=\left({\frac {E}{c}},p_{x},p_{y},p_{z}\right)=\left({\frac {E}{c}},\mathbf {p} \right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <mi>m</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <mi>m</mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mi>c</mi> </mfrac> </mrow> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mi>c</mi> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{\mu }=mU^{\mu }=m\gamma (v)(c,v_{x},v_{y},v_{z})=\left({\frac {E}{c}},p_{x},p_{y},p_{z}\right)=\left({\frac {E}{c}},\mathbf {p} \right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d42bdca8690567fdafd1c240908a5ca52c8fd22d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:64.76ex; height:6.176ex;" alt="{\displaystyle P^{\mu }=mU^{\mu }=m\gamma (v)(c,v_{x},v_{y},v_{z})=\left({\frac {E}{c}},p_{x},p_{y},p_{z}\right)=\left({\frac {E}{c}},\mathbf {p} \right).}"></span> where <i>m</i> is the <a href="/wiki/Invariant_mass" title="Invariant mass">invariant mass</a>. </p><p>The <a href="/wiki/Four-acceleration" title="Four-acceleration">four-acceleration</a> is the proper time derivative of 4-velocity: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mu }={\frac {dU^{\mu }}{d\tau }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>τ<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mu }={\frac {dU^{\mu }}{d\tau }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb4feb9012dfadf24bec25410ef605f0b361f246" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.828ex; height:5.509ex;" alt="{\displaystyle A^{\mu }={\frac {dU^{\mu }}{d\tau }}.}"></span> </p><p>The transformation rules for <i>three</i>-dimensional velocities and accelerations are very awkward; even above in standard configuration the velocity equations are quite complicated owing to their non-linearity. On the other hand, the transformation of <i>four</i>-velocity and <i>four</i>-acceleration are simpler by means of the Lorentz transformation matrix. </p><p>The <a href="/wiki/Four-gradient" title="Four-gradient">four-gradient</a> of a <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a> φ transforms covariantly rather than contravariantly: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}{\dfrac {1}{c}}{\dfrac {\partial \phi }{\partial t'}}&{\dfrac {\partial \phi }{\partial x'}}&{\dfrac {\partial \phi }{\partial y'}}&{\dfrac {\partial \phi }{\partial z'}}\end{pmatrix}}={\begin{pmatrix}{\dfrac {1}{c}}{\dfrac {\partial \phi }{\partial t}}&{\dfrac {\partial \phi }{\partial x}}&{\dfrac {\partial \phi }{\partial y}}&{\dfrac {\partial \phi }{\partial z}}\end{pmatrix}}{\begin{pmatrix}\gamma &+\beta \gamma &0&0\\+\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>y</mi> <mo>′</mo> </msup> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>z</mi> <mo>′</mo> </msup> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mo>+</mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mi>γ<!-- γ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}{\dfrac {1}{c}}{\dfrac {\partial \phi }{\partial t'}}&{\dfrac {\partial \phi }{\partial x'}}&{\dfrac {\partial \phi }{\partial y'}}&{\dfrac {\partial \phi }{\partial z'}}\end{pmatrix}}={\begin{pmatrix}{\dfrac {1}{c}}{\dfrac {\partial \phi }{\partial t}}&{\dfrac {\partial \phi }{\partial x}}&{\dfrac {\partial \phi }{\partial y}}&{\dfrac {\partial \phi }{\partial z}}\end{pmatrix}}{\begin{pmatrix}\gamma &+\beta \gamma &0&0\\+\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2053393b441fc099c6af8f7a058b6e3a83b8e6f5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:82.874ex; height:12.509ex;" alt="{\displaystyle {\begin{pmatrix}{\dfrac {1}{c}}{\dfrac {\partial \phi }{\partial t'}}&{\dfrac {\partial \phi }{\partial x'}}&{\dfrac {\partial \phi }{\partial y'}}&{\dfrac {\partial \phi }{\partial z'}}\end{pmatrix}}={\begin{pmatrix}{\dfrac {1}{c}}{\dfrac {\partial \phi }{\partial t}}&{\dfrac {\partial \phi }{\partial x}}&{\dfrac {\partial \phi }{\partial y}}&{\dfrac {\partial \phi }{\partial z}}\end{pmatrix}}{\begin{pmatrix}\gamma &+\beta \gamma &0&0\\+\beta \gamma &\gamma &0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}},}"></span> which is the transpose of: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\partial _{\mu '}\phi )=\Lambda _{\mu '}{}^{\nu }(\partial _{\nu }\phi )\qquad \partial _{\mu }\equiv {\frac {\partial }{\partial x^{\mu }}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msub> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\partial _{\mu '}\phi )=\Lambda _{\mu '}{}^{\nu }(\partial _{\nu }\phi )\qquad \partial _{\mu }\equiv {\frac {\partial }{\partial x^{\mu }}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/030b3a67ce8bd8597b37a9e18e18199f3ac8bfa8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:34.842ex; height:5.509ex;" alt="{\displaystyle (\partial _{\mu '}\phi )=\Lambda _{\mu '}{}^{\nu }(\partial _{\nu }\phi )\qquad \partial _{\mu }\equiv {\frac {\partial }{\partial x^{\mu }}}.}"></span> only in Cartesian coordinates. It is the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a> that transforms in manifest covariance, in Cartesian coordinates this happens to reduce to the partial derivatives, but not in other coordinates. </p><p>More generally, the <i>co</i>variant components of a 4-vector transform according to the <i>inverse</i> Lorentz transformation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\mu '}=\Lambda _{\mu '}{}^{\nu }T_{\nu },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\mu '}=\Lambda _{\mu '}{}^{\nu }T_{\nu },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd1b74089c57487f6dea84a7e4dad8126a9e0786" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.79ex; height:3.009ex;" alt="{\displaystyle T_{\mu '}=\Lambda _{\mu '}{}^{\nu }T_{\nu },}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda _{\mu '}{}^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda _{\mu '}{}^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ecee6651221846b7ae1c6bb3919356921b4bd66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.472ex; height:3.009ex;" alt="{\displaystyle \Lambda _{\mu '}{}^{\nu }}"></span> is the reciprocal matrix of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda ^{\mu '}{}_{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda ^{\mu '}{}_{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0e3a041aa2487f306dd7bf63846c9ba35a96274" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.472ex; height:3.176ex;" alt="{\displaystyle \Lambda ^{\mu '}{}_{\nu }}"></span>⁠</span>. </p><p>The postulates of special relativity constrain the exact form the Lorentz transformation matrices take. </p><p>More generally, most physical quantities are best described as (components of) <a href="/wiki/Tensor" title="Tensor">tensors</a>. So to transform from one frame to another, we use the well-known <a href="/wiki/Tensor" title="Tensor">tensor transformation law</a><sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\theta '\iota '\cdots \kappa '}^{\alpha '\beta '\cdots \zeta '}=\Lambda ^{\alpha '}{}_{\mu }\Lambda ^{\beta '}{}_{\nu }\cdots \Lambda ^{\zeta '}{}_{\rho }\Lambda _{\theta '}{}^{\sigma }\Lambda _{\iota '}{}^{\upsilon }\cdots \Lambda _{\kappa '}{}^{\phi }T_{\sigma \upsilon \cdots \phi }^{\mu \nu \cdots \rho }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>θ<!-- θ --></mi> <mo>′</mo> </msup> <msup> <mi>ι<!-- ι --></mi> <mo>′</mo> </msup> <mo>⋯<!-- ⋯ --></mo> <msup> <mi>κ<!-- κ --></mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>α<!-- α --></mi> <mo>′</mo> </msup> <msup> <mi>β<!-- β --></mi> <mo>′</mo> </msup> <mo>⋯<!-- ⋯ --></mo> <msup> <mi>ζ<!-- ζ --></mi> <mo>′</mo> </msup> </mrow> </msubsup> <mo>=</mo> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>α<!-- α --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>β<!-- β --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>ζ<!-- ζ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ρ<!-- ρ --></mi> </mrow> </msub> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>θ<!-- θ --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>σ<!-- σ --></mi> </mrow> </msup> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>ι<!-- ι --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>υ<!-- υ --></mi> </mrow> </msup> <mo>⋯<!-- ⋯ --></mo> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>κ<!-- κ --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>σ<!-- σ --></mi> <mi>υ<!-- υ --></mi> <mo>⋯<!-- ⋯ --></mo> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> <mo>⋯<!-- ⋯ --></mo> <mi>ρ<!-- ρ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\theta '\iota '\cdots \kappa '}^{\alpha '\beta '\cdots \zeta '}=\Lambda ^{\alpha '}{}_{\mu }\Lambda ^{\beta '}{}_{\nu }\cdots \Lambda ^{\zeta '}{}_{\rho }\Lambda _{\theta '}{}^{\sigma }\Lambda _{\iota '}{}^{\upsilon }\cdots \Lambda _{\kappa '}{}^{\phi }T_{\sigma \upsilon \cdots \phi }^{\mu \nu \cdots \rho }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103e5eda717d3116b80cde53b524f454365e35aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:51.207ex; height:4.176ex;" alt="{\displaystyle T_{\theta '\iota '\cdots \kappa '}^{\alpha '\beta '\cdots \zeta '}=\Lambda ^{\alpha '}{}_{\mu }\Lambda ^{\beta '}{}_{\nu }\cdots \Lambda ^{\zeta '}{}_{\rho }\Lambda _{\theta '}{}^{\sigma }\Lambda _{\iota '}{}^{\upsilon }\cdots \Lambda _{\kappa '}{}^{\phi }T_{\sigma \upsilon \cdots \phi }^{\mu \nu \cdots \rho }}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda _{\chi '}{}^{\psi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>χ<!-- χ --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ψ<!-- ψ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda _{\chi '}{}^{\psi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02dafdfe9e69b769a54351e53a69c99a2fbd4b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.708ex; height:3.343ex;" alt="{\displaystyle \Lambda _{\chi '}{}^{\psi }}"></span> is the reciprocal matrix of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda ^{\chi '}{}_{\psi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>χ<!-- χ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ψ<!-- ψ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda ^{\chi '}{}_{\psi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aec14b4b970b90b50f71fe2ca6d3c62f807ed432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.708ex; height:3.509ex;" alt="{\displaystyle \Lambda ^{\chi '}{}_{\psi }}"></span>⁠</span>. All tensors transform by this rule. </p><p>An example of a four-dimensional second order <a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">antisymmetric tensor</a> is the <a href="/wiki/Relativistic_angular_momentum" title="Relativistic angular momentum">relativistic angular momentum</a>, which has six components: three are the classical <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a>, and the other three are related to the boost of the center of mass of the system. The derivative of the relativistic angular momentum with respect to proper time is the relativistic torque, also second order <a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">antisymmetric tensor</a>. </p><p>The <a href="/wiki/Electromagnetic_field_tensor" class="mw-redirect" title="Electromagnetic field tensor">electromagnetic field tensor</a> is another second order antisymmetric <a href="/wiki/Tensor_field" title="Tensor field">tensor field</a>, with six components: three for the <a href="/wiki/Electric_field" title="Electric field">electric field</a> and another three for the <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>. There is also the <a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a> for the electromagnetic field, namely the <a href="/wiki/Electromagnetic_stress%E2%80%93energy_tensor" title="Electromagnetic stress–energy tensor">electromagnetic stress–energy tensor</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Metric">Metric</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=57" title="Edit section: Metric"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a> allows one to define the <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> of two vectors, which in turn allows one to assign a magnitude to the vector. Given the four-dimensional nature of spacetime the <a href="/wiki/Minkowski_metric" class="mw-redirect" title="Minkowski metric">Minkowski metric</a> <i>η</i> has components (valid with suitably chosen coordinates), which can be arranged in a <span class="nowrap">4 × 4</span> matrix: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\alpha \beta }={\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mi>β<!-- β --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\alpha \beta }={\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c66b50fbc4006c9a863be23036b5a23362bde3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:25.371ex; height:12.509ex;" alt="{\displaystyle \eta _{\alpha \beta }={\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}},}"></span> which is equal to its reciprocal, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta ^{\alpha \beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mi>β<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta ^{\alpha \beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab7443e471121aebf804d0a26ead015592149fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.4ex; height:3.176ex;" alt="{\displaystyle \eta ^{\alpha \beta }}"></span>⁠</span>, in those frames. Throughout we use the signs as above, different authors use different conventions – see <a href="/wiki/Minkowski_metric" class="mw-redirect" title="Minkowski metric">Minkowski metric</a> alternative signs. </p><p>The <a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré group</a> is the most general group of transformations that preserves the Minkowski metric: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\alpha \beta }=\eta _{\mu '\nu '}\Lambda ^{\mu '}{}_{\alpha }\Lambda ^{\nu '}{}_{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mi>β<!-- β --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> <msup> <mi>ν<!-- ν --></mi> <mo>′</mo> </msup> </mrow> </msub> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>ν<!-- ν --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\alpha \beta }=\eta _{\mu '\nu '}\Lambda ^{\mu '}{}_{\alpha }\Lambda ^{\nu '}{}_{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/342627c7f247ccdc409d6fea260e8145cf1082bf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.903ex; height:3.509ex;" alt="{\displaystyle \eta _{\alpha \beta }=\eta _{\mu '\nu '}\Lambda ^{\mu '}{}_{\alpha }\Lambda ^{\nu '}{}_{\beta }}"></span> and this is the physical symmetry underlying special relativity. </p><p>The metric can be used for <a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">raising and lowering indices</a> on vectors and tensors. Invariants can be constructed using the metric, the inner product of a 4-vector <i>T</i> with another 4-vector <i>S</i> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha }S_{\alpha }=T^{\alpha }\eta _{\alpha \beta }S^{\beta }=T_{\alpha }\eta ^{\alpha \beta }S_{\beta }={\text{invariant scalar}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mi>β<!-- β --></mi> </mrow> </msub> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <msup> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mi>β<!-- β --></mi> </mrow> </msup> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>invariant scalar</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha }S_{\alpha }=T^{\alpha }\eta _{\alpha \beta }S^{\beta }=T_{\alpha }\eta ^{\alpha \beta }S_{\beta }={\text{invariant scalar}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f7c2bf5037ce9e9eba6da255445563f8b09c5ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:48.391ex; height:3.343ex;" alt="{\displaystyle T^{\alpha }S_{\alpha }=T^{\alpha }\eta _{\alpha \beta }S^{\beta }=T_{\alpha }\eta ^{\alpha \beta }S_{\beta }={\text{invariant scalar}}}"></span> </p><p>Invariant means that it takes the same value in all inertial frames, because it is a scalar (0 rank tensor), and so no <span class="texhtml">Λ</span> appears in its trivial transformation. The magnitude of the 4-vector <i>T</i> is the positive square root of the inner product with itself: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {T} |={\sqrt {T^{\alpha }T_{\alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">T</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {T} |={\sqrt {T^{\alpha }T_{\alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ff32788f487372e490531f994d5067e12a1d367" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.221ex; height:3.343ex;" alt="{\displaystyle |\mathbf {T} |={\sqrt {T^{\alpha }T_{\alpha }}}}"></span> </p><p>One can extend this idea to tensors of higher order, for a second order tensor we can form the invariants: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha }{}_{\alpha },T^{\alpha }{}_{\beta }T^{\beta }{}_{\alpha },T^{\alpha }{}_{\beta }T^{\beta }{}_{\gamma }T^{\gamma }{}_{\alpha }={\text{invariant scalars}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo>,</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo>,</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>invariant scalars</mtext> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha }{}_{\alpha },T^{\alpha }{}_{\beta }T^{\beta }{}_{\alpha },T^{\alpha }{}_{\beta }T^{\beta }{}_{\gamma }T^{\gamma }{}_{\alpha }={\text{invariant scalars}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a9dab0cab7e66ed7360d64d7fde2921ed6b280f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:47.361ex; height:3.343ex;" alt="{\displaystyle T^{\alpha }{}_{\alpha },T^{\alpha }{}_{\beta }T^{\beta }{}_{\alpha },T^{\alpha }{}_{\beta }T^{\beta }{}_{\gamma }T^{\gamma }{}_{\alpha }={\text{invariant scalars}},}"></span> similarly for higher order tensors. Invariant expressions, particularly inner products of 4-vectors with themselves, provide equations that are useful for calculations, because one does not need to perform Lorentz transformations to determine the invariants. </p> <div class="mw-heading mw-heading4"><h4 id="Relativistic_kinematics_and_invariance">Relativistic kinematics and invariance</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=58" title="Edit section: Relativistic kinematics and invariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The coordinate differentials transform also contravariantly: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dX^{\mu '}=\Lambda ^{\mu '}{}_{\nu }dX^{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <mo>=</mo> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>μ<!-- μ --></mi> <mo>′</mo> </msup> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dX^{\mu '}=\Lambda ^{\mu '}{}_{\nu }dX^{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1cd97f4f9a5eb85fb7a0d6b3c013f46e9803677" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.854ex; height:3.176ex;" alt="{\displaystyle dX^{\mu '}=\Lambda ^{\mu '}{}_{\nu }dX^{\nu }}"></span> so the squared length of the differential of the position four-vector <i>dX<sup>μ</sup></i> constructed using <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mathbf {X} ^{2}=dX^{\mu }\,dX_{\mu }=\eta _{\mu \nu }\,dX^{\mu }\,dX^{\nu }=-(c\,dt)^{2}+(dx)^{2}+(dy)^{2}+(dz)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mathbf {X} ^{2}=dX^{\mu }\,dX_{\mu }=\eta _{\mu \nu }\,dX^{\mu }\,dX^{\nu }=-(c\,dt)^{2}+(dx)^{2}+(dy)^{2}+(dz)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e664d8e2708e80fce1f9dfb4a52b13620328724" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:68.002ex; height:3.343ex;" alt="{\displaystyle d\mathbf {X} ^{2}=dX^{\mu }\,dX_{\mu }=\eta _{\mu \nu }\,dX^{\mu }\,dX^{\nu }=-(c\,dt)^{2}+(dx)^{2}+(dy)^{2}+(dz)^{2}}"></span> is an invariant. Notice that when the <a href="/wiki/Line_element" title="Line element">line element</a> <i>d</i><b>X</b><sup>2</sup> is negative that <span class="texhtml"><span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">−<i>d</i><b>X</b><sup>2</sup></span></span></span> is the differential of <a href="/wiki/Proper_time" title="Proper time">proper time</a>, while when <i>d</i><b>X</b><sup>2</sup> is positive, <span class="texhtml"><span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;"><i>d</i><b>X</b><sup>2</sup></span></span></span> is differential of the <a href="/wiki/Proper_distance" class="mw-redirect" title="Proper distance">proper distance</a>. </p><p>The 4-velocity <i>U</i><sup>μ</sup> has an invariant form: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {U} ^{2}=\eta _{\nu \mu }U^{\nu }U^{\mu }=-c^{2}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">U</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> <mi>μ<!-- μ --></mi> </mrow> </msub> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {U} ^{2}=\eta _{\nu \mu }U^{\nu }U^{\mu }=-c^{2}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/852710bcd9a908a4aa681614ac68331f9ec1eb9b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.47ex; height:3.343ex;" alt="{\displaystyle \mathbf {U} ^{2}=\eta _{\nu \mu }U^{\nu }U^{\mu }=-c^{2}\,,}"></span> which means all velocity four-vectors have a magnitude of <i>c</i>. This is an expression of the fact that there is no such thing as being at coordinate rest in relativity: at the least, you are always moving forward through time. Differentiating the above equation by <i>τ</i> produces: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\eta _{\mu \nu }A^{\mu }U^{\nu }=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\eta _{\mu \nu }A^{\mu }U^{\nu }=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b7c7991bbf5dd698b78868909f9fd25bcbc7a9c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.232ex; height:3.009ex;" alt="{\displaystyle 2\eta _{\mu \nu }A^{\mu }U^{\nu }=0.}"></span> So in special relativity, the acceleration four-vector and the velocity four-vector are orthogonal. </p> <div class="mw-heading mw-heading4"><h4 id="Relativistic_dynamics_and_invariance">Relativistic dynamics and invariance</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=59" title="Edit section: Relativistic dynamics and invariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The invariant magnitude of the <a href="/wiki/Four-momentum" title="Four-momentum">momentum 4-vector</a> generates the <a href="/wiki/Energy%E2%80%93momentum_relation" title="Energy–momentum relation">energy–momentum relation</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {P} ^{2}=\eta ^{\mu \nu }P_{\mu }P_{\nu }=-\left({\frac {E}{c}}\right)^{2}+p^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {P} ^{2}=\eta ^{\mu \nu }P_{\mu }P_{\nu }=-\left({\frac {E}{c}}\right)^{2}+p^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2d779f1a47d075607bcb35b628d5c641b52a1e9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.264ex; height:6.509ex;" alt="{\displaystyle \mathbf {P} ^{2}=\eta ^{\mu \nu }P_{\mu }P_{\nu }=-\left({\frac {E}{c}}\right)^{2}+p^{2}.}"></span> </p><p>We can work out what this invariant is by first arguing that, since it is a scalar, it does not matter in which reference frame we calculate it, and then by transforming to a frame where the total momentum is zero. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {P} ^{2}=-\left({\frac {E_{\text{rest}}}{c}}\right)^{2}=-(mc)^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rest</mtext> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {P} ^{2}=-\left({\frac {E_{\text{rest}}}{c}}\right)^{2}=-(mc)^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96bbc195fbcaf4e5a23160150ad5665d9322ddc0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.173ex; height:6.509ex;" alt="{\displaystyle \mathbf {P} ^{2}=-\left({\frac {E_{\text{rest}}}{c}}\right)^{2}=-(mc)^{2}.}"></span> </p><p>We see that the rest energy is an independent invariant. A rest energy can be calculated even for particles and systems in motion, by translating to a frame in which momentum is zero. </p><p>The rest energy is related to the mass according to the celebrated equation discussed above: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{rest}}=mc^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rest</mtext> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\text{rest}}=mc^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd311853870c1943724d1ed66221826827f2fc84" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.456ex; height:3.009ex;" alt="{\displaystyle E_{\text{rest}}=mc^{2}.}"></span> </p><p>The mass of systems measured in their center of momentum frame (where total momentum is zero) is given by the total energy of the system in this frame. It may not be equal to the sum of individual system masses measured in other frames. </p><p>To use <a href="/wiki/Newton%27s_third_law_of_motion" class="mw-redirect" title="Newton's third law of motion">Newton's third law of motion</a>, both forces must be defined as the rate of change of momentum with respect to the same time coordinate. That is, it requires the 3D force defined above. Unfortunately, there is no tensor in 4D that contains the components of the 3D force vector among its components. </p><p>If a particle is not traveling at <i>c</i>, one can transform the 3D force from the particle's co-moving reference frame into the observer's reference frame. This yields a 4-vector called the <a href="/wiki/Four-force" title="Four-force">four-force</a>. It is the rate of change of the above energy momentum <a href="/wiki/Four-vector" title="Four-vector">four-vector</a> with respect to proper time. The covariant version of the four-force is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\nu }={\frac {dP_{\nu }}{d\tau }}=mA_{\nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>τ<!-- τ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>m</mi> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ν<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\nu }={\frac {dP_{\nu }}{d\tau }}=mA_{\nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95f7fa73e90c06124463ed81d0885c746ace73e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.33ex; height:5.509ex;" alt="{\displaystyle F_{\nu }={\frac {dP_{\nu }}{d\tau }}=mA_{\nu }}"></span> </p><p>In the rest frame of the object, the time component of the four-force is zero unless the "<a href="/wiki/Invariant_mass" title="Invariant mass">invariant mass</a>" of the object is changing (this requires a non-closed system in which energy/mass is being directly added or removed from the object) in which case it is the negative of that rate of change of mass, times <i>c</i>. In general, though, the components of the four-force are not equal to the components of the three-force, because the three force is defined by the rate of change of momentum with respect to coordinate time, that is, <i>dp</i>/<i>dt</i> while the four-force is defined by the rate of change of momentum with respect to proper time, that is, <i>dp</i>/<i>dτ</i>. </p><p>In a continuous medium, the 3D <i>density of force</i> combines with the <i>density of power</i> to form a covariant 4-vector. The spatial part is the result of dividing the force on a small cell (in 3-space) by the volume of that cell. The time component is −1/<i>c</i> times the power transferred to that cell divided by the volume of the cell. This will be used below in the section on electromagnetism. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=60" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>People</dt> <dd></dd></dl> <ul><li><a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a></li> <li><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a></li> <li><a href="/wiki/Max_von_Laue" title="Max von Laue">Max von Laue</a></li> <li><a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Arnold Sommerfeld</a></li> <li><a href="/wiki/Max_Born" title="Max Born">Max Born</a></li> <li><a href="/wiki/Mileva_Mari%C4%87" title="Mileva Marić">Mileva Marić</a></li></ul> <dl><dt>Relativity</dt> <dd></dd></dl> <ul><li><a href="/wiki/History_of_special_relativity" title="History of special relativity">History of special relativity</a></li> <li><a href="/wiki/Doubly_special_relativity" title="Doubly special relativity">Doubly special relativity</a></li> <li><a href="/wiki/Bondi_k-calculus" title="Bondi k-calculus">Bondi k-calculus</a></li> <li><a href="/wiki/Einstein_synchronisation" title="Einstein synchronisation">Einstein synchronisation</a></li> <li><a href="/wiki/Rietdijk%E2%80%93Putnam_argument" title="Rietdijk–Putnam argument">Rietdijk–Putnam argument</a></li> <li><a href="/wiki/Special_relativity_(alternative_formulations)" class="mw-redirect" title="Special relativity (alternative formulations)">Special relativity (alternative formulations)</a></li> <li><a href="/wiki/Relativity_priority_dispute" title="Relativity priority dispute">Relativity priority dispute</a></li></ul> <dl><dt>Physics</dt> <dd></dd></dl> <ul><li><a href="/wiki/Einstein%27s_thought_experiments" title="Einstein's thought experiments">Einstein's thought experiments</a></li> <li><a href="/wiki/Physical_cosmology" title="Physical cosmology">physical cosmology</a></li> <li><a href="/wiki/Relativistic_Euler_equations" title="Relativistic Euler equations">Relativistic Euler equations</a></li> <li><a href="/wiki/Lorentz_ether_theory" title="Lorentz ether theory">Lorentz ether theory</a></li> <li><a href="/wiki/Moving_magnet_and_conductor_problem" title="Moving magnet and conductor problem">Moving magnet and conductor problem</a></li> <li><a href="/wiki/Shape_waves" title="Shape waves">Shape waves</a></li> <li><a href="/wiki/Relativistic_heat_conduction" title="Relativistic heat conduction">Relativistic heat conduction</a></li> <li><a href="/wiki/Relativistic_disk" title="Relativistic disk">Relativistic disk</a></li> <li><a href="/wiki/Born_rigidity" title="Born rigidity">Born rigidity</a></li> <li><a href="/wiki/Born_coordinates" title="Born coordinates">Born coordinates</a></li></ul> <dl><dt>Mathematics</dt> <dd></dd></dl> <ul><li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a></li> <li><a href="/wiki/Algebra_of_physical_space" title="Algebra of physical space">Relativity in the APS formalism</a></li></ul> <dl><dt>Philosophy</dt> <dd></dd></dl> <ul><li><a href="/wiki/Actualism" title="Actualism">actualism</a></li> <li><a href="/wiki/Conventionalism" title="Conventionalism">conventionalism</a></li></ul> <dl><dt>Paradoxes</dt> <dd></dd></dl> <ul><li><a href="/wiki/Ehrenfest_paradox" title="Ehrenfest paradox">Ehrenfest paradox</a></li> <li><a href="/wiki/Bell%27s_spaceship_paradox" title="Bell's spaceship paradox">Bell's spaceship paradox</a></li> <li><a href="/wiki/Mocanu%27s_velocity_composition_paradox" class="mw-redirect" title="Mocanu's velocity composition paradox">Velocity composition paradox</a></li> <li><a href="/wiki/Lighthouse_paradox" title="Lighthouse paradox">Lighthouse paradox</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=61" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 35em;"> <ol class="references"> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Einstein himself, in The Foundations of the General Theory of Relativity, Ann. Phys. 49 (1916), writes "The word 'special' is meant to intimate that the principle is restricted to the case ...". See p. 111 of The Principle of Relativity, A. Einstein, H. A. Lorentz, H. Weyl, H. Minkowski, Dover reprint of 1923 translation by Methuen and Company.]</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Wald, General Relativity, p. 60: "... the special theory of relativity asserts that spacetime is the manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4abb9b9dab94f7b25a4210364f0f9032704bfb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{4}}"></span> with a flat metric of Lorentz signature defined on it. Conversely, the entire content of special relativity ... is contained in this statement ..."</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">In a spacetime setting, the <i>length</i> of a moving rigid object is the spatial distance between the ends of the object measured at the same time. In the rest frame of the object the simultaneity is not required.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">The results of the Michelson–Morley experiment led <a href="/wiki/George_Francis_FitzGerald" title="George Francis FitzGerald">George Francis FitzGerald</a> and <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a> independently to propose the phenomenon of <a href="/wiki/Length_contraction" title="Length contraction">length contraction</a>. Lorentz believed that length contraction represented a <i>physical contraction</i> of the atoms making up an object. He envisioned no fundamental change in the nature of space and time.<sup id="cite_ref-Miller1998_40-0" class="reference"><a href="#cite_note-Miller1998-40"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 62–68">: 62–68 </span></sup> <br /><span style="padding-left:4;"> </span> Lorentz expected that length contraction would result in compressive strains in an object that should result in measurable effects. Such effects would include optical effects in transparent media, such as optical rotation<sup id="cite_ref-LorentzPolarization_41-0" class="reference"><a href="#cite_note-LorentzPolarization-41"><span class="cite-bracket">[</span>p 11<span class="cite-bracket">]</span></a></sup> and induction of double refraction,<sup id="cite_ref-LorentzElectromagnetic_42-0" class="reference"><a href="#cite_note-LorentzElectromagnetic-42"><span class="cite-bracket">[</span>p 12<span class="cite-bracket">]</span></a></sup> and the induction of torques on charged condensers moving at an angle with respect to the aether.<sup id="cite_ref-LorentzElectromagnetic_42-1" class="reference"><a href="#cite_note-LorentzElectromagnetic-42"><span class="cite-bracket">[</span>p 12<span class="cite-bracket">]</span></a></sup> Lorentz was perplexed by experiments such as the <a href="/wiki/Trouton%E2%80%93Noble_experiment" title="Trouton–Noble experiment">Trouton–Noble experiment</a> and the <a href="/wiki/Experiments_of_Rayleigh_and_Brace" title="Experiments of Rayleigh and Brace">experiments of Rayleigh and Brace</a>, which failed to validate his theoretical expectations.<sup id="cite_ref-Miller1998_40-1" class="reference"><a href="#cite_note-Miller1998-40"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">For mathematical consistency, Lorentz proposed a new time variable, the "local time", called that because it depended on the position of a moving body, following the relation <span class="nowrap"><i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> = <i>t</i> − <i>vx</i>/<i>c</i><sup>2</sup></span>.<sup id="cite_ref-Lorentz1895_44-0" class="reference"><a href="#cite_note-Lorentz1895-44"><span class="cite-bracket">[</span>p 13<span class="cite-bracket">]</span></a></sup> Lorentz considered local time not to be "real"; rather, it represented an ad hoc change of variable.<sup id="cite_ref-Bernstein2006_45-0" class="reference"><a href="#cite_note-Bernstein2006-45"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 51, 80">: 51, 80 </span></sup> <br /><span style="padding-left:4;"> </span> Impressed by Lorentz's "most ingenious idea", Poincaré saw more in local time than a mere mathematical trick. It represented the actual time that would be shown on a moving observer's clocks. On the other hand, Poincaré did not consider this measured time to be the "true time" that would be exhibited by clocks at rest in the aether. Poincaré made no attempt to redefine the concepts of space and time. To Poincaré, Lorentz transformation described the <i>apparent</i> states of the field for a moving observer. <i>True states</i> remained those defined with respect to the ether.<sup id="cite_ref-Darrigol2005_46-0" class="reference"><a href="#cite_note-Darrigol2005-46"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">This concept is counterintuitive at least for the fact that, in contrast to usual concepts of <a href="/wiki/Distance" title="Distance">distance</a>, it may assume <i>negative</i> values (is not <a href="/wiki/Positive-definite_bilinear_form" class="mw-redirect" title="Positive-definite bilinear form">positive definite</a> for non-coinciding events), and that the <i>square</i>-denotation is misleading. This <i>negative square</i> lead to, now not broadly used, concepts of <a href="/wiki/Minkowski_space#History" title="Minkowski space"><i>imaginary time</i></a>. It is immediate that the negative of Δ<i>s</i><sup>2</sup> is also an invariant, generated by a variant of the <a href="/wiki/Metric_signature" title="Metric signature">metric signature</a> of spacetime.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">The invariance of Δ<i>s</i><sup>2</sup> under standard Lorentz transformation in analogous to the invariance of squared distances Δ<i>r</i><sup>2</sup> under rotations in Euclidean space. Although space and time have an equal <i>footing</i> in relativity, the minus sign in front of the spatial terms marks space and time as being of essentially different character. They are not the same. Because it treats time differently than it treats the 3 spatial dimensions, <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a> differs from <a href="/wiki/Four-dimensional_Euclidean_space" class="mw-redirect" title="Four-dimensional Euclidean space">four-dimensional Euclidean space</a>.</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text">The refractive index dependence of the presumed partial aether-drag was eventually confirmed by <a href="/wiki/Pieter_Zeeman" title="Pieter Zeeman">Pieter Zeeman</a> in 1914–1915, long after special relativity had been accepted by the mainstream. Using a scaled-up version of Michelson's apparatus connected directly to <a href="/wiki/Amsterdam" title="Amsterdam">Amsterdam</a>'s main water conduit, Zeeman was able to perform extended measurements using monochromatic light ranging from violet (4358 Å) through red (6870 Å).<sup id="cite_ref-zee1_75-0" class="reference"><a href="#cite_note-zee1-75"><span class="cite-bracket">[</span>p 17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-zee2_76-0" class="reference"><a href="#cite_note-zee2-76"><span class="cite-bracket">[</span>p 18<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text">Even though it has been many decades since Terrell and Penrose published their observations, popular writings continue to conflate measurement versus appearance. For example, Michio Kaku wrote in <i>Einstein's Cosmos</i> (W. W. Norton & Company, 2004. p. 65): "... imagine that the speed of light is only 20 miles per hour. If a car were to go down the street, it might look compressed in the direction of motion, being squeezed like an accordion down to perhaps 1 inch in length."</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text">In a letter to Carl Seelig in 1955, Einstein wrote "I had already previously found that Maxwell's theory did not account for the micro-structure of radiation and could therefore have no general validity.", Einstein letter to Carl Seelig, 1955.</span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text">Rapidity arises naturally as a coordinates on the pure <a href="/wiki/Representation_theory_of_the_Lorentz_group#Conventions_and_Lie_algebra_bases" title="Representation theory of the Lorentz group">boost generators</a> inside the <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> algebra of the Lorentz group. Likewise, rotation angles arise naturally as coordinates (modulo <span class="nowrap">2<span class="texhtml mvar" style="font-style:italic;">π</span></span>) on the pure <a href="/wiki/Representation_theory_of_the_Lorentz_group#Conventions_and_Lie_algebra_bases" title="Representation theory of the Lorentz group">rotation generators</a> in the Lie algebra. (Together they coordinatize the whole Lie algebra.) A notable difference is that the resulting rotations are periodic in the rotation angle, while the resulting boosts are not periodic in rapidity (but rather one-to-one). The similarity between boosts and rotations is formal resemblance.</span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text">In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Primary_sources">Primary sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=62" title="Edit section: Primary sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 35em;"> <ol class="references"> <li id="cite_note-electro-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-electro_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-electro_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-electro_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-electro_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-electro_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-electro_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-electro_1-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> (1905) "<a rel="nofollow" class="external text" href="https://web.archive.org/web/20050220050316/http://www.pro-physik.de/Phy/pdfs/ger_890_921.pdf"><i>Zur Elektrodynamik bewegter Körper</i></a>", <i>Annalen der Physik</i> 17: 891; English translation <a rel="nofollow" class="external text" href="http://www.fourmilab.ch/etexts/einstein/specrel/www/">On the Electrodynamics of Moving Bodies</a> by <a href="/wiki/George_Barker_Jeffery" title="George Barker Jeffery">George Barker Jeffery</a> and Wilfrid Perrett (1923); Another English translation <a href="https://en.wikisource.org/wiki/On_the_Electrodynamics_of_Moving_Bodies" class="extiw" title="s:On the Electrodynamics of Moving Bodies">On the Electrodynamics of Moving Bodies</a> by <a href="/wiki/Megh_Nad_Saha" class="mw-redirect" title="Megh Nad Saha">Megh Nad Saha</a> (1920).</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">"Science and Common Sense", P. W. Bridgman, <i>The Scientific Monthly</i>, Vol. 79, No. 1 (Jul. 1954), pp. 32–39.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">The Electromagnetic Mass and Momentum of a Spinning Electron, G. Breit, Proceedings of the National Academy of Sciences, Vol. 12, p. 451, 1926</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Kinematics of an electron with an axis. Phil. Mag. 3:1-22. L. H. Thomas.]</span> </li> <li id="cite_note-autogenerated1-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-autogenerated1_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-autogenerated1_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Einstein, Autobiographical Notes, 1949.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">Einstein, "Fundamental Ideas and Methods of the Theory of Relativity", 1920</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Einstein, On the Relativity Principle and the Conclusions Drawn from It, 1907; "The Principle of Relativity and Its Consequences in Modern Physics", 1910; "The Theory of Relativity", 1911; Manuscript on the Special Theory of Relativity, 1912; Theory of Relativity, 1913; Einstein, Relativity, the Special and General Theory, 1916; The Principal Ideas of the Theory of Relativity, 1916; What Is The Theory of Relativity?, 1919; The Principle of Relativity (Princeton Lectures), 1921; Physics and Reality, 1936; The Theory of Relativity, 1949.</span> </li> <li id="cite_note-Friedman-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Friedman_30-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFYaakov_Friedman2004" class="citation book cs1">Yaakov Friedman (2004). <i>Physical Applications of Homogeneous Balls</i>. Progress in Mathematical Physics. Vol. 40. pp. 1–21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-3339-4" title="Special:BookSources/978-0-8176-3339-4"><bdi>978-0-8176-3339-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physical+Applications+of+Homogeneous+Balls&rft.series=Progress+in+Mathematical+Physics&rft.pages=1-21&rft.date=2004&rft.isbn=978-0-8176-3339-4&rft.au=Yaakov+Friedman&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Das, A. (1993) <i>The Special Theory of Relativity, A Mathematical Exposition</i>, Springer, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94042-1" title="Special:BookSources/0-387-94042-1">0-387-94042-1</a>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Schutz, J. (1997) Independent Axioms for Minkowski Spacetime, Addison Wesley Longman Limited, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-582-31760-6" title="Special:BookSources/0-582-31760-6">0-582-31760-6</a>.</span> </li> <li id="cite_note-LorentzPolarization-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-LorentzPolarization_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz1902" class="citation journal cs1">Lorentz, H.A. (1902). <a rel="nofollow" class="external text" href="http://www.dwc.knaw.nl/DL/publications/PU00014324.pdf">"The rotation of the plane of polarization in moving media"</a> <span class="cs1-format">(PDF)</span>. <i>Huygens Institute – Royal Netherlands Academy of Arts and Sciences (KNAW)</i>. <b>4</b>: 669–678. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1901KNAB....4..669L">1901KNAB....4..669L</a><span class="reference-accessdate">. Retrieved <span class="nowrap">15 November</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Huygens+Institute+%E2%80%93+Royal+Netherlands+Academy+of+Arts+and+Sciences+%28KNAW%29&rft.atitle=The+rotation+of+the+plane+of+polarization+in+moving+media&rft.volume=4&rft.pages=669-678&rft.date=1902&rft_id=info%3Abibcode%2F1901KNAB....4..669L&rft.aulast=Lorentz&rft.aufirst=H.A.&rft_id=http%3A%2F%2Fwww.dwc.knaw.nl%2FDL%2Fpublications%2FPU00014324.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-LorentzElectromagnetic-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-LorentzElectromagnetic_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LorentzElectromagnetic_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz1904" class="citation journal cs1">Lorentz, H. A. (1904). <a rel="nofollow" class="external text" href="http://www.dwc.knaw.nl/DL/publications/PU00014148.pdf">"Electromagnetic phenomena in a system moving with any velocity smaller than that of light"</a> <span class="cs1-format">(PDF)</span>. <i>Huygens Institute – Royal Netherlands Academy of Arts and Sciences (KNAW)</i>. <b>6</b>: 809–831. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1903KNAB....6..809L">1903KNAB....6..809L</a><span class="reference-accessdate">. Retrieved <span class="nowrap">15 November</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Huygens+Institute+%E2%80%93+Royal+Netherlands+Academy+of+Arts+and+Sciences+%28KNAW%29&rft.atitle=Electromagnetic+phenomena+in+a+system+moving+with+any+velocity+smaller+than+that+of+light&rft.volume=6&rft.pages=809-831&rft.date=1904&rft_id=info%3Abibcode%2F1903KNAB....6..809L&rft.aulast=Lorentz&rft.aufirst=H.+A.&rft_id=http%3A%2F%2Fwww.dwc.knaw.nl%2FDL%2Fpublications%2FPU00014148.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Lorentz1895-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lorentz1895_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz1895" class="citation book cs1">Lorentz, Hendrik (1895). <a class="external text" href="https://en.wikisource.org/wiki/Translation:Attempt_of_a_Theory_of_Electrical_and_Optical_Phenomena_in_Moving_Bodies/Section_III">"Investigation of oscillations excited by oscillating ions"</a>. <a class="external text" href="https://en.wikisource.org/wiki/Translation:Attempt_of_a_Theory_of_Electrical_and_Optical_Phenomena_in_Moving_Bodies"><i>Attempt at a Theory of Electrical and Optical Phenomena in Moving Bodies (Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern)</i></a>. Leiden: E. J. Brill. (subsection § 31).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Investigation+of+oscillations+excited+by+oscillating+ions&rft.btitle=Attempt+at+a+Theory+of+Electrical+and+Optical+Phenomena+in+Moving+Bodies+%28Versuch+einer+Theorie+der+electrischen+und+optischen+Erscheinungen+in+bewegten+K%C3%B6rpern%29&rft.place=Leiden&rft.pages=%28subsection+%C2%A7+31%29&rft.pub=E.+J.+Brill&rft.date=1895&rft.aulast=Lorentz&rft.aufirst=Hendrik&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FTranslation%3AAttempt_of_a_Theory_of_Electrical_and_Optical_Phenomena_in_Moving_Bodies%2FSection_III&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Lin1979-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lin1979_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinGiallorenzi1979" class="citation journal cs1">Lin, Shih-Chun; Giallorenzi, Thomas G. (1979). "Sensitivity analysis of the Sagnac-effect optical-fiber ring interferometer". <i>Applied Optics</i>. <b>18</b> (6): 915–931. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979ApOpt..18..915L">1979ApOpt..18..915L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FAO.18.000915">10.1364/AO.18.000915</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20208844">20208844</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5343180">5343180</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Optics&rft.atitle=Sensitivity+analysis+of+the+Sagnac-effect+optical-fiber+ring+interferometer&rft.volume=18&rft.issue=6&rft.pages=915-931&rft.date=1979&rft_id=info%3Adoi%2F10.1364%2FAO.18.000915&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5343180%23id-name%3DS2CID&rft_id=info%3Apmid%2F20208844&rft_id=info%3Abibcode%2F1979ApOpt..18..915L&rft.aulast=Lin&rft.aufirst=Shih-Chun&rft.au=Giallorenzi%2C+Thomas+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Shaw-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Shaw_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShaw1962" class="citation journal cs1">Shaw, R. (1962). "Length Contraction Paradox". <i>American Journal of Physics</i>. <b>30</b> (1): 72. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1962AmJPh..30...72S">1962AmJPh..30...72S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1941907">10.1119/1.1941907</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119855914">119855914</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Length+Contraction+Paradox&rft.volume=30&rft.issue=1&rft.pages=72&rft.date=1962&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119855914%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1119%2F1.1941907&rft_id=info%3Abibcode%2F1962AmJPh..30...72S&rft.aulast=Shaw&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._A._BenfordD._L._BookW._A._Newcomb1970" class="citation journal cs1">G. A. Benford; D. L. Book & W. A. Newcomb (1970). "The Tachyonic Antitelephone". <i>Physical Review D</i>. <b>2</b> (2): 263–265. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1970PhRvD...2..263B">1970PhRvD...2..263B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.2.263">10.1103/PhysRevD.2.263</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121124132">121124132</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=The+Tachyonic+Antitelephone&rft.volume=2&rft.issue=2&rft.pages=263-265&rft.date=1970&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121124132%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.2.263&rft_id=info%3Abibcode%2F1970PhRvD...2..263B&rft.au=G.+A.+Benford&rft.au=D.+L.+Book&rft.au=W.+A.+Newcomb&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-zee1-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-zee1_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeeman,_Pieter1914" class="citation journal cs1">Zeeman, Pieter (1914). <a rel="nofollow" class="external text" href="https://archive.org/details/p1proceedingsofs17akad">"Fresnel's coefficient for light of different colours. (First part)"</a>. <i>Proc. Kon. Acad. Van Weten</i>. <b>17</b>: 445–451. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1914KNAB...17..445Z">1914KNAB...17..445Z</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc.+Kon.+Acad.+Van+Weten.&rft.atitle=Fresnel%27s+coefficient+for+light+of+different+colours.+%28First+part%29&rft.volume=17&rft.pages=445-451&rft.date=1914&rft_id=info%3Abibcode%2F1914KNAB...17..445Z&rft.au=Zeeman%2C+Pieter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fp1proceedingsofs17akad&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-zee2-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-zee2_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeeman,_Pieter1915" class="citation journal cs1">Zeeman, Pieter (1915). <a rel="nofollow" class="external text" href="https://archive.org/details/proceedingsofsec181koni">"Fresnel's coefficient for light of different colours. (Second part)"</a>. <i>Proc. Kon. Acad. Van Weten</i>. <b>18</b>: 398–408. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1915KNAB...18..398Z">1915KNAB...18..398Z</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc.+Kon.+Acad.+Van+Weten.&rft.atitle=Fresnel%27s+coefficient+for+light+of+different+colours.+%28Second+part%29&rft.volume=18&rft.pages=398-408&rft.date=1915&rft_id=info%3Abibcode%2F1915KNAB...18..398Z&rft.au=Zeeman%2C+Pieter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fproceedingsofsec181koni&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Terrell-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-Terrell_88-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerrell1959" class="citation journal cs1">Terrell, James (15 November 1959). "Invisibility of the Lorentz Contraction". <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>116</b> (4): 1041–1045. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1959PhRv..116.1041T">1959PhRv..116.1041T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.116.1041">10.1103/PhysRev.116.1041</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Invisibility+of+the+Lorentz+Contraction&rft.volume=116&rft.issue=4&rft.pages=1041-1045&rft.date=1959-11-15&rft_id=info%3Adoi%2F10.1103%2FPhysRev.116.1041&rft_id=info%3Abibcode%2F1959PhRv..116.1041T&rft.aulast=Terrell&rft.aufirst=James&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Penrose-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-Penrose_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenrose2008" class="citation journal cs1">Penrose, Roger (24 October 2008). "The Apparent Shape of a Relativistically Moving Sphere". <i><a href="/wiki/Proceedings_of_the_Cambridge_Philosophical_Society" class="mw-redirect" title="Proceedings of the Cambridge Philosophical Society">Mathematical Proceedings of the Cambridge Philosophical Society</a></i>. <b>55</b> (1): 137–139. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1959PCPS...55..137P">1959PCPS...55..137P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0305004100033776">10.1017/S0305004100033776</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123023118">123023118</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematical+Proceedings+of+the+Cambridge+Philosophical+Society&rft.atitle=The+Apparent+Shape+of+a+Relativistically+Moving+Sphere&rft.volume=55&rft.issue=1&rft.pages=137-139&rft.date=2008-10-24&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123023118%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1017%2FS0305004100033776&rft_id=info%3Abibcode%2F1959PCPS...55..137P&rft.aulast=Penrose&rft.aufirst=Roger&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-inertia-100"><span class="mw-cite-backlink">^ <a href="#cite_ref-inertia_100-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-inertia_100-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-inertia_100-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.fourmilab.ch/etexts/einstein/E_mc2/www/">Does the inertia of a body depend upon its energy content?</a> A. Einstein, <i>Annalen der Physik</i>. <b>18</b>:639, 1905 (English translation by W. Perrett and G.B. Jeffery)</span> </li> <li id="cite_note-survey-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-survey_103-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://archive.today/20240524161707/https://www.webcitation.org/5knwYbqwK?url=http://www.geocities.com/physics_world/abstracts/Einstein_1907A_abstract.htm"><i>On the Inertia of Energy Required by the Relativity Principle</i></a>, A. Einstein, Annalen der Physik 23 (1907): 371–384</span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaglio2007" class="citation web cs1">Baglio, Julien (26 May 2007). <a rel="nofollow" class="external text" href="http://www.normalesup.org/~baglio/physique/acceleration.pdf">"Acceleration in special relativity: What is the meaning of "uniformly accelerated movement" ?"</a> <span class="cs1-format">(PDF)</span>. Physics Department, ENS Cachan<span class="reference-accessdate">. Retrieved <span class="nowrap">22 January</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Acceleration+in+special+relativity%3A+What+is+the+meaning+of+%22uniformly+accelerated+movement%22+%3F&rft.pub=Physics+Department%2C+ENS+Cachan&rft.date=2007-05-26&rft.aulast=Baglio&rft.aufirst=Julien&rft_id=http%3A%2F%2Fwww.normalesup.org%2F~baglio%2Fphysique%2Facceleration.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Champion_1932-112"><span class="mw-cite-backlink">^ <a href="#cite_ref-Champion_1932_112-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Champion_1932_112-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Champion_1932_112-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChampion1932" class="citation journal cs1">Champion, Frank Clive (1932). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1932.0108">"On some close collisions of fast β-particles with electrons, photographed by the expansion method"</a>. <i>Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character</i>. <b>136</b> (830). The Royal Society Publishing: 630–637. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932RSPSA.136..630C">1932RSPSA.136..630C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1932.0108">10.1098/rspa.1932.0108</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123018629">123018629</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Containing+Papers+of+a+Mathematical+and+Physical+Character&rft.atitle=On+some+close+collisions+of+fast+%CE%B2-particles+with+electrons%2C+photographed+by+the+expansion+method.&rft.volume=136&rft.issue=830&rft.pages=630-637&rft.date=1932&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123018629%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frspa.1932.0108&rft_id=info%3Abibcode%2F1932RSPSA.136..630C&rft.aulast=Champion&rft.aufirst=Frank+Clive&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1932.0108&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Dirac-122"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dirac_122-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dirac_122-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP.A.M._Dirac1930" class="citation journal cs1"><a href="/wiki/P.A.M._Dirac" class="mw-redirect" title="P.A.M. Dirac">P.A.M. Dirac</a> (1930). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1930.0013">"A Theory of Electrons and Protons"</a>. <i>Proceedings of the Royal Society</i>. <b>A126</b> (801): 360–365. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1930RSPSA.126..360D">1930RSPSA.126..360D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1930.0013">10.1098/rspa.1930.0013</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/95359">95359</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society&rft.atitle=A+Theory+of+Electrons+and+Protons&rft.volume=A126&rft.issue=801&rft.pages=360-365&rft.date=1930&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F95359%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1098%2Frspa.1930.0013&rft_id=info%3Abibcode%2F1930RSPSA.126..360D&rft.au=P.A.M.+Dirac&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1930.0013&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFC.D._Anderson1933" class="citation journal cs1"><a href="/wiki/Carl_David_Anderson" title="Carl David Anderson">C.D. Anderson</a> (1933). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.43.491">"The Positive Electron"</a>. <i>Phys. Rev</i>. <b>43</b> (6): 491–494. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1933PhRv...43..491A">1933PhRv...43..491A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.43.491">10.1103/PhysRev.43.491</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Phys.+Rev.&rft.atitle=The+Positive+Electron&rft.volume=43&rft.issue=6&rft.pages=491-494&rft.date=1933&rft_id=info%3Adoi%2F10.1103%2FPhysRev.43.491&rft_id=info%3Abibcode%2F1933PhRv...43..491A&rft.au=C.D.+Anderson&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.43.491&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=63" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 35em;"> <ol class="references"> <li id="cite_note-Griffiths-2013-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Griffiths-2013_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Griffiths-2013_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Griffiths-2013_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffiths2013" class="citation book cs1"><a href="/wiki/David_J._Griffiths" title="David J. Griffiths">Griffiths, David J.</a> (2013). "Electrodynamics and Relativity". <a href="/wiki/Introduction_to_Electrodynamics" title="Introduction to Electrodynamics"><i>Introduction to Electrodynamics</i></a> (4th ed.). Pearson. Chapter 12. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-85656-2" title="Special:BookSources/978-0-321-85656-2"><bdi>978-0-321-85656-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Electrodynamics+and+Relativity&rft.btitle=Introduction+to+Electrodynamics&rft.pages=Chapter+12&rft.edition=4th&rft.pub=Pearson&rft.date=2013&rft.isbn=978-0-321-85656-2&rft.aulast=Griffiths&rft.aufirst=David+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Jackson-1999-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jackson-1999_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jackson-1999_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Jackson-1999_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJackson1999" class="citation book cs1"><a href="/wiki/John_David_Jackson_(physicist)" title="John David Jackson (physicist)">Jackson, John D.</a> (1999). "Special Theory of Relativity". <a href="/wiki/Classical_Electrodynamics_(book)" title="Classical Electrodynamics (book)"><i>Classical Electrodynamics</i></a> (3rd ed.). John Wiley & Sons. Chapter 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-30932-X" title="Special:BookSources/0-471-30932-X"><bdi>0-471-30932-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Special+Theory+of+Relativity&rft.btitle=Classical+Electrodynamics&rft.pages=Chapter+11&rft.edition=3rd&rft.pub=John+Wiley+%26+Sons&rft.date=1999&rft.isbn=0-471-30932-X&rft.aulast=Jackson&rft.aufirst=John+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldstein1980" class="citation book cs1"><a href="/wiki/Herbert_Goldstein" title="Herbert Goldstein">Goldstein, Herbert</a> (1980). "Chapter 7: Special Relativity in Classical Mechanics". <a href="/wiki/Classical_Mechanics_(Goldstein_book)" class="mw-redirect" title="Classical Mechanics (Goldstein book)"><i>Classical Mechanics</i></a> (2nd ed.). Addison-Wesley Publishing Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-201-02918-9" title="Special:BookSources/0-201-02918-9"><bdi>0-201-02918-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+7%3A+Special+Relativity+in+Classical+Mechanics&rft.btitle=Classical+Mechanics&rft.edition=2nd&rft.pub=Addison-Wesley+Publishing+Company&rft.date=1980&rft.isbn=0-201-02918-9&rft.aulast=Goldstein&rft.aufirst=Herbert&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Lanczos-1970-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lanczos-1970_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lanczos-1970_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLanczos1970" class="citation book cs1"><a href="/wiki/Cornelius_Lanczos" title="Cornelius Lanczos">Lanczos, Cornelius</a> (1970). "Chapter IX: Relativistic Mechanics". <i>The Variational Principles of Mechanics</i> (4th ed.). Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-65067-8" title="Special:BookSources/978-0-486-65067-8"><bdi>978-0-486-65067-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+IX%3A+Relativistic+Mechanics&rft.btitle=The+Variational+Principles+of+Mechanics&rft.edition=4th&rft.pub=Dover+Publications&rft.date=1970&rft.isbn=978-0-486-65067-8&rft.aulast=Lanczos&rft.aufirst=Cornelius&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTom_RobertsSiegmar_Schleif2007" class="citation web cs1">Tom Roberts & Siegmar Schleif (October 2007). <a rel="nofollow" class="external text" href="http://www.edu-observatory.org/physics-faq/Relativity/SR/experiments.html">"What is the experimental basis of Special Relativity?"</a>. <i>Usenet Physics FAQ</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2008-09-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Usenet+Physics+FAQ&rft.atitle=What+is+the+experimental+basis+of+Special+Relativity%3F&rft.date=2007-10&rft.au=Tom+Roberts&rft.au=Siegmar+Schleif&rft_id=http%3A%2F%2Fwww.edu-observatory.org%2Fphysics-faq%2FRelativity%2FSR%2Fexperiments.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-relativity-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-relativity_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlbert_Einstein2001" class="citation book cs1">Albert Einstein (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=idb7wJiB6SsC&pg=PA50"><i>Relativity: The Special and the General Theory</i></a> (Reprint of 1920 translation by Robert W. Lawson ed.). Routledge. p. 48. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-415-25384-0" title="Special:BookSources/978-0-415-25384-0"><bdi>978-0-415-25384-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Relativity%3A+The+Special+and+the+General+Theory&rft.pages=48&rft.edition=Reprint+of+1920+translation+by+Robert+W.+Lawson&rft.pub=Routledge&rft.date=2001&rft.isbn=978-0-415-25384-0&rft.au=Albert+Einstein&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Didb7wJiB6SsC%26pg%3DPA50&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Feynman-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman_8-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/I_15.html#Ch15-S9">The Feynman Lectures on Physics Vol. I Ch. 15-9: Equivalence of mass and energy</a></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Sean Carroll, Lecture Notes on General Relativity, ch. 1, "Special relativity and flat spacetime", <a rel="nofollow" class="external free" href="http://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll1.html">http://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll1.html</a></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoks2006" class="citation book cs1">Koks, Don (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ObMb7l9-9loC"><i>Explorations in Mathematical Physics: The Concepts Behind an Elegant Language</i></a> (illustrated ed.). Springer Science & Business Media. p. 234. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-32793-8" title="Special:BookSources/978-0-387-32793-8"><bdi>978-0-387-32793-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Explorations+in+Mathematical+Physics%3A+The+Concepts+Behind+an+Elegant+Language&rft.pages=234&rft.edition=illustrated&rft.pub=Springer+Science+%26+Business+Media&rft.date=2006&rft.isbn=978-0-387-32793-8&rft.aulast=Koks&rft.aufirst=Don&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DObMb7l9-9loC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ObMb7l9-9loC&pg=PA234">Extract of page 234</a></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteane2012" class="citation book cs1">Steane, Andrew M. (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=75rCErZkh7EC"><i>Relativity Made Relatively Easy</i></a> (illustrated ed.). OUP Oxford. p. 226. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-966286-9" title="Special:BookSources/978-0-19-966286-9"><bdi>978-0-19-966286-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Relativity+Made+Relatively+Easy&rft.pages=226&rft.edition=illustrated&rft.pub=OUP+Oxford&rft.date=2012&rft.isbn=978-0-19-966286-9&rft.aulast=Steane&rft.aufirst=Andrew+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D75rCErZkh7EC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=75rCErZkh7EC&pg=PA226">Extract of page 226</a></span> </li> <li id="cite_note-Taylor_1992-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Taylor_1992_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Taylor_1992_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Taylor_1992_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Taylor_1992_17-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Taylor_1992_17-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylorWheeler1992" class="citation book cs1">Taylor, Edwin F.; Wheeler, John Archibald (1992). <a rel="nofollow" class="external text" href="https://archive.org/details/spacetime_physics/"><i>Spacetime Physics</i></a> (2nd ed.). W. H. Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-2327-1" title="Special:BookSources/0-7167-2327-1"><bdi>0-7167-2327-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Spacetime+Physics&rft.edition=2nd&rft.pub=W.+H.+Freeman&rft.date=1992&rft.isbn=0-7167-2327-1&rft.aulast=Taylor&rft.aufirst=Edwin+F.&rft.au=Wheeler%2C+John+Archibald&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspacetime_physics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Rindler0-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rindler0_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rindler0_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Rindler0_18-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Rindler0_18-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Rindler0_18-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRindler1977" class="citation book cs1">Rindler, Wolfgang (1977). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0J_dwCmQThgC&pg=PT148"><i>Essential Relativity: Special, General, and Cosmological</i></a> (illustrated ed.). Springer Science & Business Media. p. §1,11 p. 7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-07970-5" title="Special:BookSources/978-3-540-07970-5"><bdi>978-3-540-07970-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Essential+Relativity%3A+Special%2C+General%2C+and+Cosmological&rft.pages=%C2%A71%2C11+p.+7&rft.edition=illustrated&rft.pub=Springer+Science+%26+Business+Media&rft.date=1977&rft.isbn=978-3-540-07970-5&rft.aulast=Rindler&rft.aufirst=Wolfgang&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0J_dwCmQThgC%26pg%3DPT148&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://physicsworld.com/james-clerk-maxwell-a-force-for-physics/">"James Clerk Maxwell: a force for physics"</a>. <i>Physics World</i>. 2006-12-01<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+World&rft.atitle=James+Clerk+Maxwell%3A+a+force+for+physics&rft.date=2006-12-01&rft_id=https%3A%2F%2Fphysicsworld.com%2Fjames-clerk-maxwell-a-force-for-physics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.aps.org/publications/apsnews/200711/physicshistory.cfm">"November 1887: Michelson and Morley report their failure to detect the luminiferous ether"</a>. <i>www.aps.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.aps.org&rft.atitle=November+1887%3A+Michelson+and+Morley+report+their+failure+to+detect+the+luminiferous+ether&rft_id=http%3A%2F%2Fwww.aps.org%2Fpublications%2Fapsnews%2F200711%2Fphysicshistory.cfm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><a href="/wiki/Michael_Polanyi" title="Michael Polanyi">Michael Polanyi</a> (1974) <i>Personal Knowledge: Towards a Post-Critical Philosophy</i>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-226-67288-3" title="Special:BookSources/0-226-67288-3">0-226-67288-3</a>, footnote page 10–11: Einstein reports, via Dr N Balzas in response to Polanyi's query, that "The Michelson–Morley experiment had no role in the foundation of the theory." and "... the theory of relativity was not founded to explain its outcome at all". <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=0Rtu8kCpvz4C&lpg=PP1&pg=PT19">[1]</a></span> </li> <li id="cite_note-mM1905-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-mM1905_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mM1905_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJeroen_van_Dongen2009" class="citation journal cs1">Jeroen van Dongen (2009). "On the role of the Michelson–Morley experiment: Einstein in Chicago". <i>Archive for History of Exact Sciences</i>. <b>63</b> (6): 655–663. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0908.1545">0908.1545</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0908.1545V">2009arXiv0908.1545V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00407-009-0050-5">10.1007/s00407-009-0050-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119220040">119220040</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Archive+for+History+of+Exact+Sciences&rft.atitle=On+the+role+of+the+Michelson%E2%80%93Morley+experiment%3A+Einstein+in+Chicago&rft.volume=63&rft.issue=6&rft.pages=655-663&rft.date=2009&rft_id=info%3Aarxiv%2F0908.1545&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119220040%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00407-009-0050-5&rft_id=info%3Abibcode%2F2009arXiv0908.1545V&rft.au=Jeroen+van+Dongen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">For a survey of such derivations, see Lucas and Hodgson, Spacetime and Electromagnetism, 1990</span> </li> <li id="cite_note-Einstein-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Einstein_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein,_A.,_Lorentz,_H._A.,_Minkowski,_H.,_&_Weyl,_H.1952" class="citation book cs1">Einstein, A., Lorentz, H. A., Minkowski, H., & Weyl, H. (1952). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yECokhzsJYIC&pg=PA111"><i>The Principle of Relativity: a collection of original memoirs on the special and general theory of relativity</i></a>. Courier Dover Publications. p. 111. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-60081-9" title="Special:BookSources/978-0-486-60081-9"><bdi>978-0-486-60081-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Principle+of+Relativity%3A+a+collection+of+original+memoirs+on+the+special+and+general+theory+of+relativity&rft.pages=111&rft.pub=Courier+Dover+Publications&rft.date=1952&rft.isbn=978-0-486-60081-9&rft.au=Einstein%2C+A.%2C+Lorentz%2C+H.+A.%2C+Minkowski%2C+H.%2C+%26+Weyl%2C+H.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyECokhzsJYIC%26pg%3DPA111&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-Collier-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Collier_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollier2017" class="citation book cs1">Collier, Peter (2017). <i>A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity</i> (3rd ed.). Incomprehensible Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780957389465" title="Special:BookSources/9780957389465"><bdi>9780957389465</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Most+Incomprehensible+Thing%3A+Notes+Towards+a+Very+Gentle+Introduction+to+the+Mathematics+of+Relativity&rft.edition=3rd&rft.pub=Incomprehensible+Books&rft.date=2017&rft.isbn=9780957389465&rft.aulast=Collier&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text">Staley, Richard (2009), "Albert Michelson, the Velocity of Light, and the Ether Drift", <i>Einstein's generation. The origins of the relativity revolution</i>, Chicago: University of Chicago Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-226-77057-5" title="Special:BookSources/0-226-77057-5">0-226-77057-5</a></span> </li> <li id="cite_note-Morin2007-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Morin2007_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Morin2007_31-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Morin2007_31-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Morin2007_31-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Morin2007_31-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Morin2007_31-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Morin2007_31-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Morin2007_31-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Morin2007_31-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Morin2007_31-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Morin2007_31-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Morin2007_31-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Morin2007_31-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Morin2007_31-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Morin2007_31-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Morin2007_31-15"><sup><i><b>p</b></i></sup></a></span> <span class="reference-text">David Morin (2007) <i>Introduction to Classical Mechanics</i>, Cambridge University Press, Cambridge, chapter 11, Appendix I, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-139-46837-5" title="Special:BookSources/1-139-46837-5">1-139-46837-5</a>.</span> </li> <li id="cite_note-Miller2009-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Miller2009_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller2010" class="citation journal cs1">Miller, D. J. (2010). "A constructive approach to the special theory of relativity". <i>American Journal of Physics</i>. <b>78</b> (6): 633–638. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0907.0902">0907.0902</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010AmJPh..78..633M">2010AmJPh..78..633M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.3298908">10.1119/1.3298908</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20444859">20444859</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=A+constructive+approach+to+the+special+theory+of+relativity&rft.volume=78&rft.issue=6&rft.pages=633-638&rft.date=2010&rft_id=info%3Aarxiv%2F0907.0902&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20444859%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1119%2F1.3298908&rft_id=info%3Abibcode%2F2010AmJPh..78..633M&rft.aulast=Miller&rft.aufirst=D.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Callahan-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Callahan_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCallahan2011" class="citation book cs1">Callahan, James J. (2011). <i>The Geometry of Spacetime: An Introduction to Special and General Relativity</i>. New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781441931429" title="Special:BookSources/9781441931429"><bdi>9781441931429</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Geometry+of+Spacetime%3A+An+Introduction+to+Special+and+General+Relativity&rft.place=New+York&rft.pub=Springer&rft.date=2011&rft.isbn=9781441931429&rft.aulast=Callahan&rft.aufirst=James+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">P. G. Bergmann (1976) <i>Introduction to the Theory of Relativity</i>, Dover edition, Chapter IV, page 36 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-63282-2" title="Special:BookSources/0-486-63282-2">0-486-63282-2</a>.</span> </li> <li id="cite_note-Mermin1968-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mermin1968_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMermin1968" class="citation book cs1">Mermin, N. David (1968). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/spacetimeinspeci0000merm"><i>Space and Time in Special Relativity</i></a></span>. McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0881334203" title="Special:BookSources/978-0881334203"><bdi>978-0881334203</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Space+and+Time+in+Special+Relativity&rft.pub=McGraw-Hill&rft.date=1968&rft.isbn=978-0881334203&rft.aulast=Mermin&rft.aufirst=N.+David&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspacetimeinspeci0000merm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_Resnick1968" class="citation book cs1">Robert Resnick (1968). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fsIRAQAAIAAJ"><i>Introduction to special relativity</i></a>. Wiley. pp. 62–63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780471717249" title="Special:BookSources/9780471717249"><bdi>9780471717249</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+special+relativity&rft.pages=62-63&rft.pub=Wiley&rft.date=1968&rft.isbn=9780471717249&rft.au=Robert+Resnick&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfsIRAQAAIAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Miller1998-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-Miller1998_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Miller1998_40-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller1998" class="citation book cs1">Miller, Arthur I. (1998). <i>Albert Einstein's Special Theory of Relativity: Emergence (1905) and Early Interpretation (1905–1911)</i>. Mew York: Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-94870-6" title="Special:BookSources/978-0-387-94870-6"><bdi>978-0-387-94870-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Albert+Einstein%27s+Special+Theory+of+Relativity%3A+Emergence+%281905%29+and+Early+Interpretation+%281905%E2%80%931911%29&rft.place=Mew+York&rft.pub=Springer-Verlag&rft.date=1998&rft.isbn=978-0-387-94870-6&rft.aulast=Miller&rft.aufirst=Arthur+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Bernstein2006-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bernstein2006_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein2006" class="citation book cs1">Bernstein, Jeremy (2006). <i>Secrets of the Old One: Einstein, 1905</i>. Copernicus Books (imprint of Springer Science + Business Media). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0387-26005-1" title="Special:BookSources/978-0387-26005-1"><bdi>978-0387-26005-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Secrets+of+the+Old+One%3A+Einstein%2C+1905&rft.pub=Copernicus+Books+%28imprint+of+Springer+Science+%2B+Business+Media%29&rft.date=2006&rft.isbn=978-0387-26005-1&rft.aulast=Bernstein&rft.aufirst=Jeremy&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Darrigol2005-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Darrigol2005_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarrigol2005" class="citation journal cs1">Darrigol, Olivier (2005). <a rel="nofollow" class="external text" href="http://www.bourbaphy.fr/darrigol2.pdf">"The Genesis of the Theory of Relativity"</a> <span class="cs1-format">(PDF)</span>. <i>Séminaire Poincaré</i>. <b>1</b>: 1–22. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006eins.book....1D">2006eins.book....1D</a><span class="reference-accessdate">. Retrieved <span class="nowrap">15 November</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=S%C3%A9minaire+Poincar%C3%A9&rft.atitle=The+Genesis+of+the+Theory+of+Relativity&rft.volume=1&rft.pages=1-22&rft.date=2005&rft_id=info%3Abibcode%2F2006eins.book....1D&rft.aulast=Darrigol&rft.aufirst=Olivier&rft_id=http%3A%2F%2Fwww.bourbaphy.fr%2Fdarrigol2.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Rindler1977-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rindler1977_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rindler1977_50-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Rindler1977_50-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRindler1977" class="citation book cs1">Rindler, Wolfgang (1977). <i>Essential Relativity</i> (2nd ed.). New York: Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-10090-6" title="Special:BookSources/978-0-387-10090-6"><bdi>978-0-387-10090-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Essential+Relativity&rft.place=New+York&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=1977&rft.isbn=978-0-387-10090-6&rft.aulast=Rindler&rft.aufirst=Wolfgang&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Taylor1966-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-Taylor1966_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Taylor1966_51-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Taylor1966_51-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Taylor1966_51-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylorWheeler1966" class="citation book cs1">Taylor, Edwin F.; Wheeler, John Archibald (1966). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/spacetimephysics0000tayl"><i>Spacetime Physics</i></a></span> (1st ed.). San Francisco: W. H. Freeman and Company.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Spacetime+Physics&rft.place=San+Francisco&rft.edition=1st&rft.pub=W.+H.+Freeman+and+Company&rft.date=1966&rft.aulast=Taylor&rft.aufirst=Edwin+F.&rft.au=Wheeler%2C+John+Archibald&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspacetimephysics0000tayl&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Ashby2003-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ashby2003_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAshby2003" class="citation journal cs1">Ashby, Neil (2003). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253894">"Relativity in the Global Positioning System"</a>. <i>Living Reviews in Relativity</i>. <b>6</b> (1): 1. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003LRR.....6....1A">2003LRR.....6....1A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.12942%2Flrr-2003-1">10.12942/lrr-2003-1</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253894">5253894</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28163638">28163638</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Living+Reviews+in+Relativity&rft.atitle=Relativity+in+the+Global+Positioning+System&rft.volume=6&rft.issue=1&rft.pages=1&rft.date=2003&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5253894%23id-name%3DPMC&rft_id=info%3Apmid%2F28163638&rft_id=info%3Adoi%2F10.12942%2Flrr-2003-1&rft_id=info%3Abibcode%2F2003LRR.....6....1A&rft.aulast=Ashby&rft.aufirst=Neil&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5253894&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaniel_KleppnerDavid_Kolenkow1973" class="citation book cs1">Daniel Kleppner & David Kolenkow (1973). <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontome00dani/page/468"><i>An Introduction to Mechanics</i></a>. McGraw-Hill. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontome00dani/page/468">468–70</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-035048-9" title="Special:BookSources/978-0-07-035048-9"><bdi>978-0-07-035048-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Mechanics&rft.pages=468-70&rft.pub=McGraw-Hill&rft.date=1973&rft.isbn=978-0-07-035048-9&rft.au=Daniel+Kleppner&rft.au=David+Kolenkow&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontome00dani%2Fpage%2F468&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-French_1968-55"><span class="mw-cite-backlink">^ <a href="#cite_ref-French_1968_55-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-French_1968_55-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-French_1968_55-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrench1968" class="citation book cs1">French, A. P. (1968). <i>Special Relativity</i>. New York: W. W. Norton & Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-393-09793-5" title="Special:BookSources/0-393-09793-5"><bdi>0-393-09793-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Special+Relativity&rft.place=New+York&rft.pub=W.+W.+Norton+%26+Company&rft.date=1968&rft.isbn=0-393-09793-5&rft.aulast=French&rft.aufirst=A.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Lewis_Tolman_1909-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lewis_Tolman_1909_56-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLewisTolman1909" class="citation journal cs1">Lewis, Gilbert Newton; Tolman, Richard Chase (1909). <a class="external text" href="https://en.wikisource.org/wiki/The_Principle_of_Relativity,_and_Non-Newtonian_Mechanics">"The Principle of Relativity, and Non-Newtonian Mechanics"</a>. <i>Proceedings of the American Academy of Arts and Sciences</i>. <b>44</b> (25): 709–726. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F20022495">10.2307/20022495</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/20022495">20022495</a><span class="reference-accessdate">. Retrieved <span class="nowrap">22 August</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Academy+of+Arts+and+Sciences&rft.atitle=The+Principle+of+Relativity%2C+and+Non-Newtonian+Mechanics&rft.volume=44&rft.issue=25&rft.pages=709-726&rft.date=1909&rft_id=info%3Adoi%2F10.2307%2F20022495&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F20022495%23id-name%3DJSTOR&rft.aulast=Lewis&rft.aufirst=Gilbert+Newton&rft.au=Tolman%2C+Richard+Chase&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FThe_Principle_of_Relativity%2C_and_Non-Newtonian_Mechanics&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Cuvaj_1971-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cuvaj_1971_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cuvaj_1971_57-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCuvaj1971" class="citation journal cs1">Cuvaj, Camillo (1971). <a rel="nofollow" class="external text" href="http://www.isc.meiji.ac.jp/~sano/hssj/pdf/Cuvaj_C-1972-Langevin_Relativity-JSHS-No_10-pp113-142.pdf">"Paul Langeyin and the Theory of Relativity"</a> <span class="cs1-format">(PDF)</span>. <i>Japanese Studies in the History of Science</i>. <b>10</b>: 113–142<span class="reference-accessdate">. Retrieved <span class="nowrap">12 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Japanese+Studies+in+the+History+of+Science&rft.atitle=Paul+Langeyin+and+the+Theory+of+Relativity&rft.volume=10&rft.pages=113-142&rft.date=1971&rft.aulast=Cuvaj&rft.aufirst=Camillo&rft_id=http%3A%2F%2Fwww.isc.meiji.ac.jp%2F~sano%2Fhssj%2Fpdf%2FCuvaj_C-1972-Langevin_Relativity-JSHS-No_10-pp113-142.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCassidyHoltonRutherford2002" class="citation book cs1">Cassidy, David C.; Holton, Gerald James; Rutherford, Floyd James (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rpQo7f9F1xUC&pg=PA422"><i>Understanding Physics</i></a>. <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. p. 422. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-98756-9" title="Special:BookSources/978-0-387-98756-9"><bdi>978-0-387-98756-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Understanding+Physics&rft.pages=422&rft.pub=Springer-Verlag&rft.date=2002&rft.isbn=978-0-387-98756-9&rft.aulast=Cassidy&rft.aufirst=David+C.&rft.au=Holton%2C+Gerald+James&rft.au=Rutherford%2C+Floyd+James&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrpQo7f9F1xUC%26pg%3DPA422&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCutner2003" class="citation book cs1">Cutner, Mark Leslie (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2QVmiMW0O0MC&pg=PA128"><i>Astronomy, A Physical Perspective</i></a>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p. 128. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-82196-4" title="Special:BookSources/978-0-521-82196-4"><bdi>978-0-521-82196-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Astronomy%2C+A+Physical+Perspective&rft.pages=128&rft.pub=Cambridge+University+Press&rft.date=2003&rft.isbn=978-0-521-82196-4&rft.aulast=Cutner&rft.aufirst=Mark+Leslie&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2QVmiMW0O0MC%26pg%3DPA128&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEllisWilliams2000" class="citation book cs1">Ellis, George F. R.; Williams, Ruth M. (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Hos31wty5WIC&pg=PA28"><i>Flat and Curved Space-times</i></a> (2n ed.). <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. pp. 28–29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-850657-7" title="Special:BookSources/978-0-19-850657-7"><bdi>978-0-19-850657-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Flat+and+Curved+Space-times&rft.pages=28-29&rft.edition=2n&rft.pub=Oxford+University+Press&rft.date=2000&rft.isbn=978-0-19-850657-7&rft.aulast=Ellis&rft.aufirst=George+F.+R.&rft.au=Williams%2C+Ruth+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHos31wty5WIC%26pg%3DPA28&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Feynman_Lectures_1-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman_Lectures_1_61-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynmanLeightonSands2011" class="citation book cs1">Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (2011). <a rel="nofollow" class="external text" href="https://www.feynmanlectures.caltech.edu/I_15.html"><i>The feynman lectures on physics; vol I: The new millennium edition</i></a>. Basic Books. p. 15-5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-465-02414-8" title="Special:BookSources/978-0-465-02414-8"><bdi>978-0-465-02414-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">12 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+feynman+lectures+on+physics%3B+vol+I%3A+The+new+millennium+edition&rft.pages=15-5&rft.pub=Basic+Books&rft.date=2011&rft.isbn=978-0-465-02414-8&rft.aulast=Feynman&rft.aufirst=Richard+P.&rft.au=Leighton%2C+Robert+B.&rft.au=Sands%2C+Matthew&rft_id=https%3A%2F%2Fwww.feynmanlectures.caltech.edu%2FI_15.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Halliday_1988-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-Halliday_1988_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Halliday_1988_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHallidayResnick1988" class="citation book cs1">Halliday, David; Resnick, Robert (1988). <i>Fundamental Physics: Extended Third Edition</i>. New York: John Wiley & sons. pp. 958–959. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-81995-6" title="Special:BookSources/0-471-81995-6"><bdi>0-471-81995-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamental+Physics%3A+Extended+Third+Edition&rft.place=New+York&rft.pages=958-959&rft.pub=John+Wiley+%26+sons&rft.date=1988&rft.isbn=0-471-81995-6&rft.aulast=Halliday&rft.aufirst=David&rft.au=Resnick%2C+Robert&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdams1997" class="citation book cs1">Adams, Steve (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1RV0AysEN4oC&pg=PA54"><i>Relativity: An introduction to space-time physics</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. 54. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7484-0621-0" title="Special:BookSources/978-0-7484-0621-0"><bdi>978-0-7484-0621-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Relativity%3A+An+introduction+to+space-time+physics&rft.pages=54&rft.pub=CRC+Press&rft.date=1997&rft.isbn=978-0-7484-0621-0&rft.aulast=Adams&rft.aufirst=Steve&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1RV0AysEN4oC%26pg%3DPA54&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Langevin_1911-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-Langevin_1911_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLangevin1911" class="citation journal cs1">Langevin, Paul (1911). <a class="external text" href="https://en.wikisource.org/wiki/Translation:The_Evolution_of_Space_and_Time">"L'Évolution de l'espace et du temps"</a>. <i>Scientia</i>. <b>10</b>: 31–54<span class="reference-accessdate">. Retrieved <span class="nowrap">20 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientia&rft.atitle=L%27%C3%89volution+de+l%27espace+et+du+temps&rft.volume=10&rft.pages=31-54&rft.date=1911&rft.aulast=Langevin&rft.aufirst=Paul&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FTranslation%3AThe_Evolution_of_Space_and_Time&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Debs_Redhead-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-Debs_Redhead_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDebs,_Talal_A.Redhead,_Michael_L.G.1996" class="citation journal cs1">Debs, Talal A.; Redhead, Michael L.G. (1996). "The twin "paradox" and the conventionality of simultaneity". <i>American Journal of Physics</i>. <b>64</b> (4): 384–392. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996AmJPh..64..384D">1996AmJPh..64..384D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.18252">10.1119/1.18252</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=The+twin+%22paradox%22+and+the+conventionality+of+simultaneity&rft.volume=64&rft.issue=4&rft.pages=384-392&rft.date=1996&rft_id=info%3Adoi%2F10.1119%2F1.18252&rft_id=info%3Abibcode%2F1996AmJPh..64..384D&rft.au=Debs%2C+Talal+A.&rft.au=Redhead%2C+Michael+L.G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTolman1917" class="citation book cs1">Tolman, Richard C. (1917). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8yodAAAAMAAJ&q=54"><i>The Theory of the Relativity of Motion</i></a>. Berkeley: University of California Press. p. 54.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Theory+of+the+Relativity+of+Motion&rft.place=Berkeley&rft.pages=54&rft.pub=University+of+California+Press&rft.date=1917&rft.aulast=Tolman&rft.aufirst=Richard+C.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8yodAAAAMAAJ%26q%3D54&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Takeuchi-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-Takeuchi_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakeuchi" class="citation web cs1">Takeuchi, Tatsu. <a rel="nofollow" class="external text" href="https://www1.phys.vt.edu/~takeuchi/relativity/notes/section10.html">"Special Relativity Lecture Notes – Section 10"</a>. Virginia Tech<span class="reference-accessdate">. Retrieved <span class="nowrap">31 October</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Special+Relativity+Lecture+Notes+%E2%80%93+Section+10&rft.pub=Virginia+Tech&rft.aulast=Takeuchi&rft.aufirst=Tatsu&rft_id=https%3A%2F%2Fwww1.phys.vt.edu%2F~takeuchi%2Frelativity%2Fnotes%2Fsection10.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Morin2017-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-Morin2017_70-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorin2017" class="citation book cs1">Morin, David (2017). <i>Special Relativity for the Enthusiastic Beginner</i>. CreateSpace Independent Publishing Platform. pp. 90–92. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781542323512" title="Special:BookSources/9781542323512"><bdi>9781542323512</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Special+Relativity+for+the+Enthusiastic+Beginner&rft.pages=90-92&rft.pub=CreateSpace+Independent+Publishing+Platform&rft.date=2017&rft.isbn=9781542323512&rft.aulast=Morin&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibbs" class="citation web cs1">Gibbs, Philip. <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/FTL.html">"Is Faster-Than-Light Travel or Communication Possible?"</a>. <i>Physics FAQ</i>. Department of Mathematics, University of California, Riverside<span class="reference-accessdate">. Retrieved <span class="nowrap">31 October</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+FAQ&rft.atitle=Is+Faster-Than-Light+Travel+or+Communication+Possible%3F&rft.aulast=Gibbs&rft.aufirst=Philip&rft_id=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fphysics%2FRelativity%2FSpeedOfLight%2FFTL.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGinsburg1989" class="citation book cs1">Ginsburg, David (1989). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Lh0tjaBNzg0C"><i>Applications of Electrodynamics in Theoretical Physics and Astrophysics</i></a> (illustrated ed.). CRC Press. p. 206. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989aetp.book.....G">1989aetp.book.....G</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-2-88124-719-4" title="Special:BookSources/978-2-88124-719-4"><bdi>978-2-88124-719-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applications+of+Electrodynamics+in+Theoretical+Physics+and+Astrophysics&rft.pages=206&rft.edition=illustrated&rft.pub=CRC+Press&rft.date=1989&rft_id=info%3Abibcode%2F1989aetp.book.....G&rft.isbn=978-2-88124-719-4&rft.aulast=Ginsburg&rft.aufirst=David&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLh0tjaBNzg0C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Lh0tjaBNzg0C&pg=PA206">Extract of page 206</a></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWesley_C._Salmon2006" class="citation book cs1">Wesley C. Salmon (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FHqOXCd06e8C"><i>Four Decades of Scientific Explanation</i></a>. University of Pittsburgh. p. 107. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8229-5926-7" title="Special:BookSources/978-0-8229-5926-7"><bdi>978-0-8229-5926-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Four+Decades+of+Scientific+Explanation&rft.pages=107&rft.pub=University+of+Pittsburgh&rft.date=2006&rft.isbn=978-0-8229-5926-7&rft.au=Wesley+C.+Salmon&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFHqOXCd06e8C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FHqOXCd06e8C&pg=PA107">Section 3.7 page 107</a></span> </li> <li id="cite_note-Lauginie2004-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lauginie2004_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLauginie2004" class="citation journal cs1">Lauginie, P. (2004). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150704043700/http://sci-ed.org/documents/Lauginie-M.pdf">"Measuring Speed of Light: Why? Speed of what?"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the Fifth International Conference for History of Science in Science Education</i>. Archived from <a rel="nofollow" class="external text" href="http://sci-ed.org/documents/Lauginie-M.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 July 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">3 July</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Fifth+International+Conference+for+History+of+Science+in+Science+Education&rft.atitle=Measuring+Speed+of+Light%3A+Why%3F+Speed+of+what%3F&rft.date=2004&rft.aulast=Lauginie&rft.aufirst=P.&rft_id=http%3A%2F%2Fsci-ed.org%2Fdocuments%2FLauginie-M.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Stachel2005-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stachel2005_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStachel2005" class="citation book cs1">Stachel, J. (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-KlBhDwUKF8C&pg=PA1">"Fresnel's (dragging) coefficient as a challenge to 19th century optics of moving bodies"</a>. In Kox, A.J.; Eisenstaedt, J (eds.). <i>The universe of general relativity</i>. Boston: Birkhäuser. pp. 1–13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-4380-5" title="Special:BookSources/978-0-8176-4380-5"><bdi>978-0-8176-4380-5</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">17 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fresnel%27s+%28dragging%29+coefficient+as+a+challenge+to+19th+century+optics+of+moving+bodies&rft.btitle=The+universe+of+general+relativity&rft.place=Boston&rft.pages=1-13&rft.pub=Birkh%C3%A4user&rft.date=2005&rft.isbn=978-0-8176-4380-5&rft.aulast=Stachel&rft.aufirst=J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-KlBhDwUKF8C%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Mould-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mould_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_A._Mould2001" class="citation book cs1">Richard A. Mould (2001). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lfGE-wyJYIUC&pg=PA8"><i>Basic Relativity</i></a> (2nd ed.). Springer. p. 8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95210-9" title="Special:BookSources/978-0-387-95210-9"><bdi>978-0-387-95210-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basic+Relativity&rft.pages=8&rft.edition=2nd&rft.pub=Springer&rft.date=2001&rft.isbn=978-0-387-95210-9&rft.au=Richard+A.+Mould&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlfGE-wyJYIUC%26pg%3DPA8&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Seidelmann-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-Seidelmann_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeidelmann1992" class="citation book cs1">Seidelmann, P. Kenneth, ed. (1992). <a rel="nofollow" class="external text" href="https://archive.org/details/131123ExplanatorySupplementAstronomicalAlmanac/page/n209"><i>Explanatory Supplement to the Astronomical Almanac</i></a>. ill Valley, Calif.: University Science Books. p. 393. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-935702-68-2" title="Special:BookSources/978-0-935702-68-2"><bdi>978-0-935702-68-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Explanatory+Supplement+to+the+Astronomical+Almanac&rft.place=ill+Valley%2C+Calif.&rft.pages=393&rft.pub=University+Science+Books&rft.date=1992&rft.isbn=978-0-935702-68-2&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2F131123ExplanatorySupplementAstronomicalAlmanac%2Fpage%2Fn209&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Ferraro-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ferraro_81-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerraroSforza2005" class="citation journal cs1">Ferraro, Rafael; Sforza, Daniel M. (2005). "European Physical Society logo Arago (1810): the first experimental result against the ether". <i>European Journal of Physics</i>. <b>26</b> (1): 195–204. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/physics/0412055">physics/0412055</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005EJPh...26..195F">2005EJPh...26..195F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0143-0807%2F26%2F1%2F020">10.1088/0143-0807/26/1/020</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119528074">119528074</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+of+Physics&rft.atitle=European+Physical+Society+logo+Arago+%281810%29%3A+the+first+experimental+result+against+the+ether&rft.volume=26&rft.issue=1&rft.pages=195-204&rft.date=2005&rft_id=info%3Aarxiv%2Fphysics%2F0412055&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119528074%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F26%2F1%2F020&rft_id=info%3Abibcode%2F2005EJPh...26..195F&rft.aulast=Ferraro&rft.aufirst=Rafael&rft.au=Sforza%2C+Daniel+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Dolan-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dolan_82-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDolan" class="citation web cs1">Dolan, Graham. <a rel="nofollow" class="external text" href="http://www.royalobservatorygreenwich.org/articles.php?article=1069">"Airy's Water Telescope (1870)"</a>. The Royal Observatory Greenwich<span class="reference-accessdate">. Retrieved <span class="nowrap">20 November</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Airy%27s+Water+Telescope+%281870%29&rft.pub=The+Royal+Observatory+Greenwich&rft.aulast=Dolan&rft.aufirst=Graham&rft_id=http%3A%2F%2Fwww.royalobservatorygreenwich.org%2Farticles.php%3Farticle%3D1069&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Hollis-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hollis_83-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHollis1937" class="citation journal cs1">Hollis, H. P. (1937). <a rel="nofollow" class="external text" href="http://adsbit.harvard.edu//full/1937Obs....60..103H/0000105.000.html">"Airy's water telescope"</a>. <i>The Observatory</i>. <b>60</b>: 103–107. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1937Obs....60..103H">1937Obs....60..103H</a><span class="reference-accessdate">. Retrieved <span class="nowrap">20 November</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Observatory&rft.atitle=Airy%27s+water+telescope&rft.volume=60&rft.pages=103-107&rft.date=1937&rft_id=info%3Abibcode%2F1937Obs....60..103H&rft.aulast=Hollis&rft.aufirst=H.+P.&rft_id=http%3A%2F%2Fadsbit.harvard.edu%2F%2Ffull%2F1937Obs....60..103H%2F0000105.000.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJanssen,_MichelStachel,_John2004" class="citation book cs1">Janssen, Michel; Stachel, John (2004). <a rel="nofollow" class="external text" href="https://www.mpiwg-berlin.mpg.de/Preprints/P265.PDF">"The Optics and Electrodynamics of Moving Bodies"</a> <span class="cs1-format">(PDF)</span>. In Stachel, John (ed.). <i>Going Critical</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-1308-9" title="Special:BookSources/978-1-4020-1308-9"><bdi>978-1-4020-1308-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Optics+and+Electrodynamics+of+Moving+Bodies&rft.btitle=Going+Critical&rft.pub=Springer&rft.date=2004&rft.isbn=978-1-4020-1308-9&rft.au=Janssen%2C+Michel&rft.au=Stachel%2C+John&rft_id=https%3A%2F%2Fwww.mpiwg-berlin.mpg.de%2FPreprints%2FP265.PDF&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSher1968" class="citation journal cs1">Sher, D. (1968). <a rel="nofollow" class="external text" href="http://adsbit.harvard.edu//full/1968JRASC..62..105S/0000105.000.html">"The Relativistic Doppler Effect"</a>. <i>Journal of the Royal Astronomical Society of Canada</i>. <b>62</b>: 105–111. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1968JRASC..62..105S">1968JRASC..62..105S</a><span class="reference-accessdate">. Retrieved <span class="nowrap">11 October</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Royal+Astronomical+Society+of+Canada&rft.atitle=The+Relativistic+Doppler+Effect&rft.volume=62&rft.pages=105-111&rft.date=1968&rft_id=info%3Abibcode%2F1968JRASC..62..105S&rft.aulast=Sher&rft.aufirst=D.&rft_id=http%3A%2F%2Fadsbit.harvard.edu%2F%2Ffull%2F1968JRASC..62..105S%2F0000105.000.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Gill-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gill_86-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGill1965" class="citation book cs1">Gill, T. P. (1965). <i>The Doppler Effect</i>. London: Logos Press Limited. pp. 6–9. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a> <a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL5947329M">5947329M</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Doppler+Effect&rft.place=London&rft.pages=6-9&rft.pub=Logos+Press+Limited&rft.date=1965&rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL5947329M%23id-name%3DOL&rft.aulast=Gill&rft.aufirst=T.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Feynman1977-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman1977_87-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynmanLeightonSands1977" class="citation book cs1"><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman, Richard P.</a>; <a href="/wiki/Robert_B._Leighton" title="Robert B. Leighton">Leighton, Robert B.</a>; <a href="/wiki/Matthew_Sands" title="Matthew Sands">Sands, Matthew</a> (February 1977). <a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/I_34.html">"Relativistic Effects in Radiation"</a>. <i>The Feynman Lectures on Physics: Volume 1</i>. Reading, Massachusetts: <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. pp. 34–7 f. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780201021165" title="Special:BookSources/9780201021165"><bdi>9780201021165</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/2010938208">2010938208</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Relativistic+Effects+in+Radiation&rft.btitle=The+Feynman+Lectures+on+Physics%3A+Volume+1&rft.place=Reading%2C+Massachusetts&rft.pages=34-7+f&rft.pub=Addison-Wesley&rft.date=1977-02&rft_id=info%3Alccn%2F2010938208&rft.isbn=9780201021165&rft.aulast=Feynman&rft.aufirst=Richard+P.&rft.au=Leighton%2C+Robert+B.&rft.au=Sands%2C+Matthew&rft_id=https%3A%2F%2Ffeynmanlectures.caltech.edu%2FI_34.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCook" class="citation web cs1">Cook, Helen. <a rel="nofollow" class="external text" href="http://www.math.ubc.ca/~cass/courses/m309-01a/cook/">"Relativistic Distortion"</a>. Mathematics Department, University of British Columbia<span class="reference-accessdate">. Retrieved <span class="nowrap">12 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Relativistic+Distortion&rft.pub=Mathematics+Department%2C+University+of+British+Columbia&rft.aulast=Cook&rft.aufirst=Helen&rft_id=http%3A%2F%2Fwww.math.ubc.ca%2F~cass%2Fcourses%2Fm309-01a%2Fcook%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSignell" class="citation web cs1">Signell, Peter. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170413153459/https://stuff.mit.edu/afs/athena/course/8/8.20/www/m44.pdf">"Appearances at Relativistic Speeds"</a> <span class="cs1-format">(PDF)</span>. <i>Project PHYSNET</i>. Michigan State University, East Lansing, MI. Archived from <a rel="nofollow" class="external text" href="https://stuff.mit.edu/afs/athena/course/8/8.20/www/m44.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 13 April 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">12 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Project+PHYSNET&rft.atitle=Appearances+at+Relativistic+Speeds&rft.aulast=Signell&rft.aufirst=Peter&rft_id=https%3A%2F%2Fstuff.mit.edu%2Fafs%2Fathena%2Fcourse%2F8%2F8.20%2Fwww%2Fm44.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKraus" class="citation web cs1">Kraus, Ute. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170512165032/http://www.spacetimetravel.org/fussball/fussball.html">"The Ball is Round"</a>. <i>Space Time Travel: Relativity visualized</i>. Institut für Physik Universität Hildesheim. Archived from <a rel="nofollow" class="external text" href="http://www.spacetimetravel.org/fussball/fussball.html">the original</a> on 12 May 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">16 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Space+Time+Travel%3A+Relativity+visualized&rft.atitle=The+Ball+is+Round&rft.aulast=Kraus&rft.aufirst=Ute&rft_id=http%3A%2F%2Fwww.spacetimetravel.org%2Ffussball%2Ffussball.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Boas_1961-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boas_1961_93-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoas1961" class="citation journal cs1">Boas, Mary L. (1961). "Apparent Shape of Large Objects at Relativistic Speeds". <i>American Journal of Physics</i>. <b>29</b> (5): 283. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1961AmJPh..29..283B">1961AmJPh..29..283B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1937751">10.1119/1.1937751</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Apparent+Shape+of+Large+Objects+at+Relativistic+Speeds&rft.volume=29&rft.issue=5&rft.pages=283&rft.date=1961&rft_id=info%3Adoi%2F10.1119%2F1.1937751&rft_id=info%3Abibcode%2F1961AmJPh..29..283B&rft.aulast=Boas&rft.aufirst=Mary+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Muller_2014-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-Muller_2014_94-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüllerBoblest2014" class="citation journal cs1">Müller, Thomas; Boblest, Sebastian (2014). "Visual appearance of wireframe objects in special relativity". <i>European Journal of Physics</i>. <b>35</b> (6): 065025. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.4583">1410.4583</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014EJPh...35f5025M">2014EJPh...35f5025M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0143-0807%2F35%2F6%2F065025">10.1088/0143-0807/35/6/065025</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118498333">118498333</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+of+Physics&rft.atitle=Visual+appearance+of+wireframe+objects+in+special+relativity&rft.volume=35&rft.issue=6&rft.pages=065025&rft.date=2014&rft_id=info%3Aarxiv%2F1410.4583&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118498333%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F35%2F6%2F065025&rft_id=info%3Abibcode%2F2014EJPh...35f5025M&rft.aulast=M%C3%BCller&rft.aufirst=Thomas&rft.au=Boblest%2C+Sebastian&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZensusPearson1987" class="citation book cs1">Zensus, J. Anton; Pearson, Timothy J. (1987). <i>Superluminal Radio Sources</i> (1st ed.). Cambridge, New York: Cambridge University Press. p. 3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780521345606" title="Special:BookSources/9780521345606"><bdi>9780521345606</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Superluminal+Radio+Sources&rft.place=Cambridge%2C+New+York&rft.pages=3&rft.edition=1st&rft.pub=Cambridge+University+Press&rft.date=1987&rft.isbn=9780521345606&rft.aulast=Zensus&rft.aufirst=J.+Anton&rft.au=Pearson%2C+Timothy+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChase" class="citation web cs1">Chase, Scott I. <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/Superluminal/superluminal.html">"Apparent Superluminal Velocity of Galaxies"</a>. <i>The Original Usenet Physics FAQ</i>. Department of Mathematics, University of California, Riverside<span class="reference-accessdate">. Retrieved <span class="nowrap">12 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Original+Usenet+Physics+FAQ&rft.atitle=Apparent+Superluminal+Velocity+of+Galaxies&rft.aulast=Chase&rft.aufirst=Scott+I.&rft_id=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fphysics%2FRelativity%2FSpeedOfLight%2FSuperluminal%2Fsuperluminal.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichmond" class="citation web cs1">Richmond, Michael. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170216155045/http://spiff.rit.edu/classes/phys200/lectures/superlum/superlum.html">"<span class="cs1-kern-left"></span>"Superluminal" motions in astronomical sources"</a>. <i>Physics 200 Lecture Notes</i>. School of Physics and Astronomy, Rochester Institute of Technology. Archived from <a rel="nofollow" class="external text" href="http://spiff.rit.edu/classes/phys200/lectures/superlum/superlum.html">the original</a> on 16 February 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">20 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+200+Lecture+Notes&rft.atitle=%22Superluminal%22+motions+in+astronomical+sources&rft.aulast=Richmond&rft.aufirst=Michael&rft_id=http%3A%2F%2Fspiff.rit.edu%2Fclasses%2Fphys200%2Flectures%2Fsuperlum%2Fsuperlum.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeel" class="citation web cs1">Keel, Bill. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170301030027/http://pages.astronomy.ua.edu/keel/galaxies/jets.html">"Jets, Superluminal Motion, and Gamma-Ray Bursts"</a>. <i>Galaxies and the Universe – WWW Course Notes</i>. Department of Physics and Astronomy, University of Alabama. Archived from <a rel="nofollow" class="external text" href="http://pages.astronomy.ua.edu/keel/galaxies/jets.html">the original</a> on 1 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">29 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Galaxies+and+the+Universe+%E2%80%93+WWW+Course+Notes&rft.atitle=Jets%2C+Superluminal+Motion%2C+and+Gamma-Ray+Bursts&rft.aulast=Keel&rft.aufirst=Bill&rft_id=http%3A%2F%2Fpages.astronomy.ua.edu%2Fkeel%2Fgalaxies%2Fjets.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Jammer-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jammer_101-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMax_Jammer1997" class="citation book cs1"><a href="/wiki/Max_Jammer" title="Max Jammer">Max Jammer</a> (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lYvz0_8aGsMC&pg=PA177"><i>Concepts of Mass in Classical and Modern Physics</i></a>. Courier Dover Publications. pp. 177–178. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-29998-3" title="Special:BookSources/978-0-486-29998-3"><bdi>978-0-486-29998-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Concepts+of+Mass+in+Classical+and+Modern+Physics&rft.pages=177-178&rft.pub=Courier+Dover+Publications&rft.date=1997&rft.isbn=978-0-486-29998-3&rft.au=Max+Jammer&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlYvz0_8aGsMC%26pg%3DPA177&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Stachel-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stachel_102-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_J._Stachel2002" class="citation book cs1">John J. Stachel (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OAsQ_hFjhrAC&pg=PA215"><i>Einstein from </i>B<i> to </i>Z<i><span></span></i></a>. Springer. p. 221. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-4143-6" title="Special:BookSources/978-0-8176-4143-6"><bdi>978-0-8176-4143-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Einstein+from+B+to+Z&rft.pages=221&rft.pub=Springer&rft.date=2002&rft.isbn=978-0-8176-4143-6&rft.au=John+J.+Stachel&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOAsQ_hFjhrAC%26pg%3DPA215&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Fernflores_2018-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fernflores_2018_105-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFernflores2018" class="citation book cs1">Fernflores, Francisco (2018). <i>Einstein's Mass–Energy Equation, Volume I: Early History and Philosophical Foundations</i>. New York: Momentum Pres. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-60650-857-2" title="Special:BookSources/978-1-60650-857-2"><bdi>978-1-60650-857-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Einstein%27s+Mass%E2%80%93Energy+Equation%2C+Volume+I%3A+Early+History+and+Philosophical+Foundations&rft.place=New+York&rft.pub=Momentum+Pres&rft.date=2018&rft.isbn=978-1-60650-857-2&rft.aulast=Fernflores&rft.aufirst=Francisco&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-gibbskoks-107"><span class="mw-cite-backlink">^ <a href="#cite_ref-gibbskoks_107-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-gibbskoks_107-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhilip_GibbsDon_Koks" class="citation web cs1">Philip Gibbs & Don Koks. <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/physics/Relativity/SR/Rocket/rocket.html">"The Relativistic Rocket"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">30 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Relativistic+Rocket&rft.au=Philip+Gibbs&rft.au=Don+Koks&rft_id=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fphysics%2FRelativity%2FSR%2FRocket%2Frocket.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://library.thinkquest.org/C0116043/specialtheorytext.htm">The special theory of relativity shows that time and space are affected by motion</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121021183616/http://library.thinkquest.org/C0116043/specialtheorytext.htm">Archived</a> 2012-10-21 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Library.thinkquest.org. Retrieved on 2013-04-24.</span> </li> <li id="cite_note-Idema_2022-109"><span class="mw-cite-backlink">^ <a href="#cite_ref-Idema_2022_109-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Idema_2022_109-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIdema2019" class="citation web cs1">Idema, Timon (17 April 2019). <a rel="nofollow" class="external text" href="https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Mechanics_and_Relativity_(Idema)/14%3A_Relativistic_Collisions">"Mechanics and Relativity. Chapter 14: Relativistic Collisions"</a>. <i>LibreTexts Physics</i>. California State University Affordable Learning Solutions Program<span class="reference-accessdate">. Retrieved <span class="nowrap">2 January</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=LibreTexts+Physics&rft.atitle=Mechanics+and+Relativity.+Chapter+14%3A+Relativistic+Collisions&rft.date=2019-04-17&rft.aulast=Idema&rft.aufirst=Timon&rft_id=https%3A%2F%2Fphys.libretexts.org%2FBookshelves%2FUniversity_Physics%2FBook%253A_Mechanics_and_Relativity_%28Idema%29%2F14%253A_Relativistic_Collisions&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Nakel_1994-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nakel_1994_110-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNakel1994" class="citation journal cs1">Nakel, Werner (1994). "The elementary process of bremsstrahlung". <i>Physics Reports</i>. <b>243</b> (6): 317–353. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994PhR...243..317N">1994PhR...243..317N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-1573%2894%2900068-9">10.1016/0370-1573(94)00068-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Reports&rft.atitle=The+elementary+process+of+bremsstrahlung&rft.volume=243&rft.issue=6&rft.pages=317-353&rft.date=1994&rft_id=info%3Adoi%2F10.1016%2F0370-1573%2894%2900068-9&rft_id=info%3Abibcode%2F1994PhR...243..317N&rft.aulast=Nakel&rft.aufirst=Werner&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalbert1972" class="citation book cs1">Halbert, M.L. (1972). "Review of Experiments on Nucleon-Nucleon Bremsstrahlung". In Austin, S.M.; Crawley, G.M. (eds.). <i>The Two-Body Force in Nuclei</i>. Boston, MA.: Springer.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Review+of+Experiments+on+Nucleon-Nucleon+Bremsstrahlung&rft.btitle=The+Two-Body+Force+in+Nuclei&rft.place=Boston%2C+MA.&rft.pub=Springer&rft.date=1972&rft.aulast=Halbert&rft.aufirst=M.L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomasWeirHassGiordano2008" class="citation book cs1">Thomas, George B.; Weir, Maurice D.; Hass, Joel; Giordano, Frank R. (2008). <i>Thomas' Calculus: Early Transcendentals</i> (Eleventh ed.). Boston: Pearson Education, Inc. p. 533. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-49575-4" title="Special:BookSources/978-0-321-49575-4"><bdi>978-0-321-49575-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thomas%27+Calculus%3A+Early+Transcendentals&rft.place=Boston&rft.pages=533&rft.edition=Eleventh&rft.pub=Pearson+Education%2C+Inc.&rft.date=2008&rft.isbn=978-0-321-49575-4&rft.aulast=Thomas&rft.aufirst=George+B.&rft.au=Weir%2C+Maurice+D.&rft.au=Hass%2C+Joel&rft.au=Giordano%2C+Frank+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Post_1962-115"><span class="mw-cite-backlink">^ <a href="#cite_ref-Post_1962_115-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Post_1962_115-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE._J._Post1962" class="citation book cs1">E. J. Post (1962). <i>Formal Structure of Electromagnetics: General Covariance and Electromagnetics</i>. Dover Publications Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-65427-0" title="Special:BookSources/978-0-486-65427-0"><bdi>978-0-486-65427-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Formal+Structure+of+Electromagnetics%3A+General+Covariance+and+Electromagnetics&rft.pub=Dover+Publications+Inc.&rft.date=1962&rft.isbn=978-0-486-65427-0&rft.au=E.+J.+Post&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Schutz1985-116"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schutz1985_116-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schutz1985_116-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Schutz1985_116-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchutz1985" class="citation book cs1">Schutz, Bernard F. (1985). <i>A first course in general relativity</i>. Cambridge, UK: Cambridge University Press. p. 26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0521277035" title="Special:BookSources/0521277035"><bdi>0521277035</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+first+course+in+general+relativity&rft.place=Cambridge%2C+UK&rft.pages=26&rft.pub=Cambridge+University+Press&rft.date=1985&rft.isbn=0521277035&rft.aulast=Schutz&rft.aufirst=Bernard+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-PhysicsFAQ-117"><span class="mw-cite-backlink">^ <a href="#cite_ref-PhysicsFAQ_117-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-PhysicsFAQ_117-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGibbs" class="citation web cs1">Gibbs, Philip. <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/physics/Relativity/SR/acceleration.html">"Can Special Relativity Handle Acceleration?"</a>. <i>The Physics and Relativity FAQ</i>. math.ucr.edu. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170607102331/http://math.ucr.edu/home/baez/physics/Relativity/SR/acceleration.html">Archived</a> from the original on 7 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">28 May</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Physics+and+Relativity+FAQ&rft.atitle=Can+Special+Relativity+Handle+Acceleration%3F&rft.aulast=Gibbs&rft.aufirst=Philip&rft_id=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fphysics%2FRelativity%2FSR%2Facceleration.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Franklin-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-Franklin_119-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranklin,_Jerrold2010" class="citation journal cs1">Franklin, Jerrold (2010). "Lorentz contraction, Bell's spaceships, and rigid body motion in special relativity". <i>European Journal of Physics</i>. <b>31</b> (2): 291–298. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0906.1919">0906.1919</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010EJPh...31..291F">2010EJPh...31..291F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0143-0807%2F31%2F2%2F006">10.1088/0143-0807/31/2/006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18059490">18059490</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+of+Physics&rft.atitle=Lorentz+contraction%2C+Bell%27s+spaceships%2C+and+rigid+body+motion+in+special+relativity&rft.volume=31&rft.issue=2&rft.pages=291-298&rft.date=2010&rft_id=info%3Aarxiv%2F0906.1919&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18059490%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F31%2F2%2F006&rft_id=info%3Abibcode%2F2010EJPh...31..291F&rft.au=Franklin%2C+Jerrold&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-Bais-120"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bais_120-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bais_120-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bais_120-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBais2007" class="citation book cs1">Bais, Sander (2007). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/veryspecialrelat0000bais"><i>Very Special Relativity: An Illustrated Guide</i></a></span>. Cambridge, Massachusetts: Harvard University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-674-02611-7" title="Special:BookSources/978-0-674-02611-7"><bdi>978-0-674-02611-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Very+Special+Relativity%3A+An+Illustrated+Guide&rft.place=Cambridge%2C+Massachusetts&rft.pub=Harvard+University+Press&rft.date=2007&rft.isbn=978-0-674-02611-7&rft.aulast=Bais&rft.aufirst=Sander&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fveryspecialrelat0000bais&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR._ResnickR._Eisberg1985" class="citation book cs1">R. Resnick; R. Eisberg (1985). <a rel="nofollow" class="external text" href="https://archive.org/details/quantumphysicsof00eisb/page/114"><i>Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles</i></a> (2nd ed.). John Wiley & Sons. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/quantumphysicsof00eisb/page/114">114–116</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-87373-0" title="Special:BookSources/978-0-471-87373-0"><bdi>978-0-471-87373-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Physics+of+Atoms%2C+Molecules%2C+Solids%2C+Nuclei+and+Particles&rft.pages=114-116&rft.edition=2nd&rft.pub=John+Wiley+%26+Sons&rft.date=1985&rft.isbn=978-0-471-87373-0&rft.au=R.+Resnick&rft.au=R.+Eisberg&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquantumphysicsof00eisb%2Fpage%2F114&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFØyvind_GrønSigbjørn_Hervik2007" class="citation book cs1">Øyvind Grøn & Sigbjørn Hervik (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IyJhCHAryuUC"><i>Einstein's general theory of relativity: with modern applications in cosmology</i></a>. Springer. p. 195. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-69199-2" title="Special:BookSources/978-0-387-69199-2"><bdi>978-0-387-69199-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Einstein%27s+general+theory+of+relativity%3A+with+modern+applications+in+cosmology&rft.pages=195&rft.pub=Springer&rft.date=2007&rft.isbn=978-0-387-69199-2&rft.au=%C3%98yvind+Gr%C3%B8n&rft.au=Sigbj%C3%B8rn+Hervik&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIyJhCHAryuUC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IyJhCHAryuUC&pg=PA195">Extract of page 195 (with units where <i>c</i> = 1)</a></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text">The number of works is vast, see as example:<br /> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSidney_ColemanSheldon_L._Glashow1997" class="citation journal cs1">Sidney Coleman; Sheldon L. Glashow (1997). "Cosmic Ray and Neutrino Tests of Special Relativity". <i>Physics Letters B</i>. <b>405</b> (3–4): 249–252. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ph/9703240">hep-ph/9703240</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997PhLB..405..249C">1997PhLB..405..249C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0370-2693%2897%2900638-2">10.1016/S0370-2693(97)00638-2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17286330">17286330</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=Cosmic+Ray+and+Neutrino+Tests+of+Special+Relativity&rft.volume=405&rft.issue=3%E2%80%934&rft.pages=249-252&rft.date=1997&rft_id=info%3Aarxiv%2Fhep-ph%2F9703240&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17286330%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2FS0370-2693%2897%2900638-2&rft_id=info%3Abibcode%2F1997PhLB..405..249C&rft.au=Sidney+Coleman&rft.au=Sheldon+L.+Glashow&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span><br /> An overview can be found on <a rel="nofollow" class="external text" href="http://www.edu-observatory.org/physics-faq/Relativity/SR/experiments.html">this page</a></span> </li> <li id="cite_note-Roberts_2007-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-Roberts_2007_126-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobertsSchleif" class="citation web cs1">Roberts, Tom; Schleif, Siegmar. <a rel="nofollow" class="external text" href="https://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html#Experiments_not_consistent_with_SR">"Experiments that Apparently are NOT Consistent with SR/GR"</a>. <i>What is the experimental basis of Special Relativity?</i>. University of California at Riverside<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=What+is+the+experimental+basis+of+Special+Relativity%3F&rft.atitle=Experiments+that+Apparently+are+NOT+Consistent+with+SR%2FGR&rft.aulast=Roberts&rft.aufirst=Tom&rft.au=Schleif%2C+Siegmar&rft_id=https%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fphysics%2FRelativity%2FSR%2Fexperiments.html%23Experiments_not_consistent_with_SR&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_D._Norton2004" class="citation journal cs1">John D. Norton, John D. (2004). <a rel="nofollow" class="external text" href="http://philsci-archive.pitt.edu/archive/00001743/">"Einstein's Investigations of Galilean Covariant Electrodynamics prior to 1905"</a>. <i>Archive for History of Exact Sciences</i>. <b>59</b> (1): 45–105. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004AHES...59...45N">2004AHES...59...45N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00407-004-0085-6">10.1007/s00407-004-0085-6</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17459755">17459755</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Archive+for+History+of+Exact+Sciences&rft.atitle=Einstein%27s+Investigations+of+Galilean+Covariant+Electrodynamics+prior+to+1905&rft.volume=59&rft.issue=1&rft.pages=45-105&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17459755%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs00407-004-0085-6&rft_id=info%3Abibcode%2F2004AHES...59...45N&rft.aulast=John+D.+Norton&rft.aufirst=John+D.&rft_id=http%3A%2F%2Fphilsci-archive.pitt.edu%2Farchive%2F00001743%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.A._WheelerC._MisnerK.S._Thorne1973" class="citation book cs1">J.A. Wheeler; C. Misner; K.S. Thorne (1973). <i>Gravitation</i>. W.H. Freeman & Co. p. 58. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-0344-0" title="Special:BookSources/978-0-7167-0344-0"><bdi>978-0-7167-0344-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Gravitation&rft.pages=58&rft.pub=W.H.+Freeman+%26+Co&rft.date=1973&rft.isbn=978-0-7167-0344-0&rft.au=J.A.+Wheeler&rft.au=C.+Misner&rft.au=K.S.+Thorne&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.R._ForshawA.G._Smith2009" class="citation book cs1">J.R. Forshaw; A.G. Smith (2009). <i>Dynamics and Relativity</i>. Wiley. p. 247. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-01460-8" title="Special:BookSources/978-0-470-01460-8"><bdi>978-0-470-01460-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dynamics+and+Relativity&rft.pages=247&rft.pub=Wiley&rft.date=2009&rft.isbn=978-0-470-01460-8&rft.au=J.R.+Forshaw&rft.au=A.G.+Smith&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR._Penrose2007" class="citation book cs1">R. Penrose (2007). <a href="/wiki/The_Road_to_Reality" title="The Road to Reality"><i>The Road to Reality</i></a>. Vintage books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-679-77631-4" title="Special:BookSources/978-0-679-77631-4"><bdi>978-0-679-77631-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Road+to+Reality&rft.pub=Vintage+books&rft.date=2007&rft.isbn=978-0-679-77631-4&rft.au=R.+Penrose&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text">Jean-Bernard Zuber & Claude Itzykson, <i>Quantum Field Theory</i>, pg 5, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-032071-3" title="Special:BookSources/0-07-032071-3">0-07-032071-3</a></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Charles W. Misner</a>, <a href="/wiki/Kip_S._Thorne" class="mw-redirect" title="Kip S. Thorne">Kip S. Thorne</a> & <a href="/wiki/John_A._Wheeler" class="mw-redirect" title="John A. Wheeler">John A. Wheeler</a>, <i>Gravitation</i>, pg 51, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-0344-0" title="Special:BookSources/0-7167-0344-0">0-7167-0344-0</a></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><a href="/wiki/George_Sterman" title="George Sterman">George Sterman</a>, <i>An Introduction to Quantum Field Theory</i>, pg 4, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-31132-2" title="Special:BookSources/0-521-31132-2">0-521-31132-2</a></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSean_M._Carroll2004" class="citation book cs1">Sean M. Carroll (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1SKFQgAACAAJ"><i>Spacetime and Geometry: An Introduction to General Relativity</i></a>. Addison Wesley. p. 22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8053-8732-2" title="Special:BookSources/978-0-8053-8732-2"><bdi>978-0-8053-8732-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Spacetime+and+Geometry%3A+An+Introduction+to+General+Relativity&rft.pages=22&rft.pub=Addison+Wesley&rft.date=2004&rft.isbn=978-0-8053-8732-2&rft.au=Sean+M.+Carroll&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1SKFQgAACAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=64" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Texts_by_Einstein_and_text_about_history_of_special_relativity">Texts by Einstein and text about history of special relativity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=65" title="Edit section: Texts by Einstein and text about history of special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Einstein, Albert (1920). <i><a href="https://en.wikisource.org/wiki/Relativity:_The_Special_and_General_Theory" class="extiw" title="s:Relativity: The Special and General Theory">Relativity: The Special and General Theory</a></i>.</li> <li>Einstein, Albert (1996). <i>The Meaning of Relativity</i>. Fine Communications. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-56731-136-9" title="Special:BookSources/1-56731-136-9">1-56731-136-9</a></li> <li>Logunov, Anatoly A. (2005). <i><a rel="nofollow" class="external text" href="https://arxiv.org/abs/physics/0408077">Henri Poincaré and the Relativity Theory</a></i> (transl. from Russian by G. Pontocorvo and V. O. Soloviev, edited by V. A. Petrov). Nauka, Moscow.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Textbooks">Textbooks</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=66" title="Edit section: Textbooks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Charles_Misner" class="mw-redirect" title="Charles Misner">Charles Misner</a>, <a href="/wiki/Kip_Thorne" title="Kip Thorne">Kip Thorne</a>, and <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">John Archibald Wheeler</a> (1971) <i>Gravitation</i>. W. H. Freeman & Co. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-0334-3" title="Special:BookSources/0-7167-0334-3">0-7167-0334-3</a></li> <li>Post, E.J., 1997 (1962) <i>Formal Structure of Electromagnetics: General Covariance and Electromagnetics</i>. Dover Publications.</li> <li><a href="/wiki/Wolfgang_Rindler" title="Wolfgang Rindler">Wolfgang Rindler</a> (1991). <i>Introduction to Special Relativity</i> (2nd ed.), Oxford University Press. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-853952-0" title="Special:BookSources/978-0-19-853952-0">978-0-19-853952-0</a>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-853952-5" title="Special:BookSources/0-19-853952-5">0-19-853952-5</a></li> <li>Harvey R. Brown (2005). Physical relativity: space–time structure from a dynamical perspective, Oxford University Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-927583-1" title="Special:BookSources/0-19-927583-1">0-19-927583-1</a>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-927583-0" title="Special:BookSources/978-0-19-927583-0">978-0-19-927583-0</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQadir1989" class="citation book cs1"><a href="/wiki/Asghar_Qadir" title="Asghar Qadir">Qadir, Asghar</a> (1989). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=X5YofYrqFoAC"><i>Relativity: An Introduction to the Special Theory</i></a>. Singapore: <a href="/wiki/World_Scientific" title="World Scientific">World Scientific Publications</a>. p. 128. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989rist.book.....Q">1989rist.book.....Q</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9971-5-0612-4" title="Special:BookSources/978-9971-5-0612-4"><bdi>978-9971-5-0612-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Relativity%3A+An+Introduction+to+the+Special+Theory&rft.place=Singapore&rft.pages=128&rft.pub=World+Scientific+Publications&rft.date=1989&rft_id=info%3Abibcode%2F1989rist.book.....Q&rft.isbn=978-9971-5-0612-4&rft.aulast=Qadir&rft.aufirst=Asghar&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DX5YofYrqFoAC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrench1968" class="citation book cs1">French, A. P. (1968). <i>Special Relativity (M.I.T. Introductory Physics)</i> (1st ed.). W. W. Norton & Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0393097931" title="Special:BookSources/978-0393097931"><bdi>978-0393097931</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Special+Relativity+%28M.I.T.+Introductory+Physics%29&rft.edition=1st&rft.pub=W.+W.+Norton+%26+Company&rft.date=1968&rft.isbn=978-0393097931&rft.aulast=French&rft.aufirst=A.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li>Silberstein, Ludwik (1914). <i>The Theory of Relativity</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawrence_Sklar1977" class="citation book cs1">Lawrence Sklar (1977). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cPLXqV3QwuMC&pg=PA206"><i>Space, Time and Spacetime</i></a>. University of California Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-520-03174-6" title="Special:BookSources/978-0-520-03174-6"><bdi>978-0-520-03174-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Space%2C+Time+and+Spacetime&rft.pub=University+of+California+Press&rft.date=1977&rft.isbn=978-0-520-03174-6&rft.au=Lawrence+Sklar&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcPLXqV3QwuMC%26pg%3DPA206&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawrence_Sklar1992" class="citation book cs1">Lawrence Sklar (1992). <i>Philosophy of Physics</i>. Westview Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8133-0625-4" title="Special:BookSources/978-0-8133-0625-4"><bdi>978-0-8133-0625-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Philosophy+of+Physics&rft.pub=Westview+Press&rft.date=1992&rft.isbn=978-0-8133-0625-4&rft.au=Lawrence+Sklar&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSergey_Stepanov2018" class="citation book cs1">Sergey Stepanov (2018). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Rc6PtAEACAAJ"><i>Relativistic World</i></a>. De Gruyter. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9783110515879" title="Special:BookSources/9783110515879"><bdi>9783110515879</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Relativistic+World&rft.pub=De+Gruyter&rft.date=2018&rft.isbn=9783110515879&rft.au=Sergey+Stepanov&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRc6PtAEACAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li>Taylor, Edwin, and <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">John Archibald Wheeler</a> (1992). <i>Spacetime Physics</i> (2nd ed.). W. H. Freeman & Co. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-2327-1" title="Special:BookSources/0-7167-2327-1">0-7167-2327-1</a>.</li> <li>Tipler, Paul, and Llewellyn, Ralph (2002). <i>Modern Physics</i> (4th ed.). W. H. Freeman & Co. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-4345-0" title="Special:BookSources/0-7167-4345-0">0-7167-4345-0</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Journal_articles">Journal articles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=67" title="Edit section: Journal articles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlvager,_T.Farley,_F._J._M.Kjellman,_J.Wallin,_L.1964" class="citation journal cs1">Alvager, T.; Farley, F. J. M.; Kjellman, J.; Wallin, L.; et al. (1964). "Test of the Second Postulate of Special Relativity in the GeV region". <i>Physics Letters</i>. <b>12</b> (3): 260–262. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhL....12..260A">1964PhL....12..260A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0031-9163%2864%2991095-9">10.1016/0031-9163(64)91095-9</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters&rft.atitle=Test+of+the+Second+Postulate+of+Special+Relativity+in+the+GeV+region&rft.volume=12&rft.issue=3&rft.pages=260-262&rft.date=1964&rft_id=info%3Adoi%2F10.1016%2F0031-9163%2864%2991095-9&rft_id=info%3Abibcode%2F1964PhL....12..260A&rft.au=Alvager%2C+T.&rft.au=Farley%2C+F.+J.+M.&rft.au=Kjellman%2C+J.&rft.au=Wallin%2C+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarrigol2004" class="citation journal cs1">Darrigol, Olivier (2004). "The Mystery of the Poincaré–Einstein Connection". <i>Isis</i>. <b>95</b> (4): 614–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F430652">10.1086/430652</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16011297">16011297</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:26997100">26997100</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Isis&rft.atitle=The+Mystery+of+the+Poincar%C3%A9%E2%80%93Einstein+Connection&rft.volume=95&rft.issue=4&rft.pages=614-26&rft.date=2004&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A26997100%23id-name%3DS2CID&rft_id=info%3Apmid%2F16011297&rft_id=info%3Adoi%2F10.1086%2F430652&rft.aulast=Darrigol&rft.aufirst=Olivier&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfPetit1997" class="citation journal cs1">Wolf, Peter; Petit, Gerard (1997). "Satellite test of Special Relativity using the Global Positioning System". <i>Physical Review A</i>. <b>56</b> (6): 4405–09. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997PhRvA..56.4405W">1997PhRvA..56.4405W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.56.4405">10.1103/PhysRevA.56.4405</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+A&rft.atitle=Satellite+test+of+Special+Relativity+using+the+Global+Positioning+System&rft.volume=56&rft.issue=6&rft.pages=4405-09&rft.date=1997&rft_id=info%3Adoi%2F10.1103%2FPhysRevA.56.4405&rft_id=info%3Abibcode%2F1997PhRvA..56.4405W&rft.aulast=Wolf&rft.aufirst=Peter&rft.au=Petit%2C+Gerard&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://scholarpedia.org/article/Special_relativity">Special Relativity</a> <a href="/wiki/Scholarpedia" title="Scholarpedia">Scholarpedia</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRindler2011" class="citation journal cs1"><a href="/wiki/Wolfgang_Rindler" title="Wolfgang Rindler">Rindler, Wolfgang</a> (2011). <a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.8520">"Special relativity: Kinematics"</a>. <i><a href="/wiki/Scholarpedia" title="Scholarpedia">Scholarpedia</a></i>. <b>6</b> (2): 8520. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011SchpJ...6.8520R">2011SchpJ...6.8520R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4249%2Fscholarpedia.8520">10.4249/scholarpedia.8520</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scholarpedia&rft.atitle=Special+relativity%3A+Kinematics&rft.volume=6&rft.issue=2&rft.pages=8520&rft.date=2011&rft_id=info%3Adoi%2F10.4249%2Fscholarpedia.8520&rft_id=info%3Abibcode%2F2011SchpJ...6.8520R&rft.aulast=Rindler&rft.aufirst=Wolfgang&rft_id=https%3A%2F%2Fdoi.org%2F10.4249%252Fscholarpedia.8520&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpecial+relativity" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=68" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/38px-Wikisource-logo.svg.png" decoding="async" width="38" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/57px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/76px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></div> <div class="side-box-text plainlist"><a href="/wiki/Wikisource" title="Wikisource">Wikisource</a> has original text related to this article: <div style="margin-left: 10px;"><b><a href="https://en.wikisource.org/wiki/Relativity:_The_Special_and_General_Theory" class="extiw" title="wikisource:Relativity: The Special and General Theory">Relativity: The Special and General Theory</a></b></div></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/38px-Wikisource-logo.svg.png" decoding="async" width="38" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/57px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/76px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></div> <div class="side-box-text plainlist">Wikisource has original works on the topic: <i><b><a href="https://en.wikisource.org/wiki/Portal:Relativity" class="extiw" title="s:Portal:Relativity">Relativity</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">Wikibooks has a book on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Special_Relativity" class="extiw" title="wikibooks:Special Relativity">Special Relativity</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/40px-Wikiversity_logo_2017.svg.png" decoding="async" width="40" height="33" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/60px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/80px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Wikiversity has learning resources about <i><b><a href="https://en.wikiversity.org/wiki/Special_Relativity" class="extiw" title="v:Special Relativity">Special Relativity</a></b></i></div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/special_relativity" class="extiw" title="wiktionary:special relativity">special relativity</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <div class="mw-heading mw-heading3"><h3 id="Original_works">Original works</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=69" title="Edit section: Original works"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf"><i>Zur Elektrodynamik bewegter Körper</i></a> Einstein's original work in German, <a href="/wiki/Annalen_der_Physik" title="Annalen der Physik">Annalen der Physik</a>, <a href="/wiki/Bern" title="Bern">Bern</a> 1905</li> <li><a rel="nofollow" class="external text" href="http://www.fourmilab.ch/etexts/einstein/specrel/specrel.pdf"><i>On the Electrodynamics of Moving Bodies</i></a> English Translation as published in the 1923 book <i>The Principle of Relativity</i>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Special_relativity_for_a_general_audience_(no_mathematical_knowledge_required)"><span id="Special_relativity_for_a_general_audience_.28no_mathematical_knowledge_required.29"></span>Special relativity for a general audience (no mathematical knowledge required)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=70" title="Edit section: Special relativity for a general audience (no mathematical knowledge required)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.phys.unsw.edu.au/einsteinlight">Einstein Light</a> An <a rel="nofollow" class="external text" href="http://www.sciam.com/article.cfm?chanID=sa004&articleID=0005CFF9-524F-1340-924F83414B7F0000">award</a>-winning, non-technical introduction (film clips and demonstrations) supported by dozens of pages of further explanations and animations, at levels with or without mathematics.</li> <li><a rel="nofollow" class="external text" href="http://www.einstein-online.info/en/elementary/index.html">Einstein Online</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100201234156/http://www.einstein-online.info/en/elementary/index.html">Archived</a> 2010-02-01 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> Introduction to relativity theory, from the Max Planck Institute for Gravitational Physics.</li> <li>Audio: Cain/Gay (2006) – <a rel="nofollow" class="external text" href="http://www.astronomycast.com/astronomy/einsteins-theory-of-special-relativity/">Astronomy Cast</a>. Einstein's Theory of Special Relativity</li></ul> <div class="mw-heading mw-heading3"><h3 id="Special_relativity_explained_(using_simple_or_more_advanced_mathematics)"><span id="Special_relativity_explained_.28using_simple_or_more_advanced_mathematics.29"></span>Special relativity explained (using simple or more advanced mathematics)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=71" title="Edit section: Special relativity explained (using simple or more advanced mathematics)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20040206110957/http://www.geocities.com/autotheist/Bondi/intro.htm">Bondi K-Calculus</a> – A simple introduction to the special theory of relativity.</li> <li><a rel="nofollow" class="external text" href="http://gregegan.customer.netspace.net.au/FOUNDATIONS/01/found01.html">Greg Egan's <i>Foundations</i></a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130425091908/http://gregegan.customer.netspace.net.au/FOUNDATIONS/01/found01.html">Archived</a> 2013-04-25 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><a rel="nofollow" class="external text" href="http://cosmo.nyu.edu/hogg/sr/">The Hogg Notes on Special Relativity</a> A good introduction to special relativity at the undergraduate level, using calculus.</li> <li><a rel="nofollow" class="external text" href="http://www.relativitycalculator.com/E=mc2.shtml">Relativity Calculator: Special Relativity</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130321052504/http://www.relativitycalculator.com/E=mc2.shtml">Archived</a> 2013-03-21 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> – An algebraic and integral calculus derivation for <span class="nowrap"><i>E</i> = <i>mc</i><sup>2</sup></span>.</li> <li><a rel="nofollow" class="external text" href="http://www.mathpages.com/rr/rrtoc.htm">MathPages – Reflections on Relativity</a> A complete online book on relativity with an extensive bibliography.</li> <li><a rel="nofollow" class="external text" href="http://lightandmatter.com/sr/">Special Relativity</a> An introduction to special relativity at the undergraduate level.</li> <li class="mw-empty-elt"></li> <li><style data-mw-deduplicate="TemplateStyles:r1041539562">.mw-parser-output .citation{word-wrap:break-word}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}</style><span class="citation gutenberg"> <i><a rel="nofollow" class="external text" href="https://gutenberg.org/ebooks/5001">Relativity: the Special and General Theory</a></i> at <a href="/wiki/Project_Gutenberg" title="Project Gutenberg">Project Gutenberg</a></span>, by <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a rel="nofollow" class="external text" href="http://www.phys.vt.edu/~takeuchi/relativity/notes">Special Relativity Lecture Notes</a> is a standard introduction to special relativity containing illustrative explanations based on drawings and spacetime diagrams from Virginia Polytechnic Institute and State University.</li> <li><a rel="nofollow" class="external text" href="http://www.rafimoor.com/english/SRE.htm">Understanding Special Relativity</a> The theory of special relativity in an easily understandable way.</li> <li><a rel="nofollow" class="external text" href="http://digitalcommons.unl.edu/physicskatz/49/">An Introduction to the Special Theory of Relativity</a> (1964) by Robert Katz, "an introduction ... that is accessible to any student who has had an introduction to general physics and some slight acquaintance with the calculus" (130 pp; pdf format).</li> <li><a rel="nofollow" class="external text" href="http://www.physics.mq.edu.au/~jcresser/Phys378/LectureNotes/VectorsTensorsSR.pdf">Lecture Notes on Special Relativity</a> by J D Cresser Department of Physics Macquarie University.</li> <li><a rel="nofollow" class="external text" href="http://specialrelativity.net/">SpecialRelativity.net</a> – An overview with visualizations and minimal mathematics.</li> <li><a rel="nofollow" class="external text" href="https://www.mdpi.com/2624-8174/4/2/28">Relativity 4-ever?</a> The problem of superluminal motion is discussed in an entertaining manner.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Visualization">Visualization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Special_relativity&action=edit&section=72" title="Edit section: Visualization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.hakenberg.de/diffgeo/special_relativity.htm">Raytracing Special Relativity</a> Software visualizing several scenarios under the influence of special relativity.</li> <li><a rel="nofollow" class="external text" href="http://www.anu.edu.au/Physics/Savage/RTR/">Real Time Relativity</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130508021027/http://www.anu.edu.au/Physics/Savage/RTR/">Archived</a> 2013-05-08 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> The Australian National University. Relativistic visual effects experienced through an interactive program.</li> <li><a rel="nofollow" class="external text" href="http://www.spacetimetravel.org/">Spacetime travel</a> A variety of visualizations of relativistic effects, from relativistic motion to black holes.</li> <li><a rel="nofollow" class="external text" href="http://www.anu.edu.au/Physics/Savage/TEE/">Through Einstein's Eyes</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130514175026/http://www.anu.edu.au/Physics/Savage/TEE/">Archived</a> 2013-05-14 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> The Australian National University. Relativistic visual effects explained with movies and images.</li> <li><a rel="nofollow" class="external text" href="http://www.adamauton.com/warp/">Warp Special Relativity Simulator</a> A computer program to show the effects of traveling close to the speed of light.</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=C2VMO7pcWhg"><span class="plainlinks">Animation clip</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a> visualizing the Lorentz transformation.</li> <li><a rel="nofollow" class="external text" href="http://math.ucr.edu/~jdp/Relativity/SpecialRelativity.html">Original interactive FLASH Animations</a> from John de Pillis illustrating Lorentz and Galilean frames, Train and Tunnel Paradox, the Twin Paradox, Wave Propagation, Clock Synchronization, etc.</li> <li><a rel="nofollow" class="external text" href="http://lightspeed.sourceforge.net/">lightspeed</a> An OpenGL-based program developed to illustrate the effects of special relativity on the appearance of moving objects.</li> <li><a rel="nofollow" class="external text" href="http://specialrelativity.net/animations/starfield/starfield.html?beta=0.8&color=on&circles=on&avgstellardensity=0.11&starpopulation=yalebsc&limitingMag=5&projection=stereographic&anim=on&runningTime=8">Animation</a> showing the stars near Earth, as seen from a spacecraft accelerating rapidly to light speed.</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Major_branches_of_physics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Branches_of_physics" title="Template:Branches of physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Branches_of_physics" title="Template talk:Branches of physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Branches_of_physics" title="Special:EditPage/Template:Branches of physics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_branches_of_physics" style="font-size:114%;margin:0 4em">Major <a href="/wiki/Branches_of_physics" title="Branches of physics">branches of physics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Divisions</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Basic_research" title="Basic research">Pure</a></li> <li><a href="/wiki/Applied_physics" title="Applied physics">Applied</a> <ul><li><a href="/wiki/Engineering_physics" title="Engineering physics">Engineering</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Approaches</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Experimental_physics" title="Experimental physics">Experimental</a></li> <li><a href="/wiki/Theoretical_physics" title="Theoretical physics">Theoretical</a> <ul><li><a href="/wiki/Computational_physics" title="Computational physics">Computational</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Classical_physics" title="Classical physics">Classical</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a> <ul><li><a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">Newtonian</a></li> <li><a href="/wiki/Analytical_mechanics" title="Analytical mechanics">Analytical</a></li> <li><a href="/wiki/Celestial_mechanics" title="Celestial mechanics">Celestial</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum</a></li></ul></li> <li><a href="/wiki/Acoustics" title="Acoustics">Acoustics</a></li> <li><a href="/wiki/Classical_electromagnetism" title="Classical electromagnetism">Classical electromagnetism</a></li> <li><a href="/wiki/Classical_optics" class="mw-redirect" title="Classical optics">Classical optics</a> <ul><li><a href="/wiki/Geometrical_optics" title="Geometrical optics">Ray</a></li> <li><a href="/wiki/Physical_optics" title="Physical optics">Wave</a></li></ul></li> <li><a href="/wiki/Thermodynamics" title="Thermodynamics">Thermodynamics</a> <ul><li><a href="/wiki/Statistical_mechanics" title="Statistical mechanics">Statistical</a></li> <li><a href="/wiki/Non-equilibrium_thermodynamics" title="Non-equilibrium thermodynamics">Non-equilibrium</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Modern_physics" title="Modern physics">Modern</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Relativistic_mechanics" title="Relativistic mechanics">Relativistic mechanics</a> <ul><li><a class="mw-selflink selflink">Special</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General</a></li></ul></li> <li><a href="/wiki/Nuclear_physics" title="Nuclear physics">Nuclear physics</a></li> <li><a href="/wiki/Particle_physics" title="Particle physics">Particle physics</a></li> <li><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></li> <li><a href="/wiki/Atomic,_molecular,_and_optical_physics" title="Atomic, molecular, and optical physics">Atomic, molecular, and optical physics</a> <ul><li><a href="/wiki/Atomic_physics" title="Atomic physics">Atomic</a></li> <li><a href="/wiki/Molecular_physics" title="Molecular physics">Molecular</a></li> <li><a href="/wiki/Optics#Modern_optics" title="Optics">Modern optics</a></li></ul></li> <li><a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">Condensed matter physics</a> <ul><li><a href="/wiki/Solid-state_physics" title="Solid-state physics">Solid-state physics</a></li> <li><a href="/wiki/Crystallography" title="Crystallography">Crystallography</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Applied_and_interdisciplinary_physics" title="Category:Applied and interdisciplinary physics">Interdisciplinary</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astrophysics" title="Astrophysics">Astrophysics</a></li> <li><a href="/wiki/Atmospheric_physics" title="Atmospheric physics">Atmospheric physics</a></li> <li><a href="/wiki/Biophysics" title="Biophysics">Biophysics</a></li> <li><a href="/wiki/Chemical_physics" title="Chemical physics">Chemical physics</a></li> <li><a href="/wiki/Geophysics" title="Geophysics">Geophysics</a></li> <li><a href="/wiki/Materials_science" title="Materials science">Materials science</a></li> <li><a href="/wiki/Mathematical_physics" title="Mathematical physics">Mathematical physics</a></li> <li><a href="/wiki/Medical_physics" title="Medical physics">Medical physics</a></li> <li><a href="/wiki/Physical_oceanography" title="Physical oceanography">Ocean physics</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_physics" title="History of physics">History of physics</a></li> <li><a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a></li> <li><a href="/wiki/Philosophy_of_physics" title="Philosophy of physics">Philosophy of physics</a></li> <li><a href="/wiki/Physics_education" title="Physics education">Physics education</a></li> <li><a href="/wiki/Timeline_of_fundamental_physics_discoveries" title="Timeline of fundamental physics discoveries">Timeline of physics discoveries</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Albert_Einstein" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Albert_Einstein" title="Template:Albert Einstein"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Albert_Einstein" title="Template talk:Albert Einstein"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Albert_Einstein" title="Special:EditPage/Template:Albert Einstein"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Albert_Einstein" style="font-size:114%;margin:0 4em"><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Physics</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Theory of relativity</a> <ul><li><a class="mw-selflink selflink">Special relativity</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li></ul></li> <li><a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence (E=mc<sup>2</sup>)</a></li> <li><a href="/wiki/Brownian_motion" title="Brownian motion">Brownian motion</a></li> <li><a href="/wiki/Photoelectric_effect" title="Photoelectric effect">Photoelectric effect</a></li> <li><a href="/wiki/Einstein_coefficients" title="Einstein coefficients">Einstein coefficients</a></li> <li><a href="/wiki/Einstein_solid" title="Einstein solid">Einstein solid</a></li> <li><a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></li> <li><a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></li> <li><a href="/wiki/Einstein_radius" title="Einstein radius">Einstein radius</a></li> <li><a href="/wiki/Einstein_relation_(kinetic_theory)" title="Einstein relation (kinetic theory)">Einstein relation (kinetic theory)</a></li> <li><a href="/wiki/Cosmological_constant" title="Cosmological constant">Cosmological constant</a></li> <li><a href="/wiki/Bose%E2%80%93Einstein_condensate" title="Bose–Einstein condensate">Bose–Einstein condensate</a></li> <li><a href="/wiki/Bose%E2%80%93Einstein_statistics" title="Bose–Einstein statistics">Bose–Einstein statistics</a></li> <li><a href="/wiki/Bose%E2%80%93Einstein_correlations" title="Bose–Einstein correlations">Bose–Einstein correlations</a></li> <li><a href="/wiki/Einstein%E2%80%93Cartan_theory" title="Einstein–Cartan theory">Einstein–Cartan theory</a></li> <li><a href="/wiki/Einstein%E2%80%93Infeld%E2%80%93Hoffmann_equations" title="Einstein–Infeld–Hoffmann equations">Einstein–Infeld–Hoffmann equations</a></li> <li><a href="/wiki/Einstein%E2%80%93de_Haas_effect" title="Einstein–de Haas effect">Einstein–de Haas effect</a></li> <li><a href="/wiki/EPR_paradox" class="mw-redirect" title="EPR paradox">EPR paradox</a></li> <li><a href="/wiki/Bohr%E2%80%93Einstein_debates" title="Bohr–Einstein debates">Bohr–Einstein debates</a></li> <li><a href="/wiki/Teleparallelism" title="Teleparallelism">Teleparallelism</a></li> <li><a href="/wiki/Einstein%27s_thought_experiments" title="Einstein's thought experiments">Thought experiments</a></li> <li><a href="/wiki/Einstein%27s_unsuccessful_investigations" title="Einstein's unsuccessful investigations">Unsuccessful investigations</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li> <li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational wave</a></li> <li><a href="/wiki/Tea_leaf_paradox" title="Tea leaf paradox">Tea leaf paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_scientific_publications_by_Albert_Einstein" title="List of scientific publications by Albert Einstein">Works</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Annus_mirabilis_papers" title="Annus mirabilis papers"><i>Annus mirabilis</i> papers</a> (1905)</li> <li>"<a href="/wiki/%C3%9Cber_die_von_der_molekularkinetischen_Theorie_der_W%C3%A4rme_geforderte_Bewegung_von_in_ruhenden_Fl%C3%BCssigkeiten_suspendierten_Teilchen" title="Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen">Investigations on the Theory of Brownian Movement</a>" (1905)</li> <li><i><a href="/wiki/Relativity:_The_Special_and_the_General_Theory" title="Relativity: The Special and the General Theory">Relativity: The Special and the General Theory</a></i> (1916)</li> <li><i><a href="/wiki/The_Meaning_of_Relativity" title="The Meaning of Relativity">The Meaning of Relativity</a></i> (1922)</li> <li><i><a href="/wiki/The_World_as_I_See_It_(book)" title="The World as I See It (book)">The World as I See It</a></i> (1934)</li> <li><i><a href="/wiki/The_Evolution_of_Physics" title="The Evolution of Physics">The Evolution of Physics</a></i> (1938)</li> <li>"<a href="/wiki/Why_Socialism%3F" title="Why Socialism?">Why Socialism?</a>" (1949)</li> <li><a href="/wiki/Russell%E2%80%93Einstein_Manifesto" title="Russell–Einstein Manifesto">Russell–Einstein Manifesto</a> (1955)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Albert_Einstein_in_popular_culture" title="Albert Einstein in popular culture">In popular<br />culture</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Die_Grundlagen_der_Einsteinschen_Relativit%C3%A4ts-Theorie" title="Die Grundlagen der Einsteinschen Relativitäts-Theorie">Die Grundlagen der Einsteinschen Relativitäts-Theorie</a></i> (1922 documentary)</li> <li><i><a href="/wiki/The_Einstein_Theory_of_Relativity" title="The Einstein Theory of Relativity">The Einstein Theory of Relativity</a></i> (1923 documentary)</li> <li><i><a href="/wiki/Relics:_Einstein%27s_Brain" title="Relics: Einstein's Brain">Relics: Einstein's Brain</a></i> (1994 documentary)</li> <li><i><a href="/wiki/Insignificance_(film)" title="Insignificance (film)">Insignificance</a></i> (1985 film)</li> <li><i><a href="/wiki/Young_Einstein" title="Young Einstein">Young Einstein</a></i> (1988 film)</li> <li><i><a href="/wiki/Picasso_at_the_Lapin_Agile" title="Picasso at the Lapin Agile">Picasso at the Lapin Agile</a></i> (1993 play)</li> <li><i><a href="/wiki/I.Q._(film)" title="I.Q. (film)">I.Q.</a></i> (1994 film)</li> <li><i><a href="/wiki/Einstein%27s_Gift" title="Einstein's Gift">Einstein's Gift</a></i> (2003 play)</li> <li><i><a href="/wiki/Einstein_and_Eddington" title="Einstein and Eddington">Einstein and Eddington</a></i> (2008 TV film)</li> <li><i><a href="/wiki/Genius_(American_TV_series)" title="Genius (American TV series)">Genius</a></i> (2017 series)</li> <li><i><a href="/wiki/Oppenheimer_(film)" title="Oppenheimer (film)">Oppenheimer</a></i> (2023 film)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Prizes</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Albert_Einstein_Award" title="Albert Einstein Award">Albert Einstein Award</a></li> <li><a href="/wiki/Albert_Einstein_Medal" title="Albert Einstein Medal">Albert Einstein Medal</a></li> <li><a href="/wiki/Kalinga_Prize" title="Kalinga Prize">Kalinga Prize</a></li> <li><a href="/wiki/Albert_Einstein_Peace_Prize" title="Albert Einstein Peace Prize">Albert Einstein Peace Prize</a></li> <li><a href="/wiki/Albert_Einstein_World_Award_of_Science" title="Albert Einstein World Award of Science">Albert Einstein World Award of Science</a></li> <li><a href="/wiki/Einstein_Prize_for_Laser_Science" title="Einstein Prize for Laser Science">Einstein Prize for Laser Science</a></li> <li><a href="/wiki/Einstein_Prize_(APS)" title="Einstein Prize (APS)">Einstein Prize (APS)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Books about<br />Einstein</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Albert_Einstein:_Creator_and_Rebel" title="Albert Einstein: Creator and Rebel">Albert Einstein: Creator and Rebel</a></i></li> <li><i><a href="/wiki/Einstein_and_Religion" title="Einstein and Religion">Einstein and Religion</a></i></li> <li><i><a href="/wiki/Einstein_for_Beginners" title="Einstein for Beginners">Einstein for Beginners</a></i></li> <li><i><a href="/wiki/Einstein:_His_Life_and_Universe" title="Einstein: His Life and Universe">Einstein: His Life and Universe</a></i></li> <li><i><a href="/wiki/Einstein%27s_Cosmos" title="Einstein's Cosmos">Einstein's Cosmos</a></i></li> <li><i><a href="/wiki/I_Am_Albert_Einstein" title="I Am Albert Einstein">I Am Albert Einstein</a></i></li> <li><i><a href="/wiki/Introducing_Relativity" title="Introducing Relativity">Introducing Relativity</a></i></li> <li><i><a href="/wiki/Subtle_is_the_Lord" title="Subtle is the Lord">Subtle is the Lord</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Einstein_family" title="Einstein family">Family</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mileva_Mari%C4%87" title="Mileva Marić">Mileva Marić</a> (first wife)</li> <li><a href="/wiki/Elsa_Einstein" title="Elsa Einstein">Elsa Einstein</a> (second wife; cousin)</li> <li><a href="/wiki/Lieserl_Einstein" class="mw-redirect" title="Lieserl Einstein">Lieserl Einstein</a> (daughter)</li> <li><a href="/wiki/Hans_Albert_Einstein" title="Hans Albert Einstein">Hans Albert Einstein</a> (son)</li> <li><a href="/wiki/Pauline_Koch" class="mw-redirect" title="Pauline Koch">Pauline Koch</a> (mother)</li> <li><a href="/wiki/Hermann_Einstein" class="mw-redirect" title="Hermann Einstein">Hermann Einstein</a> (father)</li> <li><a href="/wiki/Maja_Einstein" title="Maja Einstein">Maja Einstein</a> (sister)</li> <li><a href="/wiki/Einstein_family#Eduard_"Tete"_Einstein_(Albert's_second_son)" title="Einstein family">Eduard Einstein</a> (son)</li> <li><a href="/wiki/Murder_of_the_family_of_Robert_Einstein" title="Murder of the family of Robert Einstein">Robert Einstein</a> (cousin)</li> <li><a href="/wiki/Bernhard_Caesar_Einstein" title="Bernhard Caesar Einstein">Bernhard Caesar Einstein</a> (grandson)</li> <li><a href="/wiki/Evelyn_Einstein" title="Evelyn Einstein">Evelyn Einstein</a> (granddaughter)</li> <li><a href="/wiki/Thomas_Martin_Einstein" class="mw-redirect" title="Thomas Martin Einstein">Thomas Martin Einstein</a> (great-grandson)</li> <li><a href="/wiki/Siegbert_Einstein" title="Siegbert Einstein">Siegbert Einstein</a> (distant cousin)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_awards_and_honors_received_by_Albert_Einstein" title="List of awards and honors received by Albert Einstein">Awards and honors</a></li> <li><a href="/wiki/Brain_of_Albert_Einstein" title="Brain of Albert Einstein">Brain</a></li> <li><a href="/wiki/Albert_Einstein_House" title="Albert Einstein House">House</a></li> <li><a href="/wiki/Albert_Einstein_Memorial" title="Albert Einstein Memorial">Memorial</a></li> <li><a href="/wiki/Political_views_of_Albert_Einstein" title="Political views of Albert Einstein">Political views</a></li> <li><a href="/wiki/Religious_and_philosophical_views_of_Albert_Einstein" title="Religious and philosophical views of Albert Einstein">Religious views</a></li> <li><a href="/wiki/List_of_things_named_after_Albert_Einstein" title="List of things named after Albert Einstein">Things named after</a></li> <li><a href="/wiki/Einstein%E2%80%93Oppenheimer_relationship" title="Einstein–Oppenheimer relationship">Einstein–Oppenheimer relationship</a></li> <li><a href="/wiki/Albert_Einstein_Archives" title="Albert Einstein Archives">Albert Einstein Archives</a></li> <li><a href="/wiki/Einstein%27s_Blackboard" title="Einstein's Blackboard">Einstein's Blackboard</a></li> <li><a href="/wiki/Einstein_Papers_Project" title="Einstein Papers Project">Einstein Papers Project</a></li> <li><a href="/wiki/Einstein_refrigerator" title="Einstein refrigerator">Einstein refrigerator</a></li> <li><a href="/wiki/Einsteinhaus" title="Einsteinhaus">Einsteinhaus</a></li> <li><a href="/wiki/Einsteinium" title="Einsteinium">Einsteinium</a></li> <li><a href="/wiki/Max_Talmey" title="Max Talmey">Max Talmey</a></li> <li><a href="/wiki/Emergency_Committee_of_Atomic_Scientists" title="Emergency Committee of Atomic Scientists">Emergency Committee of Atomic Scientists</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/Category:Albert_Einstein" title="Category:Albert Einstein">Category</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Relativity" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Relativity" title="Template:Relativity"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Relativity" title="Template talk:Relativity"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Relativity" title="Special:EditPage/Template:Relativity"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Relativity" style="font-size:114%;margin:0 4em"><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Relativity</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a class="mw-selflink selflink">Special<br />relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Principle_of_relativity" title="Principle of relativity">Principle of relativity</a> (<a href="/wiki/Galilean_invariance" title="Galilean invariance">Galilean relativity</a></li> <li><a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformation</a>)</li> <li><a class="mw-selflink selflink">Special relativity</a></li> <li><a href="/wiki/Doubly_special_relativity" title="Doubly special relativity">Doubly special relativity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Fundamental<br />concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Frame_of_reference" title="Frame of reference">Frame of reference</a></li> <li><a href="/wiki/Speed_of_light" title="Speed of light">Speed of light</a></li> <li><a href="/wiki/Hyperbolic_orthogonality" title="Hyperbolic orthogonality">Hyperbolic orthogonality</a></li> <li><a href="/wiki/Rapidity" title="Rapidity">Rapidity</a></li> <li><a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a></li> <li><a href="/wiki/Proper_length" title="Proper length">Proper length</a></li> <li><a href="/wiki/Proper_time" title="Proper time">Proper time</a></li> <li><a href="/wiki/Proper_acceleration" title="Proper acceleration">Proper acceleration</a></li> <li><a href="/wiki/Mass_in_special_relativity" title="Mass in special relativity">Relativistic mass</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Formulation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a></li> <li><a href="/wiki/List_of_textbooks_on_relativity" title="List of textbooks on relativity">Textbooks</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Phenomena</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a></li> <li><a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence (E=mc<sup>2</sup>)</a></li> <li><a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a></li> <li><a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">Relativity of simultaneity</a></li> <li><a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">Relativistic Doppler effect</a></li> <li><a href="/wiki/Thomas_precession" title="Thomas precession">Thomas precession</a></li> <li><a href="/wiki/Ladder_paradox" title="Ladder paradox">Ladder paradox</a></li> <li><a href="/wiki/Twin_paradox" title="Twin paradox">Twin paradox</a></li> <li><a href="/wiki/Terrell_rotation" title="Terrell rotation">Terrell rotation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;"><a href="/wiki/Spacetime" title="Spacetime">Spacetime</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Light_cone" title="Light cone">Light cone</a></li> <li><a href="/wiki/World_line" title="World line">World line</a></li> <li><a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagram</a></li> <li><a href="/wiki/Biquaternion" title="Biquaternion">Biquaternions</a></li> <li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/General_relativity" title="General relativity">General<br />relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Background</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction</a></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematical formulation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Fundamental<br />concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></li> <li><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a></li> <li><a href="/wiki/Penrose_diagram" title="Penrose diagram">Penrose diagram</a></li> <li><a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">Geodesics</a></li> <li><a href="/wiki/Mach%27s_principle" title="Mach's principle">Mach's principle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Formulation</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/ADM_formalism" title="ADM formalism">ADM formalism</a></li> <li><a href="/wiki/BSSN_formalism" title="BSSN formalism">BSSN formalism</a></li> <li><a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></li> <li><a href="/wiki/Linearized_gravity" title="Linearized gravity">Linearized gravity</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">Post-Newtonian formalism</a></li> <li><a href="/wiki/Raychaudhuri_equation" title="Raychaudhuri equation">Raychaudhuri equation</a></li> <li><a href="/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Einstein_equation" title="Hamilton–Jacobi–Einstein equation">Hamilton–Jacobi–Einstein equation</a></li> <li><a href="/wiki/Ernst_equation" title="Ernst equation">Ernst equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Phenomena</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Black_hole" title="Black hole">Black hole</a></li> <li><a href="/wiki/Event_horizon" title="Event horizon">Event horizon</a></li> <li><a href="/wiki/Gravitational_singularity" title="Gravitational singularity">Singularity</a></li> <li><a href="/wiki/Two-body_problem_in_general_relativity" title="Two-body problem in general relativity">Two-body problem</a></li></ul> <ul><li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational waves</a>: <a href="/wiki/Gravitational-wave_astronomy" title="Gravitational-wave astronomy">astronomy</a></li> <li><a href="/wiki/Gravitational-wave_observatory" title="Gravitational-wave observatory">detectors</a> (<a href="/wiki/LIGO" title="LIGO">LIGO</a> and <a href="/wiki/LIGO_Scientific_Collaboration" title="LIGO Scientific Collaboration">collaboration</a></li> <li><a href="/wiki/Virgo_interferometer" title="Virgo interferometer">Virgo</a></li> <li><a href="/wiki/LISA_Pathfinder" title="LISA Pathfinder">LISA Pathfinder</a></li> <li><a href="/wiki/GEO600" title="GEO600">GEO</a>)</li> <li><a href="/wiki/Hulse%E2%80%93Taylor_binary" class="mw-redirect" title="Hulse–Taylor binary">Hulse–Taylor binary</a></li></ul> <ul><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Other tests</a>: <a href="/wiki/Apsidal_precession" title="Apsidal precession">precession</a> of Mercury</li> <li><a href="/wiki/Gravitational_lens" title="Gravitational lens">lensing</a> (together with <a href="/wiki/Einstein_cross" class="mw-redirect" title="Einstein cross">Einstein cross</a> and <a href="/wiki/Einstein_rings" class="mw-redirect" title="Einstein rings">Einstein rings</a>)</li> <li><a href="/wiki/Gravitational_redshift" title="Gravitational redshift">redshift</a></li> <li><a href="/wiki/Shapiro_time_delay" title="Shapiro time delay">Shapiro delay</a></li> <li><a href="/wiki/Frame-dragging" title="Frame-dragging">frame-dragging</a> / <a href="/wiki/Geodetic_effect" title="Geodetic effect">geodetic effect</a> (<a href="/wiki/Lense%E2%80%93Thirring_precession" title="Lense–Thirring precession">Lense–Thirring precession</a>)</li> <li><a href="/wiki/Pulsar_timing_array" title="Pulsar timing array">pulsar timing arrays</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Advanced<br />theories</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke theory</a></li> <li><a href="/wiki/Kaluza%E2%80%93Klein_theory" title="Kaluza–Klein theory">Kaluza–Klein</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;"><a href="/wiki/Exact_solutions_in_general_relativity" title="Exact solutions in general relativity">Solutions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li>Cosmological: <a href="/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric">Friedmann–Lemaître–Robertson–Walker</a> (<a href="/wiki/Friedmann_equations" title="Friedmann equations">Friedmann equations</a>)</li> <li><a href="/wiki/Lema%C3%AEtre%E2%80%93Tolman_metric" title="Lemaître–Tolman metric">Lemaître–Tolman</a></li> <li><a href="/wiki/Kasner_metric" title="Kasner metric">Kasner</a></li> <li><a href="/wiki/BKL_singularity" title="BKL singularity">BKL singularity</a></li> <li><a href="/wiki/G%C3%B6del_metric" title="Gödel metric">Gödel</a></li> <li><a href="/wiki/Milne_model" title="Milne model">Milne</a></li></ul> <ul><li>Spherical: <a href="/wiki/Schwarzschild_metric" title="Schwarzschild metric">Schwarzschild</a> (<a href="/wiki/Interior_Schwarzschild_metric" title="Interior Schwarzschild metric">interior</a></li> <li><a href="/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation" title="Tolman–Oppenheimer–Volkoff equation">Tolman–Oppenheimer–Volkoff equation</a>)</li> <li><a href="/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric" title="Reissner–Nordström metric">Reissner–Nordström</a></li></ul> <ul><li>Axisymmetric: <a href="/wiki/Kerr_metric" title="Kerr metric">Kerr</a> (<a href="/wiki/Kerr%E2%80%93Newman_metric" title="Kerr–Newman metric">Kerr–Newman</a>)</li> <li><a href="/wiki/Weyl%E2%88%92Lewis%E2%88%92Papapetrou_coordinates" class="mw-redirect" title="Weyl−Lewis−Papapetrou coordinates">Weyl−Lewis−Papapetrou</a></li> <li><a href="/wiki/Taub%E2%80%93NUT_space" title="Taub–NUT space">Taub–NUT</a></li> <li><a href="/wiki/Van_Stockum_dust" title="Van Stockum dust">van Stockum dust</a></li> <li><a href="/wiki/Relativistic_disk" title="Relativistic disk">discs</a></li></ul> <ul><li>Others: <a href="/wiki/Pp-wave_spacetime" title="Pp-wave spacetime">pp-wave</a></li> <li><a href="/wiki/Ozsv%C3%A1th%E2%80%93Sch%C3%BCcking_metric" title="Ozsváth–Schücking metric">Ozsváth–Schücking</a></li> <li><a href="/wiki/Alcubierre_drive" title="Alcubierre drive">Alcubierre</a></li></ul> <ul><li>In computational physics: <a href="/wiki/Numerical_relativity" title="Numerical relativity">Numerical relativity</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Scientists</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Karl_Schwarzschild" title="Karl Schwarzschild">Schwarzschild</a></li> <li><a href="/wiki/Willem_de_Sitter" title="Willem de Sitter">de Sitter</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Eddington</a></li> <li><a href="/wiki/Alexander_Friedmann" title="Alexander Friedmann">Friedmann</a></li> <li><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Lemaître</a></li> <li><a href="/wiki/Edward_Arthur_Milne" title="Edward Arthur Milne">Milne</a></li> <li><a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Robertson</a></li> <li><a href="/wiki/Subrahmanyan_Chandrasekhar" title="Subrahmanyan Chandrasekhar">Chandrasekhar</a></li> <li><a href="/wiki/Fritz_Zwicky" title="Fritz Zwicky">Zwicky</a></li> <li><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler</a></li> <li><a href="/wiki/Yvonne_Choquet-Bruhat" title="Yvonne Choquet-Bruhat">Choquet-Bruhat</a></li> <li><a href="/wiki/Roy_Kerr" title="Roy Kerr">Kerr</a></li> <li><a href="/wiki/Yakov_Zeldovich" title="Yakov Zeldovich">Zel'dovich</a></li> <li><a href="/wiki/Igor_Dmitriyevich_Novikov" title="Igor Dmitriyevich Novikov">Novikov</a></li> <li><a href="/wiki/J%C3%BCrgen_Ehlers" title="Jürgen Ehlers">Ehlers</a></li> <li><a href="/wiki/Robert_Geroch" title="Robert Geroch">Geroch</a></li> <li><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a></li> <li><a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a></li> <li><a href="/wiki/Joseph_Hooton_Taylor_Jr." title="Joseph Hooton Taylor Jr.">Taylor</a></li> <li><a href="/wiki/Russell_Alan_Hulse" title="Russell Alan Hulse">Hulse</a></li> <li><a href="/wiki/Hermann_Bondi" title="Hermann Bondi">Bondi</a></li> <li><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Misner</a></li> <li><a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau</a></li> <li><a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne</a></li> <li><a href="/wiki/Rainer_Weiss" title="Rainer Weiss">Weiss</a></li> <li><a href="/wiki/List_of_contributors_to_general_relativity" title="List of contributors to general relativity"><i>others</i></a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align:center;"><div><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Theory_of_relativity" title="Category:Theory of relativity">Category</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"></div><div role="navigation" class="navbox" aria-labelledby="Special_relativity" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Special_relativity" title="Template:Special relativity"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Special_relativity" class="mw-redirect" title="Template talk:Special relativity"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Special_relativity" title="Special:EditPage/Template:Special relativity"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Special_relativity" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Special relativity</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Overviews</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Principle_of_relativity" title="Principle of relativity">Principle of relativity</a></li> <li><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Theory of relativity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div class="hlist"><ul><li><a href="/wiki/History_of_special_relativity" title="History of special relativity">History</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Galilean_invariance" title="Galilean invariance">Galilean relativity</a></li> <li><a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformation</a></li> <li><a href="/wiki/Aether_theories" title="Aether theories">Aether theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Foundations</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kinematics" title="Kinematics">Relative motion</a></li> <li><a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">Inertial frame of reference</a></li> <li><a href="/wiki/Speed_of_light" title="Speed of light">Speed of light</a></li> <li><a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a></li> <li><a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Consequences</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a></li> <li><a href="/wiki/Mass_in_special_relativity" title="Mass in special relativity">Relativistic mass</a></li> <li><a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence</a></li> <li><a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a></li> <li><a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">Relativity of simultaneity</a></li> <li><a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">Relativistic Doppler effect</a></li> <li><a href="/wiki/Thomas_precession" title="Thomas precession">Thomas precession</a></li> <li><a href="/wiki/Relativistic_disk" title="Relativistic disk">Relativistic disk</a></li> <li><a href="/wiki/Bell%27s_spaceship_paradox" title="Bell's spaceship paradox">Bell's spaceship paradox</a></li> <li><a href="/wiki/Ehrenfest_paradox" title="Ehrenfest paradox">Ehrenfest paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spacetime" title="Spacetime">Spacetime</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski spacetime</a></li> <li><a href="/wiki/World_line" title="World line">World line</a></li> <li><a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Spacetime diagrams</a></li> <li><a href="/wiki/Light_cone" title="Light cone">Light cone</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Dynamics_(mechanics)" class="mw-redirect" title="Dynamics (mechanics)">Dynamics</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Proper_time" title="Proper time">Proper time</a></li> <li><a href="/wiki/Invariant_mass" title="Invariant mass">Proper mass</a></li> <li><a href="/wiki/Four-momentum" title="Four-momentum">4-momentum</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Tests_of_special_relativity" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tests_of_special_relativity" title="Template:Tests of special relativity"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tests_of_special_relativity" title="Template talk:Tests of special relativity"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tests_of_special_relativity" title="Special:EditPage/Template:Tests of special relativity"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tests_of_special_relativity" style="font-size:114%;margin:0 4em"><a href="/wiki/Tests_of_special_relativity" title="Tests of special relativity">Tests of special relativity</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Speed/isotropy</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Michelson%E2%80%93Morley_experiment" title="Michelson–Morley experiment">Michelson–Morley experiment</a></li> <li><a href="/wiki/Kennedy%E2%80%93Thorndike_experiment" title="Kennedy–Thorndike experiment">Kennedy–Thorndike experiment</a></li> <li><a href="/wiki/Ives%E2%80%93Stilwell_experiment#Mössbauer_rotor_experiments" title="Ives–Stilwell experiment">Moessbauer rotor experiments</a></li> <li><a href="/wiki/Michelson%E2%80%93Morley_experiment#Recent_experiments" title="Michelson–Morley experiment">Resonator experiments</a></li> <li><a href="/wiki/De_Sitter_double_star_experiment" title="De Sitter double star experiment">de Sitter double star experiment</a></li> <li><a href="/wiki/Hammar_experiment" title="Hammar experiment">Hammar experiment</a></li> <li><a href="/wiki/Measurements_of_neutrino_speed" title="Measurements of neutrino speed">Measurements of neutrino speed</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lorentz invariance</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Modern_searches_for_Lorentz_violation" title="Modern searches for Lorentz violation">Modern searches for Lorentz violation</a></li> <li><a href="/wiki/Hughes%E2%80%93Drever_experiment" title="Hughes–Drever experiment">Hughes–Drever experiment</a></li> <li><a href="/wiki/Trouton%E2%80%93Noble_experiment" title="Trouton–Noble experiment">Trouton–Noble experiment</a></li> <li><a href="/wiki/Experiments_of_Rayleigh_and_Brace" title="Experiments of Rayleigh and Brace">Experiments of Rayleigh and Brace</a></li> <li><a href="/wiki/Trouton%E2%80%93Rankine_experiment" title="Trouton–Rankine experiment">Trouton–Rankine experiment</a></li> <li><a href="/wiki/Antimatter_tests_of_Lorentz_violation" title="Antimatter tests of Lorentz violation">Antimatter tests of Lorentz violation</a></li> <li><a href="/wiki/Lorentz-violating_neutrino_oscillations" title="Lorentz-violating neutrino oscillations">Lorentz-violating neutrino oscillations</a></li> <li><a href="/wiki/Lorentz-violating_electrodynamics" title="Lorentz-violating electrodynamics">Lorentz-violating electrodynamics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a><br /><a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ives%E2%80%93Stilwell_experiment" title="Ives–Stilwell experiment">Ives–Stilwell experiment</a></li> <li><a href="/wiki/Ives%E2%80%93Stilwell_experiment#Mössbauer_rotor_experiments" title="Ives–Stilwell experiment">Moessbauer rotor experiments</a></li> <li><a href="/wiki/Experimental_testing_of_time_dilation" title="Experimental testing of time dilation">Experimental testing of time dilation</a></li> <li><a href="/wiki/Hafele%E2%80%93Keating_experiment" title="Hafele–Keating experiment">Hafele–Keating experiment</a></li> <li><a href="/wiki/Length_contraction#Experimental_verifications" title="Length contraction">Length contraction confirmations</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Relativistic energy</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tests_of_relativistic_energy_and_momentum" title="Tests of relativistic energy and momentum">Tests of relativistic energy and momentum</a></li> <li><a href="/wiki/Kaufmann%E2%80%93Bucherer%E2%80%93Neumann_experiments" title="Kaufmann–Bucherer–Neumann experiments">Kaufmann–Bucherer–Neumann experiments</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fizeau/Sagnac</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fizeau_experiment" title="Fizeau experiment">Fizeau experiment</a></li> <li><a href="/wiki/Sagnac_effect" title="Sagnac effect">Sagnac experiment</a></li> <li><a href="/wiki/Michelson%E2%80%93Gale%E2%80%93Pearson_experiment" title="Michelson–Gale–Pearson experiment">Michelson–Gale–Pearson experiment</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Alternatives</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Luminiferous_aether#Negative_aether-drift_experiments" title="Luminiferous aether">Refutations of aether theory</a></li> <li><a href="/wiki/Emission_theory_(relativity)#Refutations_of_emission_theory" title="Emission theory (relativity)">Refutations of emission theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/One-way_speed_of_light" title="One-way speed of light">One-way speed of light</a></li> <li><a href="/wiki/Test_theories_of_special_relativity" title="Test theories of special relativity">Test theories of special relativity</a></li> <li><a href="/wiki/Standard-Model_Extension" title="Standard-Model Extension">Standard-Model Extension</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Tensors" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/17px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/26px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/34px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/19px-Crab_Nebula.jpg" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/29px-Crab_Nebula.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/38px-Crab_Nebula.jpg 2x" data-file-width="3864" data-file-height="3864" /></span></span> </span><a href="/wiki/Portal:Astronomy" title="Portal:Astronomy">Astronomy</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:He1523a.jpg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/16px-He1523a.jpg" decoding="async" width="16" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/25px-He1523a.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/33px-He1523a.jpg 2x" data-file-width="180" data-file-height="207" /></a></span> </span><a href="/wiki/Portal:Stars" title="Portal:Stars">Stars</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/21px-Earth-moon.jpg" decoding="async" width="21" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/32px-Earth-moon.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/42px-Earth-moon.jpg 2x" data-file-width="3000" data-file-height="2400" /></span></span> </span><a href="/wiki/Portal:Outer_space" title="Portal:Outer space">Outer space</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="image" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/17px-Newton%27s_reflecting_telescope.jpg" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/26px-Newton%27s_reflecting_telescope.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/34px-Newton%27s_reflecting_telescope.jpg 2x" data-file-width="1140" data-file-height="1276" /></span></span> </span><a href="/wiki/Portal:History_of_science" title="Portal:History of science">History of science</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_kalzium.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/19px-Nuvola_apps_kalzium.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/29px-Nuvola_apps_kalzium.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Nuvola_apps_kalzium.svg/38px-Nuvola_apps_kalzium.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Science" title="Portal:Science">Science</a></li></ul></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q11455#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4182215-8">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85126383">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Relativité restreinte (physique)"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119327466">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Relativité restreinte (physique)"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119327466">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="speciální teorie relativity"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph1086057&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007565727105171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐q8zrc Cached time: 20241125140453 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.814 seconds Real time usage: 3.369 seconds Preprocessor visited node count: 31098/1000000 Post‐expand include size: 461154/2097152 bytes Template argument size: 25932/2097152 bytes Highest expansion depth: 21/100 Expensive parser function count: 41/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 581010/5000000 bytes Lua time usage: 1.236/10.000 seconds Lua memory usage: 10802806/52428800 bytes Lua Profile: ? 340 ms 24.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 220 ms 15.9% dataWrapper <mw.lua:672> 100 ms 7.2% recursiveClone <mwInit.lua:45> 100 ms 7.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 60 ms 4.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 40 ms 2.9% getArgs <Module:Arguments:57> 40 ms 2.9% citation0 <Module:Citation/CS1:2614> 40 ms 2.9% <mw.lua:694> 40 ms 2.9% type 40 ms 2.9% [others] 360 ms 26.1% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2319.894 1 -total 36.09% 837.334 3 Template:Reflist 18.02% 417.961 58 Template:Cite_book 8.28% 192.075 33 Template:Rp 8.25% 191.319 34 Template:Cite_journal 7.76% 180.037 33 Template:R/superscript 7.10% 164.813 1 Template:Special_relativity_sidebar 6.95% 161.266 1 Template:Sidebar_with_collapsible_lists 6.92% 160.584 10 Template:Navbox 6.05% 140.289 1 Template:Short_description --> <!-- Saved in parser cache with key enwiki:pcache:idhash:26962-0!canonical and timestamp 20241125140453 and revision id 1259126276. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Special_relativity&oldid=1259126276">https://en.wikipedia.org/w/index.php?title=Special_relativity&oldid=1259126276</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Special_relativity" title="Category:Special relativity">Special relativity</a></li><li><a href="/wiki/Category:Albert_Einstein" title="Category:Albert Einstein">Albert Einstein</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_manual_scaled_images" title="Category:Pages using multiple image with manual scaled images">Pages using multiple image with manual scaled images</a></li><li><a href="/wiki/Category:Articles_with_Project_Gutenberg_links" title="Category:Articles with Project Gutenberg links">Articles with Project Gutenberg links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 November 2024, at 14:28<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Special_relativity&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-54hjz","wgBackendResponseTime":185,"wgPageParseReport":{"limitreport":{"cputime":"2.814","walltime":"3.369","ppvisitednodes":{"value":31098,"limit":1000000},"postexpandincludesize":{"value":461154,"limit":2097152},"templateargumentsize":{"value":25932,"limit":2097152},"expansiondepth":{"value":21,"limit":100},"expensivefunctioncount":{"value":41,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":581010,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2319.894 1 -total"," 36.09% 837.334 3 Template:Reflist"," 18.02% 417.961 58 Template:Cite_book"," 8.28% 192.075 33 Template:Rp"," 8.25% 191.319 34 Template:Cite_journal"," 7.76% 180.037 33 Template:R/superscript"," 7.10% 164.813 1 Template:Special_relativity_sidebar"," 6.95% 161.266 1 Template:Sidebar_with_collapsible_lists"," 6.92% 160.584 10 Template:Navbox"," 6.05% 140.289 1 Template:Short_description"]},"scribunto":{"limitreport-timeusage":{"value":"1.236","limit":"10.000"},"limitreport-memusage":{"value":10802806,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n","limitreport-profile":[["?","340","24.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","220","15.9"],["dataWrapper \u003Cmw.lua:672\u003E","100","7.2"],["recursiveClone \u003CmwInit.lua:45\u003E","100","7.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","60","4.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","40","2.9"],["getArgs \u003CModule:Arguments:57\u003E","40","2.9"],["citation0 \u003CModule:Citation/CS1:2614\u003E","40","2.9"],["\u003Cmw.lua:694\u003E","40","2.9"],["type","40","2.9"],["[others]","360","26.1"]]},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-q8zrc","timestamp":"20241125140453","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Special relativity","url":"https:\/\/en.wikipedia.org\/wiki\/Special_relativity","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11455","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11455","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-26T20:34:38Z","dateModified":"2024-11-23T14:28:05Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/a0\/Einstein_patentoffice.jpg","headline":"physical theory of measurement in an inertial frame of reference proposed in 1905 by Albert Einstein"}</script> </body> </html>