CINXE.COM

double negation translation in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> double negation translation in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> double negation translation </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#construction'>Construction</a></li> <ul> <li><a href='#propositional_case'>Propositional case</a></li> <ul> <li><a href='#glivenkos_theorem'>Glivenko’s Theorem</a></li> </ul> <li><a href='#firstorder_case'>First-order case</a></li> <li><a href='#higherorder_case'>Higher-order case</a></li> </ul> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p><strong>Double negation translation</strong> is a method for converting <a class="existingWikiWord" href="/nlab/show/propositions">propositions</a> <a class="existingWikiWord" href="/nlab/show/valid">valid</a> in <a class="existingWikiWord" href="/nlab/show/classical+logic">classical logic</a> into propositions valid in <a class="existingWikiWord" href="/nlab/show/intuitionistic+logic">intuitionistic logic</a>. It can be used to establish relative consistency results. For example, it may be possible to show that the proof of a <a class="existingWikiWord" href="/nlab/show/contradiction">contradiction</a> in a classical theory could be translated to the proof of a contradiction in a constructive theory. <a class="existingWikiWord" href="/nlab/show/Kurt+G%C3%B6del">Kurt Gödel</a> used this technique to show that <a class="existingWikiWord" href="/nlab/show/Peano+arithmetic">Peano arithmetic</a> and <a class="existingWikiWord" href="/nlab/show/Heyting+arithmetic">Heyting arithmetic</a> are equiconsistent.</p> <p>Double negation translation was discovered independently by a number of mathematicians including <a class="existingWikiWord" href="/nlab/show/Kurt+G%C3%B6del">Kurt Gödel</a>, <a class="existingWikiWord" href="/nlab/show/Gerhard+Gentzen">Gerhard Gentzen</a>, and <a class="existingWikiWord" href="/nlab/show/Andrey+Kolmogorov">Andrey Kolmogorov</a>, and is also called the <strong>Gödel–Gentzen negative translation</strong>.</p> <h2 id="construction">Construction</h2> <p>The traditional descriptions are highly syntactic, but can be motivated by recalling some conceptual relationships between <a class="existingWikiWord" href="/nlab/show/Boolean+algebras">Boolean algebras</a> (which are algebras for classical propositional logic) and <a class="existingWikiWord" href="/nlab/show/Heyting+algebras">Heyting algebras</a> (which are algebras for intuitionistic propositional logic).</p> <h3 id="propositional_case">Propositional case</h3> <p>Recall from the article <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a> that the <a class="existingWikiWord" href="/nlab/show/left+adjoint">left adjoint</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo lspace="verythinmathspace">:</mo><mi>Bool</mi><mo>→</mo><mi>Heyt</mi></mrow><annotation encoding="application/x-tex">U \colon Bool \to Heyt</annotation></semantics></math></div> <p>is given objectwise by taking a Heyting algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> to the poset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">L_{\neg\neg}</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/regular+elements">regular elements</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">x \in L</annotation></semantics></math>, i.e., those that are fixed by <a class="existingWikiWord" href="/nlab/show/double+negation">double negation</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>=</mo><mo>¬</mo><mo>¬</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">x = \neg \neg x</annotation></semantics></math>. It was shown that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">L_{\neg\neg}</annotation></semantics></math> is a Boolean algebra, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><msub><mi>L</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\neg \neg \colon L \to L_{\neg\neg}</annotation></semantics></math> is a Heyting algebra homomorphism which is universal among Heyting algebra maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>→</mo><mi>U</mi><mi>B</mi></mrow><annotation encoding="application/x-tex">L \to U B</annotation></semantics></math> into Boolean algebras.</p> <p>In particular, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Heyt(S)</annotation></semantics></math> is the free Heyting algebra on a set of <a class="existingWikiWord" href="/nlab/show/variables">variables</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>, it follows by composing left adjoints</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Set</mi><mover><mo>→</mo><mi>free</mi></mover><mi>Heyt</mi><mover><mo>→</mo><mi>F</mi></mover><mi>Bool</mi></mrow><annotation encoding="application/x-tex">Set \stackrel{free}{\to} Heyt \stackrel{F}{\to} Bool</annotation></semantics></math></div> <p>that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><msub><mo stretchy="false">)</mo> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">Heyt(S)_{\neg\neg}</annotation></semantics></math> is the free Boolean algebra on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>.</p> <p>Furthermore, it was shown in <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a> that for Heyting algebras <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>,</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\neg\neg \colon L \to L</annotation></semantics></math> preserves finite <a class="existingWikiWord" href="/nlab/show/meets">meets</a>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\neg\neg \colon L \to L</annotation></semantics></math> preserves the <a class="existingWikiWord" href="/nlab/show/implication">implication</a> operation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⇒</mo></mrow><annotation encoding="application/x-tex">\Rightarrow</annotation></semantics></math>.</p> </li> </ul> <p>Consequently, the inclusion of regular elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub><mo>→</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">L_{\neg\neg} \to L</annotation></semantics></math> also preserves meets and implications, <strong>strictly</strong>. This gives the following result.</p> <div class="num_thm"> <h6 id="glivenkos_theorem">Glivenko’s Theorem</h6> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>⇒</mo><mi>q</mi></mrow><annotation encoding="application/x-tex">p \Rightarrow q</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/tautology">tautology</a> in classical propositional logic, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>¬</mo><mo>¬</mo><mi>p</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><mo>¬</mo><mo>¬</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\neg \neg p) \Rightarrow (\neg \neg q)</annotation></semantics></math> is a tautology in intuitionistic propositional logic, and conversely.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>Here <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> are <a class="existingWikiWord" href="/nlab/show/term">term</a> expressions in variables <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub><mo>∈</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">x_i \in S</annotation></semantics></math> over the signature <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>,</mo><mo>⇒</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0, 1, \vee, \wedge, \Rightarrow)</annotation></semantics></math>. To say <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>⇒</mo><mi>q</mi></mrow><annotation encoding="application/x-tex">p \Rightarrow q</annotation></semantics></math> is a classical tautology means that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>≤</mo><mo stretchy="false">(</mo><mi>p</mi><mo>⇒</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">1 \leq (p \Rightarrow q)</annotation></semantics></math> holds when interpreted in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Bool(S)</annotation></semantics></math>. But since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><msub><mo stretchy="false">)</mo> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">Bool(S) = Heyt(S)_{\neg\neg}</annotation></semantics></math>, this is equivalent to saying that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>1</mn><mo>≤</mo><mo>¬</mo><mo>¬</mo><mo stretchy="false">(</mo><mi>p</mi><mo>⇒</mo><mi>q</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mo>¬</mo><mo>¬</mo><mi>p</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><mo>¬</mo><mo>¬</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">1 \leq \neg\neg(p \Rightarrow q) = (\neg\neg p) \Rightarrow (\neg\neg q)</annotation></semantics></math></div> <p>when interpreted in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Heyt(S)</annotation></semantics></math>, which is to say that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>¬</mo><mo>¬</mo><mi>p</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><mo>¬</mo><mo>¬</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\neg \neg p) \Rightarrow (\neg\neg q)</annotation></semantics></math> is an intuitionistic tautology.</p> </div> <p>Continuing this thought: the join <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∨</mo></mrow><annotation encoding="application/x-tex">\vee</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Bool</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>Heyt</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">Bool(S) = Heyt_{\neg\neg}</annotation></semantics></math> is computed as</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>a</mi><msub><mo>∨</mo> <mi>Bool</mi></msub><mi>b</mi><mo>=</mo><mo>¬</mo><mo>¬</mo><mo stretchy="false">(</mo><mi>a</mi><msub><mo>∨</mo> <mi>Heyt</mi></msub><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a \vee_{Bool} b = \neg\neg(a \vee_{Heyt} b)</annotation></semantics></math></div> <p>since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><msub><mo stretchy="false">)</mo> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\neg\neg \colon Heyt(S) \to Heyt(S)_{\neg\neg}</annotation></semantics></math> preserves joins (it is a left adjoint). Putting all this together, because <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><msub><mo stretchy="false">)</mo> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\neg\neg \colon Heyt(S) \to Heyt(S)_{\neg\neg}</annotation></semantics></math> preserves Heyting algebra structure, we arrive at the following syntactic translation.</p> <div class="un_def" id="defn"> <h6 id="definition">Definition</h6> <p>The double-negation translation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>↦</mo><msup><mi>p</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">p \mapsto p^{N}</annotation></semantics></math> on term expressions in the theory of Heyting algebras <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is defined by induction as follows.</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>x</mi> <mi>N</mi></msup><mo>=</mo><mo>¬</mo><mo>¬</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">x^N = \neg\neg x</annotation></semantics></math> for variables <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mn>0</mn> <mi>N</mi></msup><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">0^N = 0</annotation></semantics></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\neg\neg \colon L \to L</annotation></semantics></math> preserves <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math>)</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mn>1</mn> <mi>N</mi></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">1^N = 1</annotation></semantics></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\neg\neg \colon L \to L</annotation></semantics></math> preserves <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>)</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>∧</mo><mi>q</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><msup><mi>p</mi> <mi>N</mi></msup><mo>∧</mo><msup><mi>q</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">(p \wedge q)^N = p^N \wedge q^N</annotation></semantics></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\neg\neg \colon L \to L</annotation></semantics></math> preserves the meet operation)</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>⇒</mo><mi>q</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><msup><mi>p</mi> <mi>N</mi></msup><mo>⇒</mo><msup><mi>q</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">(p \Rightarrow q)^N = p^N \Rightarrow q^N</annotation></semantics></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo lspace="verythinmathspace">:</mo><mi>L</mi><mo>→</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\neg\neg \colon L \to L</annotation></semantics></math> preserves the implication operation)</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>∨</mo><mi>q</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><mo>¬</mo><mo>¬</mo><mo stretchy="false">(</mo><msup><mi>p</mi> <mi>N</mi></msup><mo>∨</mo><msup><mi>q</mi> <mi>N</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(p \vee q)^N = \neg\neg(p^N \vee q^N)</annotation></semantics></math>.</p> </li> </ul> </div> <p>Thus, by Glivenko’s theorem, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is a classical tautology if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">p^N</annotation></semantics></math> is an intuitionistic tautology. This result may be extended to theories as well: suppose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is an intuitionistic theory or Heyting algebra, given by a presentation as a coequalizer in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Heyt</mi></mrow><annotation encoding="application/x-tex">Heyt</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Heyt</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mover><mo>→</mo><mo>→</mo></mover><mi>Heyt</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>→</mo><mi>L</mi><mo>.</mo></mrow><annotation encoding="application/x-tex">Heyt(T) \stackrel{\to}{\to} Heyt(S) \to L.</annotation></semantics></math></div> <p>Then, since the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi><mo>↦</mo><msub><mi>L</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">L \mapsto L_{\neg\neg}</annotation></semantics></math> is a left adjoint, it takes this coequalizer to a coequalizer</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Bool</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mover><mo>→</mo><mo>→</mo></mover><mi>Bool</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>L</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">Bool(T) \stackrel{\to}{\to} Bool(S) \to L_{\neg\neg}</annotation></semantics></math></div> <p>so that an term expression <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is a theorem in the classical theory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">L_{\neg\neg}</annotation></semantics></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">p^N</annotation></semantics></math> is a theorem in the intuitionistic theory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>.</p> <h3 id="firstorder_case">First-order case</h3> <p>Double negation translation for a formula, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math>, of a <a class="existingWikiWord" href="/nlab/show/first-order+language">first-order language</a> is defined inductively by the following clauses:</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ϕ</mi> <mi>N</mi></msup><mo>=</mo><mo>¬</mo><mo>¬</mo><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi^N = \neg \neg \phi</annotation></semantics></math>, for atomic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ϕ</mi><mo>∧</mo><mi>ψ</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><msup><mi>ϕ</mi> <mi>N</mi></msup><mo>∧</mo><msup><mi>ψ</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">(\phi \wedge \psi)^N = \phi^N \wedge \psi^N</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ϕ</mi><mo>∨</mo><mi>ψ</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><mo>¬</mo><mo stretchy="false">(</mo><mo>¬</mo><msup><mi>ϕ</mi> <mi>N</mi></msup><mo>∧</mo><mo>¬</mo><msup><mi>ψ</mi> <mi>N</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\phi \vee \psi)^N = \neg(\neg \phi^N \wedge \neg \psi^N)</annotation></semantics></math> (or equivalently, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo stretchy="false">(</mo><msup><mi>ϕ</mi> <mi>N</mi></msup><mo>∨</mo><msup><mi>ψ</mi> <mi>N</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\neg \neg (\phi^N \vee \psi^N)</annotation></semantics></math>)</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ϕ</mi><mo>→</mo><mi>ψ</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><msup><mi>ϕ</mi> <mi>N</mi></msup><mo>→</mo><msup><mi>ψ</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">(\phi \to \psi)^N = \phi^N \to \psi^N</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>¬</mo><mi>ϕ</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><mo>¬</mo><msup><mi>ϕ</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">(\neg \phi)^N = \neg \phi^N</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>∀</mo><mi>x</mi><mi>ϕ</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><mo>∀</mo><mi>x</mi><msup><mi>ϕ</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">(\forall x \phi)^N = \forall x \phi^N</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>∃</mo><mi>x</mi><mi>ϕ</mi><msup><mo stretchy="false">)</mo> <mi>N</mi></msup><mo>=</mo><mo>¬</mo><mo>∀</mo><mi>x</mi><mo>¬</mo><msup><mi>ϕ</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">(\exists x \phi)^N = \neg \forall x \neg \phi^N</annotation></semantics></math> (or equivalently, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>¬</mo><mo>¬</mo><mo>∃</mo><mi>x</mi><msup><mi>ϕ</mi> <mi>N</mi></msup></mrow><annotation encoding="application/x-tex">\neg \neg \exists x \phi^N</annotation></semantics></math>).</p> </li> </ul> <h3 id="higherorder_case">Higher-order case</h3> <p>The basic idea here is that any <a class="existingWikiWord" href="/nlab/show/topos">topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> gives rise to a <a class="existingWikiWord" href="/nlab/show/Boolean+topos">Boolean topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mrow><mo>¬</mo><mo>¬</mo></mrow></msub></mrow><annotation encoding="application/x-tex">E_{\neg\neg}</annotation></semantics></math>.</p> <h2 id="references">References</h2> <p>Informal exposition of a tiny aspect of this double negation business is in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Andrej+Bauer">Andrej Bauer</a>, <em><a href="http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/">Intuitionistic mathematics for physics</a></em>, 2008</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on May 10, 2017 at 08:09:12. See the <a href="/nlab/history/double+negation+translation" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/double+negation+translation" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/double+negation+translation/8" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/double+negation+translation" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/double+negation+translation" accesskey="S" class="navlink" id="history" rel="nofollow">History (8 revisions)</a> <a href="/nlab/show/double+negation+translation/cite" style="color: black">Cite</a> <a href="/nlab/print/double+negation+translation" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/double+negation+translation" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10