CINXE.COM

Search results for: nonlinear functions

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nonlinear functions</title> <meta name="description" content="Search results for: nonlinear functions"> <meta name="keywords" content="nonlinear functions"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nonlinear functions" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nonlinear functions"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3707</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nonlinear functions</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3707</span> Duality in Multiobjective Nonlinear Programming under Generalized Second Order (F, b, φ, ρ, θ)− Univex Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meraj%20Ali%20Khan">Meraj Ali Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Falleh%20R.%20Al-Solamy"> Falleh R. Al-Solamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, second order duality for multiobjective nonlinear programming are investigated under the second order generalized (F, b, φ, ρ, θ)− univex functions. The weak, strong and converse duality theorems are proved. Further, we also illustrated an example of (F, b, φ, ρ, θ)− univex functions. Results obtained in this paper extend some previously known results of multiobjective nonlinear programming in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duality" title="duality">duality</a>, <a href="https://publications.waset.org/abstracts/search?q=multiobjective%20programming" title=" multiobjective programming"> multiobjective programming</a>, <a href="https://publications.waset.org/abstracts/search?q=univex%20functions" title=" univex functions"> univex functions</a>, <a href="https://publications.waset.org/abstracts/search?q=univex" title=" univex"> univex</a> </p> <a href="https://publications.waset.org/abstracts/4320/duality-in-multiobjective-nonlinear-programming-under-generalized-second-order-f-b-f-r-th-univex-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3706</span> Achieving Better Security by Using Nonlinear Cellular Automata as a Cryptographic Primitive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapan%20Maiti">Swapan Maiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipanwita%20Roy%20Chowdhury"> Dipanwita Roy Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear functions are essential in different cryptoprimitives as they play an important role on the security of the cipher designs. Rule 30 was identified as a powerful nonlinear function for cryptographic applications. However, an attack (MS attack) was mounted against Rule 30 Cellular Automata (CA). Nonlinear rules as well as maximum period CA increase randomness property. In this work, nonlinear rules of maximum period nonlinear hybrid CA (M-NHCA) are studied and it is shown to be a better crypto-primitive than Rule 30 CA. It has also been analysed that the M-NHCA with single nonlinearity injection proposed in the literature is vulnerable against MS attack, whereas M-NHCA with multiple nonlinearity injections provide maximum length cycle as well as better cryptographic primitives and they are also secure against MS attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title="cellular automata">cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20period%20nonlinear%20CA" title=" maximum period nonlinear CA"> maximum period nonlinear CA</a>, <a href="https://publications.waset.org/abstracts/search?q=Meier%20and%20Staffelbach%20attack" title=" Meier and Staffelbach attack"> Meier and Staffelbach attack</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions" title=" nonlinear functions"> nonlinear functions</a> </p> <a href="https://publications.waset.org/abstracts/72864/achieving-better-security-by-using-nonlinear-cellular-automata-as-a-cryptographic-primitive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3705</span> The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zerarka">A. Zerarka</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Djoudi"> W. Djoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coth%20functions" title="coth functions">coth functions</a>, <a href="https://publications.waset.org/abstracts/search?q=csch%20functions" title=" csch functions"> csch functions</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20partial%20differential%20equation" title=" nonlinear partial differential equation"> nonlinear partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20solutions" title=" travelling wave solutions"> travelling wave solutions</a> </p> <a href="https://publications.waset.org/abstracts/20374/the-construction-of-exact-solutions-for-the-nonlinear-lattice-equation-via-coth-and-csch-functions-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">663</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3704</span> Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Rahal">Mohamed Rahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Djaouida%20Guetta"> Djaouida Guetta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20optimization" title="global optimization">global optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%B6lder%20functions" title=" Hölder functions"> Hölder functions</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20covering%20method" title=" sequential covering method"> sequential covering method</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20of%20nonlinear%20equations" title=" systems of nonlinear equations"> systems of nonlinear equations</a> </p> <a href="https://publications.waset.org/abstracts/6507/sequential-covering-algorithm-for-nondifferentiable-global-optimization-problem-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3703</span> Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Al-Khaled">Kamel Al-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nonlinear%20coupled%20KdV%20equations" title="Nonlinear coupled KdV equations">Nonlinear coupled KdV equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Soliton%20solutions" title=" Soliton solutions"> Soliton solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinc-collocation%20method" title=" Sinc-collocation method"> Sinc-collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinc%20functions" title=" Sinc functions"> Sinc functions</a> </p> <a href="https://publications.waset.org/abstracts/23564/numerical-wave-solutions-for-nonlinear-coupled-equations-using-sinc-collocation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3702</span> Some Inequalities Related with Starlike Log-Harmonic Mappings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melike%20Aydo%C4%9Fan">Melike Aydoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%BCrdane%20%C3%96zt%C3%BCrk"> Dürdane Öztürk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let H(D) be the linear space of all analytic functions defined on the open unit disc. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D. The aim of this paper is to define some inequalities of starlike logharmonic functions of order α(0 ≤ α ≤ 1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starlike%20log-harmonic%20functions" title="starlike log-harmonic functions">starlike log-harmonic functions</a>, <a href="https://publications.waset.org/abstracts/search?q=univalent%20functions" title=" univalent functions"> univalent functions</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion%20theorem" title=" distortion theorem"> distortion theorem</a> </p> <a href="https://publications.waset.org/abstracts/22032/some-inequalities-related-with-starlike-log-harmonic-mappings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3701</span> Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toshinori%20Nawata">Toshinori Nawata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designing the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20automatic%20choosing%20control" title="augmented automatic choosing control">augmented automatic choosing control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20dynamics" title=" zero dynamics"> zero dynamics</a> </p> <a href="https://publications.waset.org/abstracts/11537/design-of-an-augmented-automatic-choosing-control-with-constrained-input-by-lyapunov-functions-using-gradient-optimization-automatic-choosing-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3700</span> A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shangerganesh%20Lingeshwaran">Shangerganesh Lingeshwaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioma%20invasion" title="glioma invasion">glioma invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20diffusion" title=" nonlinear diffusion"> nonlinear diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-diffusion" title=" reaction-diffusion"> reaction-diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20eleament%20method" title=" finite eleament method"> finite eleament method</a> </p> <a href="https://publications.waset.org/abstracts/76998/a-simple-finite-element-method-for-glioma-tumor-growth-model-with-density-dependent-diffusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3699</span> X-Ray Dynamical Diffraction &#039;Third Order Nonlinear Renninger Effect&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minas%20Balyan">Minas Balyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bragg%20diffraction" title="Bragg diffraction">Bragg diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Takagi%E2%80%99s%20equations" title=" nonlinear Takagi’s equations"> nonlinear Takagi’s equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect" title=" nonlinear Renninger effect"> nonlinear Renninger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20order%20nonlinearity" title=" third order nonlinearity"> third order nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/55035/x-ray-dynamical-diffraction-third-order-nonlinear-renninger-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3698</span> Method of Synthesis of Controlled Generators Balanced a Strictly Avalanche Criteria-Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Khwaldeh">Ali Khwaldeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimer%20Adwan"> Nimer Adwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a method for constructing a controlled balanced Boolean function satisfying the criterion of a Strictly Avalanche Criteria (SAC) effect is proposed. The proposed method is based on the use of three orthogonal nonlinear components which is unlike the high-order SAC functions. So, the generator synthesized by the proposed method has separate sets of control and information inputs. The proposed method proves its simplicity and the implementation ability. The proposed method allows synthesizing a SAC function generator with fixed control and information inputs. This ensures greater efficiency of the built-in oscillator compared to high-order SAC functions that can be used as a generator. Accordingly, the method is completely formalized and implemented as a software product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boolean%20function" title="boolean function">boolean function</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20balanced%20boolean%20function" title=" controlled balanced boolean function"> controlled balanced boolean function</a>, <a href="https://publications.waset.org/abstracts/search?q=strictly%20avalanche%20criteria" title=" strictly avalanche criteria"> strictly avalanche criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20nonlinear" title=" orthogonal nonlinear"> orthogonal nonlinear</a> </p> <a href="https://publications.waset.org/abstracts/95654/method-of-synthesis-of-controlled-generators-balanced-a-strictly-avalanche-criteria-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3697</span> Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Nejib">Hamza Nejib</a>, <a href="https://publications.waset.org/abstracts/search?q=Okba%20Taouali"> Okba Taouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=online%20prediction" title="online prediction">online prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=KAF" title=" KAF"> KAF</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=RKHS" title=" RKHS"> RKHS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kernel%20methods" title=" Kernel methods"> Kernel methods</a>, <a href="https://publications.waset.org/abstracts/search?q=KRLS" title=" KRLS"> KRLS</a>, <a href="https://publications.waset.org/abstracts/search?q=KLMS" title=" KLMS"> KLMS</a> </p> <a href="https://publications.waset.org/abstracts/63627/online-prediction-of-nonlinear-signal-processing-problems-based-kernel-adaptive-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3696</span> Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Alghabshi">Muna Alghabshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmana%20Krishnan"> Edmana Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacobi%20elliptic%20function" title="Jacobi elliptic function">Jacobi elliptic function</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20methods" title=" mapping methods"> mapping methods</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schrodinger%20Equation" title=" nonlinear Schrodinger Equation"> nonlinear Schrodinger Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=tanh%20method" title=" tanh method"> tanh method</a> </p> <a href="https://publications.waset.org/abstracts/55053/exact-solutions-of-a-nonlinear-schrodinger-equation-with-kerr-law-nonlinearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3695</span> Impulsive Synchronization of Periodically Forced Complex Duffing&#039;s Oscillators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaban%20Aly">Shaban Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al-Qahtani"> Ali Al-Qahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20B.%20Khenous"> Houari B. Khenous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchronization is an important phenomenon commonly observed in nature. A system of periodically forced complex Duffings oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using impulsive synchronization techniques. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20nonlinear%20oscillators" title="complex nonlinear oscillators">complex nonlinear oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsive%20synchronization" title=" impulsive synchronization"> impulsive synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20systems" title=" chaotic systems"> chaotic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20exponential%20synchronization" title=" global exponential synchronization"> global exponential synchronization</a> </p> <a href="https://publications.waset.org/abstracts/41212/impulsive-synchronization-of-periodically-forced-complex-duffings-oscillators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3694</span> Some Results on Generalized Janowski Type Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Al%20Sarari">Fuad Al Sarari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present paper is to study subclasses of analytic functions which generalize the classes of Janowski functions introduced by Polatoglu. We study certain convolution conditions. This leads to a study of the sufficient condition and the neighborhood results related to the functions in the class S (T; H; F ): and a study of new subclasses of analytic functions that are defined using notions of the generalized Janowski classes and -symmetrical functions. In the quotient of analytical representations of starlikeness and convexity with respect to symmetric points, certain inherent properties are pointed out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolution%20conditions" title="convolution conditions">convolution conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=subordination" title=" subordination"> subordination</a>, <a href="https://publications.waset.org/abstracts/search?q=Janowski%20functions" title=" Janowski functions"> Janowski functions</a>, <a href="https://publications.waset.org/abstracts/search?q=starlike%20functions" title=" starlike functions"> starlike functions</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20functions" title=" convex functions"> convex functions</a> </p> <a href="https://publications.waset.org/abstracts/170335/some-results-on-generalized-janowski-type-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3693</span> Some Efficient Higher Order Iterative Schemes for Solving Nonlinear Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20%20Singh">Sandeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, two classes of iterative schemes are proposed for approximating solutions of nonlinear systems of equations whose orders of convergence are six and eight respectively. Sixth order scheme requires the evaluation of two vector-functions, two first Fr'echet derivatives and three matrices inversion per iteration. This three-step sixth-order method is further extended to eighth-order method which requires one more step and the evaluation of one extra vector-function. Moreover, computational efficiency is compared with some other recently published methods in which we found, our methods are more efficient than existing numerical methods for higher and medium size nonlinear system of equations. Numerical tests are performed to validate the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nonlinear%20systems" title="Nonlinear systems">Nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Computational%20complexity" title=" Computational complexity"> Computational complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20of%20convergence" title=" order of convergence"> order of convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarratt-type%20scheme" title=" Jarratt-type scheme"> Jarratt-type scheme</a> </p> <a href="https://publications.waset.org/abstracts/137828/some-efficient-higher-order-iterative-schemes-for-solving-nonlinear-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3692</span> Frequency Response of Complex Systems with Localized Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Menga">E. Menga</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hernandez"> S. Hernandez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an &lsquo;updating&rsquo; process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title="frequency response">frequency response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamic%20modification" title=" structural dynamic modification"> structural dynamic modification</a>, <a href="https://publications.waset.org/abstracts/search?q=softening%20effect" title=" softening effect"> softening effect</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a> </p> <a href="https://publications.waset.org/abstracts/47202/frequency-response-of-complex-systems-with-localized-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3691</span> A New Nonlinear State-Space Model and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Eqal%20Al%20Mazrooei">Abdullah Eqal Al Mazrooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title="nonlinear systems">nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20model" title=" state-space model"> state-space model</a>, <a href="https://publications.waset.org/abstracts/search?q=Kronecker%20product" title=" Kronecker product"> Kronecker product</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20estimator" title=" nonlinear estimator"> nonlinear estimator</a> </p> <a href="https://publications.waset.org/abstracts/34407/a-new-nonlinear-state-space-model-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">691</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3690</span> Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haci%20Mehmet%20Guzey">Haci Mehmet Guzey</a>, <a href="https://publications.waset.org/abstracts/search?q=Levent%20Acar"> Levent Acar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decentralized%20control" title="decentralized control">decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problems" title=" inverse problems"> inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20systems" title=" large scale systems"> large scale systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20interconnections" title=" nonlinear interconnections"> nonlinear interconnections</a>, <a href="https://publications.waset.org/abstracts/search?q=basis%20functions" title=" basis functions"> basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a> </p> <a href="https://publications.waset.org/abstracts/20511/decentralized-control-of-interconnected-systems-with-non-linear-unknown-interconnections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3689</span> Collocation Method for Coupled System of Boundary Value Problems with Cubic B-Splines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20S.%20Kasi%20Viswanadham">K. N. S. Kasi Viswanadham </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled system of second order linear and nonlinear boundary value problems occur in various fields of Science and Engineering. In the formulation of the problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary conditions are written as a combination of four boundary conditions. To solve a coupled system of boundary value problem with these converted boundary conditions, a collocation method with cubic B-splines as basis functions has been developed. In the collocation method, the mesh points of the space variable domain have been selected as the collocation points. The basis functions have been redefined into a new set of basis functions which in number match with the number of mesh points in the space variable domain. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Several linear and nonlinear boundary value problems are presented to test the efficiency of the proposed method and found that numerical results obtained by the present method are in good agreement with the exact solutions available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collocation%20method" title="collocation method">collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20system" title=" coupled system"> coupled system</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20b-splines" title=" cubic b-splines"> cubic b-splines</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20points" title=" mesh points"> mesh points</a> </p> <a href="https://publications.waset.org/abstracts/54713/collocation-method-for-coupled-system-of-boundary-value-problems-with-cubic-b-splines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3688</span> Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Barati">Shahrokh Barati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polynomial%20fuzzy" title="polynomial fuzzy">polynomial fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=AIDS" title=" AIDS"> AIDS</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20AIDS%20model" title=" nonlinear AIDS model"> nonlinear AIDS model</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control%20systems" title=" fuzzy control systems"> fuzzy control systems</a> </p> <a href="https://publications.waset.org/abstracts/36231/stabilization-control-of-the-nonlinear-aids-model-based-on-the-theory-of-polynomial-fuzzy-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3687</span> Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Kriebel">David Kriebel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Edgar%20Mehner"> Jan Edgar Mehner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromechanical" title="electromechanical">electromechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=transducer" title=" transducer"> transducer</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element" title=" finite-element"> finite-element</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20morphing" title=" mesh morphing"> mesh morphing</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a> </p> <a href="https://publications.waset.org/abstracts/135652/strongly-coupled-finite-element-formulation-of-electromechanical-systems-with-integrated-mesh-morphing-using-radial-basis-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3686</span> 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zamurad%20Shah">M. Zamurad Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kemal%20Ozgoren"> M. Kemal Ozgoren</a>, <a href="https://publications.waset.org/abstracts/search?q=Raza%20Samar"> Raza Samar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title="unmanned aerial vehicles">unmanned aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20guidance" title=" 3D guidance"> 3D guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20sliding%20manifolds" title=" nonlinear sliding manifolds"> nonlinear sliding manifolds</a> </p> <a href="https://publications.waset.org/abstracts/14296/3d-guidance-of-unmanned-aerial-vehicles-using-sliding-mode-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3685</span> Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuneyt%20Yucelbas">Cuneyt Yucelbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Seral%20Ozsen"> Seral Ozsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sule%20Yucelbas"> Sule Yucelbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulay%20Tezel"> Gulay Tezel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20immune%20system" title="artificial immune system">artificial immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20diagnosis" title=" breast cancer diagnosis"> breast cancer diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Euclidean%20function" title=" Euclidean function"> Euclidean function</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20function" title=" Gaussian function"> Gaussian function</a> </p> <a href="https://publications.waset.org/abstracts/5135/use-of-gaussian-euclidean-hybrid-function-based-artificial-immune-system-for-breast-cancer-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3684</span> Nonlinear Observer Canonical Form for Genetic Regulation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bououden%20Soraya">Bououden Soraya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20observer%20canonical%20form" title="nonlinear observer canonical form">nonlinear observer canonical form</a>, <a href="https://publications.waset.org/abstracts/search?q=observer" title=" observer"> observer</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/37920/nonlinear-observer-canonical-form-for-genetic-regulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3683</span> Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedehsomayeh%20Hosseini">Seyedehsomayeh Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riemannian%20manifolds" title="Riemannian manifolds">Riemannian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=nonsmooth%20optimization" title=" nonsmooth optimization"> nonsmooth optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20semicontinuous%20functions" title=" lower semicontinuous functions"> lower semicontinuous functions</a>, <a href="https://publications.waset.org/abstracts/search?q=subdifferential" title=" subdifferential"> subdifferential</a> </p> <a href="https://publications.waset.org/abstracts/35809/second-order-optimality-conditions-in-nonsmooth-analysis-on-riemannian-manifolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3682</span> Modified Newton&#039;s Iterative Method for Solving System of Nonlinear Equations in Two Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mahesar">Sara Mahesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleem%20M.%20Chandio"> Saleem M. Chandio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Soomro"> Hira Soomro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20Newton%E2%80%99s%20method" title="conventional Newton’s method">conventional Newton’s method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method" title=" modified Newton’s method"> modified Newton’s method</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20of%20convergence" title=" order of convergence"> order of convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20nonlinear%20equations" title=" system of nonlinear equations"> system of nonlinear equations</a> </p> <a href="https://publications.waset.org/abstracts/87602/modified-newtons-iterative-method-for-solving-system-of-nonlinear-equations-in-two-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3681</span> A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Poleshchuk">O. Poleshchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Komarov"> E. Komarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets" title="interval type-2 fuzzy sets">interval type-2 fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression" title=" fuzzy regression"> fuzzy regression</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20interval" title=" weighted interval"> weighted interval</a> </p> <a href="https://publications.waset.org/abstracts/6138/a-fuzzy-nonlinear-regression-model-for-interval-type-2-fuzzy-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3680</span> X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minas%20Balyan">Minas Balyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=third%20order%20nonlinearity" title="third order nonlinearity">third order nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bragg%20diffraction" title=" Bragg diffraction"> Bragg diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect" title=" nonlinear Renninger effect"> nonlinear Renninger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=rocking%20curves" title=" rocking curves"> rocking curves</a> </p> <a href="https://publications.waset.org/abstracts/56984/x-ray-dynamical-diffraction-rocking-curves-in-case-of-third-order-nonlinear-renninger-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3679</span> A Filtering Algorithm for a Nonlinear State-Space Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Eqal%20Al%20Mazrooei">Abdullah Eqal Al Mazrooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20algorithm" title=" filtering algorithm"> filtering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20model" title=" state-space model"> state-space model</a> </p> <a href="https://publications.waset.org/abstracts/74331/a-filtering-algorithm-for-a-nonlinear-state-space-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3678</span> The Behavior of The Zeros of Bargmann Analytic Functions for Multiple-Mode Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Tabuni">Muna Tabuni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper contains an investigation of the behavior of the Zeros of Bargmann functions for one and two-mode systems. A brief introduction to Harmonic oscillator formalism for one and two-mode is given. The Bargmann analytic representation for one and two-mode has been studied. The zeros of Bargmann analytic function for one-mode are considered. The Q Husimi functions are introduced. The Bargmann functions and the Husimi functions have the same zeros. The Bargmann functions f(z) have exactly q zeros. The evolution time of the zeros are discussed. The zeros of Bargmann analytic functions for two-mode are introduced. Various examples have been given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bargmann%20functions" title="Bargmann functions">Bargmann functions</a>, <a href="https://publications.waset.org/abstracts/search?q=two-mode" title=" two-mode"> two-mode</a>, <a href="https://publications.waset.org/abstracts/search?q=zeros" title=" zeros"> zeros</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20oscillator" title=" harmonic oscillator"> harmonic oscillator</a> </p> <a href="https://publications.waset.org/abstracts/20682/the-behavior-of-the-zeros-of-bargmann-analytic-functions-for-multiple-mode-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=124">124</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10