CINXE.COM
Search results for: optoelectronic properties
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: optoelectronic properties</title> <meta name="description" content="Search results for: optoelectronic properties"> <meta name="keywords" content="optoelectronic properties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="optoelectronic properties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="optoelectronic properties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9006</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: optoelectronic properties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9006</span> Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Issam%20Derkaoui">Issam Derkaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khenfouch"> Mohammed Khenfouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakang%20M.%20Mothudi"> Bakang M. Mothudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Maaza"> Malik Maaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Izeddine%20Zorkani"> Izeddine Zorkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anouar%20%20Jorio"> Anouar Jorio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanadium%20oxide" title="Vanadium oxide">Vanadium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Microwave" title=" Microwave"> Microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrical%20conductivity" title=" Electrical conductivity"> Electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Optoelectronic%20properties" title=" Optoelectronic properties"> Optoelectronic properties</a> </p> <a href="https://publications.waset.org/abstracts/80672/microwave-assisted-growth-of-varied-phases-and-morphologies-of-vanadium-oxides-nanostructures-structural-and-optoelectronic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9005</span> Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Achehboune">Mohamed Achehboune</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khenfouch"> Mohammed Khenfouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Boukhoubza"> Issam Boukhoubza</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakang%20Mothudi"> Bakang Mothudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Izeddine%20Zorkani"> Izeddine Zorkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anouar%20Jorio"> Anouar Jorio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title="green synthesis">green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=hafnium-doped-zinc%20oxide" title=" hafnium-doped-zinc oxide"> hafnium-doped-zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic" title=" optoelectronic"> optoelectronic</a> </p> <a href="https://publications.waset.org/abstracts/80753/hafnium-doped-zno-nanostructures-an-eco-friendly-synthesis-for-optoelectronic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9004</span> Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemia">B. Bouadjemia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Houaria"> M. Houaria</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Haida"> S. Haida</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20B.%20Idriss"> Y. B. Idriss</a>, <a href="https://publications.waset.org/abstracts/search?q=A"> A</a>, <a href="https://publications.waset.org/abstracts/search?q=Akham"> Akham</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Matouguia"> M. Matouguia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gasmia"> A. Gasmia</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lantria"> T. Lantria</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentataa"> S. Bentataa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory%20%28DFT%29" title="density functional theory (DFT)">density functional theory (DFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20behavior" title=" semiconductor behavior"> semiconductor behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloid%20halide%20perovskites" title=" metalloid halide perovskites"> metalloid halide perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20propertie%20and%20photovoltaic%20devices" title=" optical propertie and photovoltaic devices"> optical propertie and photovoltaic devices</a> </p> <a href="https://publications.waset.org/abstracts/174943/physical-properties-of-new-perovskite-kgex3-x-f-cl-and-br-for-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9003</span> Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouktif">B. Bouktif</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gaidi"> M. Gaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benrabha"> M. Benrabha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20nanostructure" title="semiconductor nanostructure">semiconductor nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20etching" title=" chemical etching"> chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20property" title=" optoelectronic property"> optoelectronic property</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20surface" title=" silicon surface"> silicon surface</a> </p> <a href="https://publications.waset.org/abstracts/19048/silicon-nanostructure-based-on-metal-nanoparticle-assisted-chemical-etching-for-photovoltaic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9002</span> Electronic, Magnetic and Optic Properties in Halide Perovskites CsPbX3 (X= F, Cl, I)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi">B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lantri"> T. Lantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Souidi%20Amel"> Souidi Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Bensaali"> W.Bensaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zitouni"> A. Zitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aziz"> Z. Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We performed first-principle calculations, the full-potential linearized augmented plane wave (FP-LAPW) method is used to calculate structural, optoelectronic and magnetic properties of cubic halide perovskites CsPbX3 (X= F,I). We employed for this study the GGA approach and for exchange is modeled using the modified Becke-Johnson (mBJ) potential to predicting the accurate band gap of these materials. The optical properties (namely: the real and imaginary parts of dielectric functions, optical conductivities and absorption coefficient absorption make this halide perovskites promising materials for solar cells applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halide%20perovskites" title="halide perovskites">halide perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=mBJ" title=" mBJ"> mBJ</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title=" FP-LAPW"> FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties" title=" optoelectronic properties"> optoelectronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20coefficient" title=" absorption coefficient"> absorption coefficient</a> </p> <a href="https://publications.waset.org/abstracts/46567/electronic-magnetic-and-optic-properties-in-halide-perovskites-cspbx3-x-f-cl-i" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9001</span> Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harmel%20Meriem">Harmel Meriem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soler%20cell" title="soler cell">soler cell</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20perovskite" title="double perovskite">double perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties" title=" optoelectronic properties"> optoelectronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ab-inotio%20study" title=" ab-inotio study"> ab-inotio study</a> </p> <a href="https://publications.waset.org/abstracts/149815/computational-study-on-the-crystal-structure-electronic-and-optical-properties-of-perovskites-a2bx6-for-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9000</span> Characteristics of GaAs/InGaP and AlGaAs/GaAs/InAlGaP Npn Heterostructural Optoelectronic Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Der-Feng%20Guo">Der-Feng Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optoelectronic switches have attracted a considerable attention in the semiconductor research field due to their potential applications in optical computing systems and optoelectronic integrated circuits (OEICs). With high gains and high-speed operations, npn heterostructures can be used to produce promising optoelectronic switches. It is known that the bulk barrier and heterostructure-induced potential spike act important roles in the characteristics of the npn heterostructures. To investigate the effects of bulk barrier and potential spike heights on the optoelectronic switching of the npn heterostructures, GaAs/InGaP and AlGaAs/GaAs/InAlGaP npn heterostructural optoelectronic switches (HSOSs) have been fabricated in this work. It is seen that the illumination decreases the switching voltage Vs and increases the switching current Is, and thus the OFF state is under dark and ON state under illumination in the optical switching of the GaAs/InGaP HSOS characteristics. But in the AlGaAs/GaAs/InAlGaP HSOS characteristics, the Vs and Is present contrary trends, and the OFF state is under illumination and ON state under dark. The studied HSOSs show quite different switching variations with incident light, which are mainly attributed to the bulk barrier and potential spike heights affected by photogenerated carriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20barrier" title="bulk barrier">bulk barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructure" title=" heterostructure"> heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20switch" title=" optoelectronic switch"> optoelectronic switch</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20spike" title=" potential spike"> potential spike</a> </p> <a href="https://publications.waset.org/abstracts/56272/characteristics-of-gaasingap-and-algaasgaasinalgap-npn-heterostructural-optoelectronic-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8999</span> Tunable Optoelectronic Properties of WS₂ by Local Strain Engineering and Folding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Raza%20Khan">Ahmed Raza Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local-strain engineering is an exciting approach to tune the optoelectronic properties of materials and enhance the performance of devices. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDCs) are particularly well-suited for this purpose because they have high flexibility and can withstand high deformations before rupture. Wrinkles on thick TMDC layers have been reported to show the interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDCs have not been investigated, because the wrinkles can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkle and fold nano-structures simultaneously on 1-3L WS₂ using a new fabrication technique. The comparable layer dependent reduction in surface potential is observed for both folded layers and corresponding perfect pack layers due to the dominant interlayer screening effect. The strains produced from the wrinkle nanostructures considerably vary semi conductive junction properties. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. The photo-generated carriers would further significantly lower the SBH. These results present an important advance towards controlling the optoelectronic properties of atomically thin WS₂ using strain engineering, with important implications for practical device applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strain%20engineering" title="strain engineering">strain engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=folding" title=" folding"> folding</a>, <a href="https://publications.waset.org/abstracts/search?q=WS%E2%82%82" title=" WS₂"> WS₂</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20probe%20force%20microscopy" title=" Kelvin probe force microscopy"> Kelvin probe force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=KPFM" title=" KPFM"> KPFM</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20potential" title=" surface potential"> surface potential</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20current" title=" photo current"> photo current</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20dependence" title=" layer dependence "> layer dependence </a> </p> <a href="https://publications.waset.org/abstracts/115991/tunable-optoelectronic-properties-of-ws2-by-local-strain-engineering-and-folding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8998</span> Electronic and Optical Properties of Orthorhombic NdMnO3 with the Modified Becke-Johnson Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi">B. Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata"> S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lantri"> T. Lantri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zitouni"> A. Zitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cherid"> S. Cherid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the electronic structure, magnetic and optical properties of the orthorhombic NdMnO3 through density-functional-theory (DFT) calculations using both generalized gradient approximation GGA and GGA+U approaches, the exchange and correlation effects are taken into account by an orbital independent modified Becke Johnson (MBJ). The predicted band gaps using the MBJ exchange approximation show a significant improvement over previous theoretical work with the common GGA and GGA+U very closer to the experimental results. Band gap dependent optical parameters like dielectric constant, index of refraction, absorption coefficient, reflectivity and conductivity are calculated and analyzed. We find that when using MBJ we have obtained better results for band gap of NdMnO3 than in the case of GGA and GGA+U. The values of band gap founded in this work by MBJ are in a very good agreement with corresponding experimental values compared to other calculations. This comprehensive theoretical study of the optoelectronic properties predicts that this material can be effectively used in optical devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20coefficient" title=" absorption coefficient"> absorption coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20correlation" title=" strong correlation"> strong correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=MBJ" title=" MBJ"> MBJ</a>, <a href="https://publications.waset.org/abstracts/search?q=orthorhombic%20NdMnO3" title=" orthorhombic NdMnO3"> orthorhombic NdMnO3</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic" title=" optoelectronic"> optoelectronic</a> </p> <a href="https://publications.waset.org/abstracts/15712/electronic-and-optical-properties-of-orthorhombic-ndmno3-with-the-modified-becke-johnson-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">909</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8997</span> Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Chavez%20Portillo">Melissa Chavez Portillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Juarez%20Santiesteban"> Hector Juarez Santiesteban</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Pacio%20Castillo"> Mauricio Pacio Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Portillo%20Moreno"> Oscar Portillo Moreno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doping" title="doping">doping</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20confinement" title=" quantum confinement"> quantum confinement</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap" title=" optical band gap"> optical band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=PbS" title=" PbS"> PbS</a> </p> <a href="https://publications.waset.org/abstracts/58519/structural-and-optoelectronic-properties-of-monovalent-cation-doping-pbs-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8996</span> Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Bal">Abdullah Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevdenur%20Bal"> Sevdenur Bal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNN%20training" title="CNN training">CNN training</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20transform%20correlation" title=" joint transform correlation"> joint transform correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20hardware" title=" optoelectronic hardware"> optoelectronic hardware</a> </p> <a href="https://publications.waset.org/abstracts/35981/optoelectronic-hardware-architecture-for-recurrent-learning-algorithm-in-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8995</span> Controlling Excitons Complexes in Two Dimensional MoS₂ Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arslan%20Usman">Arslan Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Sattar"> Abdul Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Latif"> Hamid Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshan%20Ashfaq"> Afshan Ashfaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rafique"> Muhammad Rafique</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Koch"> Martin Koch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional materials have promising applications in optoelectronic and photonics; MoS₂ is the pioneer 2D material in the family of transition metal dichalcogenides. Its optical, optoelectronic, and structural properties are of practical importance along with its exciton dynamics. Exciton, along with exciton complexes, plays a vital role in realizing quantum devices. MoS₂ monolayers were synthesized using chemical vapour deposition (CVD) technique on SiO₂ and hBN substrates. Photoluminescence spectroscopy (PL) was used to identify the monolayer, which also reflects the substrate based peak broadening due to screening effects. In-plane and out of plane characteristic vibrational modes E¹₂g and A₁g, respectively, were detected in a different configuration on the substrate. The B-excitons and trions showed a dominant feature at low temperatures due to electron-phonon coupling effects, whereas their energies are separated by 100 meV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title="2D materials">2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=excitons" title=" excitons"> excitons</a> </p> <a href="https://publications.waset.org/abstracts/114832/controlling-excitons-complexes-in-two-dimensional-mos2-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8994</span> Electronic and Optical Properties of Li₂S Antifluorite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Bahloul">Brahim Bahloul</a>, <a href="https://publications.waset.org/abstracts/search?q=Khatir%20Babesse"> Khatir Babesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Dkhira"> Azzedine Dkhira</a>, <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Bahloul"> Yacine Bahloul</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Hammoutene"> Dalila Hammoutene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate with ab initio calculations some structural and optoelectronic properties of Li₂S compound. The structural and electronic properties of the Li₂S antifluorite structure have been studied by first-principles calculations within the density functional theory (DFT), whereas the optical properties have been obtained using empirical relationships such as the modified Moss relation. Our calculated lattice parameters are in good agreement with the experimental data and other theoretical calculations. The electronic band structures and density of states were obtained. The anti-fluorite Li₂S present an indirect band gap of 3.388 eV at equilibrium. The top of the valence bands reflects the p electronic character for both structures. The calculated energy gaps and optical constants are in good agreement with experimental measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ab%20initio%20calculations" title="Ab initio calculations">Ab initio calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=antifluorite" title=" antifluorite"> antifluorite</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/92204/electronic-and-optical-properties-of-li2s-antifluorite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8993</span> Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyong%20Oh">Seyong Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hong%20Park"> Jin-Hong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20synapse" title="optoelectronic synapse">optoelectronic synapse</a>, <a href="https://publications.waset.org/abstracts/search?q=IGZO%20%28Indium-Gallium-Zinc%20Oxide%29%20photosynaptic%20device" title=" IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device"> IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20spiking%20process" title=" optoelectronic spiking process"> optoelectronic spiking process</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromorphic%20computing" title=" neuromorphic computing"> neuromorphic computing</a> </p> <a href="https://publications.waset.org/abstracts/93884/indium-gallium-zinc-oxide-photosynaptic-device-with-alkylated-graphene-oxide-for-optoelectronic-spike-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8992</span> Investigation Of Eugan's, Optical Properties With Dft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahieddine.%20Bouabdellah">Bahieddine. Bouabdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Benameur.%20Amiri"> Benameur. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader.nouri"> Abdelkader.nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europium-doped gallium nitride (EuGaN) is a promising material for optoelectronic and thermoelectric devices. This study investigates its optical properties using density functional theory (DFT) with the FP-LAPW method and MBJ+U correction. The simulation substitutes a gallium atom with europium in a hexagonal GaN lattice (6% doping). Distinct absorption peaks are observed in the optical analysis. These results highlight EuGaN's potential for various applications and pave the way for further research on rare earth-doped materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eugan" title="eugan">eugan</a>, <a href="https://publications.waset.org/abstracts/search?q=fp-lapw" title=" fp-lapw"> fp-lapw</a>, <a href="https://publications.waset.org/abstracts/search?q=dft" title=" dft"> dft</a>, <a href="https://publications.waset.org/abstracts/search?q=wien2k" title=" wien2k"> wien2k</a>, <a href="https://publications.waset.org/abstracts/search?q=mbj%20hubbard" title=" mbj hubbard"> mbj hubbard</a> </p> <a href="https://publications.waset.org/abstracts/185924/investigation-of-eugans-optical-properties-with-dft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8991</span> First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Harmel">Meriem Harmel</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20Khachai"> Houari Khachai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=fluoroperovskite" title=" fluoroperovskite"> fluoroperovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title=" electronic structure"> electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/31764/first-principle-calculations-of-the-structural-and-optoelectronic-properties-of-cubic-perovskite-cssrf3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8990</span> High Photosensitivity and Broad Spectral Response of Multi-Layered Germanium Sulfide Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Ulaganathan">Rajesh Kumar Ulaganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ying%20Lu"> Yi-Ying Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jung%20Kuo"> Chia-Jung Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Tamalampudi"> Srinivasa Reddy Tamalampudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20Sankar"> Raman Sankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Cheng%20Chou"> Fang Cheng Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yit-Tsong%20Chen"> Yit-Tsong Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the optoelectronic properties of multi-layered GeS nanosheets (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 AW-1 under illumination of 1.5 µW/cm2 at = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 AW-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the two-dimensional (2D) realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 AW-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104 %) and specific detectivity (D* ~ 2.35 × 1013 Jones). The measured D* is comparable to those of the advanced commercial Si- and InGaAs-based photodiodes. The GeS photodetector also shows an excellent long-term photoswitching stability with a response time of ~7 ms over a long period of operation (>1 h). These extraordinary properties of high photocurrent generation, broad spectral range, fast response, and long-term stability make the GeS-FET photodetector a highly qualified candidate for future optoelectronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germanium%20sulfide" title="germanium sulfide">germanium sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetector" title=" photodetector"> photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=photoresponsivity" title=" photoresponsivity"> photoresponsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20quantum%20efficiency" title=" external quantum efficiency"> external quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20detectivity" title=" specific detectivity "> specific detectivity </a> </p> <a href="https://publications.waset.org/abstracts/39141/high-photosensitivity-and-broad-spectral-response-of-multi-layered-germanium-sulfide-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8989</span> The Exploration of the Physical Properties of the Combinations of Selenium-Based Ternary Chalcogenides AScSe₂ (A=K, Cs) for Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Asma">Ayesha Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Arooj"> Aqsa Arooj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is an essential need in this era of Science and Technology to investigate some unique and appropriate materials for optoelectronic applications. Here, we deliberated, for the first time, the structural, optoelectronic, mechanical, vibrational, and thermo dynamical properties of hexagonal structure selenium-based ternary chalcogenides AScSe₂ (A= K, Cs) by using Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA). The lattice angles for these materials are found as α=β=90o and γ=120o. KScSe₂ optimized with lattice parameters a=b=4.3 (Å), c=7.81 (Å) whereas CsScSe₂ got relaxed at a=b=4.43 (Å) and c=8.51 (Å). However, HSE06 functional has overestimated the lattice parameters to the extent that for KScSe₂ a=b=4.92 (Å), c=7.10 (Å), and CsScSe₂ a=b=5.15 (Å), c=7.09 (Å). The energy band gap of these materials calculated via PBE-GGA and HSE06 functionals confirms their semiconducting nature. Concerning Born’s criteria, these materials are mechanically stable ones. Moreover, the temperature dependence of thermodynamic potentials and specific heat at constant volume are also determined while using the harmonic approximation. The negative values of free energy ensure their thermodynamic stability. The vibrational modes are calculated by plotting the phonon dispersion and the vibrational density of states (VDOS), where infrared (IR) and Raman spectroscopy are used to characterize the vibrational modes. The various optical parameters are examined at a smearing value of 0.5eV. These parameters unveil that these materials are good absorbers of incident light in ultra-violet (UV) regions and may be utilized in photovoltaic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural" title="structural">structural</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized" title=" optimized"> optimized</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational" title=" vibrational"> vibrational</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/186437/the-exploration-of-the-physical-properties-of-the-combinations-of-selenium-based-ternary-chalcogenides-ascse2-ak-cs-for-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8988</span> Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Mohammed">D. W. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bowen"> J. Bowen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kukureka"> S. N. Kukureka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ITO%2FAg%2FITO%20multilayer" title="ITO/Ag/ITO multilayer">ITO/Ag/ITO multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20strain" title=" failure strain"> failure strain</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=PET" title=" PET"> PET</a> </p> <a href="https://publications.waset.org/abstracts/18001/electromechanical-reliability-of-itoagito-multilayer-coated-pet-substrate-for-optoelectronic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8987</span> Automatic Vertical Wicking Tester Based on Optoelectronic Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan">Chi-Wai Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kam-Hong%20Chau"> Kam-Hong Chau</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Shing%20Law"> Ho-Shing Law</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AATCC%20method" title="AATCC method">AATCC method</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20measurement" title=" textile measurement"> textile measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=wetness%20sensation" title=" wetness sensation"> wetness sensation</a> </p> <a href="https://publications.waset.org/abstracts/158895/automatic-vertical-wicking-tester-based-on-optoelectronic-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8986</span> Sol-Gel Derived ZnO Nanostructures: Optical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheo%20K.%20Mishra">Sheo K. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20K.%20Srivastava"> Rajneesh K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Shukla"> R. K. Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we report on the optical properties including UV-vis absorption and photoluminescence (PL) of ZnO nanostructures synthesized by sol-gel method. Structural and morphological investigations have been performed by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The XRD result confirms the formation of hexagonal wurtzite phase of ZnO nanostructures. The presence of various diffraction peaks suggests polycrystalline nature. The XRD pattern exhibits no additional peak due to by-products such as Zn(OH)2. The average crystallite size of prepared ZnO sample corresponding to the maximum intensity peaks is to be ~38.22 nm. The SEM micrograph shows different nanostructures of pure ZnO. Photoluminescence (PL) spectrum shows several emission peaks around 353 nm, 382 nm, 419 nm, 441 nm, 483 nm and 522 nm. The obtained results suggest that the prepared phosphors are quite suitable for optoelectronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=PL" title=" PL"> PL</a> </p> <a href="https://publications.waset.org/abstracts/39664/sol-gel-derived-zno-nanostructures-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8985</span> Structural and Luminescent Properties of EU Doped SrY₂O₄ Phosphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruby%20Priya">Ruby Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Pandey"> O. P. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein, we report the structural and luminescent properties of undoped and Eu doped SrY₂O₄ phosphors. The phosphors are synthesized via the combustion synthesis route using glycine as a fuel. The structural, morphological, and optical characterizations are done via X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescent (PL) techniques. The pure phase SrY₂O₄ is obtained at 1100℃, below which impure phases such as Y₂O₃ and SrO were dominant. All the phosphors are excited under UV excitation and exhibited intense emission around 611 nm, which is the typical transition of Eu ions. The phase formation of the synthesized phosphors is studied via analyzing XRD patterns. The as-synthesized phosphors find tremendous applications in optoelectronic devices, light-emitting diodes, and sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=europium" title=" europium"> europium</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine" title=" glycine"> glycine</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/123218/structural-and-luminescent-properties-of-eu-doped-sry2o4-phosphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8984</span> Influence of Dopant of Tin (Sn) on the Optoelectronic and Structural Properties of Cadmium Sulfide (CdS) Pallets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Pavagadhi">Himanshu Pavagadhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maunik%20Jani"> Maunik Jani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Vyas"> S. M. Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaymin%20Ray"> Jaymin Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Vimal%20Patel"> Vimal Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Patel"> Piyush Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jignesh%20P.%20Raval"> Jignesh P. Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of pure and Sn-doped cadmium sulfide (CdS) pellets was carried out using a compression technique with a pelletizer. The energy dispersive X-ray (EDX) analysis is used to confirm the purity and stoichiometric ratio of Cd, S, and Sn in the prepared pellets. The surface morphology of the pellets was examined using a scanning electron microscope. Both XRD and Raman scattering spectrum analysis confirmed the doping effect in the CdS pellets. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure and revealed that the grain size decreases with increasing Sn dopant concentration in the parent CdS pellet. The optical properties of the pellets were evaluated by measuring diffuse reflectance using a UV-vis spectrophotometer. The analysis indicated that as the Sn concentration increases in the parent CdS pellet, the optical band gap decreases. This implies that the optical properties of the CdS material are also affected by the Sn dopant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CdS" title="CdS">CdS</a>, <a href="https://publications.waset.org/abstracts/search?q=Sn%20dopant" title=" Sn dopant"> Sn dopant</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-Spetrophotometer" title=" UV-Spetrophotometer"> UV-Spetrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/189301/influence-of-dopant-of-tin-sn-on-the-optoelectronic-and-structural-properties-of-cadmium-sulfide-cds-pallets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8983</span> Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Soni">Ashish Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Kalyan%20Pal"> Suman Kalyan Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20absorption" title="transient absorption">transient absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronics" title=" optoelectronics"> optoelectronics</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title=" 2D materials"> 2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDCs" title=" TMDCs"> TMDCs</a>, <a href="https://publications.waset.org/abstracts/search?q=exciton" title=" exciton"> exciton</a> </p> <a href="https://publications.waset.org/abstracts/146122/excitation-density-and-energy-dependent-relaxation-dynamics-of-charge-carriers-in-large-area-2d-tmdcs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8982</span> Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Aissa">Brahim Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20heterojunction" title=" silicon heterojunction"> silicon heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20content" title=" oxygen content"> oxygen content</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties" title=" optoelectronic properties"> optoelectronic properties</a> </p> <a href="https://publications.waset.org/abstracts/90133/impact-of-the-oxygen-content-on-the-optoelectronic-properties-of-the-indium-tin-oxide-based-transparent-electrodes-for-silicon-heterojunction-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8981</span> Polarization Dependent Flexible GaN Film Nanogenerators and Electroluminescence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Min%20Baik">Jeong Min Baik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present that the electroluminescence (EL) properties and electrical output power of flexible N-face p-type GaN thin films can be tuned by strain-induced piezo-potential generated across the metal-semiconductor-metal structures. Under different staining conditions (convex and concave bending modes), the transport properties of the GaN films can be changed due to the spontaneous polarization of the films. The I-V characteristics with the bending modes show that the convex bending can increase the current across the films by the decrease in the barrier height at the metal-semiconductor contact, increasing the EL intensity of the P-N junction. At convex bending, it is also shown that the flexible p-type GaN films can generate an output voltage of up to 1.0 V, while at concave bending, 0.4 V. The change of the band bending with the crystal polarity of GaN films was investigated using high-resolution photoemission spectroscopy. This study has great significance on the practical applications of GaN in optoelectronic devices and nanogenerators under a working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20lift-off" title=" laser lift-off"> laser lift-off</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogenerator" title=" nanogenerator"> nanogenerator</a> </p> <a href="https://publications.waset.org/abstracts/13583/polarization-dependent-flexible-gan-film-nanogenerators-and-electroluminescence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8980</span> Silicon Surface Treatment Effect on the Structural, Optical, and Optoelectronic Properties for Solar Cell Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Hedi%20Khezami">Lotfi Hedi Khezami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Rabha"> Mohamed Ben Rabha</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sboui"> N. Sboui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Gaidi"> Mounir Gaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bessais"> B. Bessais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-nano particle-assisted Chemical Etching is an extraordinary developed wet etching method of producing uniform semiconductor nano structure (nano wires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and opto electronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and opto electronic properties are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stain%20etching" title="stain etching">stain etching</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20nanowires" title=" silicon nanowires"> silicon nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a> </p> <a href="https://publications.waset.org/abstracts/17930/silicon-surface-treatment-effect-on-the-structural-optical-and-optoelectronic-properties-for-solar-cell-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8979</span> Tunable in Phase, out of Phase and T/4 Square-Wave Pulses in Delay-Coupled Optoelectronic Oscillators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jade%20Mart%C3%ADnez-Llin%C3%A0s">Jade Martínez-Llinàs</a>, <a href="https://publications.waset.org/abstracts/search?q=Pere%20Colet"> Pere Colet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By exploring the possible dynamical regimes in a prototypical model for mutually delay-coupled OEOs, here it is shown that two mutually coupled non-identical OEOs, besides in- and out-of-phase square-waves, can generate stable square-wave pulses synchronized at a quarter of the period (T/4) in a broad parameter region. The key point to obtain T/4 solutions is that the two OEO operate with mixed feedback, namely with negative feedback in one and positive in the other. Furthermore, the coexistence of multiple solutions provides a large degree of flexibility for tuning the frequency in the GHz range without changing any parameter. As a result the two coupled OEOs system is good candidate to be implemented for information encoding as a high-capacity memory device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title="nonlinear optics">nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20oscillators" title=" optoelectronic oscillators"> optoelectronic oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20waves" title=" square waves"> square waves</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/abstracts/39791/tunable-in-phase-out-of-phase-and-t4-square-wave-pulses-in-delay-coupled-optoelectronic-oscillators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8978</span> Modalmetric Fiber Sensor and Its Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zyczkowski">M. Zyczkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Markowski"> P. Markowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karol"> M. Karol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The team from IOE MUT is developing fiber optic sensors for the security systems for 15 years. The conclusions of the work indicate that these sensors are complicated. Moreover, these sensors are expensive to produce and require sophisticated signal processing methods.We present the results of the investigations of three different applications of the modalmetric sensor: • Protection of museum collections and heritage buildings, • Protection of fiber optic transmission lines, • Protection of objects of critical infrastructure. Each of the presented applications involves different requirements for the system. The results indicate that it is possible to developed a fiber optic sensor based on a single fiber. Modification of optoelectronic parts with a change of the length of the sensor and the method of reflections of propagating light at the end of the sensor allows to adjust the system to the specific application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modalmetric%20fiber%20optic%20sensor" title="modalmetric fiber optic sensor">modalmetric fiber optic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20sensor" title=" security sensor"> security sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20parts" title=" optoelectronic parts"> optoelectronic parts</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/9235/modalmetric-fiber-sensor-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">619</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8977</span> Electronic, Optical, and Thermodynamic Properties of a Quantum Spin Liquid Candidate NaRuO₂: Ab-initio Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouhmouche">A. Bouhmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rhrissi"> I. Rhrissi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jabar"> A. Jabar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Moubah"> R. Moubah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum spin liquids (QSLs), known for their competing interactions that prevent conventional ordering, exhibit emergent phenomena and exotic properties resulting from quantum correlations. Despite these recent advancements in QSLs, a significant portion of the optical and thermodynamic properties in the Kagome lattice remains unknown. In addition, the thermodynamic phenomenology of NaRuO₂ bears a resemblance to that of highly frustrated magnets. Here, we employed ab-initio calculations to explore the electronic, optical and thermodynamic properties of NaRuO₂, a new QSL candidate. NaRuO₂ was identified as a semiconductor with a small bandgap energy of 0.69 eV. Our results reveal huge anisotropic optical properties, in which a distinct refractive index within the ab-plane indicating an impressive birefringent character of the NaRuO₂ system and a significant enhancement of the optical absorption coefficient and optical conductivity in the in-plane with respect to the c-axis. The investigation also examines the electronic anisotropy of the gap energy; by applying strain, the gap energy displays significant variations in the ab-plane compared to the out-of-plane direction. Conversely, calculations of the thermodynamic properties reveal a low thermal conductivity (2.5-0.5 W.m-¹. K-¹) and specific heat, which suggests the existence of strong interactions among the NaRuO₂ quantum spins. The linear specific heat behavior observed in NaRuO₂ suggests the fractionalization of electrons and the presence of a spinons Fermi surface. These findings hold promising potential for future quantum applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20spin%20liquids" title="quantum spin liquids">quantum spin liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title=" anisotropy"> anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid-DFT" title=" hybrid-DFT"> hybrid-DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20strain" title=" applied strain"> applied strain</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20and%20thermodynamic%20properties" title=" optoelectronic and thermodynamic properties"> optoelectronic and thermodynamic properties</a> </p> <a href="https://publications.waset.org/abstracts/193006/electronic-optical-and-thermodynamic-properties-of-a-quantum-spin-liquid-candidate-naruo2-ab-initio-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=300">300</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=301">301</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optoelectronic%20properties&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>