CINXE.COM

longitude of a link component in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> longitude of a link component in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> longitude of a link component </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/8940/#Item_5" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title></title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="knot_theory">Knot theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/knot+theory">knot theory</a></strong></p> <p><strong><a class="existingWikiWord" href="/nlab/show/knot">knot</a></strong>, <strong><a class="existingWikiWord" href="/nlab/show/link">link</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/isotopy">isotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/knot+complement">knot complement</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/knot+diagrams">knot diagrams</a>, <a class="existingWikiWord" href="/nlab/show/chord+diagram">chord diagram</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Reidemeister+move">Reidemeister move</a></p> </li> </ul> <p><strong>Examples/classes:</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/trefoil+knot">trefoil knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/torus+knot">torus knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/singular+knot">singular knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperbolic+knot">hyperbolic knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Borromean+link">Borromean link</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead+link">Whitehead link</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf+link">Hopf link</a></p> </li> </ul> <p><strong>Types</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/prime+knot">prime knot</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mutant+knot">mutant knot</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/knot+invariants">knot invariants</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/crossing+number">crossing number</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bridge+number">bridge number</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unknotting+number">unknotting number</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/colorability">colorability</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/knot+group">knot group</a></p> </li> <li> <p><span class="newWikiWord">knot genus<a href="/nlab/new/knot+genus">?</a></span></p> </li> <li> <p>polynomial knot invariants</p> <p>(<a class="existingWikiWord" href="/nlab/show/quantum+observables">observables</a> of <a class="existingWikiWord" href="/nlab/show/non-perturbative+quantum+field+theory">non-perturbative</a> <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Jones+polynomial">Jones polynomial</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/HOMFLY+polynomial">HOMFLY polynomial</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Alexander+polynomial">Alexander polynomial</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Reshetikhin-Turaev+invariants">Reshetikhin-Turaev invariants</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Vassiliev+knot+invariants">Vassiliev knot invariants</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/quantum+observables">observables</a> of <a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">pertrubative</a> <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Khovanov+homology">Khovanov homology</a></p> </li> <li> <p><span class="newWikiWord">Kauffman bracket<a href="/nlab/new/Kauffman+bracket">?</a></span></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/link+invariants">link invariants</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Milnor+mu-bar+invariants">Milnor mu-bar invariants</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/linking+number">linking number</a></p> </li> </ul> <p><strong>Related concepts:</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Vassiliev+skein+relation">Vassiliev skein relation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Seifert+surface">Seifert surface</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/virtual+knot+theory">virtual knot theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dehn+surgery">Dehn surgery</a>, <a class="existingWikiWord" href="/nlab/show/Kirby+calculus">Kirby calculus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/volume+conjecture">volume conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/arithmetic+topology">arithmetic topology</a></p> </li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/knot+theory">knot theory</a></div></div></div> </div> </div> <h1 id='section_table_of_contents'>Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#section_Introduction'>Introduction</a></li> <li><a href='#section_Combinatorial_definition'>Combinatorial definition</a></li> </ul> </div> <p><h2 id='section_Introduction'>Introduction</h2></p> <p>The <em>longitude</em> of a <a class="existingWikiWord" href="/nlab/show/knot">knot</a>, or more generally of a component of a <a class="existingWikiWord" href="/nlab/show/link">link</a>, plays a crucial role in the link-theoretic approach to <a class="existingWikiWord" href="/nlab/show/3-manifolds">3-manifolds</a> by means of the <span class="newWikiWord">Lickorish-Wallace theorem<a href="/nlab/new/Lickorish-Wallace+theorem">?</a></span> and the <a class="existingWikiWord" href="/nlab/show/Kirby+calculus">Kirby calculus</a>. It can be defined either geometrically or combinatorially.</p> <p><h2 id='section_Combinatorial_definition'>Combinatorial definition</h2></p> <p>The longitude of a knot or of a link component can be defined purely within <a class="existingWikiWord" href="/nlab/show/diagrammatic+knot+theory">diagrammatic knot theory</a>. We describe this in this section.</p> <p> <div class='num_defn' id='DefinitionLongitudeOfALinkComponent'> <h6>Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> be a component of a <a class="existingWikiWord" href="/nlab/show/link+diagram">link diagram</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>, viewed as defining a link with the <span class="newWikiWord">blackboard framing<a href="/nlab/new/blackboard+framing">?</a></span>. Pick an <span class="newWikiWord">orientation<a href="/nlab/new/orientation+of+a+link+diagram">?</a></span> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math>, and pick a point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>. The <em>longitude</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> and the chosen orientation of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/word">word</a> in the <a class="existingWikiWord" href="/nlab/show/free+group">free group</a> of the set of <span class="newWikiWord">arcs<a href="/nlab/new/arc+of+a+link+diagram">?</a></span> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> defined inductively as follows.</p> <p>1) Begin at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> with the empty word.</p> <p>2) Walk along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> following the orientation of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> until one reaches a crossing of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> which one approaches by means of an under-edge (one does not stop at crossings which one approaches and leaves by means of over-edges). If the orientations of the crossings are as follows, add <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> to the end of the word obtained thus far.</p> <div style="text-align: center"> <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="57.291pt" height="68.122pt" viewBox="0 0 57.291 68.122" version="1.1" xmlns="http://www.w3.org/2000/svg"> <defs> <g> <symbol overflow="visible" id="831385639-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="831385639-glyph0-1"> <path style="stroke:none;" d="M 3.71875 -3.765625 C 3.53125 -4.140625 3.25 -4.40625 2.796875 -4.40625 C 1.640625 -4.40625 0.40625 -2.9375 0.40625 -1.484375 C 0.40625 -0.546875 0.953125 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.421875 0.0625 3.015625 -0.640625 C 3.09375 -0.21875 3.453125 0.109375 3.921875 0.109375 C 4.28125 0.109375 4.5 -0.125 4.671875 -0.4375 C 4.828125 -0.796875 4.96875 -1.40625 4.96875 -1.421875 C 4.96875 -1.53125 4.875 -1.53125 4.84375 -1.53125 C 4.75 -1.53125 4.734375 -1.484375 4.703125 -1.34375 C 4.53125 -0.703125 4.359375 -0.109375 3.953125 -0.109375 C 3.671875 -0.109375 3.65625 -0.375 3.65625 -0.5625 C 3.65625 -0.78125 3.671875 -0.875 3.78125 -1.3125 C 3.890625 -1.71875 3.90625 -1.828125 4 -2.203125 L 4.359375 -3.59375 C 4.421875 -3.875 4.421875 -3.890625 4.421875 -3.9375 C 4.421875 -4.109375 4.3125 -4.203125 4.140625 -4.203125 C 3.890625 -4.203125 3.75 -3.984375 3.71875 -3.765625 Z M 3.078125 -1.1875 C 3.015625 -1 3.015625 -0.984375 2.875 -0.8125 C 2.4375 -0.265625 2.03125 -0.109375 1.75 -0.109375 C 1.25 -0.109375 1.109375 -0.65625 1.109375 -1.046875 C 1.109375 -1.546875 1.421875 -2.765625 1.65625 -3.234375 C 1.96875 -3.8125 2.40625 -4.1875 2.8125 -4.1875 C 3.453125 -4.1875 3.59375 -3.375 3.59375 -3.3125 C 3.59375 -3.25 3.578125 -3.1875 3.5625 -3.140625 Z M 3.078125 -1.1875 "></path> </symbol> </g> </defs> <g id="surface1"> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.00046875 28.345219 L -0.00046875 -27.764156 " transform="matrix(1,0,0,-1,28.645,28.646)"></path> <path style="fill:none;stroke-width:0.4782;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.374824 1.831563 C -1.261542 1.144063 0.00017625 0.112813 0.343926 -0.00046875 C 0.00017625 -0.11375 -1.261542 -1.145 -1.374824 -1.8325 " transform="matrix(0,1,1,0,28.645,56.40998)"></path> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -28.348125 0.00146875 L -4.980937 0.00146875 " transform="matrix(1,0,0,-1,28.645,28.646)"></path> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4.98 0.00146875 L 27.765156 0.00146875 " transform="matrix(1,0,0,-1,28.645,28.646)"></path> <path style="fill:none;stroke-width:0.4782;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.373824 1.8335 C -1.260542 1.146 0.00117625 0.11475 0.344926 0.00146875 C 0.00117625 -0.115719 -1.260542 -1.146969 -1.373824 -1.834469 " transform="matrix(1,0,0,-1,56.40898,28.646)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#831385639-glyph0-1" x="26.012" y="64.801"></use> </g> </g> </svg> </div> <p>If the orientations of the arcs of the crossing are instead as follows, add <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>a</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">a^{-1}</annotation></semantics></math> to the end of the word obtained thus far.</p> <div style="text-align: center"> <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="57.291pt" height="68.122pt" viewBox="0 0 57.291 68.122" version="1.1" xmlns="http://www.w3.org/2000/svg"> <defs> <g> <symbol overflow="visible" id="602912419-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="602912419-glyph0-1"> <path style="stroke:none;" d="M 3.71875 -3.765625 C 3.53125 -4.140625 3.25 -4.40625 2.796875 -4.40625 C 1.640625 -4.40625 0.40625 -2.9375 0.40625 -1.484375 C 0.40625 -0.546875 0.953125 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.421875 0.0625 3.015625 -0.640625 C 3.09375 -0.21875 3.453125 0.109375 3.921875 0.109375 C 4.28125 0.109375 4.5 -0.125 4.671875 -0.4375 C 4.828125 -0.796875 4.96875 -1.40625 4.96875 -1.421875 C 4.96875 -1.53125 4.875 -1.53125 4.84375 -1.53125 C 4.75 -1.53125 4.734375 -1.484375 4.703125 -1.34375 C 4.53125 -0.703125 4.359375 -0.109375 3.953125 -0.109375 C 3.671875 -0.109375 3.65625 -0.375 3.65625 -0.5625 C 3.65625 -0.78125 3.671875 -0.875 3.78125 -1.3125 C 3.890625 -1.71875 3.90625 -1.828125 4 -2.203125 L 4.359375 -3.59375 C 4.421875 -3.875 4.421875 -3.890625 4.421875 -3.9375 C 4.421875 -4.109375 4.3125 -4.203125 4.140625 -4.203125 C 3.890625 -4.203125 3.75 -3.984375 3.71875 -3.765625 Z M 3.078125 -1.1875 C 3.015625 -1 3.015625 -0.984375 2.875 -0.8125 C 2.4375 -0.265625 2.03125 -0.109375 1.75 -0.109375 C 1.25 -0.109375 1.109375 -0.65625 1.109375 -1.046875 C 1.109375 -1.546875 1.421875 -2.765625 1.65625 -3.234375 C 1.96875 -3.8125 2.40625 -4.1875 2.8125 -4.1875 C 3.453125 -4.1875 3.59375 -3.375 3.59375 -3.3125 C 3.59375 -3.25 3.578125 -3.1875 3.5625 -3.140625 Z M 3.078125 -1.1875 "></path> </symbol> </g> </defs> <g id="surface1"> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.00046875 27.763187 L -0.00046875 -28.346188 " transform="matrix(1,0,0,-1,28.645,28.646)"></path> <path style="fill:none;stroke-width:0.4782;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.375793 1.8325 C -1.258605 1.145 -0.0007925 0.11375 0.342957 0.00046875 C -0.0007925 -0.112813 -1.258605 -1.144063 -1.375793 -1.831563 " transform="matrix(0,-1,-1,0,28.645,0.88202)"></path> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -28.348125 0.00146875 L -4.980937 0.00146875 " transform="matrix(1,0,0,-1,28.645,28.646)"></path> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4.98 0.00146875 L 27.765156 0.00146875 " transform="matrix(1,0,0,-1,28.645,28.646)"></path> <path style="fill:none;stroke-width:0.4782;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.373824 1.8335 C -1.260542 1.146 0.00117625 0.11475 0.344926 0.00146875 C 0.00117625 -0.115719 -1.260542 -1.146969 -1.373824 -1.834469 " transform="matrix(1,0,0,-1,56.40898,28.646)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#602912419-glyph0-1" x="26.012" y="64.801"></use> </g> </g> </svg> </div> <p>The arc <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> is not required to, and may not, belong to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> <p>3) Repeat Step 2) until we return to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>.</p> <p></p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>There is an alternative definition if one works with <span class="newWikiWord">framed link diagrams<a href="/nlab/new/framed+link+diagrams">?</a></span>, which involves first replacing one’s original link diagram with one to which a certain number of twists (i.e. <a class="existingWikiWord" href="/nlab/show/R1+move">R1 moves</a>) have been applied according to the framing, and then using Definition <a class="maruku-ref" href="#DefinitionLongitudeOfALinkComponent"></a>.</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>Consider the <a class="existingWikiWord" href="/nlab/show/trefoil">trefoil</a> with a chosen point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> and orientation as shown below. Labels have been chosen for the arcs.</p> <div style="text-align: center"> <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="170.079pt" height="113.386pt" viewBox="0 0 170.079 113.386" version="1.1" xmlns="http://www.w3.org/2000/svg"> <defs> <g> <symbol overflow="visible" id="948782310-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="948782310-glyph0-1"> <path style="stroke:none;" d="M 3.71875 -3.765625 C 3.53125 -4.140625 3.25 -4.40625 2.796875 -4.40625 C 1.640625 -4.40625 0.40625 -2.9375 0.40625 -1.484375 C 0.40625 -0.546875 0.953125 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.421875 0.0625 3.015625 -0.640625 C 3.09375 -0.21875 3.453125 0.109375 3.921875 0.109375 C 4.28125 0.109375 4.5 -0.125 4.671875 -0.4375 C 4.828125 -0.796875 4.96875 -1.40625 4.96875 -1.421875 C 4.96875 -1.53125 4.875 -1.53125 4.84375 -1.53125 C 4.75 -1.53125 4.734375 -1.484375 4.703125 -1.34375 C 4.53125 -0.703125 4.359375 -0.109375 3.953125 -0.109375 C 3.671875 -0.109375 3.65625 -0.375 3.65625 -0.5625 C 3.65625 -0.78125 3.671875 -0.875 3.78125 -1.3125 C 3.890625 -1.71875 3.90625 -1.828125 4 -2.203125 L 4.359375 -3.59375 C 4.421875 -3.875 4.421875 -3.890625 4.421875 -3.9375 C 4.421875 -4.109375 4.3125 -4.203125 4.140625 -4.203125 C 3.890625 -4.203125 3.75 -3.984375 3.71875 -3.765625 Z M 3.078125 -1.1875 C 3.015625 -1 3.015625 -0.984375 2.875 -0.8125 C 2.4375 -0.265625 2.03125 -0.109375 1.75 -0.109375 C 1.25 -0.109375 1.109375 -0.65625 1.109375 -1.046875 C 1.109375 -1.546875 1.421875 -2.765625 1.65625 -3.234375 C 1.96875 -3.8125 2.40625 -4.1875 2.8125 -4.1875 C 3.453125 -4.1875 3.59375 -3.375 3.59375 -3.3125 C 3.59375 -3.25 3.578125 -3.1875 3.5625 -3.140625 Z M 3.078125 -1.1875 "></path> </symbol> <symbol overflow="visible" id="948782310-glyph0-2"> <path style="stroke:none;" d="M 2.375 -6.8125 C 2.375 -6.8125 2.375 -6.921875 2.25 -6.921875 C 2.03125 -6.921875 1.296875 -6.84375 1.03125 -6.8125 C 0.953125 -6.8125 0.84375 -6.796875 0.84375 -6.625 C 0.84375 -6.5 0.9375 -6.5 1.09375 -6.5 C 1.5625 -6.5 1.578125 -6.4375 1.578125 -6.328125 C 1.578125 -6.265625 1.5 -5.921875 1.453125 -5.71875 L 0.625 -2.46875 C 0.515625 -1.96875 0.46875 -1.796875 0.46875 -1.453125 C 0.46875 -0.515625 1 0.109375 1.734375 0.109375 C 2.90625 0.109375 4.140625 -1.375 4.140625 -2.8125 C 4.140625 -3.71875 3.609375 -4.40625 2.8125 -4.40625 C 2.359375 -4.40625 1.9375 -4.109375 1.640625 -3.8125 Z M 1.453125 -3.046875 C 1.5 -3.265625 1.5 -3.28125 1.59375 -3.390625 C 2.078125 -4.03125 2.53125 -4.1875 2.796875 -4.1875 C 3.15625 -4.1875 3.421875 -3.890625 3.421875 -3.25 C 3.421875 -2.65625 3.09375 -1.515625 2.90625 -1.140625 C 2.578125 -0.46875 2.125 -0.109375 1.734375 -0.109375 C 1.390625 -0.109375 1.0625 -0.375 1.0625 -1.109375 C 1.0625 -1.3125 1.0625 -1.5 1.21875 -2.125 Z M 1.453125 -3.046875 "></path> </symbol> <symbol overflow="visible" id="948782310-glyph0-3"> <path style="stroke:none;" d="M 3.953125 -3.78125 C 3.78125 -3.78125 3.65625 -3.78125 3.515625 -3.65625 C 3.34375 -3.5 3.328125 -3.328125 3.328125 -3.265625 C 3.328125 -3.015625 3.515625 -2.90625 3.703125 -2.90625 C 3.984375 -2.90625 4.25 -3.15625 4.25 -3.546875 C 4.25 -4.03125 3.78125 -4.40625 3.078125 -4.40625 C 1.734375 -4.40625 0.40625 -2.984375 0.40625 -1.578125 C 0.40625 -0.671875 0.984375 0.109375 2.03125 0.109375 C 3.453125 0.109375 4.28125 -0.953125 4.28125 -1.0625 C 4.28125 -1.125 4.234375 -1.203125 4.171875 -1.203125 C 4.109375 -1.203125 4.09375 -1.171875 4.03125 -1.09375 C 3.25 -0.109375 2.15625 -0.109375 2.046875 -0.109375 C 1.421875 -0.109375 1.140625 -0.59375 1.140625 -1.203125 C 1.140625 -1.609375 1.34375 -2.578125 1.6875 -3.1875 C 2 -3.765625 2.546875 -4.1875 3.09375 -4.1875 C 3.421875 -4.1875 3.8125 -4.0625 3.953125 -3.78125 Z M 3.953125 -3.78125 "></path> </symbol> <symbol overflow="visible" id="948782310-glyph0-4"> <path style="stroke:none;" d="M 0.453125 1.21875 C 0.375 1.5625 0.34375 1.625 -0.09375 1.625 C -0.203125 1.625 -0.3125 1.625 -0.3125 1.8125 C -0.3125 1.890625 -0.265625 1.9375 -0.1875 1.9375 C 0.078125 1.9375 0.375 1.90625 0.640625 1.90625 C 0.984375 1.90625 1.3125 1.9375 1.640625 1.9375 C 1.6875 1.9375 1.8125 1.9375 1.8125 1.734375 C 1.8125 1.625 1.71875 1.625 1.578125 1.625 C 1.078125 1.625 1.078125 1.5625 1.078125 1.46875 C 1.078125 1.34375 1.5 -0.28125 1.5625 -0.53125 C 1.6875 -0.234375 1.96875 0.109375 2.484375 0.109375 C 3.640625 0.109375 4.890625 -1.34375 4.890625 -2.8125 C 4.890625 -3.75 4.3125 -4.40625 3.5625 -4.40625 C 3.0625 -4.40625 2.578125 -4.046875 2.25 -3.65625 C 2.15625 -4.203125 1.71875 -4.40625 1.359375 -4.40625 C 0.890625 -4.40625 0.703125 -4.015625 0.625 -3.84375 C 0.4375 -3.5 0.3125 -2.90625 0.3125 -2.875 C 0.3125 -2.765625 0.40625 -2.765625 0.421875 -2.765625 C 0.53125 -2.765625 0.53125 -2.78125 0.59375 -3 C 0.765625 -3.703125 0.96875 -4.1875 1.328125 -4.1875 C 1.5 -4.1875 1.640625 -4.109375 1.640625 -3.734375 C 1.640625 -3.5 1.609375 -3.390625 1.5625 -3.21875 Z M 2.203125 -3.109375 C 2.265625 -3.375 2.546875 -3.65625 2.71875 -3.8125 C 3.078125 -4.109375 3.359375 -4.1875 3.53125 -4.1875 C 3.921875 -4.1875 4.171875 -3.84375 4.171875 -3.25 C 4.171875 -2.65625 3.84375 -1.515625 3.65625 -1.140625 C 3.3125 -0.4375 2.84375 -0.109375 2.46875 -0.109375 C 1.8125 -0.109375 1.6875 -0.9375 1.6875 -1 C 1.6875 -1.015625 1.6875 -1.03125 1.71875 -1.15625 Z M 2.203125 -3.109375 "></path> </symbol> </g> </defs> <g id="surface1"> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 51.712125 0.00046875 L 0.0011875 0.00046875 L 0.0011875 -28.347188 L 23.364469 -28.347188 " transform="matrix(1,0,0,-1,70.866,42.52)"></path> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 33.329313 -28.347188 L 56.692594 -28.347188 L 56.692594 28.348125 L 28.344938 28.348125 L 28.344938 4.980937 " transform="matrix(1,0,0,-1,70.866,42.52)"></path> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 28.344938 -4.98 L 28.344938 -56.694844 L 85.04025 -56.694844 L 85.04025 0.00046875 L 61.673063 0.00046875 " transform="matrix(1,0,0,-1,70.866,42.52)"></path> <path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1.993375 -14.175313 C 1.993375 -13.07375 1.098844 -12.179219 0.0011875 -12.179219 C -1.100375 -12.179219 -1.991 -13.07375 -1.991 -14.175313 C -1.991 -15.272969 -1.100375 -16.1675 0.0011875 -16.1675 C 1.098844 -16.1675 1.993375 -15.272969 1.993375 -14.175313 Z M 1.993375 -14.175313 " transform="matrix(1,0,0,-1,70.866,42.52)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#948782310-glyph0-1" x="82.406" y="39"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#948782310-glyph0-2" x="114.083" y="81.305"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#948782310-glyph0-3" x="91.381" y="90.019"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#948782310-glyph0-4" x="61.273" y="57.869"></use> </g> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.19501 1.594263 C -1.095401 0.996607 0.0003025 0.100122 0.299131 0.000513125 C 0.0003025 -0.0990963 -1.095401 -0.995581 -1.19501 -1.593237 " transform="matrix(0,-2,-2,0,127.55962,57.60998)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.196266 1.593088 C -1.096657 0.995431 -0.00095375 0.0989469 0.299827 -0.0006625 C -0.00095375 -0.100272 -1.096657 -0.996756 -1.196266 -1.594412 " transform="matrix(-2,0,0,2,114.30278,14.1732)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.196266 1.593516 C -1.096657 0.995859 -0.00095375 0.099375 0.299827 -0.000234375 C -0.00095375 -0.0998437 -1.096657 -0.996328 -1.196266 -1.593984 " transform="matrix(-2,0,0,2,114.30278,42.52)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.194567 1.593138 C -1.094957 0.995482 0.000745625 0.0989975 0.299574 -0.000611875 C 0.000745625 -0.100221 -1.094957 -0.996706 -1.194567 -1.594362 " transform="matrix(2,0,0,-2,126.64304,99.21362)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.196176 1.593556 C -1.096566 0.9959 -0.000863125 0.0994156 0.297965 -0.00019375 C -0.000863125 -0.0998031 -1.096566 -0.996288 -1.196176 -1.593944 " transform="matrix(2,0,0,-2,84.12282,70.8668)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.196201 1.593835 C -1.096591 0.996179 -0.000888125 0.0996944 0.29794 0.000085 C -0.000888125 -0.0995244 -1.096591 -0.996009 -1.196201 -1.593665 " transform="matrix(0,-2,-2,0,155.90642,71.78338)"></path> </g> </svg> </div> <p>The longitude of the trefoil with respect to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> and this orientation is then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>c</mi><mi>a</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">c a b</annotation></semantics></math>.</p> <p></p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>Consider the <a class="existingWikiWord" href="/nlab/show/Hopf+link">Hopf link</a>, in which both components have been equipped with a chosen point and an orientation as shown below. Labels have been chosen for the arcs.</p> <div style="text-align: center"> <svg xmlns:xlink="http://www.w3.org/1999/xlink" width="113.386pt" height="113.386pt" viewBox="0 0 113.386 113.386" version="1.1" xmlns="http://www.w3.org/2000/svg"> <defs> <g> <symbol overflow="visible" id="822974523-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="822974523-glyph0-1"> <path style="stroke:none;" d="M 3.71875 -3.765625 C 3.53125 -4.140625 3.25 -4.40625 2.796875 -4.40625 C 1.640625 -4.40625 0.40625 -2.9375 0.40625 -1.484375 C 0.40625 -0.546875 0.953125 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.421875 0.0625 3.015625 -0.640625 C 3.09375 -0.21875 3.453125 0.109375 3.921875 0.109375 C 4.28125 0.109375 4.5 -0.125 4.671875 -0.4375 C 4.828125 -0.796875 4.96875 -1.40625 4.96875 -1.421875 C 4.96875 -1.53125 4.875 -1.53125 4.84375 -1.53125 C 4.75 -1.53125 4.734375 -1.484375 4.703125 -1.34375 C 4.53125 -0.703125 4.359375 -0.109375 3.953125 -0.109375 C 3.671875 -0.109375 3.65625 -0.375 3.65625 -0.5625 C 3.65625 -0.78125 3.671875 -0.875 3.78125 -1.3125 C 3.890625 -1.71875 3.90625 -1.828125 4 -2.203125 L 4.359375 -3.59375 C 4.421875 -3.875 4.421875 -3.890625 4.421875 -3.9375 C 4.421875 -4.109375 4.3125 -4.203125 4.140625 -4.203125 C 3.890625 -4.203125 3.75 -3.984375 3.71875 -3.765625 Z M 3.078125 -1.1875 C 3.015625 -1 3.015625 -0.984375 2.875 -0.8125 C 2.4375 -0.265625 2.03125 -0.109375 1.75 -0.109375 C 1.25 -0.109375 1.109375 -0.65625 1.109375 -1.046875 C 1.109375 -1.546875 1.421875 -2.765625 1.65625 -3.234375 C 1.96875 -3.8125 2.40625 -4.1875 2.8125 -4.1875 C 3.453125 -4.1875 3.59375 -3.375 3.59375 -3.3125 C 3.59375 -3.25 3.578125 -3.1875 3.5625 -3.140625 Z M 3.078125 -1.1875 "></path> </symbol> <symbol overflow="visible" id="822974523-glyph0-2"> <path style="stroke:none;" d="M 2.375 -6.8125 C 2.375 -6.8125 2.375 -6.921875 2.25 -6.921875 C 2.03125 -6.921875 1.296875 -6.84375 1.03125 -6.8125 C 0.953125 -6.8125 0.84375 -6.796875 0.84375 -6.625 C 0.84375 -6.5 0.9375 -6.5 1.09375 -6.5 C 1.5625 -6.5 1.578125 -6.4375 1.578125 -6.328125 C 1.578125 -6.265625 1.5 -5.921875 1.453125 -5.71875 L 0.625 -2.46875 C 0.515625 -1.96875 0.46875 -1.796875 0.46875 -1.453125 C 0.46875 -0.515625 1 0.109375 1.734375 0.109375 C 2.90625 0.109375 4.140625 -1.375 4.140625 -2.8125 C 4.140625 -3.71875 3.609375 -4.40625 2.8125 -4.40625 C 2.359375 -4.40625 1.9375 -4.109375 1.640625 -3.8125 Z M 1.453125 -3.046875 C 1.5 -3.265625 1.5 -3.28125 1.59375 -3.390625 C 2.078125 -4.03125 2.53125 -4.1875 2.796875 -4.1875 C 3.15625 -4.1875 3.421875 -3.890625 3.421875 -3.25 C 3.421875 -2.65625 3.09375 -1.515625 2.90625 -1.140625 C 2.578125 -0.46875 2.125 -0.109375 1.734375 -0.109375 C 1.390625 -0.109375 1.0625 -0.375 1.0625 -1.109375 C 1.0625 -1.3125 1.0625 -1.5 1.21875 -2.125 Z M 1.453125 -3.046875 "></path> </symbol> </g> </defs> <g id="surface1"> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 4.98 -28.347188 L 28.347187 -28.347188 L 28.347187 28.348125 L -28.348125 28.348125 L -28.348125 -28.347188 L -4.980938 -28.347188 " transform="matrix(1,0,0,-1,42.52,42.52)"></path> <path style="fill:none;stroke-width:0.59776;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 23.366719 0.00046875 L -0.00046875 0.00046875 L -0.00046875 -56.694844 L 56.694844 -56.694844 L 56.694844 0.00046875 L 33.327656 0.00046875 " transform="matrix(1,0,0,-1,42.52,42.52)"></path> <path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1.991719 28.348125 C 1.991719 29.445781 1.101094 30.340312 -0.00046875 30.340312 C -1.102031 30.340312 -1.992656 29.445781 -1.992656 28.348125 C -1.992656 27.246562 -1.102031 26.355937 -0.00046875 26.355937 C 1.101094 26.355937 1.991719 27.246562 1.991719 28.348125 Z M 1.991719 28.348125 " transform="matrix(1,0,0,-1,42.52,42.52)"></path> <path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.3985;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 58.687031 -28.347188 C 58.687031 -27.245625 57.7925 -26.355 56.694844 -26.355 C 55.593281 -26.355 54.702656 -27.245625 54.702656 -28.347188 C 54.702656 -29.44875 55.593281 -30.339375 56.694844 -30.339375 C 57.7925 -30.339375 58.687031 -29.44875 58.687031 -28.347188 Z M 58.687031 -28.347188 " transform="matrix(1,0,0,-1,42.52,42.52)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#822974523-glyph0-1" x="5.387" y="58.838"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#822974523-glyph0-2" x="68.728" y="109.651"></use> </g> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.195783 1.594413 C -1.096173 0.996756 -0.00047 0.100272 0.298358 0.0006625 C -0.00047 -0.0989469 -1.096173 -0.995431 -1.195783 -1.593087 " transform="matrix(0,-2,-2,0,14.1732,43.43656)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1.19481 1.593556 C 1.095201 0.9959 -0.0005025 0.0994156 -0.299331 -0.00019375 C -0.0005025 -0.0998031 1.095201 -0.996288 1.19481 -1.593944 " transform="matrix(2,0,0,-2,58.23538,70.8668)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 1.195347 1.593984 C 1.095738 0.996328 0.000035 0.0998438 -0.298793 0.000234375 C 0.000035 -0.099375 1.095738 -0.995859 1.195347 -1.593516 " transform="matrix(0,-2,-2,0,42.52,87.75007)"></path> <path style="fill:none;stroke-width:0.31879;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.195169 1.593516 C -1.095559 0.995859 0.00014375 0.099375 0.298972 -0.000234375 C 0.00014375 -0.0998437 -1.095559 -0.996328 -1.195169 -1.593984 " transform="matrix(-2,0,0,2,84.53935,42.52)"></path> </g> </svg> </div> <p>The longitude of the component to which the arc <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> belongs is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>b</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">b^{-1}</annotation></semantics></math>. The longitude of the component to which the arc <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math> belongs is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>a</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">a^{-1}</annotation></semantics></math>.</p> <p></p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>The longitude of a component of an oriented link diagram is unique up to <a class="existingWikiWord" href="/nlab/show/rotation+permutation">rotation permutation</a>: the longitude obtained using any one choice of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is a rotation permutation of the longitude obtained using any other choice of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>.</p> <p>When it comes to 3-manifolds, for example when describing the <a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a>, everything is typically invariant under rotation permutation. Thus it is usual to speak of <em>the</em> longitude of a component of an oriented link diagram.</p> </div> </p> <div class="property">category: <a class="category_link" href="/nlab/all_pages/knot+theory">knot theory</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on January 18, 2019 at 13:21:20. See the <a href="/nlab/history/longitude+of+a+link+component" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/longitude+of+a+link+component" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/8940/#Item_5">Discuss</a><span class="backintime"><a href="/nlab/revision/longitude+of+a+link+component/9" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/longitude+of+a+link+component" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/longitude+of+a+link+component" accesskey="S" class="navlink" id="history" rel="nofollow">History (9 revisions)</a> <a href="/nlab/show/longitude+of+a+link+component/cite" style="color: black">Cite</a> <a href="/nlab/print/longitude+of+a+link+component" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/longitude+of+a+link+component" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10