CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 125 results for author: <span class="mathjax">Alexandropoulos, G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Alexandropoulos, G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Alexandropoulos%2C+G&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Alexandropoulos, G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.20293">arXiv:2503.20293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.20293">pdf</a>, <a href="https://arxiv.org/ps/2503.20293">ps</a>, <a href="https://arxiv.org/format/2503.20293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Optimal One- and Two-Sided Multi-Level ASK for Noncoherent SIMO Systems Over Correlated Rician Fading </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Reddy%2C+B+R">Badri Ramanjaneya Reddy</a>, <a href="/search/eess?searchtype=author&amp;query=Dash%2C+S+P">Soumya P. Dash</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.20293v1-abstract-short" style="display: inline;"> This paper analyzes the performance of a single-input multiple-output (SIMO) wireless communication system employing one- and two-sided amplitude shift keying (ASK) modulation schemes for data transmission and operating under correlated Rician fading channels. The receiver deploys an optimal noncoherent maximum likelihood detector, which exploits statistical knowledge of the channel state informat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.20293v1-abstract-full').style.display = 'inline'; document.getElementById('2503.20293v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.20293v1-abstract-full" style="display: none;"> This paper analyzes the performance of a single-input multiple-output (SIMO) wireless communication system employing one- and two-sided amplitude shift keying (ASK) modulation schemes for data transmission and operating under correlated Rician fading channels. The receiver deploys an optimal noncoherent maximum likelihood detector, which exploits statistical knowledge of the channel state information for signal decoding. An optimal receiver structure is derived, from which series-form and closed-form expressions for the union bound on the symbol error probability (SEP) are obtained for general and massive SIMO systems, respectively. Furthermore, an optimization framework to derive the optimal one- and two-sided ASK modulation schemes is proposed, which focuses on minimizing SEP performance under an average transmit energy constraint. The conducted numerical investigations for various system parameters demonstrate that the proposed noncoherent SIMO system with the designed optimal ASK modulation schemes achieves superior error performance compared to traditional equispaced ASK modulation. It is also shown that, when the proposed system employs traditional two-sided ASK modulation, superior error performance from the case of using one-sided ASK is obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.20293v1-abstract-full').style.display = 'none'; document.getElementById('2503.20293v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.17205">arXiv:2503.17205</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.17205">pdf</a>, <a href="https://arxiv.org/format/2503.17205">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Minimum Mean Squared Error Holographic Beamforming for Sum-Rate Maximization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sheemar%2C+C+K">Chandan Kumar Sheemar</a>, <a href="/search/eess?searchtype=author&amp;query=Khan%2C+W+U">Wali Ullah Khan</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Ahmed%2C+M">Manzoor Ahmed</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzinotas%2C+S">Symeon Chatzinotas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.17205v1-abstract-short" style="display: inline;"> This paper studies the problem of hybrid holographic beamforming for sum-rate maximization in a communication system assisted by a reconfigurable holographic surface. Existing methodologies predominantly rely on gradient-based or approximation techniques necessitating iterative optimization for each update of the holographic response, which imposes substantial computational overhead. To address th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17205v1-abstract-full').style.display = 'inline'; document.getElementById('2503.17205v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.17205v1-abstract-full" style="display: none;"> This paper studies the problem of hybrid holographic beamforming for sum-rate maximization in a communication system assisted by a reconfigurable holographic surface. Existing methodologies predominantly rely on gradient-based or approximation techniques necessitating iterative optimization for each update of the holographic response, which imposes substantial computational overhead. To address these limitations, we establish a mathematical relationship between the mean squared error (MSE) criterion and the holographic response of the RHS to enable alternating optimization based on the minimum MSE (MMSE). Our analysis demonstrates that this relationship exhibits a quadratic dependency on each element of the holographic beamformer. Exploiting this property, we derive closed-form optimal expressions for updating the holographic beamforming weights. Our complexity analysis indicates that the proposed approach exhibits only linear complexity in terms of the RHS size, thus, ensuring scalability for large-scale deployments. The presented simulation results validate the effectiveness of our MMSE-based holographic approach, providing useful insights. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.17205v1-abstract-full').style.display = 'none'; document.getElementById('2503.17205v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.14439">arXiv:2503.14439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.14439">pdf</a>, <a href="https://arxiv.org/format/2503.14439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Graph-CNNs for RF Imaging: Learning the Electric Field Integral Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Stylianopoulos%2C+K">Kyriakos Stylianopoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Gavriilidis%2C+P">Panagiotis Gavriilidis</a>, <a href="/search/eess?searchtype=author&amp;query=Gradoni%2C+G">Gabriele Gradoni</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.14439v1-abstract-short" style="display: inline;"> Radio-Frequency (RF) imaging concerns the digital recreation of the surfaces of scene objects based on the scattered field at distributed receivers. To solve this difficult inverse scattering problems, data-driven methods are often employed that extract patterns from similar training examples, while offering minimal latency. In this paper, we first provide an approximate yet fast electromagnetic m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14439v1-abstract-full').style.display = 'inline'; document.getElementById('2503.14439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.14439v1-abstract-full" style="display: none;"> Radio-Frequency (RF) imaging concerns the digital recreation of the surfaces of scene objects based on the scattered field at distributed receivers. To solve this difficult inverse scattering problems, data-driven methods are often employed that extract patterns from similar training examples, while offering minimal latency. In this paper, we first provide an approximate yet fast electromagnetic model, which is based on the electric field integral equations, for data generation, and subsequently propose a Deep Neural Network (DNN) architecture to learn the corresponding inverse model. A graph-attention backbone allows for the system geometry to be passed to the DNN, where residual convolutional layers extract features about the objects, while a UNet head performs the final image reconstruction. Our quantitative and qualitative evaluations on two synthetic data sets of different characteristics showcase the performance gains of thee proposed advanced architecture and its relative resilience to signal noise levels and various reception configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14439v1-abstract-full').style.display = 'none'; document.getElementById('2503.14439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to EUSIPCO 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.12280">arXiv:2503.12280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2503.12280">pdf</a>, <a href="https://arxiv.org/format/2503.12280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> How Do Microstrip Losses Impact Near-Field Beam Depth in Dynamic Metasurface Antennas? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gavriilidis%2C+P">Panagiotis Gavriilidis</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.12280v1-abstract-short" style="display: inline;"> The convergence of eXtremely Large (XL) antenna arrays and high-frequency bands in future wireless networks will inevitably give rise to near-field communications, localization, and sensing. Dynamic Metasurface Antennas (DMAs) have emerged as a key enabler of the XL Multiple-Input Multiple-Output (MIMO) paradigm, leveraging reconfigurable metamaterials to support large antenna arrays. However, DMA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.12280v1-abstract-full').style.display = 'inline'; document.getElementById('2503.12280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.12280v1-abstract-full" style="display: none;"> The convergence of eXtremely Large (XL) antenna arrays and high-frequency bands in future wireless networks will inevitably give rise to near-field communications, localization, and sensing. Dynamic Metasurface Antennas (DMAs) have emerged as a key enabler of the XL Multiple-Input Multiple-Output (MIMO) paradigm, leveraging reconfigurable metamaterials to support large antenna arrays. However, DMAs are inherently lossy due to propagation losses in the microstrip lines and radiative losses from the metamaterial elements, which reduce their gain and alter their beamforming characteristics compared to a lossless aperture. In this paper, we address the gap in understanding how DMA losses affect near-field beamforming performance, by deriving novel analytical expressions for the beamforming gain of DMAs under misalignments between the focusing position and the intended user&#39;s position in 3D space. Additionally, we derive beam depth limits for varying attenuation conditions, from lossless to extreme attenuation, offering insights into the impact of losses on DMA near-field performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.12280v1-abstract-full').style.display = 'none'; document.getElementById('2503.12280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, submitted to an IEEE conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17428">arXiv:2502.17428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17428">pdf</a>, <a href="https://arxiv.org/format/2502.17428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Joint Beamforming and 3D Location Optimization for Multi-User Holographic UAV Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sheemar%2C+C+K">Chandan Kumar Sheemar</a>, <a href="/search/eess?searchtype=author&amp;query=Mahmood%2C+A">Asad Mahmood</a>, <a href="/search/eess?searchtype=author&amp;query=Thomas%2C+C+K">Christo Kurisummoottil Thomas</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Querol%2C+J">Jorge Querol</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzinotas%2C+S">Symeon Chatzinotas</a>, <a href="/search/eess?searchtype=author&amp;query=Saad%2C+W">Walid Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17428v1-abstract-short" style="display: inline;"> This paper pioneers the field of multi-user holographic unmanned aerial vehicle (UAV) communications, laying a solid foundation for future innovations in next-generation aerial wireless networks. The study focuses on the challenging problem of jointly optimizing hybrid holographic beamforming and 3D UAV positioning in scenarios where the UAV is equipped with a reconfigurable holographic surface (R&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17428v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17428v1-abstract-full" style="display: none;"> This paper pioneers the field of multi-user holographic unmanned aerial vehicle (UAV) communications, laying a solid foundation for future innovations in next-generation aerial wireless networks. The study focuses on the challenging problem of jointly optimizing hybrid holographic beamforming and 3D UAV positioning in scenarios where the UAV is equipped with a reconfigurable holographic surface (RHS) instead of conventional phased array antennas. Using the unique capabilities of RHSs, the system dynamically adjusts both the position of the UAV and its hybrid beamforming properties to maximize the sum rate of the network. To address this complex optimization problem, we propose an iterative algorithm combining zero-forcing digital beamforming and a gradient ascent approach for the holographic patterns and the 3D position optimization, while ensuring practical feasibility constraints. The algorithm is designed to effectively balance the trade-offs between power, beamforming, and UAV trajectory constraints, enabling adaptive and efficient communications, while assuring a monotonic increase in the sum-rate performance. Our numerical investigations demonstrate that the significant performance improvements with the proposed approach over the benchmark methods, showcasing enhanced sum rate and system adaptability under varying conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17428v1-abstract-full').style.display = 'none'; document.getElementById('2502.17428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17408">arXiv:2502.17408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17408">pdf</a>, <a href="https://arxiv.org/format/2502.17408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Joint Holographic Beamforming and User Scheduling with Individual QoS Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sheemar%2C+C+K">Chandan Kumar Sheemar</a>, <a href="/search/eess?searchtype=author&amp;query=Thomas%2C+C+K">Christo Kurisummoottil Thomas</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Querol%2C+J">Jorge Querol</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzinotas%2C+S">Symeon Chatzinotas</a>, <a href="/search/eess?searchtype=author&amp;query=Saad%2C+W">Walid Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17408v1-abstract-short" style="display: inline;"> Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of joint hybrid holographic beamforming and user scheduling under per-user minimum quality-of-service (QoS) constraints, a critical challenge in resource-constrained networ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17408v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17408v1-abstract-full" style="display: none;"> Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of joint hybrid holographic beamforming and user scheduling under per-user minimum quality-of-service (QoS) constraints, a critical challenge in resource-constrained networks. However, such a problem results in mixed-integer non-convex optimization, making it difficult to identify feasible solutions efficiently. To overcome this challenge, we propose a novel iterative optimization framework that jointly solves the problem to maximize the RHS-assisted network sum-rate, efficiently managing holographic beamforming patterns, dynamically scheduling users, and ensuring the minimum QoS requirements for each scheduled user. The proposed framework relies on zero-forcing digital beamforming, gradient-ascent-based holographic beamformer optimization, and a greedy user selection principle. Our extensive simulation results validate the effectiveness of the proposed scheme, demonstrating their superior performance compared to the benchmark algorithms in terms of sum-rate performance, while meeting the minimum per-user QoS constraints <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17408v1-abstract-full').style.display = 'none'; document.getElementById('2502.17408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17116">arXiv:2502.17116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17116">pdf</a>, <a href="https://arxiv.org/format/2502.17116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> A First Look at the Performance Enhancement Potential of Fluid Reconfigurable Intelligent Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Salem%2C+A">Abdelhamid Salem</a>, <a href="/search/eess?searchtype=author&amp;query=Wong%2C+K">Kai-Kit Wong</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G">George Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Chae%2C+C">Chan-Byoung Chae</a>, <a href="/search/eess?searchtype=author&amp;query=Murch%2C+R">Ross Murch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17116v1-abstract-short" style="display: inline;"> The fluid antenna concept represents shape-flexible and position-flexible antenna technologies designed to enhance wireless communication applications. In this paper, we apply this concept to reconfigurable intelligent surfaces (RISs), introducing fluid RIS (FRIS), where each tunably reflecting element becomes a fluid element with additional position reconfigurability. This new paradigm is referre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17116v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17116v1-abstract-full" style="display: none;"> The fluid antenna concept represents shape-flexible and position-flexible antenna technologies designed to enhance wireless communication applications. In this paper, we apply this concept to reconfigurable intelligent surfaces (RISs), introducing fluid RIS (FRIS), where each tunably reflecting element becomes a fluid element with additional position reconfigurability. This new paradigm is referred to as fluid RIS (FRIS). We investigate an FRIS-programmable wireless channel, where the fluid meta-surface is divided into non-overlapping subareas, each acting as a fluid element that can dynamically adjust both its position and phase shift of the reflected signal. We first analyze the single-user, single-input single-output (SU-SISO) channel, in which a single-antenna transmitter communicates with a single-antenna receiver via an FRIS. The achievable rate is maximized by optimizing the fluid elements using a particle swarm optimization (PSO)- based approach. Next, we extend our analysis to the multi-user, multiple-input single-output (MU-MISO) case, where a multi-antenna base station (BS) transmits individual data streams to multiple single-antenna users via an FRIS. In this case, the joint optimization of the positions and phase shifts of the FRIS element, as well as the BS precoding to maximize the sum-rate is studied. To solve the problem, a combination of techniques including PSO, semi-definite relaxation (SDR), and minimum mean square error (MMSE) is proposed. Numerical results demonstrate that the proposed FRIS approach significantly outperforms conventional RIS configurations in terms of achievable rate performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17116v1-abstract-full').style.display = 'none'; document.getElementById('2502.17116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16647">arXiv:2502.16647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16647">pdf</a>, <a href="https://arxiv.org/format/2502.16647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Near-Field Localization with Dynamic Metasurface Antennas at THz: A CRB Minimizing Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gavras%2C+I">Ioannis Gavras</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16647v1-abstract-short" style="display: inline;"> The recent trend for extremely massive antenna arrays and high frequencies facilitates localization and sensing, offering increased angular and range resolution. In this letter, we focus on the emerging technology of Dynamic Metasurface Antennas (DMAs) and present a novel framework for the design of their analog beamforming weights, targeting high accuracy near-field localization at the THz freque&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16647v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16647v1-abstract-full" style="display: none;"> The recent trend for extremely massive antenna arrays and high frequencies facilitates localization and sensing, offering increased angular and range resolution. In this letter, we focus on the emerging technology of Dynamic Metasurface Antennas (DMAs) and present a novel framework for the design of their analog beamforming weights, targeting high accuracy near-field localization at the THz frequency band. We derive the Cram茅r-Rao Bound (CRB) for the estimation of the positions of multiple users with a DMA-based receiver, which is then utilized as the optimization objective for the receiver&#39;s discrete tunable states of its metamaterials. Leveraging the DMA structure, we reformulate the localization objective into a constrained Rayleigh quotient maximization problem, which is efficiently solved via two schemes: one based on projection and a greedy one. Our simulation results verify the validity of our near-field localization analysis, showcasing the effectiveness of the proposed near-field localization designs over the optimum exhaustive search solution and state-of-the-art schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16647v1-abstract-full').style.display = 'none'; document.getElementById('2502.16647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15248">arXiv:2502.15248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.15248">pdf</a>, <a href="https://arxiv.org/format/2502.15248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Holographic Joint Communications and Sensing With Cramer-Rao Bounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sheemar%2C+C+K">Chandan Kumar Sheemar</a>, <a href="/search/eess?searchtype=author&amp;query=Khan%2C+W+U">Wali Ullah Khan</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G">George Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Querol%2C+J">Jorge Querol</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzinotas%2C+S">Symeon Chatzinotas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15248v1-abstract-short" style="display: inline;"> Joint Communication and Sensing (JCAS) technology facilitates the seamless integration of communication and sensing functionalities within a unified framework, enhancing spectral efficiency, reducing hardware complexity, and enabling simultaneous data transmission and environmental perception. This paper explores the potential of holographic JCAS systems by leveraging reconfigurable holographic su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15248v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15248v1-abstract-full" style="display: none;"> Joint Communication and Sensing (JCAS) technology facilitates the seamless integration of communication and sensing functionalities within a unified framework, enhancing spectral efficiency, reducing hardware complexity, and enabling simultaneous data transmission and environmental perception. This paper explores the potential of holographic JCAS systems by leveraging reconfigurable holographic surfaces (RHS) to achieve high-resolution hybrid holographic beamforming while simultaneously sensing the environment. As the holographic transceivers are governed by arbitrary antenna spacing, we first derive exact Cram茅r-Rao Bounds (CRBs) for azimuth and elevation angles to rigorously characterize the three-dimensional (3D) sensing accuracy. To optimize the system performance, we propose a novel weighted multi-objective problem formulation that aims to simultaneously maximize the communication rate and minimize the CRBs. However, this formulation is highly non-convex due to the inverse dependence of the CRB on the optimization variables, making the solution extremely challenging. To address this, we propose a novel algorithmic framework based on the Majorization-Maximization (MM) principle, employing alternating optimization to efficiently solve the problem. The proposed method relies on the closed-form surrogate functions that majorize the original objective derived herein, enabling tractable optimization. Simulation results are presented to validate the effectiveness of the proposed framework under diverse system configurations, demonstrating its potential for next-generation holographic JCAS systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15248v1-abstract-full').style.display = 'none'; document.getElementById('2502.15248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14452">arXiv:2501.14452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14452">pdf</a>, <a href="https://arxiv.org/ps/2501.14452">ps</a>, <a href="https://arxiv.org/format/2501.14452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> On the Rate-Exponent Region of Integrated Sensing and Communications With Variable-Length Coding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Papoutsidakis%2C+I">Ioannis Papoutsidakis</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14452v1-abstract-short" style="display: inline;"> This paper considers the achievable rate-exponent region of integrated sensing and communication systems in the presence of variable-length coding with feedback. This scheme is fundamentally different from earlier studies, as the coding methods that utilize feedback impose different constraints on the codewords. The focus herein is specifically on the Gaussian channel, where three achievable regio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14452v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14452v1-abstract-full" style="display: none;"> This paper considers the achievable rate-exponent region of integrated sensing and communication systems in the presence of variable-length coding with feedback. This scheme is fundamentally different from earlier studies, as the coding methods that utilize feedback impose different constraints on the codewords. The focus herein is specifically on the Gaussian channel, where three achievable regions are analytically derived and numerically evaluated. In contrast to a setting without feedback, we show that a trade-off exists between the operations of sensing and communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14452v1-abstract-full').style.display = 'none'; document.getElementById('2501.14452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at the IEEE Wireless Communications and Networking Conference (WCNC) 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07724">arXiv:2501.07724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07724">pdf</a>, <a href="https://arxiv.org/format/2501.07724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> A Doubly-Dispersive MIMO Channel Model Parametrized with Stacked Intelligent Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Ranasinghe%2C+K+R+R">Kuranage Roche Rayan Ranasinghe</a>, <a href="/search/eess?searchtype=author&amp;query=Sandoval%2C+I+A+M">Iv谩n Alexander Morales Sandoval</a>, <a href="/search/eess?searchtype=author&amp;query=Rou%2C+H+S">Hyeon Seok Rou</a>, <a href="/search/eess?searchtype=author&amp;query=de+Abreu%2C+G+T+F">Giuseppe Thadeu Freitas de Abreu</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07724v1-abstract-short" style="display: inline;"> Introduced with the advent of statistical wireless channel models for high mobility communications and having a profound role in communication-centric (CC) integrated sensing and communications (ISAC), the doubly-dispersive (DD) channel structure has long been heralded as a useful tool enabling the capture of the most important fading effects undergone by an arbitrary time-domain transmit signal p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07724v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07724v1-abstract-full" style="display: none;"> Introduced with the advent of statistical wireless channel models for high mobility communications and having a profound role in communication-centric (CC) integrated sensing and communications (ISAC), the doubly-dispersive (DD) channel structure has long been heralded as a useful tool enabling the capture of the most important fading effects undergone by an arbitrary time-domain transmit signal propagating through some medium. However, the incorporation of this model into multiple-input multiple-output (MIMO) system setups, relying on the recent paradigm-shifting transceiver architecture based on stacked intelligent metasurfaces (SIM), in an environment with reconfigurable intelligent surfaces (RISs) remains an open problem due to the many intricate details that have to be accounted for. In this paper, we fill this gap by introducing a novel DD MIMO channel model that incorporates an arbitrary number of RISs in the ambient, as well as SIMs equipping both the transmitter and receiver. We then discuss how the proposed metasurfaces-parametrized DD (MPDD) channel model can be seamlessly applied to waveforms that are known to perform well in DD environments, namely, orthogonal frequency division multiplexing (OFDM), orthogonal time frequency space (OTFS), and affine frequency division multiplexing (AFDM), with each having their own inherent advantages and disadvantages. An illustrative application of the programmable functionality of the proposed model is finally presented to showcase its potential for boosting the performance of the aforementioned waveforms. Our numerical results indicate that the design of waveforms suitable to mitigating the effects of DD channels is significantly impacted by the emerging SIM technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07724v1-abstract-full').style.display = 'none'; document.getElementById('2501.07724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to an IEEE journal for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05243">arXiv:2501.05243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05243">pdf</a>, <a href="https://arxiv.org/format/2501.05243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Joint Communications and Sensing for 6G Satellite Networks: Use Cases and Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Sheemar%2C+C+K">Chandan Kumar Sheemar</a>, <a href="/search/eess?searchtype=author&amp;query=Thiruvasagam%2C+P">Prabhu Thiruvasagam</a>, <a href="/search/eess?searchtype=author&amp;query=Khan%2C+W+U">Wali Ullah Khan</a>, <a href="/search/eess?searchtype=author&amp;query=Solanki%2C+S">Sourabh Solanki</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Querol%2C+J">Jorge Querol</a>, <a href="/search/eess?searchtype=author&amp;query=Plachy%2C+J">Jan Plachy</a>, <a href="/search/eess?searchtype=author&amp;query=Holschke%2C+O">Oliver Holschke</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzinotas%2C+S">Symeon Chatzinotas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05243v1-abstract-short" style="display: inline;"> Satellite Networks (SN) have traditionally been instrumental in providing two key services: communications and sensing. Communications satellites enable global connectivity, while sensing satellites facilitate applications such as Earth observation, navigation, and disaster management. However, the emergence of novel use cases and the exponential growth in service demands make the independent evol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05243v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05243v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05243v1-abstract-full" style="display: none;"> Satellite Networks (SN) have traditionally been instrumental in providing two key services: communications and sensing. Communications satellites enable global connectivity, while sensing satellites facilitate applications such as Earth observation, navigation, and disaster management. However, the emergence of novel use cases and the exponential growth in service demands make the independent evolution of communication and sensing payloads increasingly impractical. Addressing this challenge requires innovative approaches to optimize satellite resources. Joint Communications and Sensing (JCAS) technology represents a transformative paradigm for SN. By integrating communication and sensing functionalities into unified hardware platforms, JCAS enhances spectral efficiency, reduces operational costs, and minimizes hardware redundancies. This paper explores the potential of JCAS in advancing the next-generation space era, highlighting its role in emerging applications. Furthermore, it identifies critical challenges, such as waveform design, Doppler effect mitigation, and multi-target detection, that remain open for future research. Through these discussions, we aim to stimulate further research into the transformative potential of JCAS in addressing the demands of 6G and beyond SN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05243v1-abstract-full').style.display = 'none'; document.getElementById('2501.05243v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05173">arXiv:2501.05173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05173">pdf</a>, <a href="https://arxiv.org/format/2501.05173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Holographic Metasurfaces Enabling Wave Computing for 6G: Status Overview, Challenges, and Future Research Trends </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Omam%2C+Z+R">Zahra Rahimian Omam</a>, <a href="/search/eess?searchtype=author&amp;query=Taghvaee%2C+H">Hamidreza Taghvaee</a>, <a href="/search/eess?searchtype=author&amp;query=Araghi%2C+A">Ali Araghi</a>, <a href="/search/eess?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Maria Garcia-Fernandez</a>, <a href="/search/eess?searchtype=author&amp;query=Alvarez-Narciandi%2C+G">Guillermo Alvarez-Narciandi</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Yurduseven%2C+O">Okan Yurduseven</a>, <a href="/search/eess?searchtype=author&amp;query=Khalily%2C+M">Mohsen Khalily</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05173v1-abstract-short" style="display: inline;"> Recent advancements in wave computing using metasurfaces are poised to transform wireless communications by enabling high-speed, energy-efficient, and highly parallelized signal processing. These capabilities are essential to meet the ultra-high data rates of up to 1 terabit per second and minimal latency as low as 1 millisecond required by next-generation wireless networks. Diverging from traditi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05173v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05173v1-abstract-full" style="display: none;"> Recent advancements in wave computing using metasurfaces are poised to transform wireless communications by enabling high-speed, energy-efficient, and highly parallelized signal processing. These capabilities are essential to meet the ultra-high data rates of up to 1 terabit per second and minimal latency as low as 1 millisecond required by next-generation wireless networks. Diverging from traditional digital processing, wave computing adopts continuous analog signals to foster innovative functions such as over-the-air computation, integrated sensing and communications, computational electromagnetic imaging, and physical-layer security. This article explores the potential of reconfigurable multi-functional metasurfaces in wave computing, emphasizing their pivotal role in facilitating seamless communications and addressing the escalating computational demands for sixth generation (6G) networks. As artificial intelligence has become one of the most prominent and rapidly advancing fields of research over the last decade, we also introduce a wave-domain-based machine learning approach aimed at achieving power-efficient, fast training and computation. Future research directions are discussed, underscoring how metasurface-based systems can merge computation with communication to innovate components of 6G networks, thus creating smarter, faster, and more adaptable wireless infrastructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05173v1-abstract-full').style.display = 'none'; document.getElementById('2501.05173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18771">arXiv:2412.18771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18771">pdf</a>, <a href="https://arxiv.org/ps/2412.18771">ps</a>, <a href="https://arxiv.org/format/2412.18771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> RIS-Assisted MIMO CV-QKD at THz Frequencies: Channel Estimation and SKR Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Kumar%2C+S">Sushil Kumar</a>, <a href="/search/eess?searchtype=author&amp;query=Dash%2C+S+P">Soumya P. Dash</a>, <a href="/search/eess?searchtype=author&amp;query=Ghose%2C+D">Debasish Ghose</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18771v1-abstract-short" style="display: inline;"> In this paper, a multiple-input multiple-output (MIMO) wireless system incorporating a reconfigurable intelligent surface (RIS) to efficiently operate at terahertz (THz) frequencies is considered. The transmitter, Alice, employs continuous-variable quantum key distribution (CV-QKD) to communicate secret keys to the receiver, Bob, which utilizes either homodyne or heterodyne detection. The latter n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18771v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18771v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18771v1-abstract-full" style="display: none;"> In this paper, a multiple-input multiple-output (MIMO) wireless system incorporating a reconfigurable intelligent surface (RIS) to efficiently operate at terahertz (THz) frequencies is considered. The transmitter, Alice, employs continuous-variable quantum key distribution (CV-QKD) to communicate secret keys to the receiver, Bob, which utilizes either homodyne or heterodyne detection. The latter node applies the least-squared approach to estimate the effective MIMO channel gain matrix prior to receiving the secret key, and this estimation is made available to Alice via an error-free feedback channel. An eavesdropper, Eve, is assumed to employ a collective Gaussian entanglement attack on the feedback channel to avail the estimated channel state information. We present a novel closed-form expression for the secret key rate (SKR) performance of the proposed RIS-assisted THz CV-QKD system. The effect of various system parameters, such as the number of RIS elements and their phase configurations, the channel estimation error, and the detector noise, on the SKR performance are studied via numerical evaluation of the derived formula. It is demonstrated that the RIS contributes to larger SKR for larger link distances, and that heterodyne detection is preferable over homodyne at lower pilot symbol powers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18771v1-abstract-full').style.display = 'none'; document.getElementById('2412.18771v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17356">arXiv:2412.17356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17356">pdf</a>, <a href="https://arxiv.org/ps/2412.17356">ps</a>, <a href="https://arxiv.org/format/2412.17356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Optimal Multi-Level ASK Modulations for RIS-Assisted Communications with Energy-Based Noncoherent Reception </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Mishra%2C+S">Sambit Mishra</a>, <a href="/search/eess?searchtype=author&amp;query=Dash%2C+S+P">Soumya P. Dash</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17356v1-abstract-short" style="display: inline;"> This paper investigates the performance of one- and two-sided amplitude shift keying (ASK) modulations in noncoherent single-input single-output (SISO) wireless communication systems assisted by a reconfigurable intelligent surface (RIS). Novel noncoherent receiver structures are proposed based on the energy of the received symbol and the choice of the modulation scheme for data transmission. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17356v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17356v1-abstract-full" style="display: none;"> This paper investigates the performance of one- and two-sided amplitude shift keying (ASK) modulations in noncoherent single-input single-output (SISO) wireless communication systems assisted by a reconfigurable intelligent surface (RIS). Novel noncoherent receiver structures are proposed based on the energy of the received symbol and the choice of the modulation scheme for data transmission. The system&#39;s performance is assessed in terms of the symbol error rate (SER) and an optimization framework is proposed to determine the most effective one- and two-sided ASKs to minimize the SER, while adhering to average a transmit power constraint. Two scenarios based on the availability of the statistical characteristics of the wireless channel are explored: a) the transceiver pair has complete knowledge of the channel statistics, and b) both end nodes possess knowledge of the statistics of the channel gain up to its fourth moment, and novel algorithms are developed to obtain optimal ASKs for both of them. Extensive numerical evaluations are presented showcasing that there exists a threshold signal-to-noise ratio (SNR) above which the optimal ASKs outperform the traditional equispaced ASKs. The dependencies of the SER performance and the SNR threshold on various system parameters are assessed, providing design guidelines for RIS-assisted noncoherent wireless communication systems with multi-level ASK modulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17356v1-abstract-full').style.display = 'none'; document.getElementById('2412.17356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10014">arXiv:2411.10014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10014">pdf</a>, <a href="https://arxiv.org/format/2411.10014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Holographic MIMO for Next Generation Non-Terrestrial Networks: Motivation, Opportunities, and Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Iacovelli%2C+G">Giovanni Iacovelli</a>, <a href="/search/eess?searchtype=author&amp;query=Sheemar%2C+C+K">Chandan Kumar Sheemar</a>, <a href="/search/eess?searchtype=author&amp;query=Khan%2C+W+U">Wali Ullah Khan</a>, <a href="/search/eess?searchtype=author&amp;query=Mahmood%2C+A">Asad Mahmood</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Querol%2C+J">Jorge Querol</a>, <a href="/search/eess?searchtype=author&amp;query=Chatzinotas%2C+S">Symeon Chatzinotas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10014v1-abstract-short" style="display: inline;"> In this article, we propose the integration of the Holographic Multiple Input Multiple Output (HMIMO) as a transformative solution for next generation Non-Terrestrial Networks (NTNs), addressing key challenges, such as high hardware costs, launch expenses, and energy inefficiency. Traditional NTNs are constrained by the financial and operational limitations posed by bulky, costly antenna systems,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10014v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10014v1-abstract-full" style="display: none;"> In this article, we propose the integration of the Holographic Multiple Input Multiple Output (HMIMO) as a transformative solution for next generation Non-Terrestrial Networks (NTNs), addressing key challenges, such as high hardware costs, launch expenses, and energy inefficiency. Traditional NTNs are constrained by the financial and operational limitations posed by bulky, costly antenna systems, alongside the complexities of maintaining effective communications in space. HMIMO offers a novel approach utilizing compact and lightweight arrays of densely packed radiating elements with real-time reconfiguration capabilities, thus, capable of optimizing system performance under dynamic conditions such as varying orbital dynamics and Doppler shifts. By replacing conventional antenna systems with HMIMO, the complexity and cost of satellite manufacturing and launch can be substantially reduced, enabling more streamlined and cost-effective satellite designs. This advancement holds significant potential to democratize space communications, making them accessible to a broader range of stakeholders, including smaller nations and commercial enterprises. Moreover, the inherent capabilities of HMIMO in enhancing energy efficiency, scalability, and adaptability position this technology as a key enabler of new use cases and sustainable satellite operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10014v1-abstract-full').style.display = 'none'; document.getElementById('2411.10014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09440">arXiv:2411.09440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09440">pdf</a>, <a href="https://arxiv.org/format/2411.09440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Evaluation of RIS-Enabled B5G/6G Indoor Positioning and Mapping using Ray Tracing Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Kompostiotis%2C+D">Dimitris Kompostiotis</a>, <a href="/search/eess?searchtype=author&amp;query=Vordonis%2C+D">Dimitris Vordonis</a>, <a href="/search/eess?searchtype=author&amp;query=Paliouras%2C+V">Vassilis Paliouras</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Grec%2C+F">Florin Grec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09440v1-abstract-short" style="display: inline;"> A Reconfigurable Intelligent Surface (RIS) can significantly enhance network positioning and mapping, acting as an additional anchor point in the reference system and improving signal strength and measurement diversity through the generation of favorable scattering conditions and virtual line-of-sight paths. In this paper, we present a comprehensive framework aimed at user localization and scatter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09440v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09440v1-abstract-full" style="display: none;"> A Reconfigurable Intelligent Surface (RIS) can significantly enhance network positioning and mapping, acting as an additional anchor point in the reference system and improving signal strength and measurement diversity through the generation of favorable scattering conditions and virtual line-of-sight paths. In this paper, we present a comprehensive framework aimed at user localization and scatterer position estimation in an indoor environment with multipath effects. Our approach leverages beam sweeping through codebook-based beamforming at an 1-bit RIS to scan the environment, applies signal component extraction mechanisms, and utilizes a super-resolution algorithm for angle-based positioning of both connected users and scatterers. To validate the system&#39;s effectiveness, accurate 3D ray tracing models are employed, ensuring the robustness and effectiveness of the proposed approach in practical scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09440v1-abstract-full').style.display = 'none'; document.getElementById('2411.09440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, to be presented in an ESA workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09362">arXiv:2411.09362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09362">pdf</a>, <a href="https://arxiv.org/format/2411.09362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Circuit-Compliant Optimization of Dynamic Metasurface Antennas for Near-Field Localization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gavras%2C+I">Ioannis Gavras</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09362v1-abstract-short" style="display: inline;"> This paper presents an optimization framework for near-field localization with Dynamic Metasurface Antenna (DMA) receivers. This metasurface technology offers enhanced angular and range resolution realizing efficient hybrid Analog and Digital (A/D) BeamForming (BF) with sub-wavelength-spaced metamaterials of tunable responses. However, the vast majority of the state-of-the-art DMA designs is based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09362v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09362v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09362v1-abstract-full" style="display: none;"> This paper presents an optimization framework for near-field localization with Dynamic Metasurface Antenna (DMA) receivers. This metasurface technology offers enhanced angular and range resolution realizing efficient hybrid Analog and Digital (A/D) BeamForming (BF) with sub-wavelength-spaced metamaterials of tunable responses. However, the vast majority of the state-of-the-art DMA designs is based on an idealized model for their reception operation, which neglects several practical aspects, such as the inevitable mutual coupling among the densely deployed metamaterials within a given aperture. Capitalizing on a recent circuit-compliant active metasurface model, we present a novel mutual-coupling-aware framework for localization-optimized hybrid A/D BF weights at the reception DMA. To deal with the intrinsic complexity of the deployed model, we introduce first- and second-order approximations for the DMA analog BF matrix that enable efficient optimization, while maintaining accuracy. We derive the Cramer-Rao Bound for the user position estimation which serves as our design objective for the hybrid A/D BF matrices. Closed-form solutions for these matrices for both approximations are presented, whose validity is confirmed via numerical investigations. It is also demonstrated that the proposed DMA design outperforms state-of-the-art multi-antenna reception architectures optimized for the same localization objective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09362v1-abstract-full').style.display = 'none'; document.getElementById('2411.09362v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15836">arXiv:2410.15836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15836">pdf</a>, <a href="https://arxiv.org/format/2410.15836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous Communications and Sensing with Hybrid Reconfigurable Intelligent Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gavras%2C+I">Ioannis Gavras</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15836v2-abstract-short" style="display: inline;"> Hybrid Reconfigurable Intelligent Surfaces (HRISs) constitute a new paradigm of truly smart metasurfaces with the additional features of signal reception and processing, which have been primarily considered for channel estimation and self-reconfiguration. In this paper, leveraging the simultaneous tunable reflection and signal absorption functionality of HRIS elements, we present a novel framework&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15836v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15836v2-abstract-full" style="display: none;"> Hybrid Reconfigurable Intelligent Surfaces (HRISs) constitute a new paradigm of truly smart metasurfaces with the additional features of signal reception and processing, which have been primarily considered for channel estimation and self-reconfiguration. In this paper, leveraging the simultaneous tunable reflection and signal absorption functionality of HRIS elements, we present a novel framework for the joint design of transmit beamforming and the HRIS parameters with the goal to maximize downlink communications, while simultaneously illuminating an area of interest for guaranteed localization coverage performance. Our simulation results verify the effectiveness of the proposed scheme and showcase the interplay of the various system parameters on the achievable Integrated Sensing and Communications (ISAC) performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15836v2-abstract-full').style.display = 'none'; document.getElementById('2410.15836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06512">arXiv:2410.06512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06512">pdf</a>, <a href="https://arxiv.org/format/2410.06512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> In-Band Full-Duplex MIMO Systems for Simultaneous Communications and Sensing: Challenges, Methods, and Future Perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Smida%2C+B">Besma Smida</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Riihonen%2C+T">Taneli Riihonen</a>, <a href="/search/eess?searchtype=author&amp;query=Islam%2C+M+A">Md Atiqul Islam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06512v1-abstract-short" style="display: inline;"> In-band Full-Duplex (FD) Multiple-Input Multiple-Output (MIMO) systems offer a significant opportunity for Integrated Sensing and Communications (ISAC) due to their capability to realize simultaneous signal transmissions and receptions. This feature has been recently exploited to devise spectrum-efficient simultaneous information transmission and monostatic sensing operations, a line of research t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06512v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06512v1-abstract-full" style="display: none;"> In-band Full-Duplex (FD) Multiple-Input Multiple-Output (MIMO) systems offer a significant opportunity for Integrated Sensing and Communications (ISAC) due to their capability to realize simultaneous signal transmissions and receptions. This feature has been recently exploited to devise spectrum-efficient simultaneous information transmission and monostatic sensing operations, a line of research typically referred to as MIMO FD-ISAC. In this article, capitalizing on a recent FD MIMO architecture with reduced complexity analog cancellation, we present an FD-enabled framework for simultaneous communications and sensing using data signals. In contrast to communications applications, the framework&#39;s goal is not to mitigate self interference, since it includes reflections of the downlink data transmissions from targets in the FD node&#39;s vicinity, but to optimize the system parameters for the intended dual functionality. The unique characteristics and challenges of a generic MIMO FD-ISAC system are discussed along with a broad overview of state-of-the-art special cases, including numerical investigations. Several directions for future work on FD-enabled ISAC relevant to signal processing communities are also provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06512v1-abstract-full').style.display = 'none'; document.getElementById('2410.06512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, White Paper to appear at IEEE SPM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01419">arXiv:2410.01419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01419">pdf</a>, <a href="https://arxiv.org/ps/2410.01419">ps</a>, <a href="https://arxiv.org/format/2410.01419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Optimal One- and Two-Sided Multi-level ASK Modulation or RIS-Assisted Noncoherent Communication Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Mukhopadhyay%2C+S">Srijika Mukhopadhyay</a>, <a href="/search/eess?searchtype=author&amp;query=Reddy%2C+B+R">Badri Ramanjaneya Reddy</a>, <a href="/search/eess?searchtype=author&amp;query=Dash%2C+S+P">Soumya P. Dash</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Aissa%2C+S">Sonia Aissa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01419v1-abstract-short" style="display: inline;"> In this paper, we analyze the performance of one- and two-sided amplitude shift keying (ASK) modulations in single-input single-output wireless communication aided by a reconfigurable intelligent surface (RIS). Two scenarios are considered for the channel conditions: a blocked direct channel between the transmitter and the receiver, and an unblocked one. For the receiver, a noncoherent maximum lik&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01419v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01419v1-abstract-full" style="display: none;"> In this paper, we analyze the performance of one- and two-sided amplitude shift keying (ASK) modulations in single-input single-output wireless communication aided by a reconfigurable intelligent surface (RIS). Two scenarios are considered for the channel conditions: a blocked direct channel between the transmitter and the receiver, and an unblocked one. For the receiver, a noncoherent maximum likelihood detector is proposed, which detects the transmitted data signal based on statistical knowledge of the channel. The system&#39;s performance is then evaluated by deriving the symbol error probability (SEP) for both scenarios using the proposed noncoherent receiver structures. We also present a novel optimization framework to obtain the optimal one- and two-sided ASK modulation schemes that minimize the SEP under constraints on the available average transmit power for both the blocked and unblocked direct channel scenarios. Our extensive numerical investigations showcase that the considered RIS-aided communication system achieves superior error performance with both derived SEP-optimal ASK modulation schemes as compared to respective traditional ASK modulation. It is also demonstrated that, between the two proposed modulation schemes, the two-sided one yields the best SEP. The error performance is further analyzed for different system parameters, providing a comprehensive performance investigation of RIS-assisted noncoherent wireless communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01419v1-abstract-full').style.display = 'none'; document.getElementById('2410.01419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17041">arXiv:2409.17041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17041">pdf</a>, <a href="https://arxiv.org/format/2409.17041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Near-Field Multipath MIMO Channel Model for Imperfect Surface Reflection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Delbari%2C+M">Mohamadreza Delbari</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Schober%2C+R">Robert Schober</a>, <a href="/search/eess?searchtype=author&amp;query=Poor%2C+H+V">H. Vincent Poor</a>, <a href="/search/eess?searchtype=author&amp;query=Jamali%2C+V">Vahid Jamali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17041v1-abstract-short" style="display: inline;"> Near-field (NF) communications is receiving renewed attention in the context of passive reconfigurable intelligent surfaces (RISs) due to their potentially extremely large dimensions. Although line-of-sight (LOS) links are expected to be dominant in NF scenarios, it is not a priori obvious whether or not the impact of non-LOS components can be neglected. Furthermore, despite being weaker than the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17041v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17041v1-abstract-full" style="display: none;"> Near-field (NF) communications is receiving renewed attention in the context of passive reconfigurable intelligent surfaces (RISs) due to their potentially extremely large dimensions. Although line-of-sight (LOS) links are expected to be dominant in NF scenarios, it is not a priori obvious whether or not the impact of non-LOS components can be neglected. Furthermore, despite being weaker than the LOS link, non-LOS links may be required to achieve multiplexing gains in multi-user multiple-input multiple-output (MIMO) scenarios. In this paper, we develop a generalized statistical NF model for RIS-assisted MIMO systems that extends the widely adopted point-scattering model to account for imperfect reflections at large surfaces like walls, ceilings, and the ground. Our simulation results confirm the accuracy of the proposed model and reveal that in various practical scenarios, the impact of non-LOS components is indeed non-negligible, and thus, needs to be carefully taken into consideration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17041v1-abstract-full').style.display = 'none'; document.getElementById('2409.17041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03841">arXiv:2409.03841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03841">pdf</a>, <a href="https://arxiv.org/format/2409.03841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> The Interference Broadcast Channel with Reconfigurable Intelligent Surfaces: A Cooperative Sum-Rate Maximization Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Katsanos%2C+K+D">Konstantinos D. Katsanos</a>, <a href="/search/eess?searchtype=author&amp;query=Di+Lorenzo%2C+P">Paolo Di Lorenzo</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03841v1-abstract-short" style="display: inline;"> This paper studies the interference broadcast channel comprising multiple multi-antenna Base Stations (BSs), each controlling a beyond diagonal Reconfigurable Intelligent Surface (RIS) and serving multiple single-antenna users. Wideband transmissions are considered with the objective to jointly design the BS linear precoding vectors and the phase configurations at the RISs in a distributed manner.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03841v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03841v1-abstract-full" style="display: none;"> This paper studies the interference broadcast channel comprising multiple multi-antenna Base Stations (BSs), each controlling a beyond diagonal Reconfigurable Intelligent Surface (RIS) and serving multiple single-antenna users. Wideband transmissions are considered with the objective to jointly design the BS linear precoding vectors and the phase configurations at the RISs in a distributed manner. We take into account the frequency selectivity behavior of each RIS&#39;s tunable meta-element, and focusing on the sum rate as the system&#39;s performance criterion, we present a distributed optimization approach that enables cooperation between the RIS control units and their respective BSs. According to the proposed scheme, each design variable can be efficiently obtained in an iterative parallel way with guaranteed convergence properties. Our simulation results demonstrate the validity of the presented distributed algorithm and showcase its superiority over a non-cooperative scheme as well as over the special case where the RISs have a conventional diagonal structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03841v1-abstract-full').style.display = 'none'; document.getElementById('2409.03841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure; to be presented in IEEE SPAWC 2024. arXiv admin note: text overlap with arXiv:2406.19334</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08609">arXiv:2408.08609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08609">pdf</a>, <a href="https://arxiv.org/format/2408.08609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Fast Network Recovery from Large-Scale Disasters: A Resilient and Self-Organizing RAN Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yagan%2C+M+Y">M. Yaser Yagan</a>, <a href="/search/eess?searchtype=author&amp;query=Kayraklik%2C+S">Sefa Kayraklik</a>, <a href="/search/eess?searchtype=author&amp;query=Kesir%2C+S">Samed Kesir</a>, <a href="/search/eess?searchtype=author&amp;query=Sumen%2C+G">Gizem Sumen</a>, <a href="/search/eess?searchtype=author&amp;query=Hokelek%2C+I">Ibrahim Hokelek</a>, <a href="/search/eess?searchtype=author&amp;query=Basaran%2C+M">Mehmet Basaran</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Basar%2C+E">Ertugrul Basar</a>, <a href="/search/eess?searchtype=author&amp;query=Cavdar%2C+C">Cicek Cavdar</a>, <a href="/search/eess?searchtype=author&amp;query=Arslan%2C+H">Huseyin Arslan</a>, <a href="/search/eess?searchtype=author&amp;query=Gorcin%2C+A">Ali Gorcin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08609v1-abstract-short" style="display: inline;"> Extreme natural phenomena are occurring more frequently everyday in the world, challenging, among others, the infrastructure of communication networks. For instance, the devastating earthquakes in Turkiye in early 2023 showcased that, although communications became an imminent priority, existing mobile communication systems fell short with the operational requirements of harsh disaster environment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08609v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08609v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08609v1-abstract-full" style="display: none;"> Extreme natural phenomena are occurring more frequently everyday in the world, challenging, among others, the infrastructure of communication networks. For instance, the devastating earthquakes in Turkiye in early 2023 showcased that, although communications became an imminent priority, existing mobile communication systems fell short with the operational requirements of harsh disaster environments. In this article, we present a novel framework for robust, resilient, adaptive, and open source sixth generation (6G) radio access networks (Open6GRAN) that can provide uninterrupted communication services in the face of natural disasters and other disruptions. Advanced 6G technologies, such as reconfigurable intelligent surfaces (RISs), cell-free multiple-input-multiple-output, and joint communications and sensing with increasingly heterogeneous deployment, consisting of terrestrial and non-terrestrial nodes, are robustly integrated. We advocate that a key enabler to develop service and management orchestration with fast recovery capabilities will rely on an artificial-intelligence-based radio access network (RAN) controller. To support the emergency use case spanning a larger area, the integration of aerial and space segments with the terrestrial network promises a rapid and reliable response in the case of any disaster. A proof-of-concept that rapidly reconfigures an RIS for performance enhancement under an emergency scenario is presented and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08609v1-abstract-full').style.display = 'none'; document.getElementById('2408.08609v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE VTM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07202">arXiv:2408.07202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07202">pdf</a>, <a href="https://arxiv.org/ps/2408.07202">ps</a>, <a href="https://arxiv.org/format/2408.07202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Near-Field Localization with Antenna Arrays in the Presence of Direction-Dependent Mutual Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Ebadi%2C+Z">Zohreh Ebadi</a>, <a href="/search/eess?searchtype=author&amp;query=Molaei%2C+A+M">Amir Masoud Molaei</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Abbasi%2C+M+A+B">Muhammad Ali Babar Abbasi</a>, <a href="/search/eess?searchtype=author&amp;query=Cotton%2C+S">Simon Cotton</a>, <a href="/search/eess?searchtype=author&amp;query=Tukmanov%2C+A">Anvar Tukmanov</a>, <a href="/search/eess?searchtype=author&amp;query=Yurduseven%2C+O">Okan Yurduseven</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07202v1-abstract-short" style="display: inline;"> Localizing near-field sources considering practical arrays is a recent challenging topic for next generation wireless communication systems. Practical antenna array apertures with closely spaced elements exhibit direction-dependent mutual coupling (MC), which can significantly degrade the performance localization techniques. A conventional method for near-field localization in the presence of MC i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07202v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07202v1-abstract-full" style="display: none;"> Localizing near-field sources considering practical arrays is a recent challenging topic for next generation wireless communication systems. Practical antenna array apertures with closely spaced elements exhibit direction-dependent mutual coupling (MC), which can significantly degrade the performance localization techniques. A conventional method for near-field localization in the presence of MC is the three-dimensional (3D) multiple signal classification technique, which, however, suffers from extremely high computational complexity. Recently, two-dimensional (2D) search alternatives have been presented, exhibiting increased complexity still for direction-dependent MC scenarios. In this paper, we devise a low complexity one-dimensional (1D) iterative method based on an oblique projection operator (IMOP) that estimates direction-dependent MC and the locations of multiple near-field sources. The proposed method first estimates the initial direction of arrival (DOA) and MC using the approximate wavefront model, and then, estimates the initial range of one near-field source using the exact wavefront model. Afterwards, at each iteration, the oblique projection operator is used to isolate components associated with one source from those of other sources. The DOA and range of this one source are estimated using the exact wavefront model and 1D searches. Finally, the direction-dependent MC is estimated for each pair of the estimated DOA and range. The performance of the proposed near-field localization approach is comprehensively investigated and verified using both a full-wave electromagnetic solver and synthetic simulations. It is showcased that our IMOP scheme performs almost similarly to a state-of-the-art approach but with a 42 times less computational complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07202v1-abstract-full').style.display = 'none'; document.getElementById('2408.07202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, submitted to an IEEE Transactions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04837">arXiv:2408.04837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04837">pdf</a>, <a href="https://arxiv.org/ps/2408.04837">ps</a>, <a href="https://arxiv.org/format/2408.04837">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Multi-User MISO with Stacked Intelligent Metasurfaces: A DRL-Based Sum-Rate Optimization Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/eess?searchtype=author&amp;query=An%2C+J">Jiancheng An</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Ng%2C+D+W+K">Derrick Wing Kwan Ng</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+L">Lu Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04837v1-abstract-short" style="display: inline;"> Stacked intelligent metasurfaces (SIMs) represent a novel signal processing paradigm that enables over-the-air processing of electromagnetic waves at the speed of light. Their multi-layer architecture exhibits customizable computational capabilities compared to conventional single-layer reconfigurable intelligent surfaces and metasurface lenses. In this paper, we deploy SIM to improve the performa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04837v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04837v1-abstract-full" style="display: none;"> Stacked intelligent metasurfaces (SIMs) represent a novel signal processing paradigm that enables over-the-air processing of electromagnetic waves at the speed of light. Their multi-layer architecture exhibits customizable computational capabilities compared to conventional single-layer reconfigurable intelligent surfaces and metasurface lenses. In this paper, we deploy SIM to improve the performance of multi-user multiple-input single-output (MISO) wireless systems through a low complexity manner with reduced numbers of transmit radio frequency chains. In particular, an optimization formulation for the joint design of the SIM phase shifts and the transmit power allocation is presented, which is efficiently tackled via a customized deep reinforcement learning (DRL) approach that systematically explores pre-designed states of the SIM-parametrized smart wireless environment. The presented performance evaluation results demonstrate the proposed method&#39;s capability to effectively learn from the wireless environment, while consistently outperforming conventional precoding schemes under low transmit power conditions. Furthermore, the implementation of hyperparameter tuning and whitening process significantly enhance the robustness of the proposed DRL framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04837v1-abstract-full').style.display = 'none'; document.getElementById('2408.04837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 11 figures, 2 tables. arXiv admin note: text overlap with arXiv:2402.09006</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18168">arXiv:2407.18168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18168">pdf</a>, <a href="https://arxiv.org/format/2407.18168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous Near-Field THz Communications and Sensing with Full Duplex Metasurface Transceivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gavras%2C+I">Ioannis Gavras</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18168v2-abstract-short" style="display: inline;"> In this paper, a Full Duplex (FD) eXtremely Large (XL) Multiple-Input Multiple-Output (MIMO) node equipped with reconfigurable metasurface antennas at its transmission and reception sides is considered, which is optimized for simultaneous multi-user communications and sensing in the near-field regime at THz frequencies. We first present a novel Position Error Bound (PEB) analysis for the spatial p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18168v2-abstract-full').style.display = 'inline'; document.getElementById('2407.18168v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18168v2-abstract-full" style="display: none;"> In this paper, a Full Duplex (FD) eXtremely Large (XL) Multiple-Input Multiple-Output (MIMO) node equipped with reconfigurable metasurface antennas at its transmission and reception sides is considered, which is optimized for simultaneous multi-user communications and sensing in the near-field regime at THz frequencies. We first present a novel Position Error Bound (PEB) analysis for the spatial parameters of multiple targets in the vicinity of the FD node, via the received backscattered data signals, and devise an optimization framework for its metasurface-based precoder and combiner. Then, we formulate and solve an optimization problem aiming at the downlink sum-rate maximization, while simultaneously ensuring a minimum PEB requirement for targets&#39; localization. Our simulation results for a sub-THz system setup validate the joint near-field communications and sensing capability of the proposed FD XL MIMO scheme with metasurfaces antennas, showcasing the interplay of its various design parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18168v2-abstract-full').style.display = 'none'; document.getElementById('2407.18168v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14638">arXiv:2407.14638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14638">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Metasurface Energy Harvesters: State-of-the-Art Designs and Their Potential for Energy Sustainable Reconfigurable Intelligent Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Ghaneizadeh%2C+A">Alireza Ghaneizadeh</a>, <a href="/search/eess?searchtype=author&amp;query=Gavriilidis%2C+P">Panagiotis Gavriilidis</a>, <a href="/search/eess?searchtype=author&amp;query=Joodaki%2C+M">Mojtaba Joodaki</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14638v1-abstract-short" style="display: inline;"> Metasurface Energy Harvesters (MEHs) have emerged as a prominent enabler of highly efficient Radio Frequency (RF) energy harvesters. This survey delves into the fundamentals of the MEH technology, providing a comprehensive overview of their working principle, unit cell designs and prototypes over various frequency bands, as well as state-of-the art modes of operation. Inspired by the recent academ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14638v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14638v1-abstract-full" style="display: none;"> Metasurface Energy Harvesters (MEHs) have emerged as a prominent enabler of highly efficient Radio Frequency (RF) energy harvesters. This survey delves into the fundamentals of the MEH technology, providing a comprehensive overview of their working principle, unit cell designs and prototypes over various frequency bands, as well as state-of-the art modes of operation. Inspired by the recent academic and industrial interest on Reconfigurable Intelligent Surfaces (RISs)for the upcoming sixth-Generation (6G) of wireless networks, we study the interplay between this technology and MEHs aiming for energy sustainable RISs power by metasurface-based RF energy harvesting. We present a novel hybrid unit cell design capable of simultaneous energy harvesting and 1-bit tunable reflection whose dual-functional response is validated via full-wave simulations. Then, we conduct a comparative collection of real-world measurements for ambient RF power levels and power consumption budgets of reflective RISs to unveil the potential for a self-sustainable RIS via ambient RF energy harvesting. The paper is concluded with an elaborative discussion on open design challenges and future research directions for MEHs and energy sustainable hybrid RISs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14638v1-abstract-full').style.display = 'none'; document.getElementById('2407.14638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13510">arXiv:2407.13510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13510">pdf</a>, <a href="https://arxiv.org/format/2407.13510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Asymptotically Optimal Closed-Form Phase Configuration of $1$-bit RISs via Sign Alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Stylianopoulos%2C+K">Kyriakos Stylianopoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Gavriilidis%2C+P">Panagiotis Gavriilidis</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13510v1-abstract-short" style="display: inline;"> While Reconfigurable Intelligent Surfaces (RISs) constitute one of the most prominent enablers for the upcoming sixth Generation (6G) of wireless networks, the design of efficient RIS phase profiles remains a notorious challenge when large numbers of phase-quantized unit cells are involved, typically of a single bit, as implemented by a vast majority of existing metasurface prototypes. In this pap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13510v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13510v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13510v1-abstract-full" style="display: none;"> While Reconfigurable Intelligent Surfaces (RISs) constitute one of the most prominent enablers for the upcoming sixth Generation (6G) of wireless networks, the design of efficient RIS phase profiles remains a notorious challenge when large numbers of phase-quantized unit cells are involved, typically of a single bit, as implemented by a vast majority of existing metasurface prototypes. In this paper, we focus on the RIS phase configuration problem for the exemplary case of the Signal-to-Noise Ratio (SNR) maximization for an RIS-enabled single-input single-output system where the metasurface tunable elements admit a phase difference of $蟺$ radians. We present a novel closed-form configuration which serves as a lower bound guaranteeing at least half the SNR of the ideal continuous (upper bound) SNR gain, and whose mean performance is shown to be asymptotically optimal. The proposed sign alignment configuration can be further used as initialization to standard discrete optimization algorithms. A discussion on the reduced complexity hardware benefits via the presented configuration is also included. Our numerical results demonstrate the efficacy of the proposed RIS sign alignment scheme over iterative approaches as well as the commonplace continuous phase quantization treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13510v1-abstract-full').style.display = 'none'; document.getElementById('2407.13510v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, 1 table, to be presented at IEEE SPAWC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00933">arXiv:2407.00933</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00933">pdf</a>, <a href="https://arxiv.org/format/2407.00933">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable Intelligent Computational Surfaces for MEC-Assisted Autonomous Driving Networks: Design Optimization and Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+X">Xueyao Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Yang%2C+B">Bo Yang</a>, <a href="/search/eess?searchtype=author&amp;query=Yu%2C+Z">Zhiwen Yu</a>, <a href="/search/eess?searchtype=author&amp;query=Cao%2C+X">Xuelin Cao</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Debbah%2C+M">Merouane Debbah</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00933v1-abstract-short" style="display: inline;"> This paper investigates autonomous driving safety improvement via task offloading from cellular vehicles (CVs) to a multi-access edge computing (MEC) server using vehicle-to-infrastructure (V2I) links. Considering that the latter links can be reused by vehicle-to-vehicle (V2V) communications to improve spectrum utilization, the receiver of the V2I link may suffer from severe interference that can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00933v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00933v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00933v1-abstract-full" style="display: none;"> This paper investigates autonomous driving safety improvement via task offloading from cellular vehicles (CVs) to a multi-access edge computing (MEC) server using vehicle-to-infrastructure (V2I) links. Considering that the latter links can be reused by vehicle-to-vehicle (V2V) communications to improve spectrum utilization, the receiver of the V2I link may suffer from severe interference that can cause outages during the task offloading. To tackle this issue, we propose the deployment of a reconfigurable intelligent computational surface (RICS) whose computationally capable metamaterials are leveraged to jointly enable V2I reflective links as well as to implement interference cancellation at the V2V links. We devise a joint optimization formulation for the task offloading ratio between the CVs and the MEC server, the spectrum sharing strategy between V2V and V2I communications, as well as the RICS reflection and refraction matrices to maximize an autonomous driving safety task. Due to the non-convexity of the problem and the coupling among its free variables, we transform it into a more tractable equivalent form, which is then decomposed into three sub-problems solved via an alternate approximation method. Our simulation results showcase that the proposed RICS-assisted offloading framework significantly improves the safety of the considered autonomous driving network, yielding a nearly 34\% improvement in the safety coefficient of the CVs. In addition, it is demonstrated that the V2V data rate can be improved by around 60\% indicating that the RICS-induced adjustment of the signals can effectively mitigate interference at the V2V link. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00933v1-abstract-full').style.display = 'none'; document.getElementById('2407.00933v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19334">arXiv:2406.19334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19334">pdf</a>, <a href="https://arxiv.org/format/2406.19334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Multi-RIS-Empowered Multiple Access: A Distributed Sum-Rate Maximization Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Katsanos%2C+K+D">Konstantinos D. Katsanos</a>, <a href="/search/eess?searchtype=author&amp;query=Di+Lorenzo%2C+P">Paolo Di Lorenzo</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19334v2-abstract-short" style="display: inline;"> The plethora of wirelessly connected devices, whose deployment density is expected to largely increase in the upcoming sixth Generation (6G) of wireless networks, will naturally necessitate substantial advances in multiple access schemes. Reconfigurable Intelligent Surfaces (RISs) constitute a candidate 6G technology capable to offer dynamic over-the-air signal propagation programmability, which c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19334v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19334v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19334v2-abstract-full" style="display: none;"> The plethora of wirelessly connected devices, whose deployment density is expected to largely increase in the upcoming sixth Generation (6G) of wireless networks, will naturally necessitate substantial advances in multiple access schemes. Reconfigurable Intelligent Surfaces (RISs) constitute a candidate 6G technology capable to offer dynamic over-the-air signal propagation programmability, which can be optimized for efficient non-orthogonal access of a multitude of devices. In this paper, we study the downlink of a wideband communication system comprising multiple multi-antenna Base Stations (BSs), each wishing to serve an associated single-antenna user via the assistance of a Beyond Diagonal (BD) and frequency-selective RIS. Under the assumption that each BS performs Orthogonal Frequency Division Multiplexing (OFDM) transmissions and exclusively controls a distinct RIS, we focus on the sum-rate maximization problem and present a distributed joint design of the linear precoders at the BSs as well as the tunable capacitances and the switch selection matrices at the multiple BD RISs. The formulated non-convex design optimization problem is solved via successive concave approximation necessitating minimal cooperation among the BSs. Our extensive simulation results showcase the performance superiority of the proposed cooperative scheme over non-cooperation benchmarks, indicating the performance gains with BD RISs via the presented optimized frequency selective operation for various scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19334v2-abstract-full').style.display = 'none'; document.getElementById('2406.19334v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to an IEEE Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05647">arXiv:2406.05647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05647">pdf</a>, <a href="https://arxiv.org/format/2406.05647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Sustainable Wireless Networks via Reconfigurable Intelligent Surfaces (RISs): Overview of the ETSI ISG RIS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Liu%2C+R">Ruiqi Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Zheng%2C+S">Shuang Zheng</a>, <a href="/search/eess?searchtype=author&amp;query=Wu%2C+Q">Qingqing Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Jiang%2C+Y">Yifan Jiang</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+N">Nan Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Liu%2C+Y">Yuanwei Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Di+Renzo%2C+M">Marco Di Renzo</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+a+G+C">and George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05647v1-abstract-short" style="display: inline;"> Reconfigurable Intelligent Surfaces (RISs) are a novel form of ultra-low power devices that are capable to increase the communication data rates as well as the cell coverage in a cost- and energy-efficient way. This is attributed to their programmable operation that enables them to dynamically manipulate the wireless propagation environment, a feature that has lately inspired numerous research inv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05647v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05647v1-abstract-full" style="display: none;"> Reconfigurable Intelligent Surfaces (RISs) are a novel form of ultra-low power devices that are capable to increase the communication data rates as well as the cell coverage in a cost- and energy-efficient way. This is attributed to their programmable operation that enables them to dynamically manipulate the wireless propagation environment, a feature that has lately inspired numerous research investigations and applications. To pave the way to the formal standardization of RISs, the European Telecommunications Standards Institute (ETSI) launched the Industry Specification Group (ISG) on the RIS technology in September 2021. This article provides a comprehensive overview of the status of the work conducted by the ETSI ISG RIS, covering typical deployment scenarios of reconfigurable metasurfaces, use cases and operating applications, requirements, emerging hardware architectures and operating modes, as well as the latest insights regarding future directions of RISs and the resulting smart wireless environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05647v1-abstract-full').style.display = 'none'; document.getElementById('2406.05647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, submitted to an IEEE Magazine</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09411">arXiv:2403.09411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09411">pdf</a>, <a href="https://arxiv.org/format/2403.09411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/MWC.005.2300457">10.1109/MWC.005.2300457 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-Field Channel Modeling for Holographic MIMO Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gong%2C+T">Tierui Gong</a>, <a href="/search/eess?searchtype=author&amp;query=Wei%2C+L">Li Wei</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+C">Chongwen Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Debbah%2C+M">M茅rouane Debbah</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09411v2-abstract-short" style="display: inline;"> Empowered by the latest progress on innovative metamaterials/metasurfaces and advanced antenna technologies, holographic multiple-input multiple-output (H-MIMO) emerges as a promising technology to fulfill the extreme goals of the sixth-generation (6G) wireless networks. The antenna arrays utilized in H-MIMO comprise massive (possibly to extreme extent) numbers of antenna elements, densely spaced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09411v2-abstract-full').style.display = 'inline'; document.getElementById('2403.09411v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09411v2-abstract-full" style="display: none;"> Empowered by the latest progress on innovative metamaterials/metasurfaces and advanced antenna technologies, holographic multiple-input multiple-output (H-MIMO) emerges as a promising technology to fulfill the extreme goals of the sixth-generation (6G) wireless networks. The antenna arrays utilized in H-MIMO comprise massive (possibly to extreme extent) numbers of antenna elements, densely spaced less than half-a-wavelength and integrated into a compact space, realizing an almost continuous aperture. Thanks to the expected low cost, size, weight, and power consumption, such apertures are expected to be largely fabricated for near-field communications. In addition, the physical features of H-MIMO enable manipulations directly on the electromagnetic (EM) wave domain and spatial multiplexing. To fully leverage this potential, near-field H-MIMO channel modeling, especially from the EM perspective, is of paramount significance. In this article, we overview near-field H-MIMO channel models elaborating on the various modeling categories and respective features, as well as their challenges and evaluation criteria. We also present EM-domain channel models that address the inherit computational and measurement complexities. Finally, the article is concluded with a set of future research directions on the topic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09411v2-abstract-full').style.display = 'none'; document.getElementById('2403.09411v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">double column, 9 pages, 3 figures, 2 tables, accepted by IEEE Wireless Communications Magazine</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18271">arXiv:2402.18271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18271">pdf</a>, <a href="https://arxiv.org/format/2402.18271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Distributed Intelligent Integrated Sensing and Communications: The 6G-DISAC Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Strinati%2C+E+C">Emilio Calvanese Strinati</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Giyyarpuram%2C+M">Madhusudan Giyyarpuram</a>, <a href="/search/eess?searchtype=author&amp;query=Sehier%2C+P">Philippe Sehier</a>, <a href="/search/eess?searchtype=author&amp;query=Mekki%2C+S">Sami Mekki</a>, <a href="/search/eess?searchtype=author&amp;query=Sciancalepore%2C+V">Vincenzo Sciancalepore</a>, <a href="/search/eess?searchtype=author&amp;query=Stark%2C+M">Maximilian Stark</a>, <a href="/search/eess?searchtype=author&amp;query=Sana%2C+M">Mohamed Sana</a>, <a href="/search/eess?searchtype=author&amp;query=Denis%2C+B">Benoit Denis</a>, <a href="/search/eess?searchtype=author&amp;query=Crozzoli%2C+M">Maurizio Crozzoli</a>, <a href="/search/eess?searchtype=author&amp;query=Amani%2C+N">Navid Amani</a>, <a href="/search/eess?searchtype=author&amp;query=Mursia%2C+P">Placido Mursia</a>, <a href="/search/eess?searchtype=author&amp;query=Errico%2C+R+D">Raffaele D Errico</a>, <a href="/search/eess?searchtype=author&amp;query=Boldi%2C+M">Mauro Boldi</a>, <a href="/search/eess?searchtype=author&amp;query=Costanzo%2C+F">Francesca Costanzo</a>, <a href="/search/eess?searchtype=author&amp;query=Rivet%2C+F">Francois Rivet</a>, <a href="/search/eess?searchtype=author&amp;query=Wymeerschx%2C+H">Henk Wymeerschx</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18271v1-abstract-short" style="display: inline;"> This paper introduces the concept of Distributed Intelligent integrated Sensing and Communications (DISAC), which expands the capabilities of Integrated Sensing and Communications (ISAC) towards distributed architectures. Additionally, the DISAC framework integrates novel waveform design with new semantic and goal-oriented communication paradigms, enabling ISAC technologies to transition from trad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18271v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18271v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18271v1-abstract-full" style="display: none;"> This paper introduces the concept of Distributed Intelligent integrated Sensing and Communications (DISAC), which expands the capabilities of Integrated Sensing and Communications (ISAC) towards distributed architectures. Additionally, the DISAC framework integrates novel waveform design with new semantic and goal-oriented communication paradigms, enabling ISAC technologies to transition from traditional data fusion to the semantic composition of diverse sensed and shared information. This progress facilitates large-scale, energy-efficient support for high-precision spatial-temporal processing, optimizing ISAC resource utilization, and enabling effective multi-modal sensing performance. Addressing key challenges such as efficient data management and connect-compute resource utilization, 6G- DISAC stands to revolutionize applications in diverse sectors including transportation, healthcare, and industrial automation. Our study encapsulates the project vision, methodologies, and potential impact, marking a significant stride towards a more connected and intelligent world. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18271v1-abstract-full').style.display = 'none'; document.getElementById('2402.18271v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for conference publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11630">arXiv:2402.11630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11630">pdf</a>, <a href="https://arxiv.org/format/2402.11630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Towards Distributed and Intelligent Integrated Sensing and Communications for 6G Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Strinati%2C+E+C">Emilio Calvanese Strinati</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Amani%2C+N">Navid Amani</a>, <a href="/search/eess?searchtype=author&amp;query=Crozzoli%2C+M">Maurizio Crozzoli</a>, <a href="/search/eess?searchtype=author&amp;query=Madhusudan%2C+G">Giyyarpuram Madhusudan</a>, <a href="/search/eess?searchtype=author&amp;query=Mekki%2C+S">Sami Mekki</a>, <a href="/search/eess?searchtype=author&amp;query=Rivet%2C+F">Francois Rivet</a>, <a href="/search/eess?searchtype=author&amp;query=Sciancalepore%2C+V">Vincenzo Sciancalepore</a>, <a href="/search/eess?searchtype=author&amp;query=Sehier%2C+P">Philippe Sehier</a>, <a href="/search/eess?searchtype=author&amp;query=Stark%2C+M">Maximilian Stark</a>, <a href="/search/eess?searchtype=author&amp;query=Wymeersch%2C+H">Henk Wymeersch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11630v2-abstract-short" style="display: inline;"> This paper introduces the distributed and intelligent integrated sensing and communications (DISAC) concept, a transformative approach for 6G wireless networks that extends the emerging concept of integrated sensing and communications (ISAC). DISAC addresses the limitations of the existing ISAC models and, to overcome them, it introduces two novel foundational functionalities for both sensing and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11630v2-abstract-full').style.display = 'inline'; document.getElementById('2402.11630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11630v2-abstract-full" style="display: none;"> This paper introduces the distributed and intelligent integrated sensing and communications (DISAC) concept, a transformative approach for 6G wireless networks that extends the emerging concept of integrated sensing and communications (ISAC). DISAC addresses the limitations of the existing ISAC models and, to overcome them, it introduces two novel foundational functionalities for both sensing and communications: a distributed architecture (enabling large-scale and energy-efficient tracking of connected users and objects, leveraging the fusion of heterogeneous sensors) and a semantic and goal-oriented framework (enabling the transition from classical data fusion to the composition of semantically selected information). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11630v2-abstract-full').style.display = 'none'; document.getElementById('2402.11630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to IEEE WCM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09006">arXiv:2402.09006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09006">pdf</a>, <a href="https://arxiv.org/format/2402.09006">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> DRL-Based Orchestration of Multi-User MISO Systems with Stacked Intelligent Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/eess?searchtype=author&amp;query=An%2C+J">Jiancheng An</a>, <a href="/search/eess?searchtype=author&amp;query=Ng%2C+D+W+K">Derrick Wing Kwan Ng</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Gan%2C+L">Lu Gan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09006v1-abstract-short" style="display: inline;"> Stacked intelligent metasurfaces (SIM) represents an advanced signal processing paradigm that enables over-the-air processing of electromagnetic waves at the speed of light. Its multi-layer structure exhibits customizable increased computational capability compared to conventional single-layer reconfigurable intelligent surfaces and metasurface lenses. In this paper, we deploy SIM to improve the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09006v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09006v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09006v1-abstract-full" style="display: none;"> Stacked intelligent metasurfaces (SIM) represents an advanced signal processing paradigm that enables over-the-air processing of electromagnetic waves at the speed of light. Its multi-layer structure exhibits customizable increased computational capability compared to conventional single-layer reconfigurable intelligent surfaces and metasurface lenses. In this paper, we deploy SIM to improve the performance of multi-user multiple-input single-output (MISO) wireless systems with low complexity transmit radio frequency (RF) chains. In particular, an optimization formulation for the joint design of the SIM phase shifts and the transmit power allocation is presented, which is efficiently solved via a customized deep reinforcement learning (DRL) approach that continuously observes pre-designed states of the SIM-parametrized smart wireless environment. The presented performance evaluation results showcase the proposed method&#39;s capability to effectively learn from the wireless environment while outperforming conventional precoding schemes under low transmit power conditions. Finally, a whitening process is presented to further augment the robustness of the proposed scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09006v1-abstract-full').style.display = 'none'; document.getElementById('2402.09006v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by IEEE ICC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08445">arXiv:2402.08445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08445">pdf</a>, <a href="https://arxiv.org/format/2402.08445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> $1$-Bit SubTHz RIS with Planar Tightly Coupled Dipoles: Beam Shaping and Prototypes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Ma%2C+X">Xianjun Ma</a>, <a href="/search/eess?searchtype=author&amp;query=Zhou%2C+Y">Yonggang Zhou</a>, <a href="/search/eess?searchtype=author&amp;query=Luo%2C+Q">Qi Luo</a>, <a href="/search/eess?searchtype=author&amp;query=Ma%2C+Y">Yihan Ma</a>, <a href="/search/eess?searchtype=author&amp;query=Stylianopoulos%2C+K">Kyriakos Stylianopoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08445v1-abstract-short" style="display: inline;"> In this paper, a proof-of-concept study of a $1$-bit wideband reconfigurable intelligent surface (RIS) comprising planar tightly coupled dipoles (PTCD) is presented. The developed RIS operates at subTHz frequencies and a $3$-dB gain bandwidth of $27.4\%$ with the center frequency at $102$ GHz is shown to be obtainable via full-wave electromagnetic simulations. The binary phase shift offered by eac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08445v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08445v1-abstract-full" style="display: none;"> In this paper, a proof-of-concept study of a $1$-bit wideband reconfigurable intelligent surface (RIS) comprising planar tightly coupled dipoles (PTCD) is presented. The developed RIS operates at subTHz frequencies and a $3$-dB gain bandwidth of $27.4\%$ with the center frequency at $102$ GHz is shown to be obtainable via full-wave electromagnetic simulations. The binary phase shift offered by each RIS unit element is enabled by changing the polarization of the reflected wave by $180^\circ$. The proposed PTCD-based RIS has a planar configuration with one dielectric layer bonded to a ground plane, and hence, it can be fabricated by using cost-effective printed circuit board (PCB) technology. We analytically calculate the response of the entire designed RIS and showcase that a good agreement between that result and equivalent full-wave simulations is obtained. To efficiently compute the $1$-bit RIS response for different pointing directions, thus, designing a directive beam codebook, we devise a fast approximate beamforming optimization approach, which is compared with time-consuming full-wave simulations. Finally, to prove our concept, we present several passive prototypes with frozen beams for the proposed $1$-bit wideband RIS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08445v1-abstract-full').style.display = 'none'; document.getElementById('2402.08445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 11 figures, 18th European Conference on Antennas and Propagation (EuCAP) - to be presented</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07259">arXiv:2402.07259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07259">pdf</a>, <a href="https://arxiv.org/ps/2402.07259">ps</a>, <a href="https://arxiv.org/format/2402.07259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> RIS-Augmented Millimeter-Wave MIMO Systems for Passive Drone Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=He%2C+J">Jiguang He</a>, <a href="/search/eess?searchtype=author&amp;query=Fakhreddine%2C+A">Aymen Fakhreddine</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07259v2-abstract-short" style="display: inline;"> In the past decade, the number of amateur drones is increasing, and this trend is expected to continue in the future. The security issues brought by abuse and misconduct of drones become more and more severe and may incur a negative impact to the society. In this paper, we leverage existing cellular multiple-input multiple-output (MIMO) base station (BS) infrastructure, operating at millimeter wav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07259v2-abstract-full').style.display = 'inline'; document.getElementById('2402.07259v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07259v2-abstract-full" style="display: none;"> In the past decade, the number of amateur drones is increasing, and this trend is expected to continue in the future. The security issues brought by abuse and misconduct of drones become more and more severe and may incur a negative impact to the society. In this paper, we leverage existing cellular multiple-input multiple-output (MIMO) base station (BS) infrastructure, operating at millimeter wave (mmWave) frequency bands, for drone detection in a device-free manner with the aid of one reconfigurable intelligent surface (RIS), deployed in the proximity of the BS. We theoretically examine the feasibility of drone detection with the aid of the generalized likelihood ratio test (GLRT) and validate via simulations that, the optimized deployment of an RIS can bring added benefits compared to RIS-free systems. In addition, the effect of RIS training beams, training overhead, and radar cross section, is investigated in order to offer theoretical design guidance for the proposed cellular RIS-based passive drone detection system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07259v2-abstract-full').style.display = 'none'; document.getElementById('2402.07259v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, accepted by IEEE PIMRC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02957">arXiv:2402.02957</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Mondal%2C+A">Abhishek Mondal</a>, <a href="/search/eess?searchtype=author&amp;query=Mishra%2C+D">Deepak Mishra</a>, <a href="/search/eess?searchtype=author&amp;query=Prasad%2C+G">Ganesh Prasad</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Alnahari%2C+A">Azzam Alnahari</a>, <a href="/search/eess?searchtype=author&amp;query=Jantti%2C+R">Riku Jantti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02957v2-abstract-short" style="display: inline;"> Effective solutions for intelligent data collection in terrestrial cellular networks are crucial, especially in the context of Internet of Things applications. The limited spectrum and coverage area of terrestrial base stations pose challenges in meeting the escalating data rate demands of network users. Unmanned aerial vehicles, known for their high agility, mobility, and flexibility, present an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02957v2-abstract-full').style.display = 'inline'; document.getElementById('2402.02957v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02957v2-abstract-full" style="display: none;"> Effective solutions for intelligent data collection in terrestrial cellular networks are crucial, especially in the context of Internet of Things applications. The limited spectrum and coverage area of terrestrial base stations pose challenges in meeting the escalating data rate demands of network users. Unmanned aerial vehicles, known for their high agility, mobility, and flexibility, present an alternative means to offload data traffic from terrestrial BSs, serving as additional access points. This paper introduces a novel approach to efficiently maximize the utilization of multiple UAVs for data traffic offloading from terrestrial BSs. Specifically, the focus is on maximizing user association with UAVs by jointly optimizing UAV trajectories and users association indicators under quality of service constraints. Since, the formulated UAVs control problem is nonconvex and combinatorial, this study leverages the multi agent reinforcement learning framework. In this framework, each UAV acts as an independent agent, aiming to maintain inter UAV cooperative behavior. The proposed approach utilizes the finite state Markov decision process to account for UAVs velocity constraints and the relationship between their trajectories and state space. A low complexity distributed state action reward state action algorithm is presented to determine UAVs optimal sequential decision making policies over training episodes. The extensive simulation results validate the proposed analysis and offer valuable insights into the optimal UAV trajectories. The derived trajectories demonstrate superior average UAV association performance compared to benchmark techniques such as Q learning and particle swarm optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02957v2-abstract-full').style.display = 'none'; document.getElementById('2402.02957v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Significant modification required to get novel results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00398">arXiv:2402.00398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00398">pdf</a>, <a href="https://arxiv.org/format/2402.00398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable Intelligent Computational Surfaces for MEC-Assisted Autonomous Driving Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Yang%2C+B">Bo Yang</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+X">Xueyao Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Yu%2C+Z">Zhiwen Yu</a>, <a href="/search/eess?searchtype=author&amp;query=Cao%2C+X">Xuelin Cao</a>, <a href="/search/eess?searchtype=author&amp;query=Huang%2C+C">Chongwen Huang</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/eess?searchtype=author&amp;query=Debbah%2C+M">Merouane Debbah</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00398v1-abstract-short" style="display: inline;"> In this paper, we focus on improving autonomous driving safety via task offloading from cellular vehicles (CVs), using vehicle-to-infrastructure (V2I) links, to an multi-access edge computing (MEC) server. Considering that the frequencies used for V2I links can be reused for vehicle-to-vehicle (V2V) communications to improve spectrum utilization, the receiver of each V2I link may suffer from sever&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00398v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00398v1-abstract-full" style="display: none;"> In this paper, we focus on improving autonomous driving safety via task offloading from cellular vehicles (CVs), using vehicle-to-infrastructure (V2I) links, to an multi-access edge computing (MEC) server. Considering that the frequencies used for V2I links can be reused for vehicle-to-vehicle (V2V) communications to improve spectrum utilization, the receiver of each V2I link may suffer from severe interference, causing outages in the task offloading process. To tackle this issue, we propose the deployment of a reconfigurable intelligent computational surface (RICS) to enable, not only V2I reflective links, but also interference cancellation at the V2V links exploiting the computational capability of its metamaterials. We devise a joint optimization formulation for the task offloading ratio between the CVs and the MEC server, the spectrum sharing strategy between V2V and V2I communications, as well as the RICS reflection and refraction matrices, with the objective to maximize a safety-based autonomous driving task. Due to the non-convexity of the problem and the coupling among its free variables, we transform it into a more tractable equivalent form, which is then decomposed into three sub-problems and solved via an alternate approximation method. Our simulation results demonstrate the effectiveness of the proposed RICS optimization in improving the safety in autonomous driving networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00398v1-abstract-full').style.display = 'none'; document.getElementById('2402.00398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16778">arXiv:2401.16778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16778">pdf</a>, <a href="https://arxiv.org/format/2401.16778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Secure ISAC MIMO Systems: Exploiting Interference With Bayesian Cram茅r-Rao Bound Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Su%2C+N">Nanchi Su</a>, <a href="/search/eess?searchtype=author&amp;query=Liu%2C+F">Fan Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Masouros%2C+C">Christos Masouros</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Xiong%2C+Y">Yifeng Xiong</a>, <a href="/search/eess?searchtype=author&amp;query=Zhang%2C+Q">Qinyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16778v1-abstract-short" style="display: inline;"> In this paper, we present a signaling design for secure integrated sensing and communication (ISAC) systems comprising a dual-functional multi-input multi-output (MIMO) base station (BS) that simultaneously communicates with multiple users while detecting targets present in their vicinity, which are regarded as potential eavesdroppers. In particular, assuming that the distribution of each paramete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16778v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16778v1-abstract-full" style="display: none;"> In this paper, we present a signaling design for secure integrated sensing and communication (ISAC) systems comprising a dual-functional multi-input multi-output (MIMO) base station (BS) that simultaneously communicates with multiple users while detecting targets present in their vicinity, which are regarded as potential eavesdroppers. In particular, assuming that the distribution of each parameter to be estimated is known \textit{a priori}, we focus on optimizing the targets&#39; sensing performance. To this end, we derive and minimize the Bayesian Cram茅r-Rao bound (BCRB), while ensuring certain communication quality of service (QoS) by exploiting constructive interference (CI). The latter scheme enforces that the received signals at the eavesdropping targets fall into the destructive region of the signal constellation, to deteriorate their decoding probability, thus enhancing the ISAC&#39;s system physical-layer security (PLS) capability. To tackle the nonconvexity of the formulated problem, a tailored successive convex approximation method is proposed for its efficient solution. Our extensive numerical results verify the effectiveness of the proposed secure ISAC design showing that the proposed algorithm outperforms block-level precoding techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16778v1-abstract-full').style.display = 'none'; document.getElementById('2401.16778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, submitted for journal publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08237">arXiv:2401.08237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.08237">pdf</a>, <a href="https://arxiv.org/format/2401.08237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Far- versus Near-Field RIS Modeling and Beam Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Delbari%2C+M">Mohamadreza Delbari</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Schober%2C+R">Robert Schober</a>, <a href="/search/eess?searchtype=author&amp;query=Jamali%2C+V">Vahid Jamali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08237v2-abstract-short" style="display: inline;"> In this chapter, we investigate the mathematical foundation of the modeling and design of reconfigurable intelligent surfaces (RIS) in both the far- and near-field regimes. More specifically, we first present RIS-assisted wireless channel models for the far- and near-field regimes, discussing relevant phenomena, such as line-of-sight (LOS) and non-LOS links, rich and poor scattering, channel corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08237v2-abstract-full').style.display = 'inline'; document.getElementById('2401.08237v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08237v2-abstract-full" style="display: none;"> In this chapter, we investigate the mathematical foundation of the modeling and design of reconfigurable intelligent surfaces (RIS) in both the far- and near-field regimes. More specifically, we first present RIS-assisted wireless channel models for the far- and near-field regimes, discussing relevant phenomena, such as line-of-sight (LOS) and non-LOS links, rich and poor scattering, channel correlation, and array manifold. Subsequently, we introduce two general approaches for the RIS reflective beam design, namely optimization-based and analytical, which offer different degrees of design flexibility and computational complexity. Furthermore, we provide a comprehensive set of simulation results for the performance evaluation of the studied RIS beam designs and the investigation of the impact of the system parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08237v2-abstract-full').style.display = 'none'; document.getElementById('2401.08237v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07988">arXiv:2401.07988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07988">pdf</a>, <a href="https://arxiv.org/format/2401.07988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Metasurface-Based Receivers with $1$-bit ADCs for Multi-User Uplink Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gavriilidis%2C+P">Panagiotis Gavriilidis</a>, <a href="/search/eess?searchtype=author&amp;query=Atzeni%2C+I">Italo Atzeni</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07988v1-abstract-short" style="display: inline;"> The massive Multiple-Input Multiple-Output (mMIMO) concept has been recently moving forward to extreme scales to address the envisioned requirements of next generation networks. However, the extension of conventional architectures will result in significant cost and power consumption. To this end, metasurface-based transceivers, consisting of microstrips of metamaterials, have recently emerged as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07988v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07988v1-abstract-full" style="display: none;"> The massive Multiple-Input Multiple-Output (mMIMO) concept has been recently moving forward to extreme scales to address the envisioned requirements of next generation networks. However, the extension of conventional architectures will result in significant cost and power consumption. To this end, metasurface-based transceivers, consisting of microstrips of metamaterials, have recently emerged as an efficient enabler of extreme mMIMO systems. In this paper, we consider metasurface-based receivers with a $1$-bit Analog-to-Digital Converter (ADC) per microstrip and develop an analytical framework for the optimization of the analog and digital combining matrices. Our numerical results, including comparisons with fully digital, infinite-resolution MIMO, provide useful insights into the role of various system parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07988v1-abstract-full').style.display = 'none'; document.getElementById('2401.07988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, to be presented in IEEE ICASSP 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16874">arXiv:2312.16874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16874">pdf</a>, <a href="https://arxiv.org/format/2312.16874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/MVT.2024.3415570">10.1109/MVT.2024.3415570 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconfigurable Intelligent Surfaces for 6G: Emerging Hardware Architectures, Applications, and Open Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Basar%2C+E">Ertugrul Basar</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Liu%2C+Y">Yuanwei Liu</a>, <a href="/search/eess?searchtype=author&amp;query=Wu%2C+Q">Qingqing Wu</a>, <a href="/search/eess?searchtype=author&amp;query=Jin%2C+S">Shi Jin</a>, <a href="/search/eess?searchtype=author&amp;query=Yuen%2C+C">Chau Yuen</a>, <a href="/search/eess?searchtype=author&amp;query=Dobre%2C+O+A">Octavia A. Dobre</a>, <a href="/search/eess?searchtype=author&amp;query=Schober%2C+R">Robert Schober</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16874v2-abstract-short" style="display: inline;"> Reconfigurable intelligent surfaces (RISs) are rapidly gaining prominence in the realm of fifth generation (5G)-Advanced, and predominantly, sixth generation (6G) mobile networks, offering a revolutionary approach to optimizing wireless communications. This article delves into the intricate world of the RIS technology, exploring its diverse hardware architectures and the resulting versatile operat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16874v2-abstract-full').style.display = 'inline'; document.getElementById('2312.16874v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16874v2-abstract-full" style="display: none;"> Reconfigurable intelligent surfaces (RISs) are rapidly gaining prominence in the realm of fifth generation (5G)-Advanced, and predominantly, sixth generation (6G) mobile networks, offering a revolutionary approach to optimizing wireless communications. This article delves into the intricate world of the RIS technology, exploring its diverse hardware architectures and the resulting versatile operating modes. These include RISs with signal reception and processing units, sensors, amplification units, transmissive capability, multiple stacked components, and dynamic metasurface antennas. Furthermore, we shed light on emerging RIS applications, such as index and reflection modulation, non-coherent modulation, next generation multiple access, integrated sensing and communications (ISAC), energy harvesting, as well as aerial and vehicular networks. These exciting applications are set to transform the way we will wirelessly connect in the upcoming era of 6G. Finally, we review recent experimental RIS setups and present various open problems of the overviewed RIS hardware architectures and their applications. From enhancing network coverage to enabling new communication paradigms, RIS-empowered connectivity is poised to play a pivotal role in shaping the future of wireless networking. This article unveils the underlying principles and potential impacts of RISs, focusing on cutting-edge developments of this physical-layer smart connectivity technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16874v2-abstract-full').style.display = 'none'; document.getElementById('2312.16874v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 15 figures, 54 references, and an extended archival version of an invited and accepted article from IEEE Vehicular Technology Magazine</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Vehicular Technology Magazine, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13622">arXiv:2312.13622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13622">pdf</a>, <a href="https://arxiv.org/format/2312.13622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Jointly Optimal RIS Placement and Power Allocation for Underlay D2D Communications: An Outage Probability Minimization Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Ghose%2C+S">Sarbani Ghose</a>, <a href="/search/eess?searchtype=author&amp;query=Mishra%2C+D">Deepak Mishra</a>, <a href="/search/eess?searchtype=author&amp;query=Maity%2C+S+P">Santi P. Maity</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13622v2-abstract-short" style="display: inline;"> In this paper, we study underlay device-to-device (D2D) communication systems empowered by a reconfigurable intelligent surface (RIS) for cognitive cellular networks. Considering Rayleigh fading channels and the general case where there exist both the direct and RIS-enabled D2D channels, the outage probability (OP) of the D2D communication link is presented in closed-form. Next, for the considered&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13622v2-abstract-full').style.display = 'inline'; document.getElementById('2312.13622v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13622v2-abstract-full" style="display: none;"> In this paper, we study underlay device-to-device (D2D) communication systems empowered by a reconfigurable intelligent surface (RIS) for cognitive cellular networks. Considering Rayleigh fading channels and the general case where there exist both the direct and RIS-enabled D2D channels, the outage probability (OP) of the D2D communication link is presented in closed-form. Next, for the considered RIS-empowered underlaid D2D system, we frame an OP minimization problem. We target the joint optimization of the transmit power at the D2D source and the RIS placement, under constraints on the transmit power at the D2D source and on the limited interference imposed on the cellular user for two RIS deployment topologies. Due to the coupled optimization variables, the formulated optimization problem is extremely intractable. We propose an equivalent transformation which we are able to solve analytically. In the transformed problem, an expression for the average value of the signal-to-interference-noise ratio (SINR) at the D2D receiver is derived in closed-form. Our theoretical derivations are corroborated through simulation results, and various system design insights are deduced. It is indicatively showcased that the proposed RIS-empowered underlaid D2D system design outperforms the benchmark semi-adaptive optimal power and optimal distance schemes, offering $44\%$ and $20\%$ performance improvement, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13622v2-abstract-full').style.display = 'none'; document.getElementById('2312.13622v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10345">arXiv:2312.10345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10345">pdf</a>, <a href="https://arxiv.org/ps/2312.10345">ps</a>, <a href="https://arxiv.org/format/2312.10345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Multi-Target Two-way Integrated Sensing and Communications with Full Duplex MIMO Radios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Talha%2C+M">Muhammad Talha</a>, <a href="/search/eess?searchtype=author&amp;query=Smida%2C+B">Besma Smida</a>, <a href="/search/eess?searchtype=author&amp;query=Islam%2C+M+A">Md Atiqul Islam</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10345v1-abstract-short" style="display: inline;"> In this paper, we propose a multiple input multiple output (MIMO) Full-Duplex Integrated Sensing and Communication System consisting of multiple targets, a single downlink, and a single uplink user. We employed signal-to-interference plus noise ratio (SINR) as the performance metric for radar, downlink, and uplink communication. We use a communication-centric approach in which communication wavefo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10345v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10345v1-abstract-full" style="display: none;"> In this paper, we propose a multiple input multiple output (MIMO) Full-Duplex Integrated Sensing and Communication System consisting of multiple targets, a single downlink, and a single uplink user. We employed signal-to-interference plus noise ratio (SINR) as the performance metric for radar, downlink, and uplink communication. We use a communication-centric approach in which communication waveform is used for both communication and sensing of the environment. We develop a sensing algorithm capable of estimating the direction of arrival (DoA), range, and velocity of each target. We also propose a joint optimization framework for designing A/D transmit and receive beamformers to improve radar, downlink, and uplink SINRs while minimizing self-interference (SI) leakage. We also propose a null space projection (NSP) based approach to improve the uplink rate. Our simulation results, considering orthogonal frequency division multiplexing (OFDM) waveform, show accurate radar parameter estimation with improved downlink and uplink rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10345v1-abstract-full').style.display = 'none'; document.getElementById('2312.10345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09944">arXiv:2312.09944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09944">pdf</a>, <a href="https://arxiv.org/format/2312.09944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Power Minimizing MEC Offloading with QoS Constraints over RIS-Empowered Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Merluzzi%2C+M">Mattia Merluzzi</a>, <a href="/search/eess?searchtype=author&amp;query=Costanzo%2C+F">Francesca Costanzo</a>, <a href="/search/eess?searchtype=author&amp;query=Katsanos%2C+K+D">Konstantinos D. Katsanos</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Di+Lorenzo%2C+P">Paolo Di Lorenzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09944v1-abstract-short" style="display: inline;"> This work lies at the intersection of two cutting edge technologies envisioned to proliferate in future 6G wireless systems: Multi-access Edge Computing (MEC) and Reconfigurable Intelligent Surfaces (RISs). While the former will bring a powerful information technology environment at the wireless edge, the latter will enhance communication performance, thanks to the possibility of adapting wireless&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09944v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09944v1-abstract-full" style="display: none;"> This work lies at the intersection of two cutting edge technologies envisioned to proliferate in future 6G wireless systems: Multi-access Edge Computing (MEC) and Reconfigurable Intelligent Surfaces (RISs). While the former will bring a powerful information technology environment at the wireless edge, the latter will enhance communication performance, thanks to the possibility of adapting wireless propagation as per end users&#39; convenience, according to specific service requirements. We propose a joint optimization of radio, computing, and wireless environment reconfiguration through an RIS, with the goal of enabling low power computation offloading services with reliability guarantees. Going beyond previous works on this topic, multi-carrier frequency selective RIS elements&#39; responses and wireless channels are considered. This opens new challenges in RIS optimization, accounting for frequency dependent RIS response profiles, which strongly affect RIS-aided wireless links and, as a consequence, MEC service performance. We formulate an optimization problem accounting for short and long-term constraints involving device transmit power allocation across multiple subcarriers and local computing resources, as well as RIS reconfiguration parameters according to a recently developed Lorentzian model. Besides a theoretical optimization framework, numerical results show the effectiveness of the proposed method in enabling low power reliable computation offloading over RIS-aided frequency selective channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09944v1-abstract-full').style.display = 'none'; document.getElementById('2312.09944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE GLOBECOM 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08833">arXiv:2312.08833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08833">pdf</a>, <a href="https://arxiv.org/format/2312.08833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Wideband THz Multi-User Downlink Communications with Leaky Wave Antennas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Gabay%2C+Y">Yaela Gabay</a>, <a href="/search/eess?searchtype=author&amp;query=Shlezinger%2C+N">Nir Shlezinger</a>, <a href="/search/eess?searchtype=author&amp;query=Routtenberg%2C+T">Tirza Routtenberg</a>, <a href="/search/eess?searchtype=author&amp;query=Ghasempour%2C+Y">Yasaman Ghasempour</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Eldar%2C+Y+C">Yonina C. Eldar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08833v2-abstract-short" style="display: inline;"> Future wireless systems are envisioned to utilize the large spectra available at THz bands for wireless communications. Extremely massive multiple-input multiple-output (MIMO) antennas can be costly and power inefficient for wideband THz communications. An alternative antenna technology, which can achieve low cost and power efficient THz signaling, is based on leaky wave antennas (LWAs). In this p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08833v2-abstract-full').style.display = 'inline'; document.getElementById('2312.08833v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08833v2-abstract-full" style="display: none;"> Future wireless systems are envisioned to utilize the large spectra available at THz bands for wireless communications. Extremely massive multiple-input multiple-output (MIMO) antennas can be costly and power inefficient for wideband THz communications. An alternative antenna technology, which can achieve low cost and power efficient THz signaling, is based on leaky wave antennas (LWAs). In this paper, we explore the usage of the LWAs for wideband downlink multi-user THz communications. We propose a model for LWA-aided communication systems that faithfully captures the antenna operations. We that LWAs yield frequency-dependent beams, where the equivalent wideband channel induces dependence between angle, frequency, and spectral lobe width. We identify the LWAs inherent frequency-selective beamsteering capabilities as motivating multi-band THz communications that deviate from conventional orthogonal frequency-division, and employ non-identical subbands. Then, we propose an alternating optimization algorithm for jointly optimizing the LWA configuration along with the spectral division and power allocation to maximize the achievable sum-rate. Our numerical results show that a single LWA can generate diverse beampatterns, exhibiting performance comparable to costly fully digital MIMO. Interestingly, we demonstrate that allowing transmission with non-identical subbands leverages the characteristics of LWA-based channels compared to uniform division, yielding improved beamsteering that translate to higher rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08833v2-abstract-full').style.display = 'none'; document.getElementById('2312.08833v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review in the IEEE</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08887">arXiv:2311.08887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08887">pdf</a>, <a href="https://arxiv.org/ps/2311.08887">ps</a>, <a href="https://arxiv.org/format/2311.08887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> RIS Position and Orientation Estimation via Multi-Carrier Transmissions and Multiple Receivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Ghazalian%2C+R">Reza Ghazalian</a>, <a href="/search/eess?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Seco-Granados%2C+G">Gonzalo Seco-Granados</a>, <a href="/search/eess?searchtype=author&amp;query=Wymeersch%2C+H">Henk Wymeersch</a>, <a href="/search/eess?searchtype=author&amp;query=J%C3%A4ntti%2C+R">Riku J盲ntti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08887v1-abstract-short" style="display: inline;"> Reconfigurable intelligent surfaces (RISs) are considered as an enabling technology for the upcoming sixth generation of wireless systems, exhibiting significant potential for radio localization and sensing. An RIS is usually treated as an anchor point with known position and orientation when deployed to offer user localization. However, it can also be attached to a user to enable its localization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08887v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08887v1-abstract-full" style="display: none;"> Reconfigurable intelligent surfaces (RISs) are considered as an enabling technology for the upcoming sixth generation of wireless systems, exhibiting significant potential for radio localization and sensing. An RIS is usually treated as an anchor point with known position and orientation when deployed to offer user localization. However, it can also be attached to a user to enable its localization in a semi-passive manner. In this paper, we consider a static user equipped with an RIS and study the RIS localization problem (i.e., joint three-dimensional position and orientation estimation), when operating in a system comprising a single-antenna transmitter and multiple synchronized single-antenna receivers with known locations. We present a multi-stage estimator using time-of-arrival and spatial frequency measurements, and derive the Cram茅r-Rao lower bounds for the estimated parameters to validate the estimator&#39;s performance. Our simulation results demonstrate the efficiency of the proposed RIS state estimation approach under various system operation parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08887v1-abstract-full').style.display = 'none'; document.getElementById('2311.08887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19767">arXiv:2310.19767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19767">pdf</a>, <a href="https://arxiv.org/format/2310.19767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Autoregressive Attention Neural Networks for Non-Line-of-Sight User Tracking with Dynamic Metasurface Antennas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&amp;query=Stylianopoulos%2C+K">Kyriakos Stylianopoulos</a>, <a href="/search/eess?searchtype=author&amp;query=Bayraktar%2C+M">Murat Bayraktar</a>, <a href="/search/eess?searchtype=author&amp;query=Prelcic%2C+N+G">Nuria Gonz谩lez Prelcic</a>, <a href="/search/eess?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19767v1-abstract-short" style="display: inline;"> User localization and tracking in the upcoming generation of wireless networks have the potential to be revolutionized by technologies such as the Dynamic Metasurface Antennas (DMAs). Commonly proposed algorithmic approaches rely on assumptions about relatively dominant Line-of-Sight (LoS) paths, or require pilot transmission sequences whose length is comparable to the number of DMA elements, thus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19767v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19767v1-abstract-full" style="display: none;"> User localization and tracking in the upcoming generation of wireless networks have the potential to be revolutionized by technologies such as the Dynamic Metasurface Antennas (DMAs). Commonly proposed algorithmic approaches rely on assumptions about relatively dominant Line-of-Sight (LoS) paths, or require pilot transmission sequences whose length is comparable to the number of DMA elements, thus, leading to limited effectiveness and considerable measurement overheads in blocked LoS and dynamic multipath environments. In this paper, we present a two-stage machine-learning-based approach for user tracking, specifically designed for non-LoS multipath settings. A newly proposed attention-based Neural Network (NN) is first trained to map noisy channel responses to potential user positions, regardless of user mobility patterns. This architecture constitutes a modification of the prominent vision transformer, specifically modified for extracting information from high-dimensional frequency response signals. As a second stage, the NN&#39;s predictions for the past user positions are passed through a learnable autoregressive model to exploit the time-correlated channel information and obtain the final position predictions. The channel estimation procedure leverages a DMA receive architecture with partially-connected radio frequency chains, which results to reduced numbers of pilots. The numerical evaluation over an outdoor ray-tracing scenario illustrates that despite LoS blockage, this methodology is capable of achieving high position accuracy across various multipath settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19767v1-abstract-full').style.display = 'none'; document.getElementById('2310.19767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, accepted for presentation by 2023 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2023)</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10