CINXE.COM

Search results for: LUMO

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: LUMO</title> <meta name="description" content="Search results for: LUMO"> <meta name="keywords" content="LUMO"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="LUMO" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="LUMO"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 44</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: LUMO</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> The Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability Hyperpolarizability, and Homo–Lumo Analysis of Monomeric and Dimeric Structures of 2-Chloro-N-(2 Methylphenyl) Benzamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Khelloul">N. Khelloul</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method shows good agreement with experimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. The intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that 2-Chloro-N-(2-methylphenyl) benzamide 2 molecule may have nonlinear optical (NLO) comportment with non-zero values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO "> NLO </a> </p> <a href="https://publications.waset.org/abstracts/40183/the-spectroscopic-molecular-structure-and-electrostatic-potential-polarizability-hyperpolarizability-and-homo-lumo-analysis-of-monomeric-and-dimeric-structures-of-2-chloro-n-2-methylphenyl-benzamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debanjan%20Dey">Debanjan Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamal%20Banerjee">Tamal Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaustubha%20Mohanty">Kaustubha Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal-ionic%20liquids%20cluster" title="coal-ionic liquids cluster">coal-ionic liquids cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=COSMO-RS" title=" COSMO-RS"> COSMO-RS</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20method" title=" DFT method"> DFT method</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO%20interaction" title=" HOMO-LUMO interaction"> HOMO-LUMO interaction</a> </p> <a href="https://publications.waset.org/abstracts/33384/dft-theoretical-investigation-for-evaluating-global-scalar-properties-and-validating-with-quantum-chemical-based-cosmo-rs-theory-for-dissolution-of-bituminous-and-anthracite-coal-in-ionic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> An Acyclic Zincgermylene: Rapid H₂ Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Juckel">Martin Juckel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Probably no other field of inorganic chemistry has undergone such a rapid development in the past two decades than the low oxidation state chemistry of main group elements. This rapid development has only been possible by the development of new bulky ligands. In case of our research group, super-bulky monodentate amido ligands and β-diketiminate ligands have been used to a great success. We first synthesized the unprecedented magnesium(I) dimer [ᴹᵉˢNacnacMg]₂ (ᴹᵉˢNacnac = [(ᴹᵉˢNCMe)₂CH]-; Mes = mesityl, which has since been used both as reducing agent and also for the synthesis of new metal-magnesium bonds. In case of the zinc bromide precursor [L*ZnBr] (L*=(N(Ar*)(SiPri₃); (Ar* = C₆H₂{C(H)Ph₂}₂Me-2,6,4, the reduction with [ᴹᵉˢNacnacMg]₂ led to such a metal-magnesium bond. This [L*ZnMg(ᴹᵉˢNacnac)] compound can be seen as an ‘inorganic Grignard reagent’, which can be used to transfer the metal fragment onto other functional groups or other metal centers; just like the conventional Grignard reagent. By simple addition of (TBoN)GeCl (TBoN = N(SiMe₃){B(DipNCH)₂) to the aforesaid compound, we were able to transfer the amido-zinc fragment to the Ge center of the germylene starting material and to synthesize the first example of a germanium(II)-zinc bond: [:Ge(TBoN)(ZnL*)]. While these reactions typically led to complex product mixture, [:Ge(TBoN)(ZnL*)] could be isolated as dark blue crystals in a good yield. This new compound shows interesting reactivity towards small molecules, especially dihydrogen gas. This is of special interest as dihydrogen is one of the more difficult small molecules to activate, due to its strong (BDE = 108 kcal/mol) and non-polar bond. In this context, the interaction between H₂ σ-bond with the tetrelylene p-Orbital (LUMO), with concomitant donation of the tetrelylene lone pair (HOMO) into the H₂ σ* orbital are responsible for the activation of dihydrogen gas. Accordingly, the narrower the HOMO-LUMO gap of tertelylene, the more reactivity towards H₂ it typically is. The aim of a narrow HOMO-LUMO gap was reached by transferring electropositive substituents respectively metal substituents with relatively low Pauling electronegativity (zinc: 1.65) onto the Ge center (here: the zinc-amido fragment). In consideration of the unprecedented reactivity of [:Ge(TBoN)(ZnL*)], a computational examination of its frontier orbital energies was undertaken. The energy separation between the HOMO, which has significant Ge lone pair character, and the LUMO, which has predominantly Ge p-orbital character, is narrow (40.8 kcal/mol; cf.∆S-T= 24.8 kcal/mol), and comparable to the HOMO-LUMO gaps calculated for other literature known complexes). The calculated very narrow HOMO-LUMO gap for the [:Ge(TBoN)(ZnL*)] complex is consistent with its high reactivity, and is remarkable considering that it incorporates a π-basic amide ligand, which are known to raise the LUMO of germylenes considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20of%20dihydrogen%20gas" title="activation of dihydrogen gas">activation of dihydrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=narrow%20HOMO-LUMO%20gap" title=" narrow HOMO-LUMO gap"> narrow HOMO-LUMO gap</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20germanium%28II%29-zinc%20bond" title=" first germanium(II)-zinc bond"> first germanium(II)-zinc bond</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20Grignard%20reagent" title=" inorganic Grignard reagent"> inorganic Grignard reagent</a> </p> <a href="https://publications.waset.org/abstracts/82747/an-acyclic-zincgermylene-rapid-h2-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N&#039;(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boulakoud">Manel Boulakoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Chouaih"> Abdelkader Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=Fodil%20Hamzaoui"> Fodil Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ab%20initio" title=" ab initio"> ab initio</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/43840/molecular-electrostatic-potential-in-z-3n2-ethoxyphenyl-2-n2-ethoxyphenyl-imino-thiazolidin-4-one-molecule-by-ab-initio-and-dft-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> DFT Study of Half Sandwich of Vanadium (IV) Cyclopentadienyl Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20El-Tohami%20Ashoor">Salem El-Tohami Ashoor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel new vanadium (IV) complexes incorporating the chelating diamido cyclopentadienyl {ArN(CH2)3NAr)}2-((ηn-Cp)Cp)} (Ar = 2,6-Pri2C6H3)(Cp = C5H5 and n = 1,2,3,4 and 5) have been studied with calculation of the properties of species involved in various of cyclopentadienyl reaction. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP (Becke) (Lee–Yang–Parr) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [V(ArN(CH2)3NAr)2Cl(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of vanadium cyclopentadienyl. In the meantime the complex [V(ArN(CH2)3NAr)2Cl(η1-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) which is showed a low thermal stability in case of the just one carbon of cyclopentadienyl can be insertion with vanadium metal centre. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vanadium%20%28IV%29%20cyclopentadienyl%20complexes" title="vanadium (IV) cyclopentadienyl complexes">vanadium (IV) cyclopentadienyl complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MO" title=" MO"> MO</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a> </p> <a href="https://publications.waset.org/abstracts/11048/dft-study-of-half-sandwich-of-vanadium-iv-cyclopentadienyl-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability, Hyperpolarizability, and HOMO–LUMO Analysis of Monomeric and Dimeric Structures of N-(2-Methylphenyl)-2-Nitrobenzenesulfonamide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Didaoui">A. Didaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method show good agreement with xperimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. the intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 03 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that N-(2-Methylphenyl)-2-nitrobenzenesulfonamide molecule may have nonlinear optical (NLO) comportment with non-zero values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%2003" title=" Gaussian 03"> Gaussian 03</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO"> NLO</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%282-Methylphenyl%29-2-nitrobenzenesulfonamide" title=" N-(2-Methylphenyl)-2-nitrobenzenesulfonamide"> N-(2-Methylphenyl)-2-nitrobenzenesulfonamide</a> </p> <a href="https://publications.waset.org/abstracts/19477/spectroscopic-molecular-structure-and-electrostatic-potential-polarizability-hyperpolarizability-and-homo-lumo-analysis-of-monomeric-and-dimeric-structures-of-n-2-methylphenyl-2-nitrobenzenesulfonamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Topological Analysis of Hydrogen Bonds in Pyruvic Acid-Water Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferid%20Hammami">Ferid Hammami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The molecular geometries of the possible conformations of pyruvic acid-water complexes (PA-(H₂O)ₙ = 1- 4) have been fully optimized at DFT/B3LYP/6-311G ++ (d, p) levels of calculation. Among several optimized molecular clusters, the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule are presented in this paper. Apposite topological and geometrical parameters are considered as primary indicators of H-bond strength. Atoms in molecules (AIM) analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O-H...O and C-H...O hydrogen bonds. In large clusters, classical O-H...O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid. The electrostatic potential energy map (MEP) and the HOMO-LUMO molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital) analysis has been performed for all considered complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyruvic%20acid" title="pyruvic acid">pyruvic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=PA-water%20complex" title=" PA-water complex"> PA-water complex</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title=" hydrogen bonding"> hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=AIM" title=" AIM"> AIM</a>, <a href="https://publications.waset.org/abstracts/search?q=MEP" title=" MEP"> MEP</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a> </p> <a href="https://publications.waset.org/abstracts/139309/topological-analysis-of-hydrogen-bonds-in-pyruvic-acid-water-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> The Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability, Hyperpolarizability, and HOMO–LUMO Analysis of Monomeric and Dimeric Structures of N-(2-Methylphenyl)-2-Nitrobenzenesulfonamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Didaoui">A. Didaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G(d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G(d,p) method show good agreement with experimental X-ray data. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 03 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that N-(2-Methylphenyl)-2-nitrobenzenesulfonamide molecule may have nonlinear optical (NLO) comportment with non-zero values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%2003" title=" Gaussian 03"> Gaussian 03</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO"> NLO</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%282-Methylphenyl%29-2-nitrobenzenesulfonamide" title=" N-(2-Methylphenyl)-2-nitrobenzenesulfonamide"> N-(2-Methylphenyl)-2-nitrobenzenesulfonamide</a>, <a href="https://publications.waset.org/abstracts/search?q=polarizability" title=" polarizability"> polarizability</a> </p> <a href="https://publications.waset.org/abstracts/18951/the-spectroscopic-molecular-structure-and-electrostatic-potential-polarizability-hyperpolarizability-and-homo-lumo-analysis-of-monomeric-and-dimeric-structures-of-n-2-methylphenyl-2-nitrobenzenesulfonamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20El-Tohami%20Ashoor">Salem El-Tohami Ashoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chromium%28III%29%20cyclopentadienyl%20complexes" title="Chromium(III) cyclopentadienyl complexes">Chromium(III) cyclopentadienyl complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MO" title=" MO"> MO</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a> </p> <a href="https://publications.waset.org/abstracts/14546/molecular-and-electronic-structure-of-chromium-iii-cyclopentadienyl-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Djamila">Abdi Djamila</a>, <a href="https://publications.waset.org/abstracts/search?q=Haffar%20Hichem"> Haffar Hichem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymethylene%20blue" title="polymethylene blue">polymethylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=electropolymerization" title=" electropolymerization"> electropolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=homo-lumo" title=" homo-lumo"> homo-lumo</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrents" title=" photocurrents"> photocurrents</a> </p> <a href="https://publications.waset.org/abstracts/24820/elaboration-of-polymethylene-blue-on-conducting-glassy-substrate-and-study-of-its-optical-electrical-and-photoelectrochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Kargeti">Ankit Kargeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravikant%20Shrivastav"> Ravikant Shrivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabish%20Rasheed"> Tabish Rasheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20of%20states" title=" density of states "> density of states </a> </p> <a href="https://publications.waset.org/abstracts/121158/electronic-structure-calculation-of-assitebsiasbte-nanostructures-using-density-functional-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boda%20Sreenivas">Boda Sreenivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyathakula%20Ravindranath"> Lyathakula Ravindranath</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanugula%20Srishailam"> Kanugula Srishailam</a>, <a href="https://publications.waset.org/abstracts/search?q=Byru%20Venkatram%20Reddy"> Byru Venkatram Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ftir%2Framan%20spectra" title="ftir/raman spectra">ftir/raman spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO"> NLO</a>, <a href="https://publications.waset.org/abstracts/search?q=homo-lumo" title=" homo-lumo"> homo-lumo</a>, <a href="https://publications.waset.org/abstracts/search?q=NBO" title=" NBO"> NBO</a>, <a href="https://publications.waset.org/abstracts/search?q=halogenated%20benzoic%20acids" title=" halogenated benzoic acids"> halogenated benzoic acids</a> </p> <a href="https://publications.waset.org/abstracts/162874/halogenated-methoxy-and-methyl-benzoic-acids-joint-experimental-and-dft-study-for-molecular-structure-vibrational-analysis-and-other-molecular-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Phosphorous Acid: An Efficient and Recyclable Liquid Catalyst for the Synthesis of α-Aminophosphonates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hellal%20Abdelkader">Hellal Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Chafaa%20Salah"> Chafaa Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Touafri%20Lasnouni"> Touafri Lasnouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple, efficient and general method has been developed for the high diastereoselective synthesis of diethyl α-aminophosphonates in water through “one-pot” three-component reaction of aromatic aldehydes, aminophenols and dialkyl phosphites in the presence of a low catalytic amount (10mol%) of phosphorous acid as highly stable catalyst is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphonic%20acid" title=" phosphonic acid"> phosphonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aminophenols" title=" aminophenols"> aminophenols</a> </p> <a href="https://publications.waset.org/abstracts/69866/phosphorous-acid-an-efficient-and-recyclable-liquid-catalyst-for-the-synthesis-of-a-aminophosphonates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> C2N2 Adsorption on the Surface of a BN Nanosheet: A DFT Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Noei">Maziar Noei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calculation showed that when the nanosheet is doped by Si, the adsorption energy is about -85.62 to -87.43kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanosheet is a suitable adsorbent for cyanogen and can be used in separation processes cyanogen. It seems that nanosheet (BNNS) is a suitable semiconductor after doping. The doped BNNS in the presence of cyanogens (C2N2) an electrical signal is generating directly and, therefore, can potentially be used for cyanogen sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanosheet" title="nanosheet">nanosheet</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanogen" title=" cyanogen"> cyanogen</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/34135/c2n2-adsorption-on-the-surface-of-a-bn-nanosheet-a-dft-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Shahul%20Hameed">T. A. Shahul Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Predeep"> P. Predeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Anju%20Iqbal"> Anju Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Baiju"> M. R. Baiju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HOMO" title="HOMO">HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=PLED" title=" PLED"> PLED</a>, <a href="https://publications.waset.org/abstracts/search?q=OPV" title=" OPV"> OPV</a> </p> <a href="https://publications.waset.org/abstracts/18873/simulation-and-characterization-of-organic-light-emitting-diodes-and-organic-photovoltaics-using-physics-based-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> C4H6 Adsorption on the Surface of A BN Nanotube: A DFT Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Noei">Maziar Noei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about -24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensor" title="sensor">sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube" title=" nanotube"> nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylacetylene" title=" ethylacetylene"> ethylacetylene</a> </p> <a href="https://publications.waset.org/abstracts/18000/c4h6-adsorption-on-the-surface-of-a-bn-nanotube-a-dft-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> An Ab Initio Molecular Orbital Theory and Density Functional Theory Study of Fluorous 1,3-Dion Compounds </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghammamy">S. Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mirzaabdollahiha"> M. Mirzaabdollahiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum mechanical calculations of energies, geometries, and vibrational wavenumbers of fluorous 1,3-dion compounds are carried out using density functional theory (DFT/B3LYP) method with LANL2DZ basis sets. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecules. The thermodynamic functions of fluorous 1,3-dion compounds have been performed at B3LYP/LANL2DZ basis sets. The theoretical spectrograms for F NMR spectra of fluorous 1,3-dion compounds have also been constructed. The F NMR nuclear shieldings of fluoride ligands in fluorous 1,3-dion compounds have been studied quantum chemical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20function%20theory" title="density function theory">density function theory</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20bond%20orbital" title=" natural bond orbital"> natural bond orbital</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LOMO" title=" LOMO"> LOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorous" title=" fluorous"> fluorous</a> </p> <a href="https://publications.waset.org/abstracts/5829/an-ab-initio-molecular-orbital-theory-and-density-functional-theory-study-of-fluorous-13-dion-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Theorical Studies on the Structural Properties of 2,3-Bis(Furan-2-Yl)Pyrazino[2,3-F][1,10]Phenanthroline Derivaties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Sadeghian">Zahra Sadeghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the geometrical parameters optimized of the stationary point for the 2,3-Bis(furan-2-yl)pyrazino[2,3-f][1,10]phenanthroline. The calculations are performed using density functional theory (DFT) method at the B3LYP/LanL2DZ level. We determined bond lengths and bond angles values for the compound and calculate the amount of bond hybridization according to the natural bond orbital theory (NBO) too. The energy of frontier orbital (HOMO and LUMO) are computed. In addition, calculated data are accurately compared with the experimental result. This comparison show that the our theoretical data are in reasonable agreement with the experimental values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-Bis%28furan-2-yl%29pyrazino%5B2" title="3-Bis(furan-2-yl)pyrazino[2">3-Bis(furan-2-yl)pyrazino[2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-f%5D%5B1" title="3-f][1">3-f][1</a>, <a href="https://publications.waset.org/abstracts/search?q=10%5Dphenanthroline" title="10]phenanthroline">10]phenanthroline</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=theorical%20calculations" title=" theorical calculations"> theorical calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=LanL2DZ%20level" title=" LanL2DZ level"> LanL2DZ level</a>, <a href="https://publications.waset.org/abstracts/search?q=B3LYP%20level" title=" B3LYP level"> B3LYP level</a> </p> <a href="https://publications.waset.org/abstracts/12220/theorical-studies-on-the-structural-properties-of-23-bisfuran-2-ylpyrazino23-f110phenanthroline-derivaties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> A Density Functional Theory Computational Study on the Inhibiting Action of Some Derivatives of 1,8-Bis(Benzylideneamino)Naphthalene against Aluminum Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taher%20S.%20Ababneh">Taher S. Ababneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Taghreed%20M.%20A.%20Jazzazi"> Taghreed M. A. Jazzazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tareq%20M.%20A.%20Alshboul"> Tareq M. A. Alshboul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inhibiting action against aluminum corrosion by three derivatives of 1,8-bis (benzylideneamino) naphthalene (BN) Schiff base has been investigated by means of DFT quantum chemical calculations at the B3LYP/6-31G(d) level of theory. The derivatives (CBN, NBN and MBN) were prepared from the condensation reaction of 1,8-diaminonaphthalene with substituted benzaldehyde (4-CN, 3-NO₂ and 3,4-(OMe)₂, respectively). Calculations were conducted to study the adsorption of each Schiff base on aluminum surface to evaluate its potential as a corrosion inhibitor. The computational structural features and electronic properties of each derivative such as relative energies and energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been reported. Thermodynamic functions and quantum chemical parameters such as the hardness of the inhibitor, the softness and the electrophilicity index were calculated to determine the derivative of the highest inhibition efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20calculation" title=" DFT calculation"> DFT calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=8-diaminonaphthalene" title="8-diaminonaphthalene">8-diaminonaphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=benzaldehyde" title=" benzaldehyde"> benzaldehyde</a> </p> <a href="https://publications.waset.org/abstracts/48980/a-density-functional-theory-computational-study-on-the-inhibiting-action-of-some-derivatives-of-18-bisbenzylideneaminonaphthalene-against-aluminum-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Theoretical and Computational Investigation of PCBM and PC71BM Derivatives using the DFT Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zair%20Mohammed%20El%20Amine">Zair Mohammed El Amine</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemouri%20Hafida"> Chemouri Hafida</a>, <a href="https://publications.waset.org/abstracts/search?q=Derbal%20Habak%20Hassina"> Derbal Habak Hassina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic photovoltaic cells are electronic devices that convert sunlight into electricity. To this end, the number of studies on organic photovoltaic cells (OVCs) is growing, and this trend is expected to continue. Computational studies are still needed to verify and prove the capability of CVOs, specifically the nanometer molecule PCBM, based on successful experimental results. In this paper, we present a theoretical and computational investigation of PCBM and PC71BM derivatives using the DFT method. On this basis, we employ independent and time-dependent density theories. HOMO, LUMO and GAPH-L energies, ionization potentials and electronic affinity are determined and found to be in agreement with experiments. Using DFT theory based on B3LYP and M062X methods with bases 6-31G (d,p) and 6-311G (d), calculations show that the most efficient acceptors are presented in the group of PC71BM derivatives and are in substantial agreement with experiments. The geometries of the structures are optimized by Gaussian 09. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCBM" title="PCBM">PCBM</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT" title=" P3HT"> P3HT</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20cell%20solar" title=" organic cell solar"> organic cell solar</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=TD-DFT" title=" TD-DFT"> TD-DFT</a> </p> <a href="https://publications.waset.org/abstracts/166726/theoretical-and-computational-investigation-of-pcbm-and-pc71bm-derivatives-using-the-dft-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Theoretical Studies on the Formation Constant, Geometry, Vibrational Frequencies and Electronic Properties Dinuclear Molybdenum Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahboobeh%20Mohadeszadeh">Mahboobeh Mohadeszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Padidaran%20Moghaddam"> Behzad Padidaran Moghaddam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to measuring dinuclear molybdenum complexes formation constant First,the reactants and the products were optimized separately and then, their frequencies were measured. In next level , with using Hartree-fock (HF) and density functional theory (DFT) methods ,Theoretical studies on the geometrical parameters, electronic properties and vibrational frequencies of dinuclear molybdenum complexes [C40H44Mo2N2O20] were investigated . These calculations were performed with the B3LYP, BPV86, B3PW91 and HF theoretical method using the LANL2DZ (for Mo’s) + 6-311G (for others) basis sets. To estimate the error rate between theoretical data and experimental data, RSquare , SError and RMS values that according with the theoretical and experimental parameters found out DFT methods has more integration with experimental data compare to HF methods. In addition, through electron specification of compounds, the percentage of atomic orbital’s attendance in making molecular orbital’s, atoms electrical charge, the sustainable energy resulting and also HOMO and LUMO orbital’s energy achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometrical%20parameters" title="geometrical parameters">geometrical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title=" hydrogen bonding"> hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20frequencies" title=" vibrational frequencies"> vibrational frequencies</a> </p> <a href="https://publications.waset.org/abstracts/30865/theoretical-studies-on-the-formation-constant-geometry-vibrational-frequencies-and-electronic-properties-dinuclear-molybdenum-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Synthesis, Characterization of Benzodiazepine Derivatives through Condensation Reaction, Crystal Structure, and DFT Calculations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hmaimou">Samir Hmaimou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Ait%20Lahcen"> Marouane Ait Lahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adardour"> Mohamed Adardour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Maatallah"> Mohamed Maatallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdesselam%20Baouid"> Abdesselam Baouid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stereoisomers (E)-2,2-dimethyl-4-(4-subsitutedstyryl)-2,3-dihydro-1H-[1,5]-benzodiazepine 3(a-d) were synthesized via the condensation reaction of 2,2,3 4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine (BZD) 1 with the benzaldehyde derivatives 2(a-d) in polar protic solvent as ethanol. The chemical structure of the prepared products was confirmed by NMR (¹H and ¹³C), HRMS, and X-ray analysis of the crystal structure 3d. The condensation reaction was examined using DFT calculations at the theoretical level of B3LYP/6-311G(d,p). Frontier molecular orbital analysis shows that the most favorable interaction is between the HOMO of BZD 1 and the LUMO of 2(a-d). On the other hand, the calculation of the global reactivity indices (softness, hardness, and chemical potential) confirmed that benzodiazepine BDZ 1 act as a nucleophile, whereas the aldehyde derivatives 2(a-d) play the role of electrophile. Furthermore, we identified each reagent's reactive sites by the measurement of the reactivity indices to explain the experimentally observed regioselectivity, using Fukui local reactivity descriptors. A one-step mechanism reaction and order 2 water elimination were investigated. We also looked at how the electron-withdrawing groups (EWG) of various aldehydes affected the reaction's mechanism and the stability of products 3(a-d). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzodiazepine" title="benzodiazepine">benzodiazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20calculations" title=" DFT calculations"> DFT calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselective" title=" regioselective"> regioselective</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20Reaction" title=" condensation Reaction"> condensation Reaction</a> </p> <a href="https://publications.waset.org/abstracts/192346/synthesis-characterization-of-benzodiazepine-derivatives-through-condensation-reaction-crystal-structure-and-dft-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> The Nonlinear Optical Properties Analysis of AlPc-Cl Organic Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Benhaliliba">M. Benhaliliba</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ben%20Ahmed"> A. Ben Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=C.E.%20Benouis"> C.E. Benouis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Ayeshamariam"> A.Ayeshamariam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The properties of nonlinear optical NLOs are examined, and the results confirm the 2.19 eV HOMO-LUMO mismatch. In the Al-Pc cluster, certain functional bond lengths and bond angles have been observed. The Quantum chemical method (DFT and TD-DFT) and Vibrational spectra properties of AlPc are studied. X-ray pattern reveals the crystalline structure along with the (242) orientation of the AlPc organic thin layer. UV-Vis shows the frequency selective behavior of the device. The absorbance of such layer exhibits a high value within the UV range and two consecutive peaks within visible range. Spin coating is used to make an organic diode based on the Aluminium-phthalocynanine (AlPc-Cl) molecule. Under dark and light conditions, electrical characterization of Ag/AlPc/Si/Au is obtained. The diode's high rectifying capability (about 1x104) is subsequently discovered. While the height barrier is constant and saturation current is greatly reliant on light, the ideality factor of such a diode increases to 6.9 which confirms the non-ideality of such a device. The Cheung-Cheung technique is employed to further the investigation and gain additional data such as series resistance and barrier height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlPc-Cl%20organic%20material" title="AlPc-Cl organic material">AlPc-Cl organic material</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optic" title=" nonlinear optic"> nonlinear optic</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20filter" title=" optical filter"> optical filter</a>, <a href="https://publications.waset.org/abstracts/search?q=diode" title=" diode"> diode</a> </p> <a href="https://publications.waset.org/abstracts/148773/the-nonlinear-optical-properties-analysis-of-alpc-cl-organic-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Explanation of the Electron Transfer Mechanism from β-Carotene to N-Pentyl Peroxyl Radical by Density Functional Theory Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Esra%20Kasapba%C5%9F%C4%B1">E. Esra Kasapbaşı</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%BC%C5%9Fra%20Y%C4%B1ld%C4%B1r%C4%B1m"> Büşra Yıldırım</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weak oxidizing radicals, such as alkyl peroxyl derivatives, react with carotenoids through hydrogen atom transfer to form neutral carotenoid radicals. Using the DFT method, it has been observed that s-cis-β-carotene is more stable than all-transforms. In the context of this study, an attempt is made to explain the reaction mechanism of the isomers of β-carotene, which exhibits antioxidant properties, with n-pentyl peroxide, one of the alkyl peroxyl molecules, using the Density Functional Theory (DFT) method. The cis and transforms of β-carotene are used in the study to determine which form is more reactive. For this purpose, Natural Bond Orbital (NBO) charges of all optimized structures are calculated, and electron transfer is determined by examining electron transitions between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). Additionally, the radical character and reaction mechanism of β-carotene in a radical environment are attempted to be explained based on the calculations. The theoretical inclination of whether β-carotene in cis or transforms is more active in reaction is also discussed. All these calculations are performed in the gas phase using the Integral Equation Formalism Polarizable Continuum Model IEFPCM method with dichloromethane as the solvent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-carotene" title="β-carotene">β-carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=n-pentyl%20peroxyl%20radical" title=" n-pentyl peroxyl radical"> n-pentyl peroxyl radical</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=TD-DFT" title=" TD-DFT"> TD-DFT</a> </p> <a href="https://publications.waset.org/abstracts/176701/explanation-of-the-electron-transfer-mechanism-from-v-carotene-to-n-pentyl-peroxyl-radical-by-density-functional-theory-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Vohra">Rajan Vohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Singh%20Sawhney"> Ravinder Singh Sawhney</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunwar%20Partap%20Singh"> Kunwar Partap Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adenine" title="adenine">adenine</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Huckel" title=" extended Huckel"> extended Huckel</a>, <a href="https://publications.waset.org/abstracts/search?q=thymine" title=" thymine"> thymine</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20spectra" title=" transmission spectra"> transmission spectra</a> </p> <a href="https://publications.waset.org/abstracts/104221/contemplating-charge-transport-by-modeling-of-dna-nucleobases-based-nano-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Conventional and Computational Investigation of the Synthesized Organotin(IV) Complexes Derived from o-Vanillin and 3-Nitro-o-Phenylenediamine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harminder%20Kaur">Harminder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Manpreet%20Kaur"> Manpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Akanksha%20Kapila"> Akanksha Kapila</a>, <a href="https://publications.waset.org/abstracts/search?q=Reenu"> Reenu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schiff base with general formula H₂L was derived from condensation of o-vanillin and 3-nitro-o-phenylenediamine. This Schiff base was used for the synthesis of organotin(IV) complexes with general formula R₂SnL [R=Phenyl or n-octyl] using equimolar quantities. Elemental analysis UV-Vis, FTIR, and multinuclear spectroscopic techniques (¹H, ¹³C, and ¹¹⁹Sn) NMR were carried out for the characterization of the synthesized complexes. These complexes were coloured and soluble in polar solvents. Computational studies have been performed to obtain the details of the geometry and electronic structures of ligand as well as complexes. Geometry of the ligands and complexes have been optimized at the level of Density Functional Theory with B3LYP/6-311G (d,p) and B3LYP/MPW1PW91 respectively followed by vibrational frequency analysis using Gaussian 09. Observed ¹¹⁹Sn NMR chemical shifts of one of the synthesized complexes showed tetrahedral geometry around Tin atom which is also confirmed by DFT. HOMO-LUMO energy distribution was calculated. FTIR, ¹HNMR and ¹³CNMR spectra were also obtained theoretically using DFT. Further IRC calculations were employed to determine the transition state for the reaction and to get the theoretical information about the reaction pathway. Moreover, molecular docking studies can be explored to ensure the anticancer activity of the newly synthesized organotin(IV) complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=organotin%28IV%29%20complexes" title=" organotin(IV) complexes"> organotin(IV) complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=o-vanillin" title=" o-vanillin"> o-vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=3-nitro-o-phenylenediamine" title=" 3-nitro-o-phenylenediamine"> 3-nitro-o-phenylenediamine</a> </p> <a href="https://publications.waset.org/abstracts/89192/conventional-and-computational-investigation-of-the-synthesized-organotiniv-complexes-derived-from-o-vanillin-and-3-nitro-o-phenylenediamine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Synthesis, Characterization and Biological Activites of Azomethine Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Golea">Lynda Golea</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Chebaki"> Rachid Chebaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schiff bases contain heterocyclic structural units with N and O donor atoms which plays an important role in coordination chemistry. Azomethine groups are a broad class of widely used compounds with applications in many fields, including analytical, inorganic chemistry and biological. Schiff's base is of promising research interest due to the widespread antibacterial resistance in medical science. In addition, the research is essential to generate Schiff base metal complexes with various applications. Schiff complexes have been used as drugs and have antibacterial, antifungal, antiviral, and anti-inflammatory properties. The various donor atoms they contain offer a special ability for metal binding. In this research on the physicochemical properties of azomethine groups, we synthesized and studied the Schiff base compounds by a condensation reaction of tryptamines and acetophenone in ethanol. The structure of the prepared compound was interpreted using 1H NMR, 13C NMR, UV-vis and FT-IR. A computational analysis at the level of DFT with functional B3LYP in conjunction with the base 6-311+G (d, p) was conducted to study its electronic and molecular structure. The biological study was performed on three bacterial strains usually causing infection, including Gram-positive and Gram-negative, for antibacterial activity. Results showed moderate biological activity and proportional activity with increasing concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azomethine" title="azomethine">azomethine</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=RMN" title=" RMN"> RMN</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/167598/synthesis-characterization-and-biological-activites-of-azomethine-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Highly Robust Crosslinked BIAN-based Binder to Stabilize High-Performance Silicon Anode in Lithium-Ion Secondary Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agman%20Gupta">Agman Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajashekar%20Badam"> Rajashekar Badam</a>, <a href="https://publications.waset.org/abstracts/search?q=Noriyoshi%20Matsumi"> Noriyoshi Matsumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Recently, silicon has been recognized as one of the potential alternatives as anode active material in Li-ion batteries (LIBs) to replace the conventionally used graphite anodes. Silicon is abundantly present in the nature, it can alloy with lithium metal, and has a higher theoretical capacity (~4200 mAhg-1) that is approximately 10 times higher than graphite. However, because of a large volume expansion (~400%) upon repeated de-/alloying, the pulverization of Si particles causes the exfoliation of electrode laminate leading to the loss of electrical contact and adversely affecting the formation of solid-electrolyte interface (SEI).1 Functional polymers as binders have emerged as a competitive strategy to mitigate these drawbacks and failure mechanism of silicon anodes.1 A variety of aqueous/non-aqueous polymer binders like sodium carboxy-methyl cellulose (CMC-Na), styrene butadiene rubber (SBR), poly(acrylic acid), and other variants like mussel inspired binders have been investigated to overcome these drawbacks.1 However, there are only a few reports that mention the attempt of addressing all the drawbacks associated with silicon anodes effectively using a single novel functional polymer system as a binder. In this regard, here, we report a novel highly robust n-type bisiminoacenaphthenequinone (BIAN)-paraphenylene-based crosslinked polymer as a binder for Si anodes in lithium-ion batteries (Fig. 1). On its application, crosslinked-BIAN binder was evaluated to provide mechanical robustness to the large volume expansion of Si particles, maintain electrical conductivity within the electrode laminate, and facilitate in the formation of a thin SEI by restricting the extent of electrolyte decomposition on the surface of anode. The fabricated anodic half-cells were evaluated electrochemically for their rate capability, cyclability, and discharge capacity. Experimental: The polymerized BIAN (P-BIAN) copolymer was synthesized as per the procedure reported by our group.2 The synthesis of crosslinked P-BIAN: a solution of P-BIAN copolymer (1.497 g, 10 mmol) in N-methylpyrrolidone (NMP) (150 ml) was set-up to stir under reflux in nitrogen atmosphere. To this, 1,6-dibromohexane (5 mmol, 0.77 ml) was added dropwise. The resultant reaction mixture was stirred and refluxed at 150 °C for 24 hours followed by refrigeration for 3 hours at 5 °C. The product was obtained by evaporating the NMP solvent under reduced pressure and drying under vacuum at 120 °C for 12 hours. The obtained product was a black colored sticky compound. It was characterized by 1H-NMR, XPS, and FT-IR techniques. Results and Discussion: The N 1s XPS spectrum of the crosslinked BIAN polymer showed two characteristic peaks corresponding to the sp2 hybridized nitrogen (-C=N-) at 399.6 eV of the diimine backbone in the BP and quaternary nitrogen at 400.7 eV corresponding to the crosslinking of BP via dibromohexane. The DFT evaluation of the crosslinked BIAN binder showed that it has a low lying lowest unoccupied molecular orbital (LUMO) that enables it to get doped in the reducing environment and influence the formation of a thin (SEI). Therefore, due to the mechanically robust crosslinked matrices as well as its influence on the formation of a thin SEI, the crosslinked BIAN binder stabilized the Si anode-based half-cell for over 1000 cycles with a reversible capacity of ~2500 mAhg-1 and ~99% capacity retention as shown in Fig. 2. The dynamic electrochemical impedance spectroscopy (DEIS) characterization of crosslinked BIAN-based anodic half-cell confirmed that the SEI formed was thin in comparison with the conventional binder-based anodes. Acknowledgement: We are thankful to the financial support provided by JST-Mirai Program, Grant Number: JP18077239 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-healing%20binder" title="self-healing binder">self-healing binder</a>, <a href="https://publications.waset.org/abstracts/search?q=n-type%20binder" title=" n-type binder"> n-type binder</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20solid-electrolyte%20interphase%20%28SEI%29" title=" thin solid-electrolyte interphase (SEI)"> thin solid-electrolyte interphase (SEI)</a>, <a href="https://publications.waset.org/abstracts/search?q=high-capacity%20silicon%20anodes" title=" high-capacity silicon anodes"> high-capacity silicon anodes</a>, <a href="https://publications.waset.org/abstracts/search?q=low-LUMO" title=" low-LUMO"> low-LUMO</a> </p> <a href="https://publications.waset.org/abstracts/143318/highly-robust-crosslinked-bian-based-binder-to-stabilize-high-performance-silicon-anode-in-lithium-ion-secondary-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Chemical Sensing Properties of Self-Assembled Film Based on an Amphiphilic Ambipolar Triple-Decker (Phthalocyaninato) (Porphyrinato) Europium Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Abdullah">Kiran Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanli%20Chen"> Yanli Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An amphiphilic mixed (phthalocyaninato) (porphyrinato) europium triple-decker complex Eu₂(Pc)₂(TPyP) has been synthesized and characterized. Introducing electron-withdrawing pyridyl substituents onto the meso-position of porphyrin ring in the triple-decker to ensure the sufficient hydrophilicity and suitable HOMO and LUMO energy levels and thus successfully realize amphiphilic ambipolar organic semiconductor. Importantly, high sensitive, reproducible p-type and n-type responses towards NH₃ andNO₂ respectively, based on the self-assembled film of the Eu₂(Pc)₂(TPyP) fabricated by a simple solution-based Quasi–Langmuir–Shäfer (QLS) method, have been first revealed. The good conductivity and crystallinity for the QLS film of Eu₂(Pc)₂(TPyP) render it excellent sensing property. This complex is sensitive to both electron-donating NH₃ gas in 5–30 ppm range and electron-accepting NO₂ gas 400–900 ppb range. Due to uniform nano particles there exist effective intermolecular interaction between triple decker molecules. This is the best result of Phthalocyanine–based chemical sensors at room temperature. Furthermore, the responses of the QLS film are all linearly correlated to both NH₃ and NO₂ with excellent sensitivity of 0.04% ppm⁻¹ and 31.9 % ppm⁻¹, respectively, indicating the great potential of semiconducting tetrapyrrole rare earth triple-decker compounds in the field of chemical sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambipolar%20semiconductor" title="ambipolar semiconductor">ambipolar semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20%28phthalocyaninato%29%20%28porphyrinato%29%20rare%20earth%20complex" title=" mixed (phthalocyaninato) (porphyrinato) rare earth complex"> mixed (phthalocyaninato) (porphyrinato) rare earth complex</a>, <a href="https://publications.waset.org/abstracts/search?q=Self-assemblies" title=" Self-assemblies"> Self-assemblies</a> </p> <a href="https://publications.waset.org/abstracts/80231/chemical-sensing-properties-of-self-assembled-film-based-on-an-amphiphilic-ambipolar-triple-decker-phthalocyaninato-porphyrinato-europium-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nazim">M. Nazim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ameen"> S. Ameen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Seo"> H. K. Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Shin"> H. S. Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm². <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromophore" title="chromophore">chromophore</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title=" organic solar cells"> organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=photoactive%20materials" title=" photoactive materials"> photoactive materials</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20molecule" title=" small molecule"> small molecule</a> </p> <a href="https://publications.waset.org/abstracts/90899/thiazolo54-dthiazole-core-organic-chromophore-with-furan-spacer-for-organic-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LUMO&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LUMO&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10