CINXE.COM

Search results for: hot arid

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hot arid</title> <meta name="description" content="Search results for: hot arid"> <meta name="keywords" content="hot arid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hot arid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hot arid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 376</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hot arid</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Study and Modeling of Flood Watershed in Arid and Semi Arid Regions of Algeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belagoune%20Fares">Belagoune Fares</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutoutaou%20Djamel"> Boutoutaou Djamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on floods in Algeria established by the National Agency of Water Resources (ANRH) shows that the country is confronted with the phenomenon of very destructive floods and floods especially in arid and semiarid regions. Flooding of rivers in these areas is less known. They are characterized by their sudden duration (rain showers, thunderstorm).The duration of the flood is of the order of minutes to hours. The human and material damage caused by these floods were still high. The study area encompasses three watersheds in semi-arid and arid south and Algeria. THERE are pools of Chott-Melghir (68,751 km2), highland Constantine-07 (9578 km2) and El Hodna-05 basin (25,843 km2). The total area of this zone is about 104,500km2.Studies of protection against floods and design studies of hydraulic structures (spillway, storm basin, etc.) require the raw data which is often unknown in several places particularly at ungauged wadis of these areas. This makes it very difficult to schedules and managers working in the field of hydraulic studies. The objective of this study and propose a methodology for determining flows in the absence of observations in the semi-arid and arid south eastern Algeria. The objective of the study is to propose a methodology for these areas of flood calculation for ungauged rivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20flow" title=" specific flow"> specific flow</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20variation" title=" coefficient of variation"> coefficient of variation</a>, <a href="https://publications.waset.org/abstracts/search?q=arid" title=" arid"> arid</a> </p> <a href="https://publications.waset.org/abstracts/21925/study-and-modeling-of-flood-watershed-in-arid-and-semi-arid-regions-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Effect of Compaction Energy on the Compaction of Soils with Low Water Content in the Semi-arid Region of Chlef</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obeida%20Aiche">Obeida Aiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khiatine"> Mohamed Khiatine</a>, <a href="https://publications.waset.org/abstracts/search?q=Medjnoun%20Amal"> Medjnoun Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdane%20Bahar">Ramdane Bahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil compaction is one of the most challenging tasks in the construction of road embankments, railway platforms, and earth dams. Stability and durability are mainly related to the nature of the materials used and the type of soil in place. However, nature does not always offer the engineer materials with the right water content, especially in arid and semi-arid regions where obtaining the optimum Proctor water content requires the addition of considerable quantities of water. The current environmental context does not allow for the rational use of water, especially in arid and semi-arid regions, where it is preferable to preserve water resources for the benefit of the local population. Low water compaction can be an interesting approach as it promotes the reuse of earthworks materials in their dry or very dry state. Thanks to techniques in the field of soil compaction, such as vibratory compactors, which have made it possible to increase the compaction energy considerably, it is possible for some materials to obtain a satisfactory quality by compacting at low water contents or at least lower than the optimum determined by the Proctor test. This communication deals with the low water content compaction of soils in the semi-arid zone of the Chlef region in Algeria by increasing the compaction energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compaction" title="compaction">compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20water%20content" title=" low water content"> low water content</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction%20energy" title=" compaction energy"> compaction energy</a> </p> <a href="https://publications.waset.org/abstracts/156755/effect-of-compaction-energy-on-the-compaction-of-soils-with-low-water-content-in-the-semi-arid-region-of-chlef" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Concerted Strategies for Sustainable Water Resource Management in Semi-Arid Rajasthan State of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Maanju">S. K. Maanju</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saha"> K. Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Yadav"> Sonam Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization growth and multi-faceted regional level industrialization is posing serious threat to natural groundwater resource in State of Rajasthan which constitute major semi-arid part of India. The groundwater resources of the State are limited and cannot withstand the present rate of exploitation for quite a long time. Recharging of groundwater particularly in the western part, where annual precipitation does not exceed a few centimeters, is extremely slow and cannot replenish the exploited quantum. Hence, groundwater in most of the parts of this region has become an exhausting resource. In major parts water table is lowering down rapidly and continuously. The human beings of this semi-arid region are used to suffering from extreme climatic conditions of arid to semi-arid nature and acute shortage of water. The quality of groundwater too in many areas of this region is not up to the standards prescribed by the health organizations like WHO and BIS. This semi-arid region is one of the highly fluoride contaminated area of India as well as have excess, nitrates, sulphates, chlorides and total dissolved solids at various locations. Therefore, concerted efforts are needed towards sustainable development of groundwater in this State of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajasthan" title="Rajasthan">Rajasthan</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=exploitation" title=" exploitation"> exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20and%20resource" title=" development and resource"> development and resource</a> </p> <a href="https://publications.waset.org/abstracts/40407/concerted-strategies-for-sustainable-water-resource-management-in-semi-arid-rajasthan-state-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Reviving Arid Lands: The Transformative Potential of Biochar in Arab Countries&#039; Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Azizeldein%20Abubaker%20Abdelhafez">Ahmed Azizeldein Abubaker Abdelhafez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review explores the application of biochar as a strategy for enhancing soil fertility in arid regions, with a focus on Arab countries. Biochar, derived from the carbonization of biomass under low-oxygen conditions, has shown promise in improving the physical and chemical properties of soil, such as increasing water retention and nutrient availability. Despite the challenging conditions of arid and semi-arid regions, characterized by poor soil fertility and severe land degradation, biochar application has emerged as a viable method to enhance agricultural productivity and mitigate environmental issues. This paper examines various aspects of biochar, including production methods, such as pyrolysis and gasification, and the effects of biochar on soil fertility. It discusses different application techniques and presents case studies from Arab countries like Egypt, the United Arab Emirates, Saudi Arabia, Qatar, Oman, and Kuwait, highlighting the successes and challenges faced in implementing biochar technology. The review also addresses the limitations of biochar use in arid regions and suggests future research directions to optimize its effectiveness. Overall, this study underscores the potential of biochar to contribute significantly to sustainable agriculture and ecological restoration in arid environments, advocating for integrated strategies that combine biochar application with other innovative agricultural practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20region" title=" arid region"> arid region</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20countries" title=" Arab countries"> Arab countries</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges%20and%20limitations" title=" challenges and limitations"> challenges and limitations</a> </p> <a href="https://publications.waset.org/abstracts/185926/reviving-arid-lands-the-transformative-potential-of-biochar-in-arab-countries-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Status, Habitat Use, and Behaviour of Wintering Greater Flamingos Phoenicopterus roseus in Semi-Arid and Saharan Wetlands of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Bensaci">E. Bensaci</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saheb"> M. Saheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Nouidjem"> Y. Nouidjem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zoubiri"> A. Zoubiri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouzegag"> A. Bouzegag</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Houhamdi"> M. Houhamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Greater flamingo is considered the flagship species of wetlands across semi-arid and Saharan regions of Africa, especially Chotts and Sebkhas, which also concentrate significant numbers of bird species. Flamingos have different status (wintering and breeder) which vary between sites in different parts of Algeria. We conducted surveys and recorded banded flamingos across distinct regions within two climatic belts: semi-arid (Hauts Plateaux) and arid (Sahara), showing the importance of these sites in the migratory flyways particularly the relation between West Mediterranean and West Africa populations. The distribution of Greater flamingos varied between sites and seasons, where the concentrations mainly were in the wide, lees deep and salt lakes. Many of the sites (17) in the surveyed area were regularly supporting at least 1% of the regional population during winter. The analysis of Greater flamingos behaviour in different climatic regions in relation showed that the feeding is the dominant diurnal activity with rates exceeding 60% of the time. While feeding varies between seasons, and showed a negative relationship with the degree of disturbance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=greater%20flamingo" title=" greater flamingo"> greater flamingo</a>, <a href="https://publications.waset.org/abstracts/search?q=Phoenicopterus%20roseus" title=" Phoenicopterus roseus"> Phoenicopterus roseus</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahara" title=" Sahara"> Sahara</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid" title=" semi-arid"> semi-arid</a> </p> <a href="https://publications.waset.org/abstracts/25752/status-habitat-use-and-behaviour-of-wintering-greater-flamingos-phoenicopterus-roseus-in-semi-arid-and-saharan-wetlands-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Sustainable Traditional Architecture and Urban Planning in Hot-Arid Climate of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Nazem">Farnaz Nazem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of sustainable architecture is to design buildings with the least adverse effects on the environment and provide better conditions for people. What building forms make the best use of land? This question was addressed in the late 1960s at the center of Land Use and Built Form Studies in Cambridge. This led to a number of influential papers which had a great influence on the practice of urban design. This paper concentrates on the results of sustainability caused by climatic conditions in Iranian traditional architecture in hot-arid regions. As people spent a significant amount of their time in houses, it was very important to have such houses to fulfill their needs physically and spiritually as well as satisfying their cultural and religious aspects of their lifestyles. In a vast country such as Iran with different climatic zones, traditional builders have presented series of logical solutions for human comfort. These solutions have been able to response to the environmental problems for a long period of time. As a result, by considering the experience in traditional architecture of hot–arid climate in Iran, it is possible to attain sustainable architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-arid%20climate" title="hot-arid climate">hot-arid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20traditional%20architecture" title=" sustainable traditional architecture"> sustainable traditional architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/33742/sustainable-traditional-architecture-and-urban-planning-in-hot-arid-climate-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Performance of Exclosure in Restoring Arid Degraded Steppes of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadi-Hanifi%20Halima">Kadi-Hanifi Halima</a>, <a href="https://publications.waset.org/abstracts/search?q=Amghar%20Fateh"> Amghar Fateh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steppes of arid Mediterranean zones are deeply threatened by desertification. To stop or alleviate ecological and economic problems associated with this desertification, management actions have been implemented since the last three decades. The struggle against desertification has become a national priority in many countries. In Algeria, several management techniques have been used to cope with desertification. This study aims at investigating the effect of exclosure on floristic diversity and chemical soil properties after four years of implementation. 167 phyto-ecological samples have been studied, 122 inside the exclosure and 45 outside. Results showed that plant diversity, composition, vegetation cover, pastoral value and soil fertility were significantly higher in protected areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desertification" title="desertification">desertification</a>, <a href="https://publications.waset.org/abstracts/search?q=arid" title=" arid"> arid</a>, <a href="https://publications.waset.org/abstracts/search?q=pastoral%20management" title=" pastoral management"> pastoral management</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20community%20soil%20fertility" title=" plant community soil fertility"> plant community soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=gestation%20of%20environment" title=" gestation of environment"> gestation of environment</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/10498/performance-of-exclosure-in-restoring-arid-degraded-steppes-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> The Use of a Geographical Information System in the Field of Irrigation (Moyen-Chéliff)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benhenni%20Abdellaziz">Benhenni Abdellaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irrigation is a limiting factor for agricultural production and socioeconomic development of many countries in the arid and semi-arid world. However, the sustainability of irrigation systems requires rational management of the water resource, which is becoming increasingly rare in these regions. The objective of this work is to apply a geographic information system (GIS) coupled with a model for calculating crop water requirements (CROPWATER) for the management of irrigation water in irrigated areas and offer managers an effective tool to better manage water resources in these areas. The application area of GIS is the irrigated perimeter of Western Middle Cheliff, which is located in a semi-arid region (Middle Cheliff). The scope in question is considerable agrarian dynamics and an increased need for irrigation of most crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=CROPWAT" title=" CROPWAT"> CROPWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20cheliff" title=" middle cheliff"> middle cheliff</a> </p> <a href="https://publications.waset.org/abstracts/168116/the-use-of-a-geographical-information-system-in-the-field-of-irrigation-moyen-cheliff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Wastewater Treatment by Floating Macrophytes (Salvinia natans) under Algerian Semi-Arid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laabassi%20Ayache">Laabassi Ayache</a>, <a href="https://publications.waset.org/abstracts/search?q=Boudehane%20Asma"> Boudehane Asma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macrophyte pond has developed strongly in the field of wastewater treatment for irrigation in rural areas and small communities. Their association allows, in some cases, to increase the hydraulic capacity while maintaining the highest level of quality. The present work is devoted to the treatment of domestic wastewater under climatic conditions of Algeria (semi-arid) through a system using two tanks planted with Salvinia natans. The performance study and treatment efficiency of the system overall shows that the latter provides a significant removal of nitrogen pollution: total Kjeldahl nitrogen NTK (85.2%), Ammonium NH₄⁺-N (79%), Nitrite NO₂⁻-N (40%) also, a major meaningful reduction of biochemical oxygen demand BOD₅ was observed at the output of the system (96.9 %). As BOD₅, the chemical oxygen demand (COD) removal was higher than 95% at the exit of the two tanks. A moderately low yield of phosphate-phosphorus (PO₄³-P) was achieved with values not exceeding 37%. In general, the quality of treated effluent meets the Algerian standard of discharge and which allows us to select a suitable species in constructed wetland treatment systems under semi-arid climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title="nutrient removal">nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvinia%20natans" title=" Salvinia natans"> Salvinia natans</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid%20climate" title=" semi-arid climate"> semi-arid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/99954/wastewater-treatment-by-floating-macrophytes-salvinia-natans-under-algerian-semi-arid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> The Study of the Socio-Economic and Environmental Impact on the Semi-Arid Environments Using GIS in the Eastern Aurès, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benmessaoud%20Hassen">Benmessaoud Hassen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose in this study to address the impact of socio-economic and environmental impact on the physical environment, especially their spatiotemporal dynamics in semi-arid and arid eastern Aurès. Including 11 municipalities, the study area spreads out over a relatively large surface area of about 60.000 ha. The hindsight is quite important and is determined by 03 days of analysis of environmental variation spread over thirty years (between 1987 and 2007). The multi-source data acquired in this context are integrated into a geographic information system (GIS).This allows, among other indices to calculate areas and classes for each thematic layer of the 4 layers previously defined by a method inspired MEDALUS (Mediterranean Desertification and Land Use).The database created is composed of four layers of information (population, livestock, farming and land use). His analysis in space and time has been supplemented by a validation of the ground truth. Once the database has corrected it used to develop the comprehensive map with the calculation of the index of socio-economic and environmental (ISCE). The map supports and the resulting information does not consist only of figures on the present situation but could be used to forecast future trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20socio-economic%20and%20environmental" title="impact of socio-economic and environmental">impact of socio-economic and environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal%20dynamics" title=" spatiotemporal dynamics"> spatiotemporal dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid%20environments" title=" semi-arid environments"> semi-arid environments</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Eastern%20Aur%C3%A8s" title=" Eastern Aurès"> Eastern Aurès</a> </p> <a href="https://publications.waset.org/abstracts/34965/the-study-of-the-socio-economic-and-environmental-impact-on-the-semi-arid-environments-using-gis-in-the-eastern-aures-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfikar%20Dinar%20Wahidayat%20Putra">Zulfikar Dinar Wahidayat Putra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20area" title="arid area">arid area</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20system" title=" sustainable water system"> sustainable water system</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20harvest%20approach" title=" urban harvest approach"> urban harvest approach</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficiency" title=" self-sufficiency"> self-sufficiency</a> </p> <a href="https://publications.waset.org/abstracts/60849/water-self-sufficient-creating-a-sustainable-water-system-based-on-urban-harvest-approach-in-la-serena-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xia%20Fang">Xia Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AEM" title="AEM">AEM</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=LUCC" title=" LUCC"> LUCC</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20stocks" title=" carbon stocks"> carbon stocks</a> </p> <a href="https://publications.waset.org/abstracts/169074/the-impact-of-climate-change-and-land-useland-cover-change-lucc-on-carbon-storage-in-arid-and-semi-arid-regions-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Effect of Organic Fertilizers on the Improvement of Soil Microbiological Functioning under Saline Conditions of Arid Regions: Impact on Carbon and Nitrogen Mineralization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oustani%20Mabrouka">Oustani Mabrouka</a>, <a href="https://publications.waset.org/abstracts/search?q=Halilat%20Md%20Tahar"> Halilat Md Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Slimane"> Hannachi Slimane </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted on representative and contrasting soils of arid regions. It focuses on the compared influence of two organic fertilizers: poultry manure (PM) and bovine manure (BM) on improving the microbial functioning of non-saline (SS) and saline (SSS) soils, in particularly, the process of mineralization of nitrogen and carbon. The microbiological activity was estimated by respirometric test (CO2–C emissions) and the extraction of two forms of mineral nitrogen (NH4+-N and NO3--N). Thus, after 56 days of incubation under controlled conditions (28 degrees and 80 per cent of the field capacity), the two types of manures showed that the mineralization activity varies according to type of soil and the organic substrate itself. However, the highest cumulative quantities of CO2–C, NH4+–N and NO3-–N obtained at the end of incubation were recorded in non-saline (SS) soil treated with poultry manure with 1173.4, 4.26 and 8.40 mg/100 g of dry soil, respectively. The reductions in rates of release of CO2–C and of nitrification under saline conditions were 21 and 36, 78 %, respectively. The influence of organic substratum on the microbial density shows a stimulating effect on all microbial groups studied. The whole results show the usefulness of two types of manures for the improvement of the microbiological functioning of arid soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salinity" title="Salinity">Salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=Organic%20matter" title=" Organic matter"> Organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Microorganisms" title=" Microorganisms"> Microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=Mineralization" title=" Mineralization"> Mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitrogen" title=" Nitrogen"> Nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Carbon" title=" Carbon"> Carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Arid%20regions" title=" Arid regions"> Arid regions</a> </p> <a href="https://publications.waset.org/abstracts/21670/effect-of-organic-fertilizers-on-the-improvement-of-soil-microbiological-functioning-under-saline-conditions-of-arid-regions-impact-on-carbon-and-nitrogen-mineralization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Ecological Evaluation and Conservation Strategies of Economically Important Plants in Indian Arid Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sher%20Mohammed">Sher Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Purushottam%20Lal"> Purushottam Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20K.%20Kasera"> Pawan K. Kasera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Thar Desert of Rajasthan covers a wide geographical area spreading between 23.3° to 30.12°, North latitude and 69.3◦ to 76◦ Eastern latitudes; having a unique spectrum of arid zone vegetation. This desert is spreading over 12 districts having a rich source of economically important/threatened plant diversity interacting and growing with adverse climatic conditions of the area. Due to variable geological, physiographic, climatic, edaphic and biotic factors, the arid zone medicinal flora exhibit a wide collection of angiosperm families. The herbal diversity of this arid region is medicinally important in household remedies among tribal communities as well as in traditional systems. The on-going increasing disturbances in natural ecosystems are due to climatic and biological, including anthropogenic factors. The unique flora and subsequently dependent faunal diversity of the desert ecosystem is losing its biotic potential. A large number of plants have no future unless immediate steps are taken to arrest the causes, leading to their biological improvement. At present the potential loss in ecological amplitude of various genera and species is making several plant species as red listed plants of arid zone vegetation such as Commmiphora wightii, Tribulus rajasthanensis, Calligonum polygonoides, Ephedra foliata, Leptadenia reticulata, Tecomella undulata, Blepharis sindica, Peganum harmala, Sarcostoma vinimale, etc. Mostly arid zone species are under serious pressure against prevailing ecosystem factors to continuation their life cycles. Genetic, molecular, cytological, biochemical, metabolic, reproductive, germination etc. are the several points where the floral diversity of the arid zone area is facing severe ecological influences. So, there is an urgent need to conserve them. There are several opportunities in the field to carry out remarkable work at particular levels to protect the native plants in their natural habitat instead of only their in vitro multiplication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecology" title="ecology">ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=xerophytes" title=" xerophytes"> xerophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=economically" title=" economically"> economically</a>, <a href="https://publications.waset.org/abstracts/search?q=threatened%20plants" title=" threatened plants"> threatened plants</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/5537/ecological-evaluation-and-conservation-strategies-of-economically-important-plants-in-indian-arid-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Some Aspects of Water Resources Management in Arid and Semi-Arid Regions, Case Study of Western Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hamzeh%20Haghiabi">Amir Hamzeh Haghiabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water resource management is of global significance as it plays a key role in the socioeconomic development of all nations. On account of the fact that Iran is situated in a highly pressurized belt in the world, precipitation is limited, so that the average annual precipitation in the country is about 250 mm, only about one third to one quarter of the world average for rainfall. Karkheh basin is located in the semiarid and arid regions of Western Iran, an area with severe water scarcity. 70 % of rainfall is directly evaporated. The potential annual evaporation of the southern and northern regions is 3,600 mm 1,800 mm, respectively. In this paper, Some aspects of water resources management for this region, the specifications of the Karkheh reservoir dam & hydroelectric power plant as the biggest dam in history of Iran with total volume of reservoir 7.3 Bm3 are illustrated. Also the situation of water availability in the basin, surface and groundwater potential are considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iran" title="Iran">Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20availability" title=" water availability"> water availability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Zagros" title=" Zagros "> Zagros </a> </p> <a href="https://publications.waset.org/abstracts/26156/some-aspects-of-water-resources-management-in-arid-and-semi-arid-regions-case-study-of-western-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">651</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> The Flavonoids for a Plant Grows in the Arid and Semi-Arid Zone of the Northern Sahara of Algeria - Atriplex halimus L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Smara">O. Smara</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Dendougui"> H. Dendougui</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Legseir"> B. Legseir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atriplex halimus L. is particularly well adapted to arid and salt-affected areas. In this species, salinity resistance is often attributed to the presence of vesiculated hairs covering leaf surface and containing a large amount of salt. Atriplex halimus L. (Chenopodiaceae) is a perennial shrub native to the Mediterranean basin with excellent tolerance to drought and salinity. The species is present in semiarid to subhumid areas of the north Mediterranean and in arid zones from North Africa and the eastern Mediterranean. The main aim of this study was to identify a medicinal plant used in the Ouargla (Est-southern Algeria) for the treatment of several human pathologies. This plant is an important source for livestock in nitrogenous matter, it is an effective and relatively inexpensive tool in the fight against erosion and desertification and rehabilitation of degraded lands. Phytochemical investigation is applied to the majority of extracts of the powder of the aerial parts of Atriplex halimus L. Different chromatographic methods after liquid-liquid extraction are used; it is the thin layer chromatography (TLC) and paper using multiple systems and chemical revelations. This study followed by an evaluation by the phenol assay the Folin-Ciocalteu method, using gallic acid as a reference for phenols and quercetin for flavonols. Some polar extracts showed an interesting result better than the less polar extracts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atriples%20halimus%20L." title="Atriples halimus L.">Atriples halimus L.</a>, <a href="https://publications.waset.org/abstracts/search?q=chenopodiaceae" title=" chenopodiaceae"> chenopodiaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a> </p> <a href="https://publications.waset.org/abstracts/41466/the-flavonoids-for-a-plant-grows-in-the-arid-and-semi-arid-zone-of-the-northern-sahara-of-algeria-atriplex-halimus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Felimban">A. Felimban</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Prieto"> A. Prieto</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Knaack"> U. Knaack</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Klein"> T. Klein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20retrofitting" title=" energy retrofitting"> energy retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20arid" title=" hot arid"> hot arid</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/121504/energy-retrofitting-application-research-to-achieve-energy-efficiency-in-hot-arid-climates-in-residential-buildings-a-case-study-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Allag">F. Allag</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouharati"> S. Bouharati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belmahdi"> M. Belmahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zegadi"> R. Zegadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desert%20soil" title="desert soil">desert soil</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20changes" title=" climatic changes"> climatic changes</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a> </p> <a href="https://publications.waset.org/abstracts/9658/phytopathology-prediction-in-dry-soil-using-artificial-neural-networks-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gobena%20D.%20Bayisa">Gobena D. Bayisa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekonen"> A. Mekonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Megersa%20O.%20Dinka"> Megersa O. Dinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilahun%20H.%20Nebi"> Tilahun H. Nebi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Boja"> M. Boja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop-water%20response%20factor" title="crop-water response factor">crop-water response factor</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20production" title=" wheat production"> wheat production</a> </p> <a href="https://publications.waset.org/abstracts/174913/response-of-wheat-triticum-aestivum-l-to-deficit-irrigation-management-in-the-semi-arid-awash-basin-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Determination of Suction of Arid Region Soil Using Filter Paper Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavita%20S.%20Dave">Bhavita S. Dave</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandresh%20H.%20Solanki"> Chandresh H. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai"> Atul K. Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soils of Greater Himalayas mostly pertain to Leh & Ladakh, Lahaul & Sppiti, & high reaches to Uttarakhand. The moisture regime is aridic. The arid zone starts from Baralacha pass in Lahaul and covers the entire Spiti valley in the district of Lahaul & Spiti, Himachal Pradesh of India. Here, the present study is an attempt to determine the suction value of soil collected from the arid zone of Spiti valley for different freezing-thawing cycles considering the climate ranges of Spiti valley. Suction is the basic and most important parameter which influences the behavior of unsaturated soil. It is essential to determine the suction value of unsaturated soil before other tests like shear test, and permeability. Basically, it is the negative pore water pressure in partially saturated soil measured in terms of the height of the water column. The filter paper method has been used for the study as an economical approach to evaluate suction. It is the only method from which both contact and non-contact suction can be deduced. In this study, soil specimens were subjected to 0, 1, 3, & 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and soil freezing characteristic curves (SFCC) were formulated for all F-T cycles. The result data collected from the experiments have shown best-fitted values using Fredlund & Xing model for each SFCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suction" title="suction">suction</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20region%20soil" title=" arid region soil"> arid region soil</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20freezing%20characteristic%20curve" title=" soil freezing characteristic curve"> soil freezing characteristic curve</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing-thawing%20cycle" title=" freezing-thawing cycle"> freezing-thawing cycle</a> </p> <a href="https://publications.waset.org/abstracts/141081/determination-of-suction-of-arid-region-soil-using-filter-paper-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Impact of Climate Change on Water Resources in Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Qadem">Abdelghani Qadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouhair%20Qadem"> Zouhair Qadem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morocco" title="morocco">morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a> </p> <a href="https://publications.waset.org/abstracts/157877/impact-of-climate-change-on-water-resources-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Identifying the Factors that Influence Water-Use Efficiency in Agriculture: Case Study in a Spanish Semi-Arid Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Piedra-Mu%C3%B1oz">Laura Piedra-Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ngeles%20Godoy-Dur%C3%A1n"> Ángeles Godoy-Durán</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Galdeano-G%C3%B3mez"> Emilio Galdeano-Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20P%C3%A9rez-Mesa"> Juan C. Pérez-Mesa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current agricultural system in some arid and semi-arid areas is not sustainable in the long term. In southeast Spain, groundwater is the main water source and is overexploited, while alternatives like desalination are still limited. The Water Plan for the Mediterranean Basins 2015-2020 indicates a global deficit of 73.42 hm3 and an overexploitation of the aquifers of 205.58hm3. In order to solve this serious problem, two major actions can be taken: increasing available water, and/or improving the efficiency of its use. This study focuses on the latter. The main aim of this study is to present the major factors related to water usage efficiency in farming. It focuses on Almería province, southeast Spain, one of the most arid areas of the country, and in particular on family farms as the main direct managers of water use in this zone. Many of these farms are among the most water efficient in Spanish agriculture, but this efficiency is not generalized throughout the sector. This work conducts a comprehensive assessment of water performance in this area, using on-farm water-use, structural, socio-economic and environmental information. Two statistical techniques are used: descriptive analysis and cluster analysis. Thus, two groups are identified: the least and the most efficient farms regarding water usage. By analyzing both the common characteristics within each group and the differences between the groups with a one-way ANOVA analysis, several conclusions can be reached. The main differences between the two clusters center on the extent to which innovation and new technologies are used in irrigation. The most water efficient farms are characterized by more educated farmers, a greater degree of innovation, new irrigation technology, specialized production and awareness of water issues and environmental sustainability. The research shows that better practices and policies can have a substantial impact on achieving a more sustainable and efficient use of water. The findings of this study can be extended to farms in similar arid and semi-arid areas and contribute to foster appropriate policies to improve the efficiency of water usage in the agricultural sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title="cluster analysis">cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=family%20farms" title=" family farms"> family farms</a>, <a href="https://publications.waset.org/abstracts/search?q=Spain" title=" Spain"> Spain</a>, <a href="https://publications.waset.org/abstracts/search?q=water-use%20efficiency" title=" water-use efficiency"> water-use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/67222/identifying-the-factors-that-influence-water-use-efficiency-in-agriculture-case-study-in-a-spanish-semi-arid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Modeling and Performance Analysis of an Air-Cooled Absorption Chiller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Roukbi">A. Roukbi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Draoui"> B. Draoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the high cost and the environmental problems caused by the conventional air-conditioning systems, various researches are being increasingly focused on thermal comfort in the building sector integrating renewable energy sources, particularly solar energy. For that purpose, this study aims to present a modeling and performance analysis of a direct air-cooled Water/LiBr absorption chiller. The chiller is considered to be coupled to a small residential building at an arid zone situated in south Algeria. The system is modeled with TRNSYS simulation program. The main objective is to study the feasibility of the chosen system in arid zones and to apply a simplified method to predict the performance of the system by mean of the characteristic equation approach tacking in account the influence of the climatic conditions of the considered site, the collector area and storage volume of the hot water tank on the performance of the installation. First, the results of the system modeling are compared with an experimental data from the open literature and the developed model is then validated. In another hand, a parametric study is performed to analyze the performance of the direct air-cooled absorption chiller at the operating conditions of interest for the present study. Thus, the obtained results has shown that the studied system can present a good alternative for cooling systems in arid zones since the cooling load is roughly in phase with solar availability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chiller" title="absorption chiller">absorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=air-cooled" title=" air-cooled"> air-cooled</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20zone" title=" arid zone"> arid zone</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/39302/modeling-and-performance-analysis-of-an-air-cooled-absorption-chiller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalil%20Badamfirooz">Jalil Badamfirooz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mulch" title="mulch">mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsion" title=" bitumen emulsion"> bitumen emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20land" title=" arid land"> arid land</a>, <a href="https://publications.waset.org/abstracts/search?q=PAH" title=" PAH"> PAH</a> </p> <a href="https://publications.waset.org/abstracts/161298/assessment-the-influence-of-bitumen-emulsion-pahs-content-in-arid-land" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Determination of the Quantity of Water Absorbed by the Plant When Irrigating by Infiltration in Arid Regions (Case of Ouargla in Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Benlarbi">Mehdi Benlarbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Oulhaci"> Dalila Oulhaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several physical, human and economic factors come into play in the choice of an irrigation system for developing arid and semi-arid regions. Since it is impossible to define or weight quantitatively all the relevant factors in each case, the choice of the system is often based on subjective preferences rather than explicit analysis. Over the past decade, irrational irrigation in the Ouargla region has evolved to a certain extent based largely on water wastage and which may pose risks to the environment both off-site and at the site. In the whole region, the environment is damaged by excess water because the water tables that tend to be high form swamps that pollute nature on the surface. The purpose of our work is a comparison between sprinkler irrigation and drip irrigation using bottles. By irrigating with the aid of the bottle and giving a volume of 4 liters with a flow rate of one (1) liter per hour, the watering dose received varies between 6 and 7 mm without infiltration losses. And for the case of sprinkler irrigation, the dose received may not exceed 2.5mm. E in some cases, we have a quantity of water lost by infiltration. This shows that irrigation using the bottle is much more efficient than sprinkling. Because, on the one hand, a large amount of water is absorbed by the plant and on the other hand, there is no loss by infiltration. The results obtained are very significant because, on the one hand, we reuse local products, and on the other hand, as the bottles are buried, we avoid water losses by evaporation, especially in dry periods and salinization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resources" title="resources">resources</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=arid" title=" arid"> arid</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a> </p> <a href="https://publications.waset.org/abstracts/169669/determination-of-the-quantity-of-water-absorbed-by-the-plant-when-irrigating-by-infiltration-in-arid-regions-case-of-ouargla-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Monitoring Soil Organic Amendments Under Arid Climate: Evolution of Soil Quality and of Two Consecutive Barley Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houda%20Oueriemmi">Houda Oueriemmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Susan%20Kidd"> Petra Susan Kidd</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Trasar-Cepeda"> Carmen Trasar-Cepeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Rodr%C3%ADguez-Garrido"> Beatriz Rodríguez-Garrido</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moussa"> Mohamed Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ngeles%20Prieto-Fern%C3%A1ndez"> Ángeles Prieto-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ouessar"> Mohamed Ouessar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic amendments are generally used for improving the fertility of arid and semi-arid soils. However, the price of farmyard manure, the organic amendment typically applied to many arid and semi-arid soils has highly increased in the last years. To investigate at field scale whether cheap, highly available organic amendments, such as sewage sludge compost and municipal solid waste compost, may be acceptable as substitutes for farmyard manure is therefore of great interest. A field plots experiment was carried out to assess the effects of a single application of three organic amendments on soil fertility, distribution of trace elements and on barley yield. Municipal solid waste compost (MSWC), farmyard manure (FYM) and sewage sludge compost (SSC) were applied at rates of 0, 20, 40 and 60 t ha⁻¹, and barley was cultivated in two consecutive years. Plant samples and soils were collected for laboratory analyses after two consecutive harvests. Compared with unamended soil, the application of the three organic residues improved the fertility of the topsoil, showing a significant dose-dependent increase of TOC, N, P contents up to the highest dose of 60 t ha⁻¹ (0.74%, 0.06% and 40 mg kg⁻¹, respectively). The enhancement of soil nutrient status impacted positively on grain yield (up to 51%). The distribution of trace elements in the soil, analysed by a sequential extraction procedure, revealed that the MSWC increased the acid-extractable Co and Cu and reducible Ni, while SSC increased reducible Co and Ni and oxidisable Cu, relative to the control soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20compost" title="municipal solid waste compost">municipal solid waste compost</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge%20compost" title=" sewage sludge compost"> sewage sludge compost</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility" title=" fertility"> fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a> </p> <a href="https://publications.waset.org/abstracts/159940/monitoring-soil-organic-amendments-under-arid-climate-evolution-of-soil-quality-and-of-two-consecutive-barley-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Modeling of Erosion and Sedimentation Impacts from off-Road Vehicles in Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abigail%20Rosenberg">Abigail Rosenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Duan"> Jennifer Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Poteuck"> Michael Poteuck</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunshui%20Yu"> Chunshui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Barry M. Goldwater Range, West in southwestern Arizona encompasses 2,808 square kilometers of Sonoran Desert. The hyper-arid range has an annual rainfall of less than 10 cm with an average high temperature of 41 degrees Celsius in July to an average low of 4 degrees Celsius in January. The range shares approximately 60 kilometers of the international border with Mexico. A majority of the range is open for recreational use, primarily off-highway vehicles. Because of its proximity to Mexico, the range is also heavily patrolled by U.S. Customs and Border Protection seeking to intercept and apprehend inadmissible people and illicit goods. Decades of off-roading and Border Patrol activities have negatively impacted this sensitive desert ecosystem. To assist the range program managers, this study is developing a model to identify erosion prone areas and calibrate the model’s parameters using the Automated Geospatial Watershed Assessment modeling tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20lands" title="arid lands">arid lands</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment" title=" automated geospatial watershed assessment"> automated geospatial watershed assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20modeling" title=" erosion modeling"> erosion modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation%20modeling" title=" sedimentation modeling"> sedimentation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20modeling" title=" watershed modeling"> watershed modeling</a> </p> <a href="https://publications.waset.org/abstracts/59846/modeling-of-erosion-and-sedimentation-impacts-from-off-road-vehicles-in-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Stipagrostis ciliata (Desf.) De Winter: A Promising Pastoral Species for Ecological Restoration in North African Arid Bioclimate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lobna%20Mnif%20Fakhfakh">Lobna Mnif Fakhfakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Chaieb"> Mohamed Chaieb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most ecological studies in North Africa reveal a process of continuous degradation of pastoral ecosystems as a result of overgrazing. This degradation appears across the depletion of perennial grass species. Indeed, the majority of steppic ecosystems are characterized by a low density of perennial grasses. This phenomenon reveals a drop in food value of rangelands, which is now estimated at less than 100 UF.ha -1. -1 Year in all North African steppes. However, for ecological restoration initiatives, some species such the genus of Stipagrostis and Stipa can be considered a good candidates species for effective pastoral improvement under arid bioclimate. The present work concerns Stipagrostis ciliata (Desf.) De Winter, perennial grasses, abundant in ecosystems characterized by the high content of gypsum (CaSO4)2H2O in the southern Tunisia. This tufted species with C4 biochemical photosynthesis type is able to grow and develop under high temperature and low annual rainfall, where the minimum water potential (ψmd), can reach -4 MPa during the summer season with a phenological growth maintained throughout the season unfavorable. At this point in the early autumn rains, S. ciliata begins its growth, especially with a heading which occurs 2-3 weeks after the first autumn rains. From the foregoing, it can be concluded that Stipagrostis ciliata is an excellent promising pastoral species for the ecological restoration, and enhancement of ecosystems biological productivity in arid bioclimate of North Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stipagrostis%20ciliata" title="Stipagrostis ciliata">Stipagrostis ciliata</a>, <a href="https://publications.waset.org/abstracts/search?q=pastoral%20species" title=" pastoral species"> pastoral species</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20restoration" title=" ecological restoration"> ecological restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20bioclimate" title=" arid bioclimate"> arid bioclimate</a> </p> <a href="https://publications.waset.org/abstracts/20443/stipagrostis-ciliata-desf-de-winter-a-promising-pastoral-species-for-ecological-restoration-in-north-african-arid-bioclimate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20Saleem">Yasmeen Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20%20Berliner"> Pedro Berliner</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurit%20Agam"> Nurit Agam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20mulch" title="synthetic mulch">synthetic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a> </p> <a href="https://publications.waset.org/abstracts/113759/experimental-testing-of-a-synthetic-mulch-to-reduce-runoff-and-evaporative-water-losses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Recovery of Local Materials in Pavements in Areas with an Arid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hocini%20Yousra">Hocini Yousra</a>, <a href="https://publications.waset.org/abstracts/search?q=Medjnoun%20Amal"> Medjnoun Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Khiatine%20Mohamed"> Khiatine Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Ramdane"> Bahar Ramdane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of the regions of southern Algeria require the construction of numerous road, rail, and airport infrastructures. However, this development is very expensive given the very severe climatic conditions, the difficulty of reusing local materials, and the unavailability of water on the project sites; these regions are characterized by an arid or semi-arid climate, which means that water sources are very limited. The climatic conditions and the scarcity of water make soil compaction work very difficult and excessively expensive. These constraints related to the supply of water for irrigation of these construction sites make it necessary to examine the solution of compaction with low water content. This work studies the possibility of improving the compaction with a low water content of the soils of southern Algeria and this by using natural or recycled ecological materials. Local soils are first subjected to a series of laboratory characterization tests, then mixed with varying amounts of natural additives. The new materials are, in turn, subjected to road tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compaction" title="compaction">compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20water%20content" title=" low water content"> low water content</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20materials" title=" natural materials"> natural materials</a> </p> <a href="https://publications.waset.org/abstracts/156774/recovery-of-local-materials-in-pavements-in-areas-with-an-arid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20arid&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10