CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 89 results for author: <span class="mathjax">Kinoshita, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kinoshita, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kinoshita%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kinoshita, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17002">arXiv:2502.17002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.17002">pdf</a>, <a href="https://arxiv.org/format/2502.17002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Neutron multiplicity measurement in muon capture on oxygen nuclei in the Gd-loaded Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+T+S">The Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Harada%2C+M">M. Harada</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a> , et al. (265 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17002v1-abstract-short" style="display: inline;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17002v1-abstract-full" style="display: none;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with the muon capture events followed by gamma rays to be $50.2^{+2.0}_{-2.1}\%$. By fitting the observed multiplicity considering the detection efficiency, we measure neutron multiplicity in muon capture as $P(0)=24\pm3\%$, $P(1)=70^{+3}_{-2}\%$, $P(2)=6.1\pm0.5\%$, $P(3)=0.38\pm0.09\%$. This is the first measurement of the multiplicity of neutrons associated with muon capture without neutron energy threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'none'; document.getElementById('2502.17002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19633">arXiv:2409.19633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19633">pdf</a>, <a href="https://arxiv.org/format/2409.19633">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for proton decay via $p\rightarrow{e^+畏}$ and $p\rightarrow{渭^+畏}$ with a 0.37 Mton-year exposure of Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Taniuchi%2C+N">N. Taniuchi</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Harada%2C+M">M. Harada</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a> , et al. (267 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19633v1-abstract-short" style="display: inline;"> A search for proton decay into $e^+/渭^+$ and a $畏$ meson has been performed using data from a 0.373 Mton$\cdot$year exposure (6050.3 live days) of Super-Kamiokande. Compared to previous searches this work introduces an improved model of the intranuclear $畏$ interaction cross section, resulting in a factor of two reduction in uncertainties from this source and $\sim$10\% increase in signal efficien&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19633v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19633v1-abstract-full" style="display: none;"> A search for proton decay into $e^+/渭^+$ and a $畏$ meson has been performed using data from a 0.373 Mton$\cdot$year exposure (6050.3 live days) of Super-Kamiokande. Compared to previous searches this work introduces an improved model of the intranuclear $畏$ interaction cross section, resulting in a factor of two reduction in uncertainties from this source and $\sim$10\% increase in signal efficiency. No significant data excess was found above the expected number of atmospheric neutrino background events resulting in no indication of proton decay into either mode. Lower limits on the proton partial lifetime of $1.4\times\mathrm{10^{34}~years}$ for $p\rightarrow e^+畏$ and $7.3\times\mathrm{10^{33}~years}$ for $p\rightarrow 渭^+畏$ at the 90$\%$ C.L. were set. These limits are around 1.5 times longer than our previous study and are the most stringent to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19633v1-abstract-full').style.display = 'none'; document.getElementById('2409.19633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06552">arXiv:2408.06552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06552">pdf</a>, <a href="https://arxiv.org/format/2408.06552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> HaptoFloater: Visuo-Haptic Augmented Reality by Embedding Imperceptible Color Vibration Signals for Tactile Display Control in a Mid-Air Image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nagano%2C+R">Rina Nagano</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takahiro Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Hattori%2C+S">Shingo Hattori</a>, <a href="/search/?searchtype=author&amp;query=Hiroi%2C+Y">Yuichi Hiroi</a>, <a href="/search/?searchtype=author&amp;query=Itoh%2C+Y">Yuta Itoh</a>, <a href="/search/?searchtype=author&amp;query=Hiraki%2C+T">Takefumi Hiraki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06552v1-abstract-short" style="display: inline;"> We propose HaptoFloater, a low-latency mid-air visuo-haptic augmented reality (VHAR) system that utilizes imperceptible color vibrations. When adding tactile stimuli to the visual information of a mid-air image, the user should not perceive the latency between the tactile and visual information. However, conventional tactile presentation methods for mid-air images, based on camera-detected fingert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06552v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06552v1-abstract-full" style="display: none;"> We propose HaptoFloater, a low-latency mid-air visuo-haptic augmented reality (VHAR) system that utilizes imperceptible color vibrations. When adding tactile stimuli to the visual information of a mid-air image, the user should not perceive the latency between the tactile and visual information. However, conventional tactile presentation methods for mid-air images, based on camera-detected fingertip positioning, introduce latency due to image processing and communication. To mitigate this latency, we use a color vibration technique; humans cannot perceive the vibration when the display alternates between two different color stimuli at a frequency of 25 Hz or higher. In our system, we embed this imperceptible color vibration into the mid-air image formed by a micromirror array plate, and a photodiode on the fingertip device directly detects this color vibration to provide tactile stimulation. Thus, our system allows for the tactile perception of multiple patterns on a mid-air image in 59.5 ms. In addition, we evaluate the visual-haptic delay tolerance on a mid-air display using our VHAR system and a tactile actuator with a single pattern and faster response time. The results of our user study indicate a visual-haptic delay tolerance of 110.6 ms, which is considerably larger than the latency associated with systems using multiple tactile patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06552v1-abstract-full').style.display = 'none'; document.getElementById('2408.06552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> H.5.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16458">arXiv:2406.16458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16458">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Distance-based Chatterjee correlation: a new generalized robust measure of directed association for multivariate real and complex-valued data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R+D">Roberto D. Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">Kieko Kochi</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toshihiko Kinoshita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16458v2-abstract-short" style="display: inline;"> Building upon the Chatterjee correlation (2021: J. Am. Stat. Assoc. 116, p2009) for two real-valued variables, this study introduces a generalized measure of directed association between two vector variables, real or complex-valued, and of possibly different dimensions. The new measure is denoted as the &#34;distance-based Chatterjee correlation&#34;, owing to the use here of the &#34;distance transformed dat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16458v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16458v2-abstract-full" style="display: none;"> Building upon the Chatterjee correlation (2021: J. Am. Stat. Assoc. 116, p2009) for two real-valued variables, this study introduces a generalized measure of directed association between two vector variables, real or complex-valued, and of possibly different dimensions. The new measure is denoted as the &#34;distance-based Chatterjee correlation&#34;, owing to the use here of the &#34;distance transformed data&#34; defined in Szekely et al (2007: Ann. Statist. 35, p2769) for the distance correlation. A main property of the new measure, inherited from the original Chatterjee correlation, is its predictive and asymmetric nature: it measures how well one variable can be predicted by the other, asymmetrically. This allows for inferring the causal direction of the association, by using the method of Blobaum et al (2019: PeerJ Comput. Sci. 1, e169). Since the original Chatterjee correlation is based on ranks, it is not available for complex variables, nor for general multivariate data. The novelty of our work is the extension to multivariate real and complex-valued pairs of vectors, offering a robust measure of directed association in a completely non-parametric setting. Informally, the intuitive assumption used here is that distance correlation is mathematically equivalent to Pearson&#39;s correlation when applied to &#34;distance transformed&#34; data. The next logical step is to compute Chatterjee&#39;s correlation on the same &#34;distance transformed&#34; data, thereby extending the analysis to multivariate vectors of real and complex valued data. As a bonus, the new measure here is robust to outliers, which is not true for the distance correlation of Szekely et al. Additionally, this approach allows for inference regarding the causal direction of the association between the variables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16458v2-abstract-full').style.display = 'none'; document.getElementById('2406.16458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">program code (pascal language) and executables at https://osf.io/ty6sc/ ; version2: updated header with DOI link to paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08725">arXiv:2404.08725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08725">pdf</a>, <a href="https://arxiv.org/format/2404.08725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptae128">10.1093/ptep/ptae128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a data overflow protection system for Super-Kamiokande to maximize data from nearby supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mori%2C+M">M. Mori</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a>, <a href="/search/?searchtype=author&amp;query=Shimizu%2C+K">K. Shimizu</a> , et al. (230 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08725v2-abstract-short" style="display: inline;"> Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10\,s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that is critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08725v2-abstract-full').style.display = 'inline'; document.getElementById('2404.08725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08725v2-abstract-full" style="display: none;"> Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10\,s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that is critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new DAQ modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit PMTs during a supernova burst and the second, the Veto module, prescales the high rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead time less than 1\,ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800~pc will trigger Veto module resulting in a prescaling of the observed neutrino data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08725v2-abstract-full').style.display = 'none'; document.getElementById('2404.08725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 18 figures. Submitted to PTEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08619">arXiv:2403.08619</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08619">pdf</a>, <a href="https://arxiv.org/format/2403.08619">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.082008">10.1103/PhysRevD.110.082008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of the charge ratio and polarization of cosmic-ray muons with the Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kitagawa%2C+H">H. Kitagawa</a>, <a href="/search/?searchtype=author&amp;query=Tada%2C+T">T. Tada</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a> , et al. (231 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08619v2-abstract-short" style="display: inline;"> We present the results of the charge ratio ($R$) and polarization ($P^渭_{0}$) measurements using the decay electron events collected from 2008 September to 2022 June by the Super-Kamiokande detector. Because of its underground location and long operation, we performed high precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be $R=1.32 \pm 0.02$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08619v2-abstract-full').style.display = 'inline'; document.getElementById('2403.08619v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08619v2-abstract-full" style="display: none;"> We present the results of the charge ratio ($R$) and polarization ($P^渭_{0}$) measurements using the decay electron events collected from 2008 September to 2022 June by the Super-Kamiokande detector. Because of its underground location and long operation, we performed high precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be $R=1.32 \pm 0.02$ $(\mathrm{stat.}{+}\mathrm{syst.})$ at $E_渭\cos 胃_{\mathrm{Zenith}}=0.7^{+0.3}_{-0.2}$ $\mathrm{TeV}$, where $E_渭$ is the muon energy and $胃_{\mathrm{Zenith}}$ is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while this suggests a tension with the $蟺K$ model of $1.9蟽$. We also measured the muon polarization at the production location to be $P^渭_{0}=0.52 \pm 0.02$ $(\mathrm{stat.}{+}\mathrm{syst.})$ at the muon momentum of $0.9^{+0.6}_{-0.1}$ $\mathrm{TeV}/c$ at the surface of the mountain; this also suggests a tension with the Honda flux model of $1.5蟽$. This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near $1~\mathrm{TeV}/c$. These measurement results are useful to improve the atmospheric neutrino simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08619v2-abstract-full').style.display = 'none'; document.getElementById('2403.08619v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 45 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 082008 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12907">arXiv:2312.12907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12907">pdf</a>, <a href="https://arxiv.org/ps/2312.12907">ps</a>, <a href="https://arxiv.org/format/2312.12907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.092001">10.1103/PhysRevD.109.092001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solar neutrino measurements using the full data period of Super-Kamiokande-IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/?searchtype=author&amp;query=Iyogi%2C+K">K. Iyogi</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Kato%2C+Y">Y. Kato</a>, <a href="/search/?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Mochizuki%2C+T">T. Mochizuki</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a> , et al. (305 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12907v2-abstract-short" style="display: inline;"> An analysis of solar neutrino data from the fourth phase of Super-Kamiokande~(SK-IV) from October 2008 to May 2018 is performed and the results are presented. The observation time of the data set of SK-IV corresponds to $2970$~days and the total live time for all four phases is $5805$~days. For more precise solar neutrino measurements, several improvements are applied in this analysis: lowering th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12907v2-abstract-full').style.display = 'inline'; document.getElementById('2312.12907v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12907v2-abstract-full" style="display: none;"> An analysis of solar neutrino data from the fourth phase of Super-Kamiokande~(SK-IV) from October 2008 to May 2018 is performed and the results are presented. The observation time of the data set of SK-IV corresponds to $2970$~days and the total live time for all four phases is $5805$~days. For more precise solar neutrino measurements, several improvements are applied in this analysis: lowering the data acquisition threshold in May 2015, further reduction of the spallation background using neutron clustering events, precise energy reconstruction considering the time variation of the PMT gain. The observed number of solar neutrino events in $3.49$--$19.49$ MeV electron kinetic energy region during SK-IV is $65,443^{+390}_{-388}\,(\mathrm{stat.})\pm 925\,(\mathrm{syst.})$ events. Corresponding $\mathrm{^{8}B}$ solar neutrino flux is $(2.314 \pm 0.014\, \rm{(stat.)} \pm 0.040 \, \rm{(syst.)}) \times 10^{6}~\mathrm{cm^{-2}\,s^{-1}}$, assuming a pure electron-neutrino flavor component without neutrino oscillations. The flux combined with all SK phases up to SK-IV is $(2.336 \pm 0.011\, \rm{(stat.)} \pm 0.043 \, \rm{(syst.)}) \times 10^{6}~\mathrm{cm^{-2}\,s^{-1}}$. Based on the neutrino oscillation analysis from all solar experiments, including the SK $5805$~days data set, the best-fit neutrino oscillation parameters are $\rm{sin^{2} 胃_{12,\,solar}} = 0.306 \pm 0.013 $ and $螖m^{2}_{21,\,\mathrm{solar}} = (6.10^{+ 0.95}_{-0.81}) \times 10^{-5}~\rm{eV}^{2}$, with a deviation of about 1.5$蟽$ from the $螖m^{2}_{21}$ parameter obtained by KamLAND. The best-fit neutrino oscillation parameters obtained from all solar experiments and KamLAND are $\sin^{2} 胃_{12,\,\mathrm{global}} = 0.307 \pm 0.012 $ and $螖m^{2}_{21,\,\mathrm{global}} = (7.50^{+ 0.19}_{-0.18}) \times 10^{-5}~\rm{eV}^{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12907v2-abstract-full').style.display = 'none'; document.getElementById('2312.12907v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 61 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 092001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14356">arXiv:2311.14356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14356">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Lagged coherence: explicit and testable definition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R+D">Roberto D. Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">Kieko Kochi</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toshihiko Kinoshita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14356v4-abstract-short" style="display: inline;"> Measures of association between cortical regions based on activity signals provide useful information for studying brain functional connectivity. Difficulties occur with signals of electric neuronal activity, where an observed signal is a mixture, i.e. an instantaneous weighted average of the true, unobserved signals from all regions, due to volume conduction and low spatial resolution. This is wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14356v4-abstract-full').style.display = 'inline'; document.getElementById('2311.14356v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14356v4-abstract-full" style="display: none;"> Measures of association between cortical regions based on activity signals provide useful information for studying brain functional connectivity. Difficulties occur with signals of electric neuronal activity, where an observed signal is a mixture, i.e. an instantaneous weighted average of the true, unobserved signals from all regions, due to volume conduction and low spatial resolution. This is why measures of lagged association are of interest, since at least theoretically, &#34;lagged association&#34; is of physiological origin. In contrast, the actual physiological instantaneous zero-lag association is masked and confounded by the mixing artifact. A minimum requirement for a measure of lagged association is that it must not tend to zero with an increase of strength of true instantaneous physiological association. Such biased measures cannot tell apart if a change in its value is due to a change in lagged or a change in instantaneous association. An explicit testable definition for frequency domain lagged connectivity between two multivariate time series is proposed. It is endowed with two important properties: it is invariant to non-singular linear transformations of each vector time series separately, and it is invariant to instantaneous association. As a first sanity check: in the case of two univariate time series, the new definition leads back to the bivariate lagged coherence of 2007 (eqs 25 and 26 in https://doi.org/10.48550/arXiv.0706.1776). As a second stronger sanity check: in the case of a univariate and multivariate vector time series, the new measure presented here leads back to the original multivariate lagged coherence of 2007 (eq 31 in https://doi.org/10.48550/arXiv.0711.1455), which again trivially includes the bivariate case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14356v4-abstract-full').style.display = 'none'; document.getElementById('2311.14356v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">- (2023-11-24): First original version #1. - (2023-11-27): Second version #2: Added subsection &#34;8. Lagged association of a univariate time series with a multivariate vector time series&#34;. - (2024-01-07): Third version #3: Current version. Eq. 44 now correct without &#34;logarithm&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15713">arXiv:2308.15713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15713">pdf</a>, <a href="https://arxiv.org/format/2308.15713">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Absolute value measurement of ion-scale turbulence by two-dimensional phase contrast imaging in Large Helical Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Tanaka%2C+K">K. Tanaka</a>, <a href="/search/?searchtype=author&amp;query=Sakai%2C+H">H. Sakai</a>, <a href="/search/?searchtype=author&amp;query=Yanai%2C+R">R. Yanai</a>, <a href="/search/?searchtype=author&amp;query=Nunami%2C+M">M. Nunami</a>, <a href="/search/?searchtype=author&amp;query=Michael%2C+C+A">C. A. Michael</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15713v2-abstract-short" style="display: inline;"> Absolute value measurements of turbulence amplitude in magnetically confined high-temperature plasmas can effectively explain turbulence-driven transport characteristics and their role in plasma confinements. Two-dimensional phase contrast imaging (2D-PCI) is a technique to evaluate the space-time spectrum of ion-scale electron density fluctuation. However, absolute value measurement of turbulence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15713v2-abstract-full').style.display = 'inline'; document.getElementById('2308.15713v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15713v2-abstract-full" style="display: none;"> Absolute value measurements of turbulence amplitude in magnetically confined high-temperature plasmas can effectively explain turbulence-driven transport characteristics and their role in plasma confinements. Two-dimensional phase contrast imaging (2D-PCI) is a technique to evaluate the space-time spectrum of ion-scale electron density fluctuation. However, absolute value measurement of turbulence amplitude has not been conducted owing to the nonlinearity of the detector. In this study, the absolute measurement method proposed in the previous study is applied to turbulence measurement results in the large helical device. As a result, the localized turbulence amplitude at $n_e=1.5\times 10^{19}$m$^{-3}$ is approximately $3.5\times 10^{15}$m$^{-3}$, which is 0.02\% of the electron density. In addition, the evaluated poloidal wavenumber spectrum is almost consistent, within a certain error range, the spectrum being calculated using a nonlinear gyrokinetic simulation. This result is the first to the best of our knowledge to quantitatively evaluate turbulence amplitudes measured by 2D-PCI and compare with simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15713v2-abstract-full').style.display = 'none'; document.getElementById('2308.15713v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05135">arXiv:2305.05135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05135">pdf</a>, <a href="https://arxiv.org/format/2305.05135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acdc9e">10.3847/2041-8213/acdc9e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Harada%2C+M">M. Harada</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a> , et al. (216 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05135v2-abstract-short" style="display: inline;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05135v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05135v2-abstract-full" style="display: none;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a $22.5\times552$ $\rm kton\cdot day$ exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water ($22.5 \times 2970 \rm kton\cdot day$) owing to the enhanced neutron tagging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'none'; document.getElementById('2305.05135v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13571">arXiv:2212.13571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.13571">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Cortical Xi-Alpha model for resting state electric neuronal activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R+D">Roberto D. Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">Kieko Kochi</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toshihiko Kinoshita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13571v2-abstract-short" style="display: inline;"> Power spectra of awake resting state EEG recordings in humans typically have an Alpha peak at around 10 Hz riding a decreasing background &#34;Xi process&#34;. Normal and pathological variations may have more than one peak or none. The single channel Xi-Alpha model (Pascual-Marqui et al 1988, https://doi.org/10.3109/00207458808985730) separated these two processes, providing a low-dimensional parametric d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13571v2-abstract-full').style.display = 'inline'; document.getElementById('2212.13571v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13571v2-abstract-full" style="display: none;"> Power spectra of awake resting state EEG recordings in humans typically have an Alpha peak at around 10 Hz riding a decreasing background &#34;Xi process&#34;. Normal and pathological variations may have more than one peak or none. The single channel Xi-Alpha model (Pascual-Marqui et al 1988, https://doi.org/10.3109/00207458808985730) separated these two processes, providing a low-dimensional parametric description of EEG spectra. Currently lacking is a generative whole cortex model for activity spectra and intracortical functional connectivity. Here we introduce the &#34;cortical Xi-Alpha model&#34;. The cross-spectral density matrices are modeled as additive components, each one consisting of a scalar spectrum that multiplies a frequency invariant Hermitian covariance matrix. This simple &#34;separation of variables&#34; form offers a very rich repertoire of spatio-spectral properties, as well as diverse whole cortex functional connectivity patterns. The scalp EEG model conserves the same form, allowing simple estimation from scalp to cortex. Two independent open-access, resting state eyes open and closed EEG data sets (203 participants with 61 electrodes, and 47 participants with 26 electrodes) were used to demonstrate, test, and validate the model. Results summary: - The average dimension of cross-spectra lies between 1.7 and 2.6, indicating two processes. - Non-negative matrix factorization of population power spectra sampled at 6239 cortical voxels with only two components (identified as Xi and Alpha) explains 99% of the variance. - The median value of explained variance was 95% for the &#34;cortical Xi-Alpha model&#34; across all datasets and conditions. - Alpha process generators more occipital, Xi more frontal. - Xi cortical lagged connectivities are isotropic with interdistance. - Laminar recordings suggest layers 2/3 pyramidal neurons generate Xi; layers 5/6 pyramidal neurons generate Alpha. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13571v2-abstract-full').style.display = 'none'; document.getElementById('2212.13571v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10801">arXiv:2212.10801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.10801">pdf</a>, <a href="https://arxiv.org/format/2212.10801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the cosmogenic neutron yield in Super-Kamiokande with gadolinium loaded water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Shinoki%2C+M">M. Shinoki</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a> , et al. (217 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10801v3-abstract-short" style="display: inline;"> Cosmic-ray muons that enter the Super-Kamiokande detector cause hadronic showers due to spallation in water, producing neutrons and radioactive isotopes. Those are a major background source for studies of MeV-scale neutrinos and searches for rare events. Since 2020, gadolinium was introduced in the ultra-pure water in the Super-Kamiokande detector to improve the detection efficiency of neutrons. I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10801v3-abstract-full').style.display = 'inline'; document.getElementById('2212.10801v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10801v3-abstract-full" style="display: none;"> Cosmic-ray muons that enter the Super-Kamiokande detector cause hadronic showers due to spallation in water, producing neutrons and radioactive isotopes. Those are a major background source for studies of MeV-scale neutrinos and searches for rare events. Since 2020, gadolinium was introduced in the ultra-pure water in the Super-Kamiokande detector to improve the detection efficiency of neutrons. In this study, the cosmogenic neutron yield was measured using data acquired during the period after the gadolinium loading. The yield was found to be $(2.76 \pm 0.02\,\mathrm{(stat.) \pm 0.19\,\mathrm{(syst.)}}) \times 10^{-4}\,渭^{-1} \mathrm{g^{-1} cm^{2}}$ at 259 GeV of average muon energy at the Super-Kamiokande detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10801v3-abstract-full').style.display = 'none'; document.getElementById('2212.10801v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12948">arXiv:2210.12948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12948">pdf</a>, <a href="https://arxiv.org/format/2210.12948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Searching for neutrinos from solar flares across solar cycles 23 and 24 with the Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+Y">Y. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shimizu%2C+K">K. Shimizu</a>, <a href="/search/?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a> , et al. (220 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12948v2-abstract-short" style="display: inline;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12948v2-abstract-full" style="display: none;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we searched for neutrino interactions within narrow time windows coincident with $纬$-rays and soft X-rays recorded by satellites. In addition, we performed the first attempt to search for solar-flare neutrinos from solar flares on the invisible side of the Sun by using the emission time of coronal mass ejections (CMEs). By selecting twenty powerful solar flares above X5.0 on the visible side and eight CMEs whose emission speed exceeds $2000$ $\mathrm{km \, s^{-1}}$ on the invisible side from 1996 to 2018, we found two (six) neutrino events coincident with solar flares occurring on the visible (invisible) side of the Sun, with a typical background rate of $0.10$ ($0.62$) events per flare in the MeV-GeV energy range. No significant solar-flare neutrino signal above the estimated background rate was observed. As a result we set the following upper limit on neutrino fluence at the Earth $\mathit桅&lt;1.1\times10^{6}$ $\mathrm{cm^{-2}}$ at the $90\%$ confidence level for the largest solar flare. The resulting fluence limits allow us to constrain some of the theoretical models for solar-flare neutrino emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'none'; document.getElementById('2210.12948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures, 9 tables (Figure 12 was replaced because it was incorrect in version 1.)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14968">arXiv:2209.14968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14968">pdf</a>, <a href="https://arxiv.org/format/2209.14968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.031802">10.1103/PhysRevLett.130.031802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Cosmic-ray Boosted Sub-GeV Dark Matter using Recoil Protons at Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+T+S">The Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a>, <a href="/search/?searchtype=author&amp;query=Shimizu%2C+K">K. Shimizu</a> , et al. (197 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14968v4-abstract-short" style="display: inline;"> We report a search for cosmic-ray boosted dark matter with protons using the 0.37 megaton$\times$years data collected at Super-Kamiokande experiment during the 1996-2018 period (SKI-IV phase). We searched for an excess of proton recoils above the atmospheric neutrino background from the vicinity of the Galactic Center. No such excess is observed, and limits are calculated for two reference models&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14968v4-abstract-full').style.display = 'inline'; document.getElementById('2209.14968v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14968v4-abstract-full" style="display: none;"> We report a search for cosmic-ray boosted dark matter with protons using the 0.37 megaton$\times$years data collected at Super-Kamiokande experiment during the 1996-2018 period (SKI-IV phase). We searched for an excess of proton recoils above the atmospheric neutrino background from the vicinity of the Galactic Center. No such excess is observed, and limits are calculated for two reference models of dark matter with either a constant interaction cross-section or through a scalar mediator. This is the first experimental search for boosted dark matter with hadrons using directional information. The results present the most stringent limits on cosmic-ray boosted dark matter and exclude the dark matter-nucleon elastic scattering cross-section between $10^{-33}\text{ cm}^{2}$ and $10^{-27}\text{ cm}^{2}$ for dark matter mass from 10 MeV/$c^2$ to 1 GeV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14968v4-abstract-full').style.display = 'none'; document.getElementById('2209.14968v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">With 1-page appendix. A bug was found in July 2023. This version is updated to match the erratum</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130 (2023) 031802 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13188">arXiv:2208.13188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13188">pdf</a>, <a href="https://arxiv.org/format/2208.13188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for proton decay via $p\rightarrow 渭^+K^0$ in 0.37 megaton-years exposure of Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Matsumoto%2C+R">R. Matsumoto</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a> , et al. (208 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13188v1-abstract-short" style="display: inline;"> We searched for proton decay via $p\to渭^+K^0$ in 0.37\,Mton$\cdot$years of data collected between 1996 and 2018 from the Super-Kamiokande water Cherenkov experiment. The selection criteria were defined separately for $K^0_S$ and $K^0_L$ channels. No significant event excess has been observed. As a result of this analysis, which extends the previous search by an additional 0.2\,Mton$\cdot$years of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13188v1-abstract-full').style.display = 'inline'; document.getElementById('2208.13188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13188v1-abstract-full" style="display: none;"> We searched for proton decay via $p\to渭^+K^0$ in 0.37\,Mton$\cdot$years of data collected between 1996 and 2018 from the Super-Kamiokande water Cherenkov experiment. The selection criteria were defined separately for $K^0_S$ and $K^0_L$ channels. No significant event excess has been observed. As a result of this analysis, which extends the previous search by an additional 0.2\,Mton$\cdot$years of exposure and uses an improved event reconstruction, we set a lower limit of $3.6\times10^{33}$ years on the proton lifetime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13188v1-abstract-full').style.display = 'none'; document.getElementById('2208.13188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02540">arXiv:2208.02540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.02540">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> On the relation between EEG microstates and cross-spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R+D">Roberto D. Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">Kieko Kochi</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toshihiko Kinoshita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02540v2-abstract-short" style="display: inline;"> Brain function as measured by multichannel EEG recordings can be described to a high level of accuracy by microstates, characterized as a sequence of time intervals within which the sign invariant normalized scalp electric potential field remains quasi-stable, concatenated by fast transitions. Filtering the EEG has a small effect on the spatial microstate scalp maps, but a large effect on the dyna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02540v2-abstract-full').style.display = 'inline'; document.getElementById('2208.02540v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02540v2-abstract-full" style="display: none;"> Brain function as measured by multichannel EEG recordings can be described to a high level of accuracy by microstates, characterized as a sequence of time intervals within which the sign invariant normalized scalp electric potential field remains quasi-stable, concatenated by fast transitions. Filtering the EEG has a small effect on the spatial microstate scalp maps, but a large effect on the dynamics (e.g. duration, frequency of occurrence, and transition rates). In addition, spectral power has been found to be strongly correlated with microstate dynamics. And yet, the nature of the relation between spectra and microstates remains poorly understood. Here we show that the multivariate EEG cross-spectrum contains sufficient generative information for estimating the microstate scalp maps and their dynamics, demonstrating an underlying fundamental link between the microstate model and the multivariate cross-spectrum. Empirically, based on EEG recordings from 203 participants in eyes-closed resting state, their cross-spectral matrices were computed, from which stochastic EEG was generated. No significant differences were found for the microstate model (maps and dynamics) estimated from the actual EEG and from the stochastic EEG based solely on the cross-spectra. In addition, with the aim of quantifying the spatio-cross-spectral properties of the microstate model, we introduce here the topographic likelihood spectrum, based on the Watson distribution, which provides a frequency-by-frequency account of the contribution of a normalized microstate map to the normalized EEG cross-spectrum, independent of power. The topographic likelihood spectra are distinct for the different microstate maps. In a comparison between eyes-closed and eyes open conditions, they are shown to be significantly different in frequency specific patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02540v2-abstract-full').style.display = 'none'; document.getElementById('2208.02540v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version 2 fixes some spelling mistakes, and fixes table order. adds in header info on citing this preprint</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.01380">arXiv:2206.01380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.01380">pdf</a>, <a href="https://arxiv.org/format/2206.01380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8f41">10.3847/1538-4357/ac8f41 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for supernova bursts in Super-Kamiokande IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=collaboration%2C+T+S">The Super-Kamiokande collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Mori%2C+M">M. Mori</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a> , et al. (223 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.01380v1-abstract-short" style="display: inline;"> Super-Kamiokande has been searching for neutrino bursts characteristic of core-collapse supernovae continuously, in real time, since the start of operations in 1996. The present work focuses on detecting more distant supernovae whose event rate may be too small to trigger in real time, but may be identified using an offline approach. The analysis of data collected from 2008 to 2018 found no eviden&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01380v1-abstract-full').style.display = 'inline'; document.getElementById('2206.01380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.01380v1-abstract-full" style="display: none;"> Super-Kamiokande has been searching for neutrino bursts characteristic of core-collapse supernovae continuously, in real time, since the start of operations in 1996. The present work focuses on detecting more distant supernovae whose event rate may be too small to trigger in real time, but may be identified using an offline approach. The analysis of data collected from 2008 to 2018 found no evidence of distant supernovae bursts. This establishes an upper limit of 0.29 year$^{-1}$ on the rate of core-collapse supernovae out to 100 kpc at 90% C.L.. For supernovae that fail to explode and collapse directly to black holes the limit reaches to 300 kpc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01380v1-abstract-full').style.display = 'none'; document.getElementById('2206.01380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09881">arXiv:2205.09881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09881">pdf</a>, <a href="https://arxiv.org/format/2205.09881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7f9c">10.3847/1538-4357/ac7f9c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pre-Supernova Alert System for Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Machado%2C+L+N">L. N. Machado</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09881v2-abstract-short" style="display: inline;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'inline'; document.getElementById('2205.09881v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09881v2-abstract-full" style="display: none;"> In 2020, the Super-Kamiokande (SK) experiment moved to a new stage (SK-Gd) in which gadolinium (Gd) sulfate octahydrate was added to the water in the detector, enhancing the efficiency to detect thermal neutrons and consequently improving the sensitivity to low energy electron anti-neutrinos from inverse beta decay (IBD) interactions. SK-Gd has the potential to provide early alerts of incipient core-collapse supernovae through detection of electron anti-neutrinos from thermal and nuclear processes responsible for the cooling of massive stars before the gravitational collapse of their cores. These pre-supernova neutrinos emitted during the silicon burning phase can exceed the energy threshold for IBD reactions. We present the sensitivity of SK-Gd to pre-supernova stars and the techniques used for the development of a pre-supernova alarm based on the detection of these neutrinos in SK, as well as prospects for future SK-Gd phases with higher concentrations of Gd. For the current SK-Gd phase, high-confidence alerts for Betelgeuse could be issued up to nine hours in advance of the core-collapse itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09881v2-abstract-full').style.display = 'none'; document.getElementById('2205.09881v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 935, Number 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10756">arXiv:2204.10756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10756">pdf</a>, <a href="https://arxiv.org/format/2204.10756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ACCESS.2023.3331747">10.1109/ACCESS.2023.3331747 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reference Vector Adaptation and Mating Selection Strategy via Adaptive Resonance Theory-based Clustering for Many-objective Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takato Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Masuyama%2C+N">Naoki Masuyama</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yiping Liu</a>, <a href="/search/?searchtype=author&amp;query=Nojima%2C+Y">Yusuke Nojima</a>, <a href="/search/?searchtype=author&amp;query=Ishibuchi%2C+H">Hisao Ishibuchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10756v2-abstract-short" style="display: inline;"> Decomposition-based multiobjective evolutionary algorithms (MOEAs) with clustering-based reference vector adaptation show good optimization performance for many-objective optimization problems (MaOPs). Especially, algorithms that employ a clustering algorithm with a topological structure (i.e., a network composed of nodes and edges) show superior optimization performance to other MOEAs for MaOPs w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10756v2-abstract-full').style.display = 'inline'; document.getElementById('2204.10756v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10756v2-abstract-full" style="display: none;"> Decomposition-based multiobjective evolutionary algorithms (MOEAs) with clustering-based reference vector adaptation show good optimization performance for many-objective optimization problems (MaOPs). Especially, algorithms that employ a clustering algorithm with a topological structure (i.e., a network composed of nodes and edges) show superior optimization performance to other MOEAs for MaOPs with irregular Pareto optimal fronts (PFs). These algorithms, however, do not effectively utilize information of the topological structure in the search process. Moreover, the clustering algorithms typically used in conventional studies have limited clustering performance, inhibiting the ability to extract useful information for the search process. This paper proposes an adaptive reference vector-guided evolutionary algorithm using an adaptive resonance theory-based clustering with a topological structure. The proposed algorithm utilizes the information of the topological structure not only for reference vector adaptation but also for mating selection. The proposed algorithm is compared with 8 state-of-the-art MOEAs on 78 test problems. Experimental results reveal the outstanding optimization performance of the proposed algorithm over the others on MaOPs with various properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10756v2-abstract-full').style.display = 'none'; document.getElementById('2204.10756v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is currently under review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Access, vol. 11, pp. 126066-126086, November 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11772">arXiv:2203.11772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.11772">pdf</a>, <a href="https://arxiv.org/format/2203.11772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Testing Non-Standard Interactions Between Solar Neutrinos and Quarks with Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Weatherly%2C+P">P. Weatherly</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Iyogi%2C+K">K. Iyogi</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Kato%2C+Y">Y. Kato</a>, <a href="/search/?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Mochizuki%2C+T">T. Mochizuki</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Orii%2C+A">A. Orii</a>, <a href="/search/?searchtype=author&amp;query=Pronost%2C+G">G. Pronost</a> , et al. (248 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11772v1-abstract-short" style="display: inline;"> Non-Standard Interactions (NSI) between neutrinos and matter affect the neutrino flavor oscillations. Due to the high matter density in the core of the Sun, solar neutrinos are suited to probe these interactions. Using the $277$ kton-yr exposure of Super-Kamiokande to $^{8}$B solar neutrinos, we search for the presence of NSI. Our data favors the presence of NSI with down quarks at 1.8$蟽$, and wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11772v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11772v1-abstract-full" style="display: none;"> Non-Standard Interactions (NSI) between neutrinos and matter affect the neutrino flavor oscillations. Due to the high matter density in the core of the Sun, solar neutrinos are suited to probe these interactions. Using the $277$ kton-yr exposure of Super-Kamiokande to $^{8}$B solar neutrinos, we search for the presence of NSI. Our data favors the presence of NSI with down quarks at 1.8$蟽$, and with up quarks at 1.6$蟽$, with the best fit NSI parameters being ($蔚_{11}^{d},蔚_{12}^{d}$) = (-3.3, -3.1) for $d$-quarks and ($蔚_{11}^{u},蔚_{12}^{u}$) = (-2.5, -3.1) for $u$-quarks. After combining with data from the Sudbury Neutrino Observatory and Borexino, the significance increases by 0.1$蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11772v1-abstract-full').style.display = 'none'; document.getElementById('2203.11772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author: Pierce Weatherly 25 pages. To be submitted to Physical Review D</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07345">arXiv:2202.07345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.07345">pdf</a>, <a href="https://arxiv.org/format/2202.07345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2022.102758">10.1016/j.astropartphys.2022.102758 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KamLAND&#39;s search for correlated low-energy electron antineutrinos with astrophysical neutrinos from IceCube </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asami%2C+S">S. Asami</a>, <a href="/search/?searchtype=author&amp;query=Eizuka%2C+M">M. Eizuka</a>, <a href="/search/?searchtype=author&amp;query=Futagi%2C+S">S. Futagi</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+A">A. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+Y">Y. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gima%2C+T">T. Gima</a>, <a href="/search/?searchtype=author&amp;query=Goto%2C+A">A. Goto</a>, <a href="/search/?searchtype=author&amp;query=Hachiya%2C+T">T. Hachiya</a>, <a href="/search/?searchtype=author&amp;query=Hata%2C+K">K. Hata</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ichimura%2C+K">K. Ichimura</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+S">S. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+K">K. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Ishidoshiro%2C+K">K. Ishidoshiro</a>, <a href="/search/?searchtype=author&amp;query=Kamei%2C+Y">Y. Kamei</a>, <a href="/search/?searchtype=author&amp;query=Kawada%2C+N">N. Kawada</a>, <a href="/search/?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Koga%2C+M">M. Koga</a>, <a href="/search/?searchtype=author&amp;query=Kurasawa%2C+M">M. Kurasawa</a>, <a href="/search/?searchtype=author&amp;query=Maemura%2C+N">N. Maemura</a>, <a href="/search/?searchtype=author&amp;query=Mitsui%2C+T">T. Mitsui</a>, <a href="/search/?searchtype=author&amp;query=Miyake%2C+H">H. Miyake</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07345v2-abstract-short" style="display: inline;"> We report the results of a search for MeV-scale astrophysical neutrinos in KamLAND presented as an excess in the number of coincident neutrino interactions associated with the publicly available high-energy neutrino datasets from the IceCube Neutrino Observatory. We find no statistically significant excess in the number of observed low-energy electron antineutrinos in KamLAND, given a coincidence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07345v2-abstract-full').style.display = 'inline'; document.getElementById('2202.07345v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07345v2-abstract-full" style="display: none;"> We report the results of a search for MeV-scale astrophysical neutrinos in KamLAND presented as an excess in the number of coincident neutrino interactions associated with the publicly available high-energy neutrino datasets from the IceCube Neutrino Observatory. We find no statistically significant excess in the number of observed low-energy electron antineutrinos in KamLAND, given a coincidence time window of $\pm$500s, $\pm$1,000s, $\pm$3,600s, and $\pm$10,000s around each of the IceCube neutrinos. We use this observation to present limits from 1.8 MeV to 100 MeV on the electron antineutrino fluence, assuming a mono-energetic flux. We then compare the results to several astrophysical measurements performed by IceCube and place a limit at the 90% confidence level on the electron antineutrino isotropic thermal luminosity from the TXS 0506+056 blazar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07345v2-abstract-full').style.display = 'none'; document.getElementById('2202.07345v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04918">arXiv:2112.04918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04918">pdf</a>, <a href="https://arxiv.org/format/2112.04918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac4e7e">10.3847/1538-4357/ac4e7e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for correlated low-energy electron antineutrinos in KamLAND with gamma-ray bursts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asami%2C+S">S. Asami</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+A">A. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+Y">Y. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gima%2C+T">T. Gima</a>, <a href="/search/?searchtype=author&amp;query=Goto%2C+A">A. Goto</a>, <a href="/search/?searchtype=author&amp;query=Hachiya%2C+T">T. Hachiya</a>, <a href="/search/?searchtype=author&amp;query=Hata%2C+K">K. Hata</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ichimura%2C+K">K. Ichimura</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+S">S. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+K">K. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Ishidoshiro%2C+K">K. Ishidoshiro</a>, <a href="/search/?searchtype=author&amp;query=Kamei%2C+Y">Y. Kamei</a>, <a href="/search/?searchtype=author&amp;query=Kawada%2C+N">N. Kawada</a>, <a href="/search/?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Koga%2C+M">M. Koga</a>, <a href="/search/?searchtype=author&amp;query=Maemura%2C+N">N. Maemura</a>, <a href="/search/?searchtype=author&amp;query=Mitsui%2C+T">T. Mitsui</a>, <a href="/search/?searchtype=author&amp;query=Miyake%2C+H">H. Miyake</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+R">R. Nakamura</a> , et al. (43 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04918v2-abstract-short" style="display: inline;"> We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of $\pm$500s plus the duration of each gamma-ray burst, no statistically significant excess above background is observed. We place the world&#39;s m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04918v2-abstract-full').style.display = 'inline'; document.getElementById('2112.04918v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04918v2-abstract-full" style="display: none;"> We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of $\pm$500s plus the duration of each gamma-ray burst, no statistically significant excess above background is observed. We place the world&#39;s most stringent 90% confidence level upper limit on the electron antineutrino fluence below 17.5 MeV. Assuming a Fermi-Dirac neutrino energy spectrum from the gamma-ray burst source, we use the available redshift data to constrain the electron antineutrino luminosity and effective temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04918v2-abstract-full').style.display = 'none'; document.getElementById('2112.04918v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00092">arXiv:2112.00092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00092">pdf</a>, <a href="https://arxiv.org/format/2112.00092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> New Methods and Simulations for Cosmogenic Induced Spallation Removal in Super-Kamiokande-IV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Locke%2C+S">S. Locke</a>, <a href="/search/?searchtype=author&amp;query=Coffani%2C+A">A. Coffani</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/?searchtype=author&amp;query=Ito%2C+H">H. Ito</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakajima%2C+Y">Y. Nakajima</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Orii%2C+A">A. Orii</a>, <a href="/search/?searchtype=author&amp;query=Pronost%2C+G">G. Pronost</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/?searchtype=author&amp;query=Sonoda%2C+Y">Y. Sonoda</a> , et al. (196 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00092v1-abstract-short" style="display: inline;"> Radioactivity induced by cosmic muon spallation is a dominant source of backgrounds for $\mathcal{O}(10)~$MeV neutrino interactions in water Cherenkov detectors. In particular, it is crucial to reduce backgrounds to measure the solar neutrino spectrum and find neutrino interactions from distant supernovae. In this paper we introduce new techniques to locate muon-induced hadronic showers and effici&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00092v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00092v1-abstract-full" style="display: none;"> Radioactivity induced by cosmic muon spallation is a dominant source of backgrounds for $\mathcal{O}(10)~$MeV neutrino interactions in water Cherenkov detectors. In particular, it is crucial to reduce backgrounds to measure the solar neutrino spectrum and find neutrino interactions from distant supernovae. In this paper we introduce new techniques to locate muon-induced hadronic showers and efficiently reject spallation backgrounds. Applying these techniques to the solar neutrino analysis with an exposure of $2790\times22.5$~kton.day increases the signal efficiency by $12.6\%$, approximately corresponding to an additional year of detector running. Furthermore, we present the first spallation simulation at SK, where we model hadronic interactions using FLUKA. The agreement between the isotope yields and shower pattern in this simulation and in the data gives confidence in the accuracy of this simulation, and thus opens the door to use it to optimize muon spallation removal in new data with gadolinium-enhanced neutron capture detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00092v1-abstract-full').style.display = 'none'; document.getElementById('2112.00092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11174">arXiv:2109.11174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11174">pdf</a>, <a href="https://arxiv.org/format/2109.11174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.122002">10.1103/PhysRevD.104.122002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diffuse Supernova Neutrino Background Search at Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+S">Super-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Orii%2C+A">A. Orii</a>, <a href="/search/?searchtype=author&amp;query=Pronost%2C+G">G. Pronost</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/?searchtype=author&amp;query=Sonoda%2C+Y">Y. Sonoda</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+Y">Y. Suzuki</a> , et al. (197 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11174v2-abstract-short" style="display: inline;"> A new search for the diffuse supernova neutrino background (DSNB) flux has been conducted at Super-Kamiokande (SK), with a $22.5\times2970$-kton$\cdot$day exposure from its fourth operational phase IV. The new analysis improves on the existing background reduction techniques and systematic uncertainties and takes advantage of an improved neutron tagging algorithm to lower the energy threshold comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11174v2-abstract-full').style.display = 'inline'; document.getElementById('2109.11174v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11174v2-abstract-full" style="display: none;"> A new search for the diffuse supernova neutrino background (DSNB) flux has been conducted at Super-Kamiokande (SK), with a $22.5\times2970$-kton$\cdot$day exposure from its fourth operational phase IV. The new analysis improves on the existing background reduction techniques and systematic uncertainties and takes advantage of an improved neutron tagging algorithm to lower the energy threshold compared to the previous phases of SK. This allows for setting the world&#39;s most stringent upper limit on the extraterrestrial $\bar谓_e$ flux, for neutrino energies below 31.3 MeV. The SK-IV results are combined with the ones from the first three phases of SK to perform a joint analysis using $22.5\times5823$ kton$\cdot$days of data. This analysis has the world&#39;s best sensitivity to the DSNB $\bar谓_e$ flux, comparable to the predictions from various models. For neutrino energies larger than 17.3 MeV, the new combined $90\%$ C.L. upper limits on the DSNB $\bar谓_e$ flux lie around $2.7$ cm$^{-2}$$\cdot$$\text{sec}^{-1}$, strongly disfavoring the most optimistic predictions. Finally, potentialities of the gadolinium phase of SK and the future Hyper-Kamiokande experiment are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11174v2-abstract-full').style.display = 'none'; document.getElementById('2109.11174v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 37 figures, 14 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00360">arXiv:2109.00360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00360">pdf</a>, <a href="https://arxiv.org/format/2109.00360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.166248">10.1016/j.nima.2021.166248 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Gadolinium Loading to Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Imaizumi%2C+S">S. Imaizumi</a>, <a href="/search/?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/?searchtype=author&amp;query=Okada%2C+T">T. Okada</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Orii%2C+A">A. Orii</a>, <a href="/search/?searchtype=author&amp;query=Pronost%2C+G">G. Pronost</a>, <a href="/search/?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a>, <a href="/search/?searchtype=author&amp;query=Sonoda%2C+Y">Y. Sonoda</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+Y">Y. Suzuki</a>, <a href="/search/?searchtype=author&amp;query=Takeda%2C+A">A. Takeda</a>, <a href="/search/?searchtype=author&amp;query=Takemoto%2C+Y">Y. Takemoto</a> , et al. (192 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00360v3-abstract-short" style="display: inline;"> In order to improve Super-Kamiokande&#39;s neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ (gadolinium sulfate octahydrate) was dissolved into the detector&#39;s otherwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00360v3-abstract-full').style.display = 'inline'; document.getElementById('2109.00360v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00360v3-abstract-full" style="display: none;"> In order to improve Super-Kamiokande&#39;s neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ (gadolinium sulfate octahydrate) was dissolved into the detector&#39;s otherwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loading, water was continuously recirculated at a rate of 60 m$^3$/h, extracting water from the top of the detector and mixing it with concentrated $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ solution to create a 0.02% solution of the Gd compound before injecting it into the bottom of the detector. A clear boundary between the Gd-loaded and pure water was maintained through the loading, enabling monitoring of the loading itself and the spatial uniformity of the Gd concentration over the 35 days it took to reach the top of the detector. During the subsequent commissioning the recirculation rate was increased to 120 m$^3$/h, resulting in a constant and uniform distribution of Gd throughout the detector and water transparency equivalent to that of previous pure-water operation periods. Using an Am-Be neutron calibration source the mean neutron capture time was measured to be $115\pm1$ $渭$s, which corresponds to a Gd concentration of $111\pm2$ ppm, as expected for this level of Gd loading. This paper describes changes made to the water circulation system for this detector upgrade, the Gd loading procedure, detector commissioning, and the first neutron calibration measurements in SK-Gd. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00360v3-abstract-full').style.display = 'none'; document.getElementById('2109.00360v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 19 Figures, Accepted for publication in Nucl. Instrum. Meth. A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1027 (2022) 166248 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08527">arXiv:2108.08527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.08527">pdf</a>, <a href="https://arxiv.org/format/2108.08527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac32c1">10.3847/1538-4357/ac32c1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Limits on astrophysical antineutrinos with the KamLAND experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asami%2C+S">S. Asami</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+A">A. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+Y">Y. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gima%2C+T">T. Gima</a>, <a href="/search/?searchtype=author&amp;query=Goto%2C+A">A. Goto</a>, <a href="/search/?searchtype=author&amp;query=Hachiya%2C+T">T. Hachiya</a>, <a href="/search/?searchtype=author&amp;query=Hata%2C+K">K. Hata</a>, <a href="/search/?searchtype=author&amp;query=Hayashida%2C+S">S. Hayashida</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ichimura%2C+K">K. Ichimura</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+S">S. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+K">K. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Ishidoshiro%2C+K">K. Ishidoshiro</a>, <a href="/search/?searchtype=author&amp;query=Kamei%2C+Y">Y. Kamei</a>, <a href="/search/?searchtype=author&amp;query=Kawada%2C+N">N. Kawada</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/?searchtype=author&amp;query=Koga%2C+M">M. Koga</a>, <a href="/search/?searchtype=author&amp;query=Maemura%2C+N">N. Maemura</a>, <a href="/search/?searchtype=author&amp;query=Mitsui%2C+T">T. Mitsui</a>, <a href="/search/?searchtype=author&amp;query=Miyake%2C+H">H. Miyake</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08527v3-abstract-short" style="display: inline;"> We report on a search for electron antineutrinos ($\bar谓_e$) from astrophysical sources in the neutrino energy range 8.3 to 30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we fin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08527v3-abstract-full').style.display = 'inline'; document.getElementById('2108.08527v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08527v3-abstract-full" style="display: none;"> We report on a search for electron antineutrinos ($\bar谓_e$) from astrophysical sources in the neutrino energy range 8.3 to 30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60--110 cm$^{-2}$ s$^{-1}$ (90% CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improves on the upper probability limit of $^{8}$B solar neutrinos converting into $\bar谓_e$&#39;s, $P_{谓_e \rightarrow \bar谓_e} &lt; 3.5\times10^{-5}$ (90% CL) assuming an undistorted $\bar谓_e$ shape. This corresponds to a solar $\bar谓_e$ flux of 60 cm$^{-2}$ s$^{-1}$ (90% CL) in the analysis energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08527v3-abstract-full').style.display = 'none'; document.getElementById('2108.08527v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures, 4 tables, accepted for publication in Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 925, Number 1, Page 14 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09441">arXiv:2105.09441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09441">pdf</a>, <a href="https://arxiv.org/ps/2105.09441">ps</a>, <a href="https://arxiv.org/format/2105.09441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.165408">10.1103/PhysRevB.105.165408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comprehensive Microscopic Theory for Coupling of Longitudinal--Transverse Fields and Individual--Collective Excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yokoyama%2C+T">Tomohiro Yokoyama</a>, <a href="/search/?searchtype=author&amp;query=Iio%2C+M">Masayuki Iio</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takashi Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Inaoka%2C+T">Takeshi Inaoka</a>, <a href="/search/?searchtype=author&amp;query=Ishihara%2C+H">Hajime Ishihara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09441v2-abstract-short" style="display: inline;"> A plasmon is a collective excitation of electrons due to the Coulomb interaction. Both plasmons and single-particle excitations (SPEs) are eigenstates of bulk metallic systems and they are orthogonal to each other. However, in non-translationally symmetric systems such as nanostructures, plasmons and SPEs coherently interact. It has been well discussed that the plasmons and SPEs, respectively, can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09441v2-abstract-full').style.display = 'inline'; document.getElementById('2105.09441v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09441v2-abstract-full" style="display: none;"> A plasmon is a collective excitation of electrons due to the Coulomb interaction. Both plasmons and single-particle excitations (SPEs) are eigenstates of bulk metallic systems and they are orthogonal to each other. However, in non-translationally symmetric systems such as nanostructures, plasmons and SPEs coherently interact. It has been well discussed that the plasmons and SPEs, respectively, can couple with transverse (T) electric field in such systems, and also that they are coupled with each other via longitudinal (L) field. However, there has been a missing link in the previous studies: the coherent coupling between the plasmons and SPEs mediated by the T field. Herein, we develop a theoretical framework to describe the self-consistent relationship between plasmons and SPEs through both the L and T fields. The excitations are described in terms of the charge and current densities in a constitutive equation with a nonlocal susceptibility, where the densities include the L and T components. The electromagnetic fields originating from the densities are described in terms of the Green&#39;s function in the Maxwell equations. The T field is generated from both densities, whereas the L component is attributed to the charge density only. We introduce a four-vector representation incorporating the vector and scalar potentials in the Coulomb gauge, in which the T and L fields are separated explicitly. The eigenvalues of the matrix for the self-consistent equations appear as the poles of the system excitations. The developed formulation enables to approach unknown mechanisms for enhancement of the coherent coupling between plasmons and the hot carriers generated by radiative fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09441v2-abstract-full').style.display = 'none'; document.getElementById('2105.09441v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 105, 165408 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02458">arXiv:2105.02458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02458">pdf</a>, <a href="https://arxiv.org/format/2105.02458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac35d1">10.3847/1538-4357/ac35d1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Solar Flare Neutrinos with the KamLAND detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asami%2C+S">S. Asami</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+A">A. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+Y">Y. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gima%2C+T">T. Gima</a>, <a href="/search/?searchtype=author&amp;query=Goto%2C+A">A. Goto</a>, <a href="/search/?searchtype=author&amp;query=Hachiya%2C+T">T. Hachiya</a>, <a href="/search/?searchtype=author&amp;query=Hata%2C+K">K. Hata</a>, <a href="/search/?searchtype=author&amp;query=Hayashida%2C+S">S. Hayashida</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ichimura%2C+K">K. Ichimura</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+S">S. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+K">K. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Ishidoshiro%2C+K">K. Ishidoshiro</a>, <a href="/search/?searchtype=author&amp;query=Kamei%2C+Y">Y. Kamei</a>, <a href="/search/?searchtype=author&amp;query=Kawada%2C+N">N. Kawada</a>, <a href="/search/?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Koga%2C+M">M. Koga</a>, <a href="/search/?searchtype=author&amp;query=Maemura%2C+N">N. Maemura</a>, <a href="/search/?searchtype=author&amp;query=Mitsui%2C+T">T. Mitsui</a>, <a href="/search/?searchtype=author&amp;query=Miyake%2C+H">H. Miyake</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02458v2-abstract-short" style="display: inline;"> We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02458v2-abstract-full').style.display = 'inline'; document.getElementById('2105.02458v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02458v2-abstract-full" style="display: none;"> We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper limits of $8.4 \times 10^7$ cm$^{-2}$ ($3.0 \times 10^{9}$ cm$^{-2}$) on electron anti-neutrino (electron neutrino) fluence at 20 MeV normalized to the X12 flare, assuming that the neutrino fluence is proportional to the X-ray intensity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02458v2-abstract-full').style.display = 'none'; document.getElementById('2105.02458v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, accepted October 27, 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 924, Number 2, Page 103 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10452">arXiv:2104.10452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10452">pdf</a>, <a href="https://arxiv.org/format/2104.10452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/p08023">10.1088/1748-0221/16/08/p08023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The nylon balloon for xenon loaded liquid scintillator in KamLAND-Zen 800 neutrinoless double-beta decay search experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=collaboration%2C+K">KamLAND-Zen collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+Y">Y. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+A">A. Gando</a>, <a href="/search/?searchtype=author&amp;query=Hachiya%2C+T">T. Hachiya</a>, <a href="/search/?searchtype=author&amp;query=Hayashida%2C+S">S. Hayashida</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Mitsui%2C+T">T. Mitsui</a>, <a href="/search/?searchtype=author&amp;query=Nakada%2C+T">T. Nakada</a>, <a href="/search/?searchtype=author&amp;query=Obara%2C+S">S. Obara</a>, <a href="/search/?searchtype=author&amp;query=Ozaki%2C+H">H. Ozaki</a>, <a href="/search/?searchtype=author&amp;query=Shirai%2C+J">J. Shirai</a>, <a href="/search/?searchtype=author&amp;query=Ueshima%2C+K">K. Ueshima</a>, <a href="/search/?searchtype=author&amp;query=Watanabe%2C+H">H. Watanabe</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Hata%2C+K">K. Hata</a>, <a href="/search/?searchtype=author&amp;query=Hayashi%2C+A">A. Hayashi</a>, <a href="/search/?searchtype=author&amp;query=Honda%2C+Y">Y. Honda</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+S">S. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+K">K. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Ishidoshiro%2C+K">K. Ishidoshiro</a>, <a href="/search/?searchtype=author&amp;query=Ishikawa%2C+S">S. Ishikawa</a>, <a href="/search/?searchtype=author&amp;query=Kamei%2C+Y">Y. Kamei</a>, <a href="/search/?searchtype=author&amp;query=Kamizawa%2C+K">K. Kamizawa</a> , et al. (49 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10452v3-abstract-short" style="display: inline;"> The KamLAND-Zen 800 experiment is searching for the neutrinoless double-beta decay of $^{136}$Xe by using $^{136}$Xe-loaded liquid scintillator. The liquid scintillator is enclosed inside a balloon made of thin, transparent, low-radioactivity film that we call Inner Balloon (IB). The IB, apart from guaranteeing the liquid containment, also allows to minimize the background from cosmogenic muon-spa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10452v3-abstract-full').style.display = 'inline'; document.getElementById('2104.10452v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10452v3-abstract-full" style="display: none;"> The KamLAND-Zen 800 experiment is searching for the neutrinoless double-beta decay of $^{136}$Xe by using $^{136}$Xe-loaded liquid scintillator. The liquid scintillator is enclosed inside a balloon made of thin, transparent, low-radioactivity film that we call Inner Balloon (IB). The IB, apart from guaranteeing the liquid containment, also allows to minimize the background from cosmogenic muon-spallation products and $^{8}$B solar neutrinos. Indeed these events could contribute to the total counts in the region of interest around the Q-value of the double-beta decay of $^{136}$Xe. In this paper, we present an overview of the IB and describe the various steps of its commissioning minimizing the radioactive contaminations, from the material selection, to the fabrication of the balloon and its installation inside the KamLAND detector. Finally, we show the impact of the IB on the KamLAND background as measured by the KamLAND detector itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10452v3-abstract-full').style.display = 'none'; document.getElementById('2104.10452v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 16 figures, to be submitted to JINST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021 JINST 16 P08023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.06049">arXiv:2101.06049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.06049">pdf</a>, <a href="https://arxiv.org/ps/2101.06049">ps</a>, <a href="https://arxiv.org/format/2101.06049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A Search for Charged Excitation of Dark Matter with the KamLAND-Zen Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asami%2C+S">S. Asami</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+A">A. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+Y">Y. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gima%2C+T">T. Gima</a>, <a href="/search/?searchtype=author&amp;query=Goto%2C+A">A. Goto</a>, <a href="/search/?searchtype=author&amp;query=Hachiya%2C+T">T. Hachiya</a>, <a href="/search/?searchtype=author&amp;query=Hata%2C+K">K. Hata</a>, <a href="/search/?searchtype=author&amp;query=Hayashida%2C+S">S. Hayashida</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ichimura%2C+K">K. Ichimura</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+S">S. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+K">K. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Ishidoshiro%2C+K">K. Ishidoshiro</a>, <a href="/search/?searchtype=author&amp;query=Kamei%2C+Y">Y. Kamei</a>, <a href="/search/?searchtype=author&amp;query=Kawada%2C+N">N. Kawada</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Koga%2C+M">M. Koga</a>, <a href="/search/?searchtype=author&amp;query=Maemura%2C+N">N. Maemura</a>, <a href="/search/?searchtype=author&amp;query=Mitsui%2C+T">T. Mitsui</a>, <a href="/search/?searchtype=author&amp;query=Miyake%2C+H">H. Miyake</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+R">R. Nakamura</a> , et al. (47 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.06049v1-abstract-short" style="display: inline;"> There are many theories where a dark matter particle is part of a multiplet with an electrically charged state. If WIMP dark matter ($蠂^{0}$) is accompanied by a charged excited state ($蠂^{-}$) separated by a small mass difference, it can form a stable bound state with a nucleus. In supersymmetric models, the $蠂^{0}$ and the $蠂^{-}$ could be the neutralino and a charged slepton, such as the neutra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06049v1-abstract-full').style.display = 'inline'; document.getElementById('2101.06049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.06049v1-abstract-full" style="display: none;"> There are many theories where a dark matter particle is part of a multiplet with an electrically charged state. If WIMP dark matter ($蠂^{0}$) is accompanied by a charged excited state ($蠂^{-}$) separated by a small mass difference, it can form a stable bound state with a nucleus. In supersymmetric models, the $蠂^{0}$ and the $蠂^{-}$ could be the neutralino and a charged slepton, such as the neutralino-stau degenerate model. The formation binding process is expected to result in an energy deposition of {\it O}(1--10 MeV), making it suitable for detection in large liquid scintillator detectors. We describe new constraints on the bound state formation with a xenon nucleus using the KamLAND-Zen 400 Phase-II dataset. In order to enlarge the searchable parameter space, all xenon isotopes in the detector were used. For a benchmark parameter set of $m_{蠂^{0}} = 100$ GeV and $螖m = 10$ MeV, this study sets the most stringent upper limits on the recombination cross section $\langle蟽v\rangle$ and the decay-width of $蠂^{-}$ of $2.0 \times 10^{-31}$ ${\rm cm^3/s}$ and $1.1 \times 10^{-18}$ GeV, respectively (90\% confidence level). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06049v1-abstract-full').style.display = 'none'; document.getElementById('2101.06049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05269">arXiv:2101.05269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05269">pdf</a>, <a href="https://arxiv.org/format/2101.05269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abf7c4">10.3847/1538-4357/abf7c4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova Model Discrimination with Hyper-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+H">Hyper-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Adrich%2C+P">P. Adrich</a>, <a href="/search/?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/?searchtype=author&amp;query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/?searchtype=author&amp;query=Anghel%2C+I">I. Anghel</a>, <a href="/search/?searchtype=author&amp;query=Anthony%2C+L+H+V">L. H. V. Anthony</a>, <a href="/search/?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/?searchtype=author&amp;query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/?searchtype=author&amp;query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/?searchtype=author&amp;query=Aushev%2C+V">V. Aushev</a>, <a href="/search/?searchtype=author&amp;query=Ballester%2C+F">F. Ballester</a>, <a href="/search/?searchtype=author&amp;query=Bandac%2C+I">I. Bandac</a>, <a href="/search/?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/?searchtype=author&amp;query=Batkiewicz-Kwasniak%2C+M">M. Batkiewicz-Kwasniak</a>, <a href="/search/?searchtype=author&amp;query=Bellato%2C+M">M. Bellato</a>, <a href="/search/?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a> , et al. (478 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05269v2-abstract-short" style="display: inline;"> Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants -- neutron stars and black holes -- are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-colla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05269v2-abstract-full').style.display = 'inline'; document.getElementById('2101.05269v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05269v2-abstract-full" style="display: none;"> Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants -- neutron stars and black holes -- are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokande&#39;s response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations towards a precise reproduction of the explosion mechanism observed in nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05269v2-abstract-full').style.display = 'none'; document.getElementById('2101.05269v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures. Article based on thesis published as arXiv:2002.01649. v2: added references and some explanations in response to reviewer comments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J. 916 (2021) 15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12053">arXiv:2012.12053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12053">pdf</a>, <a href="https://arxiv.org/format/2012.12053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abd5bc">10.3847/1538-4357/abd5bc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Low-energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abe%2C+S">S. Abe</a>, <a href="/search/?searchtype=author&amp;query=Asami%2C+S">S. Asami</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+A">A. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gando%2C+Y">Y. Gando</a>, <a href="/search/?searchtype=author&amp;query=Gima%2C+T">T. Gima</a>, <a href="/search/?searchtype=author&amp;query=Goto%2C+A">A. Goto</a>, <a href="/search/?searchtype=author&amp;query=Hachiya%2C+T">T. Hachiya</a>, <a href="/search/?searchtype=author&amp;query=Hata%2C+K">K. Hata</a>, <a href="/search/?searchtype=author&amp;query=Hayashida%2C+S">S. Hayashida</a>, <a href="/search/?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/?searchtype=author&amp;query=Ichimura%2C+K">K. Ichimura</a>, <a href="/search/?searchtype=author&amp;query=Ieki%2C+S">S. Ieki</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Inoue%2C+K">K. Inoue</a>, <a href="/search/?searchtype=author&amp;query=Ishidoshiro%2C+K">K. Ishidoshiro</a>, <a href="/search/?searchtype=author&amp;query=Kamei%2C+Y">Y. Kamei</a>, <a href="/search/?searchtype=author&amp;query=Kawada%2C+N">N. Kawada</a>, <a href="/search/?searchtype=author&amp;query=Kishimoto%2C+Y">Y. Kishimoto</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Koga%2C+M">M. Koga</a>, <a href="/search/?searchtype=author&amp;query=Maemura%2C+N">N. Maemura</a>, <a href="/search/?searchtype=author&amp;query=Mitsui%2C+T">T. Mitsui</a>, <a href="/search/?searchtype=author&amp;query=Miyake%2C+H">H. Miyake</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+K">K. Nakamura</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12053v1-abstract-short" style="display: inline;"> We present the results of a search for MeV-scale electron antineutrino events in KamLAND in coincident with the 60 gravitational wave events/candidates reported by the LIGO/Virgo collaboration during their second and third observing runs. We find no significant coincident signals within a $\pm$ 500 s timing window from each gravitational wave and present 90% C.L. upper limits on the electron antin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12053v1-abstract-full').style.display = 'inline'; document.getElementById('2012.12053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12053v1-abstract-full" style="display: none;"> We present the results of a search for MeV-scale electron antineutrino events in KamLAND in coincident with the 60 gravitational wave events/candidates reported by the LIGO/Virgo collaboration during their second and third observing runs. We find no significant coincident signals within a $\pm$ 500 s timing window from each gravitational wave and present 90% C.L. upper limits on the electron antineutrino fluence between $10^{8}$-$10^{13}\,{\mathrm cm^2}$ for neutrino energies in the energy range of 1.8-111 MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12053v1-abstract-full').style.display = 'none'; document.getElementById('2012.12053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 2 figures, 2 tables, Accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 909, Number 2 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.03021">arXiv:2012.03021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.03021">pdf</a>, <a href="https://arxiv.org/format/2012.03021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2591012">10.1117/12.2591012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Depth estimation from 4D light field videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takahiro Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Ono%2C+S">Satoshi Ono</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.03021v2-abstract-short" style="display: inline;"> Depth (disparity) estimation from 4D Light Field (LF) images has been a research topic for the last couple of years. Most studies have focused on depth estimation from static 4D LF images while not considering temporal information, i.e., LF videos. This paper proposes an end-to-end neural network architecture for depth estimation from 4D LF videos. This study also constructs a medium-scale synthet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03021v2-abstract-full').style.display = 'inline'; document.getElementById('2012.03021v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.03021v2-abstract-full" style="display: none;"> Depth (disparity) estimation from 4D Light Field (LF) images has been a research topic for the last couple of years. Most studies have focused on depth estimation from static 4D LF images while not considering temporal information, i.e., LF videos. This paper proposes an end-to-end neural network architecture for depth estimation from 4D LF videos. This study also constructs a medium-scale synthetic 4D LF video dataset that can be used for training deep learning-based methods. Experimental results using synthetic and real-world 4D LF videos show that temporal information contributes to the improvement of depth estimation accuracy in noisy regions. Dataset and code is available at: https://mediaeng-lfv.github.io/LFV_Disparity_Estimation <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.03021v2-abstract-full').style.display = 'none'; document.getElementById('2012.03021v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, International Workshop on Advanced Image Technology (IWAIT) 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Workshop on Advanced Imaging Technology (IWAIT) 2021, Vol. 11766 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05404">arXiv:2011.05404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05404">pdf</a>, <a href="https://arxiv.org/format/2011.05404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> A New Model of Flaming Phenomena in Online Social Networks that Considers Resonance Driven by External Stimuli </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Tomoya Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Aida%2C+M">Masaki Aida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05404v1-abstract-short" style="display: inline;"> The explosive user dynamics represented by flaming phenomena in online social networks can sometimes negatively influence lives in the real world. To take measures against online flaming phenomena promptly, it is necessary to model its defining characteristics. Based on the oscillation model that describes user dynamics on networks, previous work has revealed that online flaming arises when some e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05404v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05404v1-abstract-full" style="display: none;"> The explosive user dynamics represented by flaming phenomena in online social networks can sometimes negatively influence lives in the real world. To take measures against online flaming phenomena promptly, it is necessary to model its defining characteristics. Based on the oscillation model that describes user dynamics on networks, previous work has revealed that online flaming arises when some eigenvalues of the matrix expressing network structure are non-real numbers. This paper considers the network resonance driven by periodic external stimuli and proposes a flaming model that posits flaming even if all the matrix&#39;s eigenvalues are real numbers. Also, we describe a theoretical framework for observing the omen of online flaming to trigger preventive measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05404v1-abstract-full').style.display = 'none'; document.getElementById('2011.05404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figure, CANDAR 2020 WS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 94-10; 94-06 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01837">arXiv:2009.01837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.01837">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Effective Infection Opportunity Population (EIOP) Hypothesis in Applying SIR Infection Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Isshiki%2C+H">Hiroshi Isshiki</a>, <a href="/search/?searchtype=author&amp;query=Namiki%2C+M">Masao Namiki</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takeshi Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Yano%2C+R">Ryosuke Yano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01837v1-abstract-short" style="display: inline;"> The SIR infection theory initiated by Kermack-Mckendrick in 1927 discusses the infection in an isolated population with uniform properties such as the uniform population distribution. In the infection, there exist two aspects: (1) The quantitative aspect and (2) the temporal aspect. Since the SIR theory is a mean-field theory, it can&#39;t match both aspects simultaneously. If the quantitative aspect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01837v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01837v1-abstract-full" style="display: none;"> The SIR infection theory initiated by Kermack-Mckendrick in 1927 discusses the infection in an isolated population with uniform properties such as the uniform population distribution. In the infection, there exist two aspects: (1) The quantitative aspect and (2) the temporal aspect. Since the SIR theory is a mean-field theory, it can&#39;t match both aspects simultaneously. If the quantitative aspect is matched, the temporal aspect can&#39;t be matched, versa. The infection starts from a cluster, and it spreads to different places increasing the size of the infection. In general, even in the case of the infection in a big city, the infection grows within a limited population. Namiki found and named this kind of population as an effective population. He proposes that if the hypothesis is adopted, the quantitative and temporal aspects can be matched simultaneously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01837v1-abstract-full').style.display = 'none'; document.getElementById('2009.01837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.00794">arXiv:2009.00794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.00794">pdf</a>, <a href="https://arxiv.org/ps/2009.00794">ps</a>, <a href="https://arxiv.org/format/2009.00794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The Hyper-Kamiokande Experiment -- Snowmass LOI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Collaboration%2C+H">Hyper-Kamiokande Collaboration</a>, <a href="/search/?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/?searchtype=author&amp;query=Adrich%2C+P">P. Adrich</a>, <a href="/search/?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/?searchtype=author&amp;query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/?searchtype=author&amp;query=Anthony%2C+L+H+V">L. H. V. Anthony</a>, <a href="/search/?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/?searchtype=author&amp;query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/?searchtype=author&amp;query=Aushev%2C+V">V. Aushev</a>, <a href="/search/?searchtype=author&amp;query=Bandac%2C+I">I. Bandac</a>, <a href="/search/?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/?searchtype=author&amp;query=Batkiewicz-Kwasniak%2C+M">M. Batkiewicz-Kwasniak</a>, <a href="/search/?searchtype=author&amp;query=Bellato%2C+M">M. Bellato</a>, <a href="/search/?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/?searchtype=author&amp;query=Bernard%2C+L">L. Bernard</a>, <a href="/search/?searchtype=author&amp;query=Bernardini%2C+E">E. Bernardini</a>, <a href="/search/?searchtype=author&amp;query=Berns%2C+L">L. Berns</a>, <a href="/search/?searchtype=author&amp;query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/?searchtype=author&amp;query=Bian%2C+J">J. Bian</a>, <a href="/search/?searchtype=author&amp;query=Blanchet%2C+A">A. Blanchet</a> , et al. (366 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.00794v1-abstract-short" style="display: inline;"> Hyper-Kamiokande is the next generation underground water Cherenkov detector that builds on the highly successful Super-Kamiokande experiment. The detector which has an 8.4~times larger effective volume than its predecessor will be located along the T2K neutrino beamline and utilize an upgraded J-PARC beam with 2.6~times beam power. Hyper-K&#39;s low energy threshold combined with the very large fiduc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00794v1-abstract-full').style.display = 'inline'; document.getElementById('2009.00794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.00794v1-abstract-full" style="display: none;"> Hyper-Kamiokande is the next generation underground water Cherenkov detector that builds on the highly successful Super-Kamiokande experiment. The detector which has an 8.4~times larger effective volume than its predecessor will be located along the T2K neutrino beamline and utilize an upgraded J-PARC beam with 2.6~times beam power. Hyper-K&#39;s low energy threshold combined with the very large fiducial volume make the detector unique, that is expected to acquire an unprecedented exposure of 3.8~Mton$\cdot$year over a period of 20~years of operation. Hyper-Kamiokande combines an extremely diverse science program including nucleon decays, long-baseline neutrino oscillations, atmospheric neutrinos, and neutrinos from astrophysical origins. The scientific scope of this program is highly complementary to liquid-argon detectors for example in sensitivity to nucleon decay channels or supernova detection modes. Hyper-Kamiokande construction has started in early 2020 and the experiment is expected to start operations in 2027. The Hyper-Kamiokande collaboration is presently being formed amongst groups from 19 countries including the United States, whose community has a long history of making significant contributions to the neutrino physics program in Japan. US physicists have played leading roles in the Kamiokande, Super-Kamiokande, EGADS, K2K, and T2K programs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00794v1-abstract-full').style.display = 'none'; document.getElementById('2009.00794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, prepared as Snowmass2021 LOI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04822">arXiv:2006.04822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.04822">pdf</a>, <a href="https://arxiv.org/format/2006.04822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.07.006">10.1016/j.physrep.2020.07.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The anomalous magnetic moment of the muon in the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aoyama%2C+T">T. Aoyama</a>, <a href="/search/?searchtype=author&amp;query=Asmussen%2C+N">N. Asmussen</a>, <a href="/search/?searchtype=author&amp;query=Benayoun%2C+M">M. Benayoun</a>, <a href="/search/?searchtype=author&amp;query=Bijnens%2C+J">J. Bijnens</a>, <a href="/search/?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/?searchtype=author&amp;query=Bruno%2C+M">M. Bruno</a>, <a href="/search/?searchtype=author&amp;query=Caprini%2C+I">I. Caprini</a>, <a href="/search/?searchtype=author&amp;query=Calame%2C+C+M+C">C. M. Carloni Calame</a>, <a href="/search/?searchtype=author&amp;query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/?searchtype=author&amp;query=Colangelo%2C+G">G. Colangelo</a>, <a href="/search/?searchtype=author&amp;query=Curciarello%2C+F">F. Curciarello</a>, <a href="/search/?searchtype=author&amp;query=Czy%C5%BC%2C+H">H. Czy偶</a>, <a href="/search/?searchtype=author&amp;query=Danilkin%2C+I">I. Danilkin</a>, <a href="/search/?searchtype=author&amp;query=Davier%2C+M">M. Davier</a>, <a href="/search/?searchtype=author&amp;query=Davies%2C+C+T+H">C. T. H. Davies</a>, <a href="/search/?searchtype=author&amp;query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/?searchtype=author&amp;query=Eidelman%2C+S+I">S. I. Eidelman</a>, <a href="/search/?searchtype=author&amp;query=El-Khadra%2C+A+X">A. X. El-Khadra</a>, <a href="/search/?searchtype=author&amp;query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/?searchtype=author&amp;query=Giusti%2C+D">D. Giusti</a>, <a href="/search/?searchtype=author&amp;query=Golterman%2C+M">M. Golterman</a>, <a href="/search/?searchtype=author&amp;query=Gottlieb%2C+S">Steven Gottlieb</a>, <a href="/search/?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/?searchtype=author&amp;query=Hagelstein%2C+F">F. Hagelstein</a>, <a href="/search/?searchtype=author&amp;query=Hayakawa%2C+M">M. Hayakawa</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04822v2-abstract-short" style="display: inline;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'inline'; document.getElementById('2006.04822v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04822v2-abstract-full" style="display: none;"> We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $伪$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(伪^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_渭/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $\mathcal{O}(伪^2)$ and is due to hadronic vacuum polarization, whereas at $\mathcal{O}(伪^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_渭^\text{SM}=116\,591\,810(43)\times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$蟽$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04822v2-abstract-full').style.display = 'none'; document.getElementById('2006.04822v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">196 pages, 103 figures, version published in Phys. Rept., bib files for the citation references are available from: https://muon-gm2-theory.illinois.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-207-T, INT-PUB-20-021, KEK Preprint 2020-5, MITP/20-028, CERN-TH-2020-075, IFT-UAM/CSIC-20-74, LMU-ASC 18/20, LTH 1234, LU TP 20-20, MAN/HEP/2020/003, PSI-PR-20-06, UWThPh 2020-14, ZU-TH 18/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rept. 887 (2020) 1-166 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.04261">arXiv:1811.04261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.04261">pdf</a>, <a href="https://arxiv.org/ps/1811.04261">ps</a>, <a href="https://arxiv.org/format/1811.04261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Numerical verification of solutions for nonlinear parabolic problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hashimoto%2C+K">Kouji Hashimoto</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takehiko Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Nakao%2C+M+T">Mitsuhiro T. Nakao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.04261v2-abstract-short" style="display: inline;"> In this paper, we present a numerical verification method of solutions for nonlinear parabolic initial boundary value problems. Decomposing the problem into a nonlinear part and an initial value part, we apply Nakao&#39;s projection method, which is based on the full-discrete finite element method with constructive error estimates, to the nonlinear part and use the theoretical analysis for the heat eq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04261v2-abstract-full').style.display = 'inline'; document.getElementById('1811.04261v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.04261v2-abstract-full" style="display: none;"> In this paper, we present a numerical verification method of solutions for nonlinear parabolic initial boundary value problems. Decomposing the problem into a nonlinear part and an initial value part, we apply Nakao&#39;s projection method, which is based on the full-discrete finite element method with constructive error estimates, to the nonlinear part and use the theoretical analysis for the heat equation to the initial value part, respectively. We show some verified examples for solutions of nonlinear problems from initial value to the neighborhood of the stationary solutions, which confirm us the actual effectiveness of our method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04261v2-abstract-full').style.display = 'none'; document.getElementById('1811.04261v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.06060">arXiv:1712.06060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.06060">pdf</a>, <a href="https://arxiv.org/ps/1712.06060">ps</a>, <a href="https://arxiv.org/format/1712.06060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.036001">10.1103/PhysRevD.97.036001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aoyama%2C+T">Tatsumi Aoyama</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toichiro Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Nio%2C+M">Makiko Nio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.06060v2-abstract-short" style="display: inline;"> In order to improve the theoretical prediction of the electron anomalous magnetic moment $a_e$ we have carried out a new numerical evaluation of the 389 integrals of Set V, which represent 6,354 Feynman vertex diagrams without lepton loops. During this work, we found that one of the integrals, called $X024$, was given a wrong value in the previous calculation due to an incorrect assignment of inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06060v2-abstract-full').style.display = 'inline'; document.getElementById('1712.06060v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.06060v2-abstract-full" style="display: none;"> In order to improve the theoretical prediction of the electron anomalous magnetic moment $a_e$ we have carried out a new numerical evaluation of the 389 integrals of Set V, which represent 6,354 Feynman vertex diagrams without lepton loops. During this work, we found that one of the integrals, called $X024$, was given a wrong value in the previous calculation due to an incorrect assignment of integration variables. The correction of this error causes a shift of $-1.25$ to the Set~V contribution, and hence to the tenth-order universal (i.e., mass-independent) term $ A_1^{(10)}$. The previous evaluation of all other 388 integrals is free from errors and consistent with the new evaluation. Combining the new and the old (excluding $X024$) calculations statistically, we obtain $7.606~(192) (伪/蟺)^5$ as the best estimate of the Set V contribution. Including the contribution of the diagrams with fermion loops, the improved tenth-order universal term becomes $A_1^{(10)}=6.678~(192)$. Adding hadronic and electroweak contributions leads to the theoretical prediction $a_e (\text{theory}) =1~159~652~182.032~(720)\times 10^{-12}$. From this and the best measurement of $a_e$, we obtain the inverse fine-structure constant $伪^{-1}(a_e) = 137.035~999~1491~(331)$. The theoretical prediction of the muon anomalous magnetic moment is also affected by the update of QED contribution and the new value of $伪$, but the shift is much smaller than the theoretical uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06060v2-abstract-full').style.display = 'none'; document.getElementById('1712.06060v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 1 figure, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-QHP-345 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 036001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.05931">arXiv:1708.05931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.05931">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1101/178657">10.1101/178657 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Innovations orthogonalization: a solution to the major pitfalls of EEG/MEG &#34;leakage correction&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R+D">Roberto D. Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Biscay%2C+R+J">Rolando J. Biscay</a>, <a href="/search/?searchtype=author&amp;query=Bosch-Bayard%2C+J">Jorge Bosch-Bayard</a>, <a href="/search/?searchtype=author&amp;query=Faber%2C+P">Pascal Faber</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toshihiko Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">Kieko Kochi</a>, <a href="/search/?searchtype=author&amp;query=Milz%2C+P">Patricia Milz</a>, <a href="/search/?searchtype=author&amp;query=Nishida%2C+K">Keiichiro Nishida</a>, <a href="/search/?searchtype=author&amp;query=Yoshimura%2C+M">Masafumi Yoshimura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.05931v2-abstract-short" style="display: inline;"> The problem of interest here is the study of brain functional and effective connectivity based on non-invasive EEG-MEG inverse solution time series. These signals generally have low spatial resolution, such that an estimated signal at any one site is an instantaneous linear mixture of the true, actual, unobserved signals across all cortical sites. False connectivity can result from analysis of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05931v2-abstract-full').style.display = 'inline'; document.getElementById('1708.05931v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.05931v2-abstract-full" style="display: none;"> The problem of interest here is the study of brain functional and effective connectivity based on non-invasive EEG-MEG inverse solution time series. These signals generally have low spatial resolution, such that an estimated signal at any one site is an instantaneous linear mixture of the true, actual, unobserved signals across all cortical sites. False connectivity can result from analysis of these low-resolution signals. Recent efforts toward &#34;unmixing&#34; have been developed, under the name of &#34;leakage correction&#34;. One recent noteworthy approach is that by Colclough et al (2015 NeuroImage, 117:439-448), which forces the inverse solution signals to have zero cross-correlation at lag zero. One goal is to show that Colclough&#39;s method produces false human connectomes under very broad conditions. The second major goal is to develop a new solution, that appropriately &#34;unmixes&#34; the inverse solution signals, based on innovations orthogonalization. The new method first fits a multivariate autoregression to the inverse solution signals, giving the mixed innovations. Second, the mixed innovations are orthogonalized. Third, the mixed and orthogonalized innovations allow the estimation of the &#34;unmixing&#34; matrix, which is then finally used to &#34;unmix&#34; the inverse solution signals. It is shown that under very broad conditions, the new method produces proper human connectomes, even when the signals are not generated by an autoregressive model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05931v2-abstract-full').style.display = 'none'; document.getElementById('1708.05931v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">preprint, technical report, under license &#34;Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)&#34;, https://creativecommons.org/licenses/by-nc-nd/4.0/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07654">arXiv:1703.07654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.07654">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1101/119362">10.1101/119362 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The cross-frequency mediation mechanism of intracortical information transactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R">RD Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Faber%2C+P">P Faber</a>, <a href="/search/?searchtype=author&amp;query=Ikeda%2C+S">S Ikeda</a>, <a href="/search/?searchtype=author&amp;query=Ishii%2C+R">R Ishii</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Kitaura%2C+Y">Y Kitaura</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">K Kochi</a>, <a href="/search/?searchtype=author&amp;query=Milz%2C+P">P Milz</a>, <a href="/search/?searchtype=author&amp;query=Nishida%2C+K">K Nishida</a>, <a href="/search/?searchtype=author&amp;query=Yoshimura%2C+M">M Yoshimura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07654v2-abstract-short" style="display: inline;"> In a seminal paper by von Stein and Sarnthein (2000), it was hypothesized that &#34;bottom-up&#34; information processing of &#34;content&#34; elicits local, high frequency (beta-gamma) oscillations, whereas &#34;top-down&#34; processing is &#34;contextual&#34;, characterized by large scale integration spanning distant cortical regions, and implemented by slower frequency (theta-alpha) oscillations. This corresponds to a mechani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07654v2-abstract-full').style.display = 'inline'; document.getElementById('1703.07654v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07654v2-abstract-full" style="display: none;"> In a seminal paper by von Stein and Sarnthein (2000), it was hypothesized that &#34;bottom-up&#34; information processing of &#34;content&#34; elicits local, high frequency (beta-gamma) oscillations, whereas &#34;top-down&#34; processing is &#34;contextual&#34;, characterized by large scale integration spanning distant cortical regions, and implemented by slower frequency (theta-alpha) oscillations. This corresponds to a mechanism of cortical information transactions, where synchronization of beta-gamma oscillations between distant cortical regions is mediated by widespread theta-alpha oscillations. It is the aim of this paper to express this hypothesis quantitatively, in terms of a model that will allow testing this type of information transaction mechanism. The basic methodology used here corresponds to statistical mediation analysis, originally developed by (Baron and Kenny 1986). We generalize the classical mediator model to the case of multivariate complex-valued data, consisting of the discrete Fourier transform coefficients of signals of electric neuronal activity, at different frequencies, and at different cortical locations. The &#34;mediation effect&#34; is quantified here in a novel way, as the product of &#34;dual frequency RV-coupling coefficients&#34;, that were introduced in (Pascual-Marqui et al 2016, http://arxiv.org/abs/1603.05343). Relevant statistical procedures are presented for testing the cross-frequency mediation mechanism in general, and in particular for testing the von Stein &amp; Sarnthein hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07654v2-abstract-full').style.display = 'none'; document.getElementById('1703.07654v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://doi.org/10.1101/119362 licensed as CC-BY-NC-ND 4.0 International license: http://creativecommons.org/licenses/by-nc-nd/4.0/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.07916">arXiv:1605.07916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.07916">pdf</a>, <a href="https://arxiv.org/ps/1605.07916">ps</a>, <a href="https://arxiv.org/format/1605.07916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.155418">10.1103/PhysRevB.95.155418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design of nonlinear optical response of multipole-type excitons by film thickness and incident pulse width </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takashi Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Ishihara%2C+H">Hajime Ishihara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.07916v2-abstract-short" style="display: inline;"> We theoretically investigate the nonlinear optical pulse responses of excitons in a thin film where the excitonic center-of-mass motion is confined. A large interaction volume between excitons and radiation yields particular coupled states with radiative decay times reaching several femto-seconds. By considering two polarization directions of light, we reveal that these fast-decay modes dominantly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07916v2-abstract-full').style.display = 'inline'; document.getElementById('1605.07916v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.07916v2-abstract-full" style="display: none;"> We theoretically investigate the nonlinear optical pulse responses of excitons in a thin film where the excitonic center-of-mass motion is confined. A large interaction volume between excitons and radiation yields particular coupled states with radiative decay times reaching several femto-seconds. By considering two polarization directions of light, we reveal that these fast-decay modes dominantly survive in an optical Kerr spectra even under a massive nonradiative damping $螕=30$ meV. The results clearly show that there is an optimal combination of the incident pulse width and the film thickness for maximizing the integrated intensity of nonlinear signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07916v2-abstract-full').style.display = 'none'; document.getElementById('1605.07916v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 155418 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.07899">arXiv:1605.07899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.07899">pdf</a>, <a href="https://arxiv.org/ps/1605.07899">ps</a>, <a href="https://arxiv.org/format/1605.07899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.045441">10.1103/PhysRevB.94.045441 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative coupling of A and B excitons in ZnO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Takashi Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Ishihara%2C+H">Hajime Ishihara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.07899v2-abstract-short" style="display: inline;"> Radiation-induced coupling between A and B excitons in ZnO is theoretically studied. Considering the center-of-mass motion of excitons in bulk and thin film structures, we reveal the eigenmodes of an exciton--radiation coupled system and the ratio of each excitonic component, which is determined from diagonalization of the self-consistent equation between the polarization and the Maxwell electric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07899v2-abstract-full').style.display = 'inline'; document.getElementById('1605.07899v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.07899v2-abstract-full" style="display: none;"> Radiation-induced coupling between A and B excitons in ZnO is theoretically studied. Considering the center-of-mass motion of excitons in bulk and thin film structures, we reveal the eigenmodes of an exciton--radiation coupled system and the ratio of each excitonic component, which is determined from diagonalization of the self-consistent equation between the polarization and the Maxwell electric field. In particular, in a nano-to-bulk crossover size regime, the large interaction volume between multipole-type excitonic waves and radiation waves causes radiative coupling between excitons from different valence bands, which leads to an enhancement of the radiative correction. The results presented in this study are in striking contrast with the conventional view of the optical response of excitons in ZnO, where A and B excitons are independently assigned to their respective spectral structures. It is also clarified that the density of each excitonic component is of a significant value for attribution of nonlinear optical signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07899v2-abstract-full').style.display = 'none'; document.getElementById('1605.07899v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, Phys. Rev. B in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 045441 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.04891">arXiv:1604.04891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.04891">pdf</a>, <a href="https://arxiv.org/ps/1604.04891">ps</a>, <a href="https://arxiv.org/format/1604.04891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Personal Recollection, 1945 - 1960 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toichiro Kinoshita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.04891v1-abstract-short" style="display: inline;"> This article gives a sketch of teachers and colleagues who have had strong influence on my becoming a particle physicist. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.04891v1-abstract-full" style="display: none;"> This article gives a sketch of teachers and colleagues who have had strong influence on my becoming a particle physicist. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.04891v1-abstract-full').style.display = 'none'; document.getElementById('1604.04891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05343">arXiv:1603.05343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.05343">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> The dual frequency RV-coupling coefficient: a novel measure for quantifying cross-frequency information transactions in the brain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R">RD Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Faber%2C+P">P Faber</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Kitaura%2C+Y">Y Kitaura</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">K Kochi</a>, <a href="/search/?searchtype=author&amp;query=Milz%2C+P">P Milz</a>, <a href="/search/?searchtype=author&amp;query=Nishida%2C+K">K Nishida</a>, <a href="/search/?searchtype=author&amp;query=Yoshimura%2C+M">M Yoshimura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05343v2-abstract-short" style="display: inline;"> Identifying dynamic transactions between brain regions has become increasingly important. Measurements within and across brain structures, demonstrating the occurrence of bursts of beta/gamma oscillations only during one specific phase of each theta/alpha cycle, have motivated the need to advance beyond linear and stationary time series models. Here we offer a novel measure, namely, the &#34;dual freq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05343v2-abstract-full').style.display = 'inline'; document.getElementById('1603.05343v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05343v2-abstract-full" style="display: none;"> Identifying dynamic transactions between brain regions has become increasingly important. Measurements within and across brain structures, demonstrating the occurrence of bursts of beta/gamma oscillations only during one specific phase of each theta/alpha cycle, have motivated the need to advance beyond linear and stationary time series models. Here we offer a novel measure, namely, the &#34;dual frequency RV-coupling coefficient&#34;, for assessing different types of frequency-frequency interactions that subserve information flow in the brain. This is a measure of coherence between two complex-valued vectors, consisting of the set of Fourier coefficients for two different frequency bands, within or across two brain regions. RV-coupling is expressed in terms of instantaneous and lagged components. Furthermore, by using normalized Fourier coefficients (unit modulus), phase-type couplings can also be measured. The dual frequency RV-coupling coefficient is based on previous work: the second order bispectrum, i.e. the dual-frequency coherence (Thomson 1982; Haykin &amp; Thomson 1998); the RV-coefficient (Escoufier 1973); Gorrostieta et al (2012); and Pascual-Marqui et al (2011). This paper presents the new measure, and outlines relevant statistical tests. The novel aspects of the &#34;dual frequency RV-coupling coefficient&#34; are: (1) it can be applied to two multivariate time series; (2) the method is not limited to single discrete frequencies, and in addition, the frequency bands are treated by means of appropriate multivariate statistical methodology; (3) the method makes use of a novel generalization of the RV-coefficient for complex-valued multivariate data; (4) real and imaginary covariance contributions to the RV-coherence are obtained, allowing the definition of a &#34;lagged-coupling&#34; measure that is minimally affected by the low spatial resolution of estimated cortical electric neuronal activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05343v2-abstract-full').style.display = 'none'; document.getElementById('1603.05343v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">technical report, pre-print, 2016-03-16</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.8284">arXiv:1412.8284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.8284">pdf</a>, <a href="https://arxiv.org/ps/1412.8284">ps</a>, <a href="https://arxiv.org/format/1412.8284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.033006">10.1103/PhysRevD.91.033006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tenth-Order Electron Anomalous Magnetic Moment --- Contribution of Diagrams without Closed Lepton Loops </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aoyama%2C+T">T. Aoyama</a>, <a href="/search/?searchtype=author&amp;query=Hayakawa%2C+M">M. Hayakawa</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Nio%2C+M">M. Nio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.8284v3-abstract-short" style="display: inline;"> This paper presents a detailed account of evaluation of the electron anomalous magnetic moment a_e which arises from the gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman diagrams without closed lepton loops. The latest value of the sum of Set V diagrams evaluated by the Monte-Carlo integration routine VEGAS is 8.726(336)(伪/蟺)^5, which replaces the very preliminary value re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.8284v3-abstract-full').style.display = 'inline'; document.getElementById('1412.8284v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.8284v3-abstract-full" style="display: none;"> This paper presents a detailed account of evaluation of the electron anomalous magnetic moment a_e which arises from the gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman diagrams without closed lepton loops. The latest value of the sum of Set V diagrams evaluated by the Monte-Carlo integration routine VEGAS is 8.726(336)(伪/蟺)^5, which replaces the very preliminary value reported in 2012. Combining it with other 6318 tenth-order diagrams published previously we obtain 7.795(336)(伪/蟺)^5 as the complete mass-independent tenth-order term. Together with the improved value of the eighth-order term this leads to a_e(theory)=1 159 652 181.643(25)(23)(16)(763) \times 10^{-12}, where first three uncertainties are from the eighth-order term, tenth-order term, and hadronic and elecroweak terms. The fourth and largest uncertainty is from 伪^{-1}=137.035 999 049(90), the fine-structure constant derived from the rubidium recoil measurement. Thus, a_e(experiment) - a_e(theory)= -0.91(0.82) \times 10^{-12}. Assuming the validity of the standard model, we obtain the fine-structure constant 伪^{-1}(a_e)=137.035 999 1570(29)(27)(18)(331), where uncertainties are from the eighth-order term, tenth-order term, hadronic and electroweak terms, and the measurement of a_e. This is the most precise value of 伪available at present and provides a stringent constraint on possible theories beyond the standard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.8284v3-abstract-full').style.display = 'none'; document.getElementById('1412.8284v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 2 figures; v2: references added and minor modifications made; v3: published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.1949">arXiv:1411.1949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.1949">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R+D">Roberto D Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Lehmann%2C+D">Dietrich Lehmann</a>, <a href="/search/?searchtype=author&amp;query=Faber%2C+P">Pascal Faber</a>, <a href="/search/?searchtype=author&amp;query=Milz%2C+P">Patricia Milz</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">Kieko Kochi</a>, <a href="/search/?searchtype=author&amp;query=Yoshimura%2C+M">Masafumi Yoshimura</a>, <a href="/search/?searchtype=author&amp;query=Nishida%2C+K">Keiichiro Nishida</a>, <a href="/search/?searchtype=author&amp;query=Isotani%2C+T">Toshiaki Isotani</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toshihiko Kinoshita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.1949v2-abstract-short" style="display: inline;"> A brain microstate is characterized by a unique, fixed spatial distribution of electrically active neurons with time varying amplitude. It is hypothesized that a microstate implements a functional/physiological state of the brain during which specific neural computations are performed. Based on this hypothesis, brain electrical activity is modeled as a time sequence of non-overlapping microstates&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1949v2-abstract-full').style.display = 'inline'; document.getElementById('1411.1949v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.1949v2-abstract-full" style="display: none;"> A brain microstate is characterized by a unique, fixed spatial distribution of electrically active neurons with time varying amplitude. It is hypothesized that a microstate implements a functional/physiological state of the brain during which specific neural computations are performed. Based on this hypothesis, brain electrical activity is modeled as a time sequence of non-overlapping microstates with variable, finite durations (Lehmann and Skrandies 1980, 1984; Lehmann et al 1987). In this study, EEG recordings from 109 participants during eyes closed resting condition are modeled with four microstates. In a first part, a new confirmatory statistics method is introduced for the determination of the cortical distributions of electric neuronal activity that generate each microstate. All microstates have common posterior cingulate generators, while three microstates additionally include activity in the left occipital/parietal, right occipital/parietal, and anterior cingulate cortices. This appears to be a fragmented version of the metabolically (PET/fMRI) computed default mode network (DMN), supporting the notion that these four regions activate sequentially at high time resolution, and that slow metabolic imaging corresponds to a low-pass filtered version. In the second part of this study, the microstate amplitude time series are used as the basis for estimating the strength, directionality, and spectral characteristics (i.e., which oscillations are preferentially transmitted) of the connections that are mediated by the microstate transitions. The results show that the posterior cingulate is an important hub, sending alpha and beta oscillatory information to all other microstate generator regions. Interestingly, beyond alpha, beta oscillations are essential in the maintenance of the brain during resting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1949v2-abstract-full').style.display = 'none'; document.getElementById('1411.1949v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">pre-print, technical report, The KEY Institute for Brain-Mind Research (Zurich), Kansai Medical University (Osaka)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.4887">arXiv:1402.4887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.4887">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> Isolated effective coherence (iCoh): causal information flow excluding indirect paths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R">RD Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Biscay%2C+R">RJ Biscay</a>, <a href="/search/?searchtype=author&amp;query=Bosch-Bayard%2C+J">J Bosch-Bayard</a>, <a href="/search/?searchtype=author&amp;query=Lehmann%2C+D">D Lehmann</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">K Kochi</a>, <a href="/search/?searchtype=author&amp;query=Yamada%2C+N">N Yamada</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Sadato%2C+N">N Sadato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.4887v6-abstract-short" style="display: inline;"> A problem of great interest in real world systems, where multiple time series measurements are available, is the estimation of the intra-system causal relations. For instance, electric cortical signals are used for studying functional connectivity between brain areas, their directionality, the direct or indirect nature of the connections, and the spectral characteristics (e.g. which oscillations a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.4887v6-abstract-full').style.display = 'inline'; document.getElementById('1402.4887v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.4887v6-abstract-full" style="display: none;"> A problem of great interest in real world systems, where multiple time series measurements are available, is the estimation of the intra-system causal relations. For instance, electric cortical signals are used for studying functional connectivity between brain areas, their directionality, the direct or indirect nature of the connections, and the spectral characteristics (e.g. which oscillations are preferentially transmitted). The earliest spectral measure of causality was Akaike&#39;s (1968) seminal work on the noise contribution ratio, reflecting direct and indirect connections. Later, a major breakthrough was the partial directed coherence of Baccala and Sameshima (2001) for direct connections. The simple aim of this study consists of two parts: (1) To expose a major problem with the partial directed coherence, where it is shown that it is affected by irrelevant connections to such an extent that it can misrepresent the frequency response, thus defeating the main purpose for which the measure was developed, and (2) To provide a solution to this problem, namely the &#34;isolated effective coherence&#34;, which consists of estimating the partial coherence under a multivariate auto-regressive model, followed by setting all irrelevant associations to zero, other than the particular directional association of interest. Simple, realistic, toy examples illustrate the severity of the problem with the partial directed coherence, and the solution achieved by the isolated effective coherence. For the sake of reproducible research, the software code implementing the methods discussed here (using lazarus free-pascal &#34;www.lazarus.freepascal.org&#34;), including the test data as text files, are freely available at: https://sites.google.com/site/pascualmarqui/home/icoh-isolated-effective-coherence <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.4887v6-abstract-full').style.display = 'none'; document.getElementById('1402.4887v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2014-02-21 pre-print, technical report, KEY Institute for Brain-Mind Research, University of Zurich, et al</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.7261">arXiv:1303.7261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.7261">pdf</a>, <a href="https://arxiv.org/ps/1303.7261">ps</a>, <a href="https://arxiv.org/format/1303.7261">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.87.051201">10.1103/PhysRevE.87.051201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The excitation of rogue waves in a variable medium: an experimental study on the interaction of water waves and currents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Toffoli%2C+A">A. Toffoli</a>, <a href="/search/?searchtype=author&amp;query=Waseda%2C+T">T. Waseda</a>, <a href="/search/?searchtype=author&amp;query=Houtani%2C+H">H. Houtani</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">T. Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Collins%2C+K">K. Collins</a>, <a href="/search/?searchtype=author&amp;query=Proment%2C+D">D. Proment</a>, <a href="/search/?searchtype=author&amp;query=Onorato%2C+M">M. Onorato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.7261v1-abstract-short" style="display: inline;"> We show experimentally that a stable wave propagating into a region characterized by an opposite current may become modulationaly unstable. Experiments have been performed in two independent wave tank facilities; both of them are equipped with a wavemaker and a pump for generating a current propagating in the opposite direction with respect to the waves. The experimental results support a recent c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.7261v1-abstract-full').style.display = 'inline'; document.getElementById('1303.7261v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.7261v1-abstract-full" style="display: none;"> We show experimentally that a stable wave propagating into a region characterized by an opposite current may become modulationaly unstable. Experiments have been performed in two independent wave tank facilities; both of them are equipped with a wavemaker and a pump for generating a current propagating in the opposite direction with respect to the waves. The experimental results support a recent conjecture based on a current-modified Nonlinear Schr枚dinger equation which establishes that rogue waves can be triggered by non-homogeneous current characterized by a negative horizontal velocity gradient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.7261v1-abstract-full').style.display = 'none'; document.getElementById('1303.7261v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.4291">arXiv:1301.4291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.4291">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> A measure of association between vectors based on &#34;similarity covariance&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pascual-Marqui%2C+R+D">Roberto D. Pascual-Marqui</a>, <a href="/search/?searchtype=author&amp;query=Lehmann%2C+D">Dietrich Lehmann</a>, <a href="/search/?searchtype=author&amp;query=Kochi%2C+K">Kieko Kochi</a>, <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T">Toshihiko Kinoshita</a>, <a href="/search/?searchtype=author&amp;query=Yamada%2C+N">Naoto Yamada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.4291v4-abstract-short" style="display: inline;"> The &#34;maximum similarity correlation&#34; definition introduced in this study is motivated by the seminal work of Szekely et al on &#34;distance covariance&#34; (Ann. Statist. 2007, 35: 2769-2794; Ann. Appl. Stat. 2009, 3: 1236-1265). Instead of using Euclidean distances &#34;d&#34; as in Szekely et al, we use &#34;similarity&#34;, which can be defined as &#34;exp(-d/s)&#34;, where the scaling parameter s&gt;0 controls how rapidly the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4291v4-abstract-full').style.display = 'inline'; document.getElementById('1301.4291v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.4291v4-abstract-full" style="display: none;"> The &#34;maximum similarity correlation&#34; definition introduced in this study is motivated by the seminal work of Szekely et al on &#34;distance covariance&#34; (Ann. Statist. 2007, 35: 2769-2794; Ann. Appl. Stat. 2009, 3: 1236-1265). Instead of using Euclidean distances &#34;d&#34; as in Szekely et al, we use &#34;similarity&#34;, which can be defined as &#34;exp(-d/s)&#34;, where the scaling parameter s&gt;0 controls how rapidly the similarity falls off with distance. Scale parameters are chosen by maximizing the similarity correlation. The motivation for using &#34;similarity&#34; originates in spectral clustering theory (see e.g. Ng et al 2001, Advances in Neural Information Processing Systems 14: 849-856). We show that a particular form of similarity correlation is asymptotically equivalent to distance correlation for large values of the scale parameter. Furthermore, we extend similarity correlation to coherence between complex valued vectors, including its partitioning into real and imaginary contributions. Several toy examples are used for comparing distance and similarity correlations. For instance, points on a noiseless straight line give distance and similarity correlation values equal to 1; but points on a noiseless circle produces near zero distance correlation (dCorr=0.02) while the similarity correlation is distinctly non zero (sCorr=0.36). In distinction to the distance approach, similarity gives more importance to small distances, which emphasizes the local properties of functional relations. This paper represents a preliminary empirical study, showing that the novel similarity association has some distinct practical advantages over distance based association.For the sake of reproducible research, the software code implementing all methods here (using lazarus free-pascal &#34;www.lazarus.freepascal.org&#34;), including all test data, are freely available at: &#34;sites.google.com/site/pascualmarqui/home/similaritycovariance&#34;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.4291v4-abstract-full').style.display = 'none'; document.getElementById('1301.4291v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Pre-print; Technical report; 2013-01-18</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kinoshita%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10