CINXE.COM

Search results for: geospatial tools

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: geospatial tools</title> <meta name="description" content="Search results for: geospatial tools"> <meta name="keywords" content="geospatial tools"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="geospatial tools" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="geospatial tools"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4144</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: geospatial tools</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4144</span> Development of Open Source Geospatial Certification Model Based on Geospatial Technology Competency Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanzeel%20Ur%20Rehman%20Khan">Tanzeel Ur Rehman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Josef%20Behr"> Franz Josef Behr</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Davis"> Phillip Davis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open source geospatial certifications are needed in geospatial technology education and industry sector. In parallel with proprietary software, free and open source software solutions become important in geospatial technology research and play an important role for the growth of the geospatial industry. ESRI, GISCI (GIS Certification Institute), ASPRS (American Society of Photogrammetry and remote sensing), and Meta spatial are offering certifications on proprietary and open source software. These are portfolio and competency based certifications depending on GIS Body of Knowledge (Bok). The analysis of these certification approaches might lead to the discovery of some gaps in them and will open a new way to develop certifications related to the geospatial open source (OS). This new certification will investigate the different geospatial competencies according to open source tools that help to identify geospatial professionals and strengthen the geospatial academic content. The goal of this research is to introduce a geospatial certification model based on geospatial technology competency model (GTCM).The developed certification will not only incorporate the importance of geospatial education and production of the geospatial competency-based workforce in universities and companies (private or public) as well as describe open source solutions with tools and technology. Job analysis, market analysis, survey analysis of this certification opens a new horizon for business as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial%20certification" title="geospatial certification">geospatial certification</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20source" title=" open source"> open source</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20technology%20competency%20model" title=" geospatial technology competency model"> geospatial technology competency model</a>, <a href="https://publications.waset.org/abstracts/search?q=geoscience" title=" geoscience"> geoscience</a> </p> <a href="https://publications.waset.org/abstracts/33486/development-of-open-source-geospatial-certification-model-based-on-geospatial-technology-competency-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4143</span> Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Rodriguez%20Amaya">Laura Rodriguez Amaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title="engineering education">engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20technology" title=" geospatial technology"> geospatial technology</a>, <a href="https://publications.waset.org/abstracts/search?q=geovisualization" title=" geovisualization"> geovisualization</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM" title=" STEM"> STEM</a> </p> <a href="https://publications.waset.org/abstracts/74820/faculty-use-of-geospatial-tools-for-deep-learning-in-science-and-engineering-courses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4142</span> Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elhakeem">Mohamed Elhakeem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Thanos%20Papanicolaou"> A. N. Thanos Papanicolaou</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Wilson"> Christopher Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jia%20Chang"> Yi-Jia Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saturated%20hydraulic%20conductivity" title="saturated hydraulic conductivity">saturated hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=pedotransfer%20functions" title=" pedotransfer functions"> pedotransfer functions</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20models" title=" watershed models"> watershed models</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20tools" title=" geospatial tools"> geospatial tools</a> </p> <a href="https://publications.waset.org/abstracts/5877/prediction-of-saturated-hydraulic-conductivity-dynamics-in-an-iowan-agriculture-watershed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4141</span> Digital Geography and Geographic Information System in Schools: Towards a Hierarchical Geospatial Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Fargher">Mary Fargher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the opportunities of using a more hierarchical approach to geospatial enquiry in using GIS in school geography. A case is made that it is not just the lack of teacher technological knowledge that is stopping some teachers from using GIS in the classroom but that there is a gap in their understanding of how to link GIS use more specifically to the pedagogy of teaching geography with GIS. Using a hierarchical approach to geospatial enquiry as a theoretical framework, the analysis shows clearly how concepts of spatial distribution, interaction, relation, comparison, and temporal relationships can be used by teachers more explicitly to capitalise on the analytical power of GIS and to construct what can be interpreted as powerful geographical knowledge. An exemplar illustrating this approach on the topic of geo-hazards is then presented for critical analysis and discussion. Recommendations are then made for a model of progression for geography teacher education with GIS through hierarchical geospatial enquiry that takes into account beginner, intermediate, and more advanced users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20geography" title="digital geography">digital geography</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20geospatial%20enquiry" title=" hierarchical geospatial enquiry"> hierarchical geospatial enquiry</a>, <a href="https://publications.waset.org/abstracts/search?q=powerful%20geographical%20knowledge" title=" powerful geographical knowledge"> powerful geographical knowledge</a> </p> <a href="https://publications.waset.org/abstracts/125215/digital-geography-and-geographic-information-system-in-schools-towards-a-hierarchical-geospatial-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4140</span> A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeolu%20O.%20Dairo">Adeolu O. Dairo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial" title="geospatial">geospatial</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-analytics" title=" geo-analytics"> geo-analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20map" title=" self-organizing map"> self-organizing map</a>, <a href="https://publications.waset.org/abstracts/search?q=customer-centric" title=" customer-centric"> customer-centric</a> </p> <a href="https://publications.waset.org/abstracts/93024/a-geospatial-consumer-marketing-campaign-optimization-strategy-case-of-fuzzy-approach-in-nigeria-mobile-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4139</span> Enabling Quantitative Urban Sustainability Assessment with Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changfeng%20Fu">Changfeng Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20sustainability%20assessment" title="urban sustainability assessment">urban sustainability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20analysis" title=" quantitative analysis"> quantitative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20indicator" title=" sustainability indicator"> sustainability indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data" title=" geospatial data"> geospatial data</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a> </p> <a href="https://publications.waset.org/abstracts/59903/enabling-quantitative-urban-sustainability-assessment-with-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4138</span> Spatial Distribution and Time Series Analysis of COVID-19 Pandemic in Italy: A Geospatial Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Farhan%20Ul%20Moazzam">Muhammad Farhan Ul Moazzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamkeen%20Urooj%20Paracha"> Tamkeen Urooj Paracha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghani%20Rahman"> Ghani Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Gul%20Lee"> Byung Gul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Farid"> Nasir Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Arshad"> Adnan Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The novel coronavirus pandemic disease (COVID-19) affected the whole globe, though there is a lack of clinical studies and its epidemiological features. But as per the observation, it has been seen that most of the COVID-19 infected patients show mild to moderate symptoms, and they get better without any medical assistance due to a better immune system to generate antibodies against the novel coronavirus. In this study, the active cases, serious cases, recovered cases, deaths and total confirmed cases had been analyzed using the geospatial inverse distance weightage technique (IDW) within the time span of 2nd March to 3rd June 2020. As of 3rd June, the total number of COVID-19 cases in Italy were 231,238, total deaths 33,310, serious cases 350, recovered cases 158,951, and active cases were 39,177, which has been reported by the Ministry of Health, Italy. March 2nd-June 3rd, 2020 a sum of 231,238 cases has been reported in Italy out of which 38.68% cases reported in the Lombardia region with a death rate of 18%, which is high from its national mortality rate followed by Emilia-Romagna (14.89% deaths), Piemonte (12.68% deaths), and Vento (10% deaths). As per the total cases in the region, the highest number of recoveries has been observed in Umbria (92.52%), followed by Basilicata (87%), Valle d'Aosta (86.85%), and Trento (84.54%). The COVID-19 evolution in Italy has been particularly found in the major urban area, i.e., Rome, Milan, Naples, Bologna, and Florence. Geospatial technology played a vital role in this pandemic by tracking infected patient, active cases, and recovered cases. Geospatial techniques are very important in terms of monitoring and planning to control the pandemic spread in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20analysis" title=" geospatial analysis"> geospatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=IDW" title=" IDW"> IDW</a>, <a href="https://publications.waset.org/abstracts/search?q=Italy" title=" Italy"> Italy</a> </p> <a href="https://publications.waset.org/abstracts/130341/spatial-distribution-and-time-series-analysis-of-covid-19-pandemic-in-italy-a-geospatial-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4137</span> Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uro%C5%A1%20Durlevi%C4%87">Uroš Durlević</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Novkovi%C4%87"> Ivan Novković</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20%C4%8Cegar"> Nina Čegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefanija%20Stojkovi%C4%87"> Stefanija Stojković</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=FAHP" title=" FAHP"> FAHP</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%A0ar%20Mountains" title=" Šar Mountains"> Šar Mountains</a>, <a href="https://publications.waset.org/abstracts/search?q=snow%20avalanches" title=" snow avalanches"> snow avalanches</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a> </p> <a href="https://publications.waset.org/abstracts/159398/geospatial-modeling-of-dry-snow-avalanches-distribution-using-geographic-information-systems-and-remote-sensing-a-case-study-of-the-sar-mountains-balkan-peninsula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4136</span> Localization of Geospatial Events and Hoax Prediction in the UFO Database </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Krishnamurthy">Harish Krishnamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lafontant"> Anna Lafontant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%20Yi"> Ren Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time-series%20clustering" title="time-series clustering">time-series clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hoax%20prediction" title=" hoax prediction"> hoax prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20events" title=" geospatial events"> geospatial events</a> </p> <a href="https://publications.waset.org/abstracts/61710/localization-of-geospatial-events-and-hoax-prediction-in-the-ufo-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4135</span> Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongqin%20Zhang">Yongqin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Lett"> John Lett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone%20images" title="drone images">drone images</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20analysis" title=" geospatial analysis"> geospatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetric%20measurements" title=" photogrammetric measurements"> photogrammetric measurements</a> </p> <a href="https://publications.waset.org/abstracts/162153/designing-agricultural-irrigation-systems-using-drone-technology-and-geospatial-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4134</span> Site Suitability Analysis for Multipurpose Dams Using Geospatial Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saima%20Iftikhar%20Rida%20Shabbir">Saima Iftikhar Rida Shabbir</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20Hassan"> Zeeshan Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water shortage, energy crisis and natural misfortunes are the glitches which reduce the efficacy of agricultural ecosystems especially in Pakistan where these are more frequent besides being intense. Accordingly, the agricultural water resources, food security and country’s economy are at risk. To address this, we have used Geospatial techniques incorporating ASTER Global DEM, Geological map, rainfall data, discharge data, Landsat 5 image of Swat valley in order to assess the viability of selected sites. The sites have been studied via GIS tools, Hydrological investigation and multiparametric analysis for their potentialities of collecting and securing the rain water; regulating floods by storing the surplus water bulks by check dams and developing them for power generation. Our results showed that Siat1-1 was very useful for low-cost dam with main objective of as Debris dam; Site-2 and Site 3 were check dams sites having adequate storing reservoir so as to arrest the inconsistent flow accompanied by catering the sedimentation effects and the debris flows; Site 4 had a huge reservoir capacity but it entails enormous edifice cost over very great flood plain. Thus, there is necessity of active Hydrological developments to estimate the flooded area using advanced and multifarious GIS and remote sensing approaches so that the sites could be developed for harnessing those sites for agricultural and energy drives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=site%20suitability" title="site suitability">site suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=check%20dams" title=" check dams"> check dams</a>, <a href="https://publications.waset.org/abstracts/search?q=SHP" title=" SHP"> SHP</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20analysis" title=" terrain analysis"> terrain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20estimation" title=" volume estimation "> volume estimation </a> </p> <a href="https://publications.waset.org/abstracts/47533/site-suitability-analysis-for-multipurpose-dams-using-geospatial-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4133</span> An Overview of the SIAFIM Connected Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiberiu%20Boros">Tiberiu Boros</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Ionita"> Angela Ionita</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Visan"> Maria Visan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wildfire" title="wildfire">wildfire</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20fire" title=" forest fire"> forest fire</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20applications" title=" mobile applications"> mobile applications</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a> </p> <a href="https://publications.waset.org/abstracts/21764/an-overview-of-the-siafim-connected-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4132</span> Revolutionizing Oil Palm Replanting: Geospatial Terrace Design for High-precision Ground Implementation Compared to Conventional Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursuhaili%20Najwa%20Masrol">Nursuhaili Najwa Masrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Hafizah%20Mohammed"> Nur Hafizah Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Nadhirah%20Rusyda%20Rosnan"> Nur Nadhirah Rusyda Rosnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Subramaniam"> Vijaya Subramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sim%20Choon%20Cheak"> Sim Choon Cheak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replanting in oil palm cultivation is vital to enable the introduction of planting materials and provides an opportunity to improve the road, drainage, terrace design, and planting density. Oil palm replanting is fundamentally necessary every 25 years. The adoption of the digital replanting blueprint is imperative as it can assist the Malaysia Oil Palm industry in addressing challenges such as labour shortages and limited expertise related to replanting tasks. Effective replanting planning should commence at least 6 months prior to the actual replanting process. Therefore, this study will help to plan and design the replanting blueprint with high-precision translation on the ground. With the advancement of geospatial technology, it is now feasible to engage in thoroughly researched planning, which can help maximize the potential yield. A blueprint designed before replanting is to enhance management’s ability to optimize the planting program, address manpower issues, or even increase productivity. In terrace planting blueprints, geographic tools have been utilized to design the roads, drainages, terraces, and planting points based on the ARM standards. These designs are mapped with location information and undergo statistical analysis. The geospatial approach is essential in precision agriculture and ensuring an accurate translation of design to the ground by implementing high-accuracy technologies. In this study, geospatial and remote sensing technologies played a vital role. LiDAR data was employed to determine the Digital Elevation Model (DEM), enabling the precise selection of terraces, while ortho imagery was used for validation purposes. Throughout the designing process, Geographical Information System (GIS) tools were extensively utilized. To assess the design’s reliability on the ground compared with the current conventional method, high-precision GPS instruments like EOS Arrow Gold and HIPER VR GNSS were used, with both offering accuracy levels between 0.3 cm and 0.5cm. Nearest Distance Analysis was generated to compare the design with actual planting on the ground. The analysis revealed that it could not be applied to the roads due to discrepancies between actual roads and the blueprint design, which resulted in minimal variance. In contrast, the terraces closely adhered to the GPS markings, with the most variance distance being less than 0.5 meters compared to actual terraces constructed. Considering the required slope degrees for terrace planting, which must be greater than 6 degrees, the study found that approximately 65% of the terracing was constructed at a 12-degree slope, while over 50% of the terracing was constructed at slopes exceeding the minimum degrees. Utilizing blueprint replanting promising strategies for optimizing land utilization in agriculture. This approach harnesses technology and meticulous planning to yield advantages, including increased efficiency, enhanced sustainability, and cost reduction. From this study, practical implementation of this technique can lead to tangible and significant improvements in agricultural sectors. In boosting further efficiencies, future initiatives will require more sophisticated techniques and the incorporation of precision GPS devices for upcoming blueprint replanting projects besides strategic progression aims to guarantee the precision of both blueprint design stages and its subsequent implementation on the field. Looking ahead, automating digital blueprints are necessary to reduce time, workforce, and costs in commercial production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=replanting" title="replanting">replanting</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial" title=" geospatial"> geospatial</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=blueprint" title=" blueprint"> blueprint</a> </p> <a href="https://publications.waset.org/abstracts/175546/revolutionizing-oil-palm-replanting-geospatial-terrace-design-for-high-precision-ground-implementation-compared-to-conventional-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4131</span> Advances in Medication Reconciliation Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zixuan%20Liu">Zixuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhang"> Xin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kexin%20He"> Kexin He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of widespread prevalence of multiple diseases, medication safety has become a highly concerned issue affecting patient safety. Medication reconciliation plays a vital role in preventing potential medication risks. However, in medical practice, medication reconciliation faces various challenges, and there is a wide variety of medication reconciliation tools, making the selection of appropriate tools somewhat difficult. The article introduces and analyzes the currently available medication reconciliation tools, providing a reference for healthcare professionals to choose and apply the appropriate medication reconciliation tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title="patient safety">patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=medication%20reconciliation" title=" medication reconciliation"> medication reconciliation</a>, <a href="https://publications.waset.org/abstracts/search?q=tools" title=" tools"> tools</a>, <a href="https://publications.waset.org/abstracts/search?q=review" title=" review"> review</a> </p> <a href="https://publications.waset.org/abstracts/180774/advances-in-medication-reconciliation-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4130</span> Geodesign Application for Bio-Swale Design: A Data-Driven Design Approach for a Case Site in Ottawa Street North in Hamilton, Ontario, Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adele%20Pierre">Adele Pierre</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Amoroso"> Nadia Amoroso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changing climate patterns are resulting in increased in storm severity, challenging traditional methods of managing stormwater runoff. This research compares a system of bioswales to existing curb and gutter infrastructure in a post-industrial streetscape of Hamilton, Ontario. Using the geodesign process, including rule-based set parameters and an integrated approach combining geospatial information with stakeholder input, a section of Ottawa St. North was modelled to show how green infrastructure can ease the burden on aging, combined sewer systems. Qualitative data was gathered from residents of the neighbourhood through field notes, and quantitative geospatial data through GIS and site analysis. Parametric modelling was used to generate multiple design scenarios, each visualizing resulting impacts on stormwater runoff along with their calculations. The selected design scenarios offered both an aesthetically pleasing urban bioswale street-scape system while minimizing and controlling stormwater runoff. Interactive maps, videos and the 3D model were presented for stakeholder comment via ESRI’s (Environmental System Research Institute) web-scene. The results of the study demonstrate powerful tools that can assist landscape architects in designing, collaborating and communicating stormwater strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioswale" title="bioswale">bioswale</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesign" title=" geodesign"> geodesign</a>, <a href="https://publications.waset.org/abstracts/search?q=data-driven%20and%20rule-based%20design" title=" data-driven and rule-based design"> data-driven and rule-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesign" title=" geodesign"> geodesign</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=stormwater%20management" title=" stormwater management"> stormwater management</a> </p> <a href="https://publications.waset.org/abstracts/76896/geodesign-application-for-bio-swale-design-a-data-driven-design-approach-for-a-case-site-in-ottawa-street-north-in-hamilton-ontario-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4129</span> Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Malik">Anand Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title="debris flow">debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data" title=" geospatial data"> geospatial data</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20based%20modeling" title=" GIS based modeling"> GIS based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-R" title=" flow-R "> flow-R </a> </p> <a href="https://publications.waset.org/abstracts/85185/debris-flow-mapping-using-geographical-information-system-based-model-and-geospatial-data-in-middle-himalayas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4128</span> Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20K.%20M.%20Al-Nasrawi">Ali K. M. Al-Nasrawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Uday%20A.%20Al-Hamdany"> Uday A. Al-Hamdany</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20M.%20Hamylton"> Sarah M. Hamylton</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20G.%20Jones"> Brian G. Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20M.%20Alyazichi"> Yasir M. Alyazichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution <em>global positioning systems</em> (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (&le; 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEMs" title="DEMs">DEMs</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-geomorphic-dynamic%20processes" title=" eco-geomorphic-dynamic processes"> eco-geomorphic-dynamic processes</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20Information%20Science" title=" geospatial Information Science"> geospatial Information Science</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20elevation%20changes" title=" surface elevation changes"> surface elevation changes</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/59124/surface-elevation-dynamics-assessment-using-digital-elevation-models-light-detection-and-ranging-gps-and-geospatial-information-science-analysis-ecosystem-modelling-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4127</span> Geospatial Data Complexity in Electronic Airport Layout Plan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Parhi">Shyam Parhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airports GIS program collects Airports data, validate and verify it, and stores it in specific database. Airports GIS allows authorized users to submit changes to airport data. The verified data is used to develop several engineering applications. One of these applications is electronic Airport Layout Plan (eALP) whose primary aim is to move from paper to digital form of ALP. The first phase of development of eALP was completed recently and it was tested for a few pilot program airports across different regions. We conducted gap analysis and noticed that a lot of development work is needed to fine tune at least six mandatory sheets of eALP. It is important to note that significant amount of programming is needed to move from out-of-box ArcGIS to a much customized ArcGIS which will be discussed. The ArcGIS viewer capability to display essential features like runway or taxiway or the perpendicular distance between them will be discussed. An enterprise level workflow which incorporates coordination process among different lines of business will be highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data" title="geospatial data">geospatial data</a>, <a href="https://publications.waset.org/abstracts/search?q=geology" title=" geology"> geology</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20systems" title=" geographic information systems"> geographic information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation" title=" aviation"> aviation</a> </p> <a href="https://publications.waset.org/abstracts/29497/geospatial-data-complexity-in-electronic-airport-layout-plan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4126</span> Geospatial Assessment of Waste Disposal System in Akure, Ondo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babawale%20Akin%20Adeyemi">Babawale Akin Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Esan%20Temitayo"> Esan Temitayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeyemi%20Olabisi%20Omowumi"> Adeyemi Olabisi Omowumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper analyzed waste disposal system in Akure, Ondo State using GIS techniques. Specifically, the study identified the spatial distribution of collection points and existing dumpsite; evaluated the accessibility of waste collection points and their proximity to each other with the view of enhancing better performance of the waste disposal system. Data for the study were obtained from both primary and secondary sources. Primary data were obtained through the administration of questionnaire. From field survey, 35 collection points were identified in the study area. 10 questionnaires were administered around each collection point making a total of 350 questionnaires for the study. Also, co-ordinates of each collection point were captured using a hand-held Global Positioning System (GPS) receiver which was used to analyze the spatial distribution of collection points. Secondary data used include administrative map collected from Akure South Local Government Secretariat. Data collected was analyzed using the GIS analytical tools which is neighborhood function. The result revealed that collection points were found in all parts of Akure with the highest concentration around the central business district. The study also showed that 80% of the collection points enjoyed efficient waste service while the remaining 20% does not. The study further revealed that most collection points in the core of the city were in close proximity to each other. In conclusion, the paper revealed the capability of Geographic Information System (GIS) as a technique in management of waste collection and disposal technique. The application of Geographic Information System (GIS) in the evaluation of the solid waste management in Akure is highly invaluable for the state waste management board which could also be beneficial to other states in developing a modern day solid waste management system. Further study on solid waste management is also recommended especially for updating of information on both spatial and non-spatial data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial" title=" geospatial"> geospatial</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20disposal" title=" waste disposal"> waste disposal</a> </p> <a href="https://publications.waset.org/abstracts/45405/geospatial-assessment-of-waste-disposal-system-in-akure-ondo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4125</span> Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rowane%20May%20A.%20Fesalbon">Rowane May A. Fesalbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Greyland%20C.%20Agno"> Greyland C. Agno</a>, <a href="https://publications.waset.org/abstracts/search?q=Jodel%20L.%20Cuasay"> Jodel L. Cuasay</a>, <a href="https://publications.waset.org/abstracts/search?q=Dindo%20A.%20Malonzo"> Dindo A. Malonzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Rosario%20Concepcion%20O.%20Ang"> Ma. Rosario Concepcion O. Ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ArcSWAT" title="ArcSWAT">ArcSWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrologic%20model" title=" hydrologic model"> hydrologic model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower" title=" hydropower"> hydropower</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/40789/development-of-national-scale-hydropower-resource-assessment-scheme-using-swat-and-geospatial-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4124</span> TessPy – Spatial Tessellation Made Easy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Hamann">Jonas Hamann</a>, <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Saki"> Siavash Saki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Hagen"> Tobias Hagen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data%20science" title="geospatial data science">geospatial data science</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20data%20analysis" title=" geospatial data analysis"> geospatial data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tessellations" title=" tessellations"> tessellations</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20studies" title=" urban studies"> urban studies</a> </p> <a href="https://publications.waset.org/abstracts/148351/tesspy-spatial-tessellation-made-easy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4123</span> Evaluating the Use of Digital Art Tools for Drawing to Enhance Artistic Ability and Improve Digital Skill among Junior School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aber%20Salem%20Aboalgasm">Aber Salem Aboalgasm</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupert%20Ward"> Rupert Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated some results of the use of digital art tools by junior school children in order to discover if these tools could promote artistic ability and creativity. The study considers the ease of use and usefulness of the tools as well as how to assess artwork produced by digital means. As the use of these tools is a relatively new development in Art education, this study may help educators in their choice of which tools to use and when to use them. The study also aims to present a model for the assessment of students’ artistic development and creativity by studying their artistic activity. This model can help in determining differences in students’ creative ability and could be useful both for teachers, as a means of assessing digital artwork, and for students, by providing the motivation to use the tools to their fullest extent. Sixteen students aged nine to ten years old were observed and recorded while they used the digital drawing tools. The study found that, according to the students’ own statements, it was not the ease of use but the successful effects the tools provided which motivated the children to use them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artistic%20ability" title="artistic ability">artistic ability</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity" title=" creativity"> creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=drawing%20digital%20tool" title=" drawing digital tool"> drawing digital tool</a>, <a href="https://publications.waset.org/abstracts/search?q=TAM%20model" title=" TAM model"> TAM model</a>, <a href="https://publications.waset.org/abstracts/search?q=psychomotor%20domain" title=" psychomotor domain"> psychomotor domain</a> </p> <a href="https://publications.waset.org/abstracts/16532/evaluating-the-use-of-digital-art-tools-for-drawing-to-enhance-artistic-ability-and-improve-digital-skill-among-junior-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4122</span> Design and Implementation of a Geodatabase and WebGIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Ali">Sajid Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietrich%20Schr%C3%B6der"> Dietrich Schröder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The merging of internet and Web has created many disciplines and Web GIS is one these disciplines which is effectively dealing with the geospatial data in a proficient way. Web GIS technologies have provided an easy accessing and sharing of geospatial data over the internet. However, there is a single platform for easy and multiple accesses of the data lacks for the European Caribbean Association (Europaische Karibische Gesselschaft - EKG) to assist their members and other research community. The technique presented in this paper deals with designing of a geodatabase using PostgreSQL/PostGIS as an object oriented relational database management system (ORDBMS) for competent dissemination and management of spatial data and Web GIS by using OpenGeo Suite for the fast sharing and distribution of the data over the internet. The characteristics of the required design for the geodatabase have been studied and a specific methodology is given for the purpose of designing the Web GIS. At the end, validation of this Web based geodatabase has been performed over two Desktop GIS software and a web map application and it is also discussed that the contribution has all the desired modules to expedite further research in the area as per the requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desktop%20GISSoftware" title="desktop GISSoftware">desktop GISSoftware</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20Caribbean%20association" title=" European Caribbean association"> European Caribbean association</a>, <a href="https://publications.waset.org/abstracts/search?q=geodatabase" title=" geodatabase"> geodatabase</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenGeo%20suite" title=" OpenGeo suite"> OpenGeo suite</a>, <a href="https://publications.waset.org/abstracts/search?q=postgreSQL%2FPostGIS" title=" postgreSQL/PostGIS"> postgreSQL/PostGIS</a>, <a href="https://publications.waset.org/abstracts/search?q=webGIS" title=" webGIS"> webGIS</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20map%20application" title=" web map application"> web map application</a> </p> <a href="https://publications.waset.org/abstracts/44197/design-and-implementation-of-a-geodatabase-and-webgis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4121</span> Geospatial Technologies in Support of Civic Engagement and Cultural Heritage: Lessons Learned from Three Participatory Planning Workshops for Involving Local Communities in the Development of Sustainable Tourism Practices in Latiano, Brindisi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Opmeer">Mark Opmeer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fruitful relationship between cultural heritage and digital technology is evident. Due to the development of user-friendly software, an increasing amount of heritage scholars use ict for their research activities. As a result, the implementation of information technology for heritage planning has become a research objective in itself. During the last decades, we have witnessed a growing debate and literature about the importance of computer technologies for the field of cultural heritage and ecotourism. Indeed, implementing digital technology in support of these domains can be very fruitful for one’s research practice. However, due to the rapid development of new software scholars may find it challenging to use these innovations in an appropriate way. As such, this contribution seeks to explore the interplay between geospatial technologies (geo-ict), civic engagement and cultural heritage and tourism. In this article, we discuss our findings on the use of geo-ict in support of civic participation, cultural heritage and sustainable tourism development in the southern Italian district of Brindisi. In the city of Latiano, three workshops were organized that involved local members of the community to distinguish and discuss interesting points of interests (POI’s) which represent the cultural significance and identity of the area. During the first workshop, a so called mappa della comunità was created on a touch table with collaborative mapping software, that allowed the participators to highlight potential destinations for tourist purposes. Furthermore, two heritage-based itineraries along a selection of identified POI’s was created to make the region attractive for recreants and tourists. These heritage-based itineraries reflect the communities’ ideas about the cultural identity of the region. Both trails were subsequently implemented in a dedicated mobile application (app) and was evaluated using a mixed-method approach with the members of the community during the second workshop. In the final workshop, the findings of the collaboration, the heritage trails and the app was evaluated with all participants. Based on our conclusions, we argue that geospatial technologies have a significant potential for involving local communities in heritage planning and tourism development. The participants of the workshops found it increasingly engaging to share their ideas and knowledge using the digital map of the touch table. Secondly, the use of a mobile application as instrument to test the heritage-based itineraries in the field was broadly considered as fun and beneficial for enhancing community awareness and participation in local heritage. The app furthermore stimulated the communities’ awareness of the added value of geospatial technologies for sustainable tourism development in the area. We conclude this article with a number of recommendations in order to provide a best practice for organizing heritage workshops with similar objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=civic%20engagement" title="civic engagement">civic engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20technologies" title=" geospatial technologies"> geospatial technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism%20development" title=" tourism development"> tourism development</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a> </p> <a href="https://publications.waset.org/abstracts/55665/geospatial-technologies-in-support-of-civic-engagement-and-cultural-heritage-lessons-learned-from-three-participatory-planning-workshops-for-involving-local-communities-in-the-development-of-sustainable-tourism-practices-in-latiano-brindisi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4120</span> Landslide Hazard Zonation and Risk Studies Using Multi-Criteria Decision-Making and Slope Stability Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Tyagi">Ankit Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reet%20Kamal%20Tiwari"> Reet Kamal Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20James"> Naveen James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, landslides are the most frequently occurring disaster in the regions of the Himalayas and the Western Ghats. The steep slopes and land use in these areas are quite apprehensive. In the recent past, many landslide hazard zonation (LHZ) works have been carried out in the Himalayas. However, the preparation of LHZ maps considering temporal factors such as seismic ground shaking, seismic amplification at surface level, and rainfall are limited. Hence this study presents a comprehensive use of the multi-criteria decision-making (MCDM) method in landslide risk assessment. In this research, we conducted both geospatial and geotechnical analysis to minimize the danger of landslides. Geospatial analysis is performed using high-resolution satellite data to produce landslide causative factors which were given weightage using the MCDM method. The geotechnical analysis includes a slope stability check, which was done to determine the potential landslide slope. The landslide risk map can provide useful information which helps people to understand the risk of living in an area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landslide%20hazard%20zonation" title="landslide hazard zonation">landslide hazard zonation</a>, <a href="https://publications.waset.org/abstracts/search?q=PHA" title=" PHA"> PHA</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP" title=" AHP"> AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/117006/landslide-hazard-zonation-and-risk-studies-using-multi-criteria-decision-making-and-slope-stability-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4119</span> Modeling of Erosion and Sedimentation Impacts from off-Road Vehicles in Arid Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abigail%20Rosenberg">Abigail Rosenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Duan"> Jennifer Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Poteuck"> Michael Poteuck</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunshui%20Yu"> Chunshui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Barry M. Goldwater Range, West in southwestern Arizona encompasses 2,808 square kilometers of Sonoran Desert. The hyper-arid range has an annual rainfall of less than 10 cm with an average high temperature of 41 degrees Celsius in July to an average low of 4 degrees Celsius in January. The range shares approximately 60 kilometers of the international border with Mexico. A majority of the range is open for recreational use, primarily off-highway vehicles. Because of its proximity to Mexico, the range is also heavily patrolled by U.S. Customs and Border Protection seeking to intercept and apprehend inadmissible people and illicit goods. Decades of off-roading and Border Patrol activities have negatively impacted this sensitive desert ecosystem. To assist the range program managers, this study is developing a model to identify erosion prone areas and calibrate the model’s parameters using the Automated Geospatial Watershed Assessment modeling tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20lands" title="arid lands">arid lands</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20geospatial%20watershed%20assessment" title=" automated geospatial watershed assessment"> automated geospatial watershed assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20modeling" title=" erosion modeling"> erosion modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation%20modeling" title=" sedimentation modeling"> sedimentation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20modeling" title=" watershed modeling"> watershed modeling</a> </p> <a href="https://publications.waset.org/abstracts/59846/modeling-of-erosion-and-sedimentation-impacts-from-off-road-vehicles-in-arid-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4118</span> Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Baruch">Rachel Baruch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICT%20tools" title="ICT tools">ICT tools</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-service%20teachers" title=" pre-service teachers"> pre-service teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20model" title=" new model"> new model</a> </p> <a href="https://publications.waset.org/abstracts/26945/experimental-model-for-instruction-of-pre-service-teachers-in-ict-tools-and-e-learning-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4117</span> The Effect of Using Computer-Assisted Translation Tools on the Translation of Collocations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mahdi">Hassan Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of computer-assisted translation (CAT) tools in translation creates several opportunities for translators. However, this integration is not useful in all types of English structures. This study aims at examining the impact of using CAT tools in translating collocations. Seventy students of English as a foreign language participated in this study. The participants were divided into three groups (i.e., CAT tools group, Machine Translation group, and the control group). The comparison of the results obtained from the translation output of the three groups demonstrated the improvement of translation using CAT tools. The results indicated that the participants who used CAT tools outscored the participants who used MT, and in turn, both groups outscored the control group who did not use any type of technology in translation. In addition, there was a significant difference in the use of CAT for translation different types of collocations. The results also indicated that CAT tools were more effective in translation fixed and medium-strength collocations than weak collocations. Finally, the results showed that CAT tools were effective in translation collocations in both types of languages (i.e. target language or source language). The study suggests some guidelines for translators to use CAT tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20translation" title="machine translation">machine translation</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-assisted%20translation" title=" computer-assisted translation"> computer-assisted translation</a>, <a href="https://publications.waset.org/abstracts/search?q=collocations" title=" collocations"> collocations</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology "> technology </a> </p> <a href="https://publications.waset.org/abstracts/129611/the-effect-of-using-computer-assisted-translation-tools-on-the-translation-of-collocations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4116</span> A Comparative Study of Three Major Performance Testing Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Omar%20Alsadhan">Abdulaziz Omar Alsadhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Mudasir%20Shafi"> Mohd Mudasir Shafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance testing is done to prove the reliability of any software product. There are a number of tools available in the markets that are used to perform performance testing. In this paper we present a comparative study of the three most commonly used performance testing tools. These tools cover the major share of the performance testing market and are widely used. In this paper we compared the tools on five evaluation parameters which are; User friendliness, portability, tool support, compatibility and cost. The conclusion provided at the end of the paper is based on our study and does not support any tool or company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20development" title="software development">software development</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20testing" title=" software testing"> software testing</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance" title=" quality assurance"> quality assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20testing" title=" performance testing"> performance testing</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20runner" title=" load runner"> load runner</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20testing" title=" rational testing"> rational testing</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20performer" title=" silk performer"> silk performer</a> </p> <a href="https://publications.waset.org/abstracts/4106/a-comparative-study-of-three-major-performance-testing-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4115</span> A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prami%20Sengupta">Prami Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Randall%20A.%20Cantrell"> Randall A. Cantrell</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Johns"> Tracy Johns</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation-attitude" title="conservation-attitude">conservation-attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation-intention" title=" conservation-intention"> conservation-intention</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20analysis" title=" geospatial analysis"> geospatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption" title=" residential energy consumption"> residential energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20autocorrelation" title=" spatial autocorrelation "> spatial autocorrelation </a> </p> <a href="https://publications.waset.org/abstracts/93529/a-geospatial-analysis-of-residential-conservation-attitude-intention-and-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=138">138</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=139">139</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geospatial%20tools&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10