CINXE.COM

Search results for: piezoelectric smart structures

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: piezoelectric smart structures</title> <meta name="description" content="Search results for: piezoelectric smart structures"> <meta name="keywords" content="piezoelectric smart structures"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="piezoelectric smart structures" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="piezoelectric smart structures"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5597</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: piezoelectric smart structures</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5597</span> Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang">Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Xi%20Wang"> Zhan-Xi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xian-Sheng%20Qin"> Xian-Sheng Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/72915/nonlinear-modelling-and-analysis-of-piezoelectric-smart-thin-walled-structures-in-supersonic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5596</span> Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang">Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang"> Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Bai">Jing Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=electroelastic%20material%20nonlinearities" title=" electroelastic material nonlinearities"> electroelastic material nonlinearities</a> </p> <a href="https://publications.waset.org/abstracts/72720/finite-element-analysis-of-piezolaminated-structures-with-both-geometric-and-electroelastic-material-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5595</span> Micromechanics Modeling of 3D Network Smart Orthotropic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Hassan">E. M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Kalamkarov"> A. L. Kalamkarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20homogenization%20method" title="asymptotic homogenization method">asymptotic homogenization method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20piezothermoelastic%20coefficients" title=" effective piezothermoelastic coefficients"> effective piezothermoelastic coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20smart%20network%20composite%20structures" title=" 3D smart network composite structures"> 3D smart network composite structures</a> </p> <a href="https://publications.waset.org/abstracts/18190/micromechanics-modeling-of-3d-network-smart-orthotropic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5594</span> Modeling, Analysis and Control of a Smart Composite Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20H.%20Ghareeb">Nader H. Ghareeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Gaith"> Mohamed S. Gaith</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20M.%20Soleimani"> Sayed M. Soleimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20linear%20control" title="active linear control">active linear control</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability%20theorem" title=" lyapunov stability theorem"> lyapunov stability theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title=" smart structure"> smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20deflection" title=" static deflection"> static deflection</a> </p> <a href="https://publications.waset.org/abstracts/50009/modeling-analysis-and-control-of-a-smart-composite-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5593</span> Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang">Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang"> Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title="smart structures">smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=piezolamintes" title=" piezolamintes"> piezolamintes</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20electric%20field" title=" strong electric field"> strong electric field</a> </p> <a href="https://publications.waset.org/abstracts/60778/simulation-of-piezoelectric-laminated-smart-structure-under-strong-electric-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5592</span> Defect Modes in Multilayered Piezoelectric Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Piliposyan">D. G. Piliposyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20layered%20structure" title="piezoelectric layered structure">piezoelectric layered structure</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20phononic%20crystal" title=" periodic phononic crystal"> periodic phononic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=bandgap" title=" bandgap"> bandgap</a>, <a href="https://publications.waset.org/abstracts/search?q=bloch%20waves" title=" bloch waves"> bloch waves</a> </p> <a href="https://publications.waset.org/abstracts/55400/defect-modes-in-multilayered-piezoelectric-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5591</span> Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chen">M. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Q.%20Zhang"> S-Q. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Wang"> X. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tate"> D. Tate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limit%20state" title="limit state">limit state</a>, <a href="https://publications.waset.org/abstracts/search?q=shakedown%20analysis" title=" shakedown analysis"> shakedown analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20structure" title=" heterogeneous structure"> heterogeneous structure</a> </p> <a href="https://publications.waset.org/abstracts/60785/limit-state-of-heterogeneous-smart-structures-under-unknown-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5590</span> Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Pouladkhan">Alireza Pouladkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yavari%20Foroushani"> Mohammad Yavari Foroushani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mortazavi"> Ali Mortazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20plate" title=" sandwich plate"> sandwich plate</a>, <a href="https://publications.waset.org/abstracts/search?q=poling%20vector" title=" poling vector"> poling vector</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20materials" title=" piezoelectric materials"> piezoelectric materials</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title=" smart structure"> smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20enthalpy" title=" electric enthalpy"> electric enthalpy</a> </p> <a href="https://publications.waset.org/abstracts/6825/numerical-investigation-of-poling-vector-angle-on-adaptive-sandwich-plate-deflection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5589</span> Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rattanan%20Tippayaphalapholgul">Rattanan Tippayaphalapholgul</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasothorn%20Sapsathiarn"> Yasothorn Sapsathiarn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20engineering%20properties" title="effective engineering properties">effective engineering properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electroelastic%20response" title=" electroelastic response"> electroelastic response</a>, <a href="https://publications.waset.org/abstracts/search?q=imperfect%20interface" title=" imperfect interface"> imperfect interface</a>, <a href="https://publications.waset.org/abstracts/search?q=piezocomposite" title=" piezocomposite"> piezocomposite</a> </p> <a href="https://publications.waset.org/abstracts/43452/electro-mechanical-response-and-engineering-properties-of-piezocomposite-with-imperfect-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5588</span> Fractional Order Controller Design for Vibration Attenuation in an Airplane Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birs%20Isabela">Birs Isabela</a>, <a href="https://publications.waset.org/abstracts/search?q=Muresan%20Cristina"> Muresan Cristina</a>, <a href="https://publications.waset.org/abstracts/search?q=Folea%20Silviu"> Folea Silviu</a>, <a href="https://publications.waset.org/abstracts/search?q=Prodan%20Ovidiu"> Prodan Ovidiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt;line-height:normal"><span lang="EN-US">The wing is one of the most important parts of an airplane because it ensures stability, sustenance and maneuverability of the airplane. Because of its shape, the airplane wing can be simplified to a smart beam. Active vibration suppression is realized using piezoelectric actuators that are mounted on the surface of the beam. This work presents a tuning procedure of fractional order controllers based on a graphical approach of the frequency domain representation. The efficacy of the method is proven by practically testing the controller on a laboratory scale experimental stand.<o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20control" title="fractional order control">fractional order control</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20actuators" title=" piezoelectric actuators"> piezoelectric actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20beam" title=" smart beam"> smart beam</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/51944/fractional-order-controller-design-for-vibration-attenuation-in-an-airplane-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5587</span> Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ucar">H. Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Aridogan"> U. Aridogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRP%20composite" title="FRP composite">FRP composite</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20challenges" title=" operational challenges"> operational challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20transducers" title=" piezoelectric transducers"> piezoelectric transducers</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20modeling" title=" FE modeling"> FE modeling</a> </p> <a href="https://publications.waset.org/abstracts/134034/operational-challenges-of-marine-fiber-reinforced-polymer-composite-structures-coupled-with-piezoelectric-transducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5586</span> Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim">Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Won%20Kim"> Ju-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Sug%20Cho"> Myung-Sug Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20curing" title="concrete curing">concrete curing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20piezoelectric%20sensor" title=" embedded piezoelectric sensor"> embedded piezoelectric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sensing%20impedance" title=" self-sensing impedance "> self-sensing impedance </a> </p> <a href="https://publications.waset.org/abstracts/2720/real-time-compressive-strength-monitoring-for-npp-concrete-construction-using-an-embedded-piezoelectric-self-sensing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5585</span> Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Derayatifar">M. Derayatifar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Packirisamy"> M. Packirisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.B.%20Bhat"> R.B. Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20piezoelectric%20material" title=" functionally graded piezoelectric material"> functionally graded piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20force" title=" magnetic force"> magnetic force</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20%28micro-electro-mechanical%20systems%29%20piezoelectric" title=" MEMS (micro-electro-mechanical systems) piezoelectric"> MEMS (micro-electro-mechanical systems) piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20method" title=" perturbation method"> perturbation method</a> </p> <a href="https://publications.waset.org/abstracts/83297/functionally-graded-mems-piezoelectric-energy-harvester-with-magnetic-tip-mass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5584</span> An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rezaeipour%20Honarmandzad">Reza Rezaeipour Honarmandzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANN" title="ANN">ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage" title=" fatigue damage"> fatigue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20structures" title=" aircraft structures"> aircraft structures</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20transducers" title=" piezoelectric transducers"> piezoelectric transducers</a>, <a href="https://publications.waset.org/abstracts/search?q=lamb-wave%20measurements" title=" lamb-wave measurements"> lamb-wave measurements</a> </p> <a href="https://publications.waset.org/abstracts/29801/an-ann-approach-for-detection-and-localization-of-fatigue-damage-in-aircraft-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5583</span> Optimal Design of Polymer Based Piezoelectric Actuator with Varying Thickness and Length Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineet%20Tiwari">Vineet Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Dwivedi"> R. K. Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetika%20Srivastava"> Geetika Srivastava </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric cantilevers are exploited for their use in sensors and actuators. In this study, a unimorph cantilever beam is considered as a study element with a piezoelectric polymer Polyvinylidene fluoride (PVDF) layer bonded to a substrate layer. The different substrates like polysilicon, stainless steel and silicon nitride are tried for the study. An effort has been made to optimize and study the effect of the various parameters of the device in order to achieve maximum tip deflection. The variation of the tip displacement of the cantilever with respect to the length ratio of the nonpiezoelectric layer to the piezoelectric layer has been studied. The electric response of this unimorph cantilever beam is simulated with the help of finite element analysis software COMSOL Multiphysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators" title="actuators">actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a> </p> <a href="https://publications.waset.org/abstracts/24051/optimal-design-of-polymer-based-piezoelectric-actuator-with-varying-thickness-and-length-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5582</span> Smart Structures for Cost Effective Cultural Heritage Preservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamara%20Tr%C4%8Dek%20Pe%C4%8Dak">Tamara Trček Pečak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrej%20Mohar"> Andrej Mohar</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Tr%C4%8Dek"> Denis Trček</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article investigates the latest technological means, which deploy smart structures that are based on (advanced) wireless sensors technologies and ubiquitous computing in general in order to support the above mentioned decision making. Based on two years of in-field research experiences it gives their analysis for these kinds of purposes and provides appropriate architectures and architectural solutions. Moreover, the directions for future research are stated, because these technologies are currently the most promising ones to enable cost-effective preservation of cultural heritage not only in uncontrolled places, but also in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title="smart structures">smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensors" title=" wireless sensors"> wireless sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors%20networks" title=" sensors networks"> sensors networks</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20computing" title=" green computing"> green computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage%20preservation" title=" cultural heritage preservation"> cultural heritage preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20effectiveness" title=" cost effectiveness"> cost effectiveness</a> </p> <a href="https://publications.waset.org/abstracts/24294/smart-structures-for-cost-effective-cultural-heritage-preservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5581</span> Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karen%20B.%20Ghazaryan">Karen B. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20shear%20waves" title="surface shear waves">surface shear waves</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-electro-elastic%20composites" title=" magneto-electro-elastic composites"> magneto-electro-elastic composites</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoactive%20crystals" title=" piezoactive crystals"> piezoactive crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20elastic%20materials" title=" functionally graded elastic materials"> functionally graded elastic materials</a> </p> <a href="https://publications.waset.org/abstracts/77434/shear-surface-and-localized-waves-in-functionally-graded-piezoactive-electro-magneto-elastic-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5580</span> Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mohammad%20Karimi">Hassan Mohammad Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Salehzade%20Nobari"> Ali Salehzade Nobari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Shahverdi"> Hosein Shahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/181906/investigating-flutter-energy-harvesting-through-piezoelectric-materials-in-both-experimental-and-theoretical-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5579</span> Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Kim">J. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Kwon"> J. H. Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Park"> J. S. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Lim"> K. J. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator" title="actuator">actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=unimorph" title=" unimorph "> unimorph </a> </p> <a href="https://publications.waset.org/abstracts/14060/prediction-of-the-performance-of-a-bar-type-piezoelectric-vibration-actuator-depending-on-the-frequency-using-an-equivalent-circuit-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5578</span> Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Gareh">Saleh Gareh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Kok"> B. C. Kok</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh"> H. H. Goh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20energy%20harvesting" title="piezoelectric energy harvesting">piezoelectric energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=cymbal%20transducer" title=" cymbal transducer"> cymbal transducer</a>, <a href="https://publications.waset.org/abstracts/search?q=PZT%20%28lead%20zirconate%20titanate%29" title=" PZT (lead zirconate titanate)"> PZT (lead zirconate titanate)</a>, <a href="https://publications.waset.org/abstracts/search?q=2-DOF" title=" 2-DOF"> 2-DOF</a> </p> <a href="https://publications.waset.org/abstracts/45299/electromechanical-traffic-model-of-compression-based-piezoelectric-energy-harvesting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5577</span> Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Karimi">P. Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Khedmati%20Bazkiaei"> A. H. Khedmati Bazkiaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20material" title="smart material">smart material</a>, <a href="https://publications.waset.org/abstracts/search?q=on-line%20differential%20artificial%20neural%20network" title=" on-line differential artificial neural network"> on-line differential artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20control" title=" active control"> active control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/100819/active-control-improvement-of-smart-cantilever-beam-by-piezoelectric-materials-and-on-line-differential-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5576</span> Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20H.%20Cuadra">Carlos H. Cuadra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiro%20Shimoi"> Nobuhiro Shimoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20sensor" title="piezoelectric sensor">piezoelectric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20cyclic%20test" title=" static cyclic test"> static cyclic test</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20damages" title=" seismic damages"> seismic damages</a> </p> <a href="https://publications.waset.org/abstracts/109713/structural-damage-detection-in-a-steel-column-beam-joint-using-piezoelectric-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5575</span> Influence of Rotation on Rayleigh-Type Wave in Piezoelectric Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soniya%20Chaudhary">Soniya Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Sahu"> Sanjeev Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of Rayleigh-type waves in a rotating piezoelectric plate is investigated. The materials are assumed to be transversely isotropic crystals. The frequency equation have been derived for electrically open and short cases. Effect of rotation and piezoelectricity have been shown. It is also found that piezoelectric material properties have an important effect on Rayleigh wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezoelectric materials also in SAW devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotation" title="rotation">rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20equation" title=" frequency equation"> frequency equation</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh-type%20wave" title=" rayleigh-type wave"> rayleigh-type wave</a> </p> <a href="https://publications.waset.org/abstracts/60606/influence-of-rotation-on-rayleigh-type-wave-in-piezoelectric-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5574</span> Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kattimani">S. C. Kattimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20constrained%20layer%20damping%20%28ACLD%29" title="active constrained layer damping (ACLD)">active constrained layer damping (ACLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shells" title=" doubly curved shells"> doubly curved shells</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-electro-elastic" title=" magneto-electro-elastic"> magneto-electro-elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic%20composite" title=" multiferroic composite"> multiferroic composite</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title=" smart structures"> smart structures</a> </p> <a href="https://publications.waset.org/abstracts/61791/active-control-of-multiferroic-composite-shells-using-1-3-piezoelectric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5573</span> Piezoelectric based Passive Vibration Control of Composite Turbine Blade using Shunt Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kouider%20Bendine">Kouider Bendine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouaoui%20Satla"> Zouaoui Satla</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhoulda%20Farouk%20Benallel"> Boukhoulda Farouk Benallel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbine blades are subjected to a variety of loads, lead to an undesirable vibration. Such vibration can cause serious damages or even lead to a total failure of the blade. The present paper addresses the vibration control of turbine blade. The study aims to propose a passive vibration control using piezoelectric material. the passive control is effectuated by shunting an RL circuit to the piezoelectric patch in a parallel configuration. To this end, a Finite element model for the blade with the piezoelectric patch is implemented in ANSYS APDL. The model is then subjected to a harmonic frequency-based analysis for the case of control on and off. The results show that the proposed methodology was able to reduce blade vibration by 18%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20piezoelectric%20vibration%20control" title=" active piezoelectric vibration control"> active piezoelectric vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element." title=" finite element."> finite element.</a>, <a href="https://publications.waset.org/abstracts/search?q=shunt%20circuit" title=" shunt circuit"> shunt circuit</a> </p> <a href="https://publications.waset.org/abstracts/165603/piezoelectric-based-passive-vibration-control-of-composite-turbine-blade-using-shunt-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5572</span> Electrospun Zinc Oxide Nanowires as Highly Sensitive Piezoelectric Transduction Elements for Nano-Scale Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Brince%20Paul">K. Brince Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagendra%20Pratap%20Singh"> Nagendra Pratap Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Govind%20Singh"> Shiv Govind Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Rama%20Krishna%20Vanjari"> Siva Rama Krishna Vanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report optimized procedure for synthesizing highly oriented, horizontally aligned, Zinc oxide (ZnO) nanowires targeted towards developing highly sensitive piezoelectric transduction elements. The synthesis was carried out using Electrospinning technique, a facile, robust, low cost technique for producing nanowires. The as-synthesized ZnO nanowires were characterized by X-ray powder diffraction (XRD), Field Emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX).The Piezoelectric behavior of these nanowires was characterized using Peizoelectric Force microscopy (PFM). A very high d33 coefficient of 23.1 pm/V obtained through the PFM measurements is an indicative of its potential application towards developing miniaturized piezoelectric transduction elements for nanoscale devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/42232/electrospun-zinc-oxide-nanowires-as-highly-sensitive-piezoelectric-transduction-elements-for-nano-scale-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5571</span> Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gennady%20M.%20Kulikov">Gennady M. Kulikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20V.%20Plotnikova"> Svetlana V. Plotnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroelasticity" title="electroelasticity">electroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20piezoelectric%20shell" title=" laminated piezoelectric shell"> laminated piezoelectric shell</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20surfaces%20method" title=" sampling surfaces method"> sampling surfaces method</a> </p> <a href="https://publications.waset.org/abstracts/18393/numerical-modelling-of-laminated-shells-made-of-functionally-graded-elastic-and-piezoelectric-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5570</span> Electrical Properties of Cement-Based Piezoelectric Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Shawkey">Moustafa Shawkey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20G.%20El-Deen"> Ahmed G. El-Deen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mahmoud"> H. M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashad"> M. M. Rashad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20nanomaterials" title="piezoelectric nanomaterials">piezoelectric nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20technology" title=" cement technology"> cement technology</a>, <a href="https://publications.waset.org/abstracts/search?q=bismuth%20ferrite%20nanoparticles" title=" bismuth ferrite nanoparticles"> bismuth ferrite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a> </p> <a href="https://publications.waset.org/abstracts/84654/electrical-properties-of-cement-based-piezoelectric-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5569</span> A Case Study on Smart Energy City of the UK: Based on Business Model Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minzheong%20Song">Minzheong Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title="smart city">smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20energy" title=" smart energy"> smart energy</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20model" title=" business model"> business model</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20model%20innovation%20%28BMI%29" title=" business model innovation (BMI)"> business model innovation (BMI)</a> </p> <a href="https://publications.waset.org/abstracts/110461/a-case-study-on-smart-energy-city-of-the-uk-based-on-business-model-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5568</span> A Security Study for Smart Metering Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Hasan">Musaab Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Farkhund%20Iqbal"> Farkhund Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20C.%20K.%20Hung"> Patrick C. K. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20C.%20M.%20Fung"> Benjamin C. M. Fung</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Rafferty"> Laura Rafferty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern societies, the smart cities concept raised simultaneously with the projection towards adopting smart devices. A smart grid is an essential part of any smart city as both consumers and power utility companies benefit from the features provided by the power grid. In addition to advanced features presented by smart grids, there may also be a risk when the grids are exposed to malicious acts such as security attacks performed by terrorists. Considering advanced security measures in the design of smart meters could reduce these risks. This paper presents a security study for smart metering systems with a prototype implementation of the user interfaces for future works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=security%20design" title="security design">security design</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20meter" title=" smart meter"> smart meter</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20metering%20system" title=" smart metering system"> smart metering system</a> </p> <a href="https://publications.waset.org/abstracts/79129/a-security-study-for-smart-metering-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=186">186</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=187">187</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10