CINXE.COM

Search results for: hostel building

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hostel building</title> <meta name="description" content="Search results for: hostel building"> <meta name="keywords" content="hostel building"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hostel building" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hostel building"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4063</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hostel building</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4063</span> Proposal for Sustainable Construction of a New College Hostel Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Raskar-Phule">Reshma Raskar-Phule</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Shinde"> Abhay Shinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Manesh%20Konkani"> Manesh Konkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Nighot"> Rohit Nighot</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrirang%20Mahajan"> Shrirang Mahajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Viraj%20Thorat"> Viraj Thorat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability in construction projects can be considered from three dimensions - environment, economy and society. Key concepts of sustainable construction include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and life cycle analysis. The present paper attempts to identify and analyze the use of sustainable construction materials for a new college hostel building in terms of sustainability development indices (SDIs). Low SDI materials, say as composite fiberglass reinforcement (SDI 4074.96), compressed earth blocks (SDI 0.47), and fiber-reinforced doors (SDI 0.13) are the proposed sustainable materials for the hostel building. Indian Green Building Certification (IGBC) is applied for the hostel building and it earns 5 points out of total 16 points for criterion 5 – Building Materials and Resources of IGBC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title=" construction materials"> construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=IGBC" title=" IGBC"> IGBC</a>, <a href="https://publications.waset.org/abstracts/search?q=hostel%20building" title=" hostel building"> hostel building</a> </p> <a href="https://publications.waset.org/abstracts/152734/proposal-for-sustainable-construction-of-a-new-college-hostel-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4062</span> Developing a Model – an Application of Fuzzy Analytic Network Process Techniques for Hostels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pin-Ju%20Juan">Pin-Ju Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Yu%20Juan"> Peng-Yu Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Shan%20Chen"> Yi-Shan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to present a fuzzy Analytic Network Process (ANP) model for the hostel organizational performance selection. In this article, we created 39 criteria for selecting hostel organizational performance acquired from literature's review and experts method practical investigations, and the methods of fuzzy analytic network process are used to consolidate decision-makers’ assessments about criteria weightings. Finally, we selected organizational performance of a hostel in Taiwan to determine the effectiveness of the proposed evaluation model in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20ANP" title="Fuzzy ANP">Fuzzy ANP</a>, <a href="https://publications.waset.org/abstracts/search?q=hostel" title=" hostel"> hostel</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20performance" title=" organizational performance"> organizational performance</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20management" title=" strategy management"> strategy management</a> </p> <a href="https://publications.waset.org/abstracts/123585/developing-a-model-an-application-of-fuzzy-analytic-network-process-techniques-for-hostels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4061</span> Entrepreneurial Orientation and Customer Satisfaction: Evidences nearby Khao San Road</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vichada%20Chokesikarin">Vichada Chokesikarin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to determine which factors account for customer satisfaction and to investigate the relationship between entrepreneurial orientation and business success, in particular, context of the information understanding of hostel business in Pranakorn district, Bangkok and the significant element of entrepreneurship in tourism industry. This study covers 352 hostels customers and 61 hostel owners/managers nearby Khao San Road. Data collection methods were used by survey questionnaire and a series of hypotheses were developed from services marketing literature. The findings suggest the customer satisfaction most influenced by image, service quality, room quality and price accordingly. Furthermore the findings revealed that significant relationships exist between entrepreneurial orientation and business success; while competitive aggressiveness was found unrelated. The ECSI model’s generic measuring customer satisfaction was found partially mediate the business success. A reconsideration of other variables applicable should be supported with the model of hostel business. The study provides context and overall view of hostel business while discussing from the entrepreneurial orientation to customer satisfaction, thereby reducing decision risk on hostel investment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20satisfaction" title="customer satisfaction">customer satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ECSI%20model" title=" ECSI model"> ECSI model</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurial%20orientation" title=" entrepreneurial orientation"> entrepreneurial orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20hotel" title=" small hotel"> small hotel</a>, <a href="https://publications.waset.org/abstracts/search?q=hostel" title=" hostel"> hostel</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20performance" title=" business performance"> business performance</a> </p> <a href="https://publications.waset.org/abstracts/3283/entrepreneurial-orientation-and-customer-satisfaction-evidences-nearby-khao-san-road" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4060</span> Installing Photovoltaic Panels to Generate Optimal Energy in SPAV Hostel, Vijayawada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Jayasuriya">J. Jayasuriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research paper, a procedure for installing and assessment of a solar PV plant to generate optimal solar energy SPAV hostel at Vijayawada city was analyzed. The hostel was experiencing power disruption and had a need for an unceasing energy source. The solar panel is one of the best solutions to obtain uninterrupted clean renewable energy for an institutional building as it neither makes din nor pollutes the atmosphere. The electricity usage per month was initially measured to discriminate the energy change. The solar array was installed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for the feasibility and efficiency of PV plant near this site i.e., the orientation of the site, the size and shape of the terrace, the sun path were considered while installing panels. Various precautions were taken to intercept the factors which cause interference in energy generation, with respect to temperature, overshadowing, the wiring of panels, pollution etc. The solar panels were frequently installed, monitored and maintained properly to procure optimal energy output. Result obtained with the assessment of the proposed plant and deflation in the electric bill will show the maximal energy that can be generated in a month on that particular site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20efficiency" title="solar efficiency">solar efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20sustainability" title=" building sustainability"> building sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20panel" title=" PV panel"> PV panel</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/83960/installing-photovoltaic-panels-to-generate-optimal-energy-in-spav-hostel-vijayawada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4059</span> Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lokesh%20Harshe">Lokesh Harshe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability%20analyses" title="sustainability analyses">sustainability analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM" title=" BIM"> BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20rating%20systems" title=" green rating systems"> green rating systems</a>, <a href="https://publications.waset.org/abstracts/search?q=IGBC%C2%AE" title=" IGBC®"> IGBC®</a>, <a href="https://publications.waset.org/abstracts/search?q=LEED" title=" LEED"> LEED</a> </p> <a href="https://publications.waset.org/abstracts/182720/application-of-building-information-modelling-in-analysing-igbc-ratings-sustainability-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4058</span> Wind Interference Effect on Tall Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai">Atul K. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigar%20K.%20Sevalia"> Jigar K. Sevalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20A.%20Vasanwala"> Sandip A. Vasanwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20region" title=" wake region"> wake region</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/6233/wind-interference-effect-on-tall-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4057</span> Assessment of Causes of Building Collapse in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20Oyedele">Olufemi Oyedele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building collapse (BC) in Nigeria is becoming a regular occurrence, each recording great casualties in the number of lives and materials lost. Building collapse is a situation where building which has been completed and occupied, completed but not occupied or under construction, collapses on its own due to action or inaction of man or due to natural event like earthquake, storm, flooding, tsunami or wildfire. It is different from building demolition. There are various causes of building collapse and each case requires expert judgment to decide the cause of its collapse. Rate of building collapse is a reflection of the level of organization and control of building activities and degree of sophistication of the construction professionals in a country. This study explored the use of case study by examining the causes of six (6) collapsed buildings (CB) across Nigeria. Samples of materials from the sites of the collapsed buildings were taken for testing and analysis, while critical observations were made at the sites to note the conditions of the ground (building base). The study found out that majority of the building collapses in Nigeria were due to poor workmanship, sub-standard building materials, followed by bad building base and poor design. The National Building Code 2006 is not effective due to lack of enforcement and the Physical Development Departments of states and Federal Capital Territory are just mere agents of corruption allowing all types of construction without building approvals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20collapse" title="building collapse">building collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20tests" title=" concrete tests"> concrete tests</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20settlement" title=" differential settlement"> differential settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity%20test" title=" integrity test"> integrity test</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a> </p> <a href="https://publications.waset.org/abstracts/57378/assessment-of-causes-of-building-collapse-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4056</span> Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lyu">Yan Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqun%20Pan"> Yiqun Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhizhong%20Huang"> Zhizhong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20model" title="building energy model">building energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20simplification" title=" geometric simplification"> geometric simplification</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/139548/geometric-simplification-method-of-building-energy-model-based-on-building-performance-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4055</span> Prevalence of Plastic Use in Building and Construction: An Analysis of 250 Common Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teresa%20McGrath">Teresa McGrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Johnson"> Ryan Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Stamm"> Rebecca Stamm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassidy%20Clarity"> Cassidy Clarity</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yung%20Lui"> Wei Yung Lui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building and construction is the second largest plastic user behind packaging, accounting for 16% of plastic production. Building and construction is also by far the largest user of one of the most impactful plastics, polyvinyl chloride (aka vinyl or PVC), accounting for 69% of PVC production. Building materials also have an outsized contribution to plastic pollution, including microplastic pollution. Yet building materials are often overlooked in plastic waste and pollution reduction efforts. Habitable will present a plastics and petrochemical analysis of over 250 common building material types and demonstrate how changes to building material selection towards safer, renewable, and lower carbon materials can reduce global consumption of plastics and associated pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fenceline%20communities" title=" fenceline communities"> fenceline communities</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=safer%20alternatives" title=" safer alternatives"> safer alternatives</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemicals" title=" petrochemicals"> petrochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a> </p> <a href="https://publications.waset.org/abstracts/190126/prevalence-of-plastic-use-in-building-and-construction-an-analysis-of-250-common-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4054</span> Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alwetaishi">M. Alwetaishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Sonetti"> Giulia Sonetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20building%20design" title="architectural building design">architectural building design</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20form" title=" building form"> building form</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20design%20in%20different%20climate" title=" building design in different climate"> building design in different climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20temperature" title=" indoor air temperature"> indoor air temperature</a> </p> <a href="https://publications.waset.org/abstracts/71067/influence-of-orientation-in-complex-building-architecture-in-various-climatic-regions-in-winter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4053</span> Sustainable Building Law - The Legal Issues Abound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20J.%20Sobelsohn">Richard J. Sobelsohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20issues" title=" legal issues"> legal issues</a>, <a href="https://publications.waset.org/abstracts/search?q=greenwashing" title=" greenwashing"> greenwashing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cleaning" title=" green cleaning"> green cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance" title=" compliance"> compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESQ" title=" ESQ"> ESQ</a> </p> <a href="https://publications.waset.org/abstracts/154541/sustainable-building-law-the-legal-issues-abound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4052</span> Enhancing Building Performance Simulation Through Artificial Intelligence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thamer%20Mahmmoud%20Muhammad%20Al%20Jbarat">Thamer Mahmmoud Muhammad Al Jbarat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building Performance Simulation plays a crucial role in optimizing energy efficiency, comfort, and sustainability in buildings. This paper explores the integration of Artificial Intelligence techniques into Building Performance Simulation to enhance accuracy, efficiency, and adaptability. The synthesis of Artificial Intelligence and Building Performance Simulation offers promising avenues for addressing complex building dynamics, optimizing energy consumption, and improving occupants' comfort. This paper examines various Artificial Intelligence methodologies and their applications in Building Performance Simulation, highlighting their potential benefits and challenges. Through a comprehensive review of existing literature and case studies, this paper presents insights into the current state, future directions, and implications of Artificial Intelligence driven Building Performance Simulation on the built environment <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance" title=" building performance"> building performance</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20simulation" title=" building performance simulation"> building performance simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings%20sustainability" title=" buildings sustainability"> buildings sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=built%20environment." title=" built environment."> built environment.</a> </p> <a href="https://publications.waset.org/abstracts/189245/enhancing-building-performance-simulation-through-artificial-intelligence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4051</span> Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwame%20B.%20O.%20Amoah">Kwame B. O. Amoah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20analysis" title=" building energy analysis"> building energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20retrofits" title=" energy retrofits"> energy retrofits</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-efficiency" title=" energy-efficiency"> energy-efficiency</a> </p> <a href="https://publications.waset.org/abstracts/156385/defining-a-pathway-to-zero-energy-building-a-case-study-on-retrofitting-an-old-office-building-into-a-net-zero-energy-building-for-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4050</span> A Review on the Necessities of Green Building in Bangladesh and Its Construction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Afsana%20Azad">Syeda Afsana Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change, due to the release of greenhouse gases into the atmosphere has been recognized as one of the biggest threats to the present world. The condition of the earth is getting worse day by day due to climate change. Bangladesh is considered to be one of the most vulnerable countries to climate change due to large population, sharp urbanization, etc. Construction of green building is a very good solution to reduce the greenhouse effect. Green building technology refers to that kind of structures which are environmentally friendly and resource-efficient throughout a building’s service life. This technology can provide at least 50% energy saving opportunity to the nation. The necessity of the construction of structures in an environment-friendly way is increasing now. This study shows the scenario of rapid population growth, urbanization, necessity of green building in Bangladesh and also discusses the construction process of green building. As the present climate condition of Bangladesh is not friendly, construction of green building is very much needed. To battle climate change, it is mandatory to construct green building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20house%20effect" title=" green house effect"> green house effect</a> </p> <a href="https://publications.waset.org/abstracts/83938/a-review-on-the-necessities-of-green-building-in-bangladesh-and-its-construction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4049</span> High-Rise Building with PV Facade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Hir%C5%A1">Jiří Hirš</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Mohelnikova"> Jitka Mohelnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A photovoltaic system integrated into a high-rise building façade was studied. The high-rise building is located in the Central Europe region with temperate climate and dominant partly cloudy and overcast sky conditions. The PV façade has been monitored since 2013. The three-year monitoring of the façade energy generation shows that the façade has an important impact on the building energy efficiency and sustainable operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20fa%C3%A7ade" title=" PV façade"> PV façade</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a> </p> <a href="https://publications.waset.org/abstracts/46858/high-rise-building-with-pv-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4048</span> An Assessment of the Factors Affecting Green Building Technology (GBT) Adoption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuruddeen%20Usman">Nuruddeen Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Mohammed%20Gidado"> Usman Mohammed Gidado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A construction and post construction activity in buildings contributes to environmental degradation, because of the generation of solid waste during construction to the production of carbon dioxide by the occupants during utilization. These problems were caused as a result of lack of adopting green building technology during and after construction. However, this study aims at conceptualizing the factors that are affecting the adoption of green building technology with a view to suggest better ways for its successful adoption in the construction industry through developing a green building technology model. Thus, the research findings show that: Economic, social, cultural, and technological progresses are the factors affecting Green Building Technology Adoption. Therefore, identifying these factors and developing the model might help in the successful adoption of green building technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building%20technology" title="green building technology">green building technology</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20construction" title=" post construction"> post construction</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/17350/an-assessment-of-the-factors-affecting-green-building-technology-gbt-adoption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">661</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4047</span> Analysis of a Strengthening of a Building Reinforced Concrete Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassereddine%20Attari">Nassereddine Attari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title="pushover analysis">pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/44859/analysis-of-a-strengthening-of-a-building-reinforced-concrete-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4046</span> Simplified 3R2C Building Thermal Network Model: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mahbobur%20Rahman">S. M. Mahbobur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.&nbsp; Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the &ldquo;Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program&rdquo;, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASHRAE%20case%20study" title="ASHRAE case study">ASHRAE case study</a>, <a href="https://publications.waset.org/abstracts/search?q=clear%20sky%20solar%20radiation%20model" title=" clear sky solar radiation model"> clear sky solar radiation model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modeling" title=" energy modeling"> energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20network%20model" title=" thermal network model"> thermal network model</a> </p> <a href="https://publications.waset.org/abstracts/106581/simplified-3r2c-building-thermal-network-model-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4045</span> Exploring the Relationship between Building Construction Activity and Road-Related Expenditure in Victoria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Aftabuzzaman">Md. Aftabuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Kamruzzaman"> Md. Kamruzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road-related expenditure and building construction activity are two significant drivers of the Victorian economy. This paper investigates the relationship between building construction activity and road-related expenditure. Data for construction activities were collected from Victorian Building Authority, and road-related expenditure data were explored by the Bureau of Infrastructure and Transport Research Economics. The trend between these two sectors was compared. The analysis found a strong relationship between road-related expenditure and the volume of construction activity, i.e., the more construction activities, the greater the requirement of road-related expenditure, or vice-versa. The road-related expenditure has a two-year lag period, suggesting that the road sector requires two years to respond to the growth in the building sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20activity" title="building construction activity">building construction activity</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20expenditure" title=" road expenditure"> road expenditure</a>, <a href="https://publications.waset.org/abstracts/search?q=Victorian%20Building%20Authority" title=" Victorian Building Authority"> Victorian Building Authority</a> </p> <a href="https://publications.waset.org/abstracts/151164/exploring-the-relationship-between-building-construction-activity-and-road-related-expenditure-in-victoria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4044</span> A Large Language Model-Driven Method for Automated Building Energy Model Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yake%20Zhang">Yake Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Xu"> Peng Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20modelling" title=" building energy modelling"> building energy modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title=" building simulation"> building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20language%20model" title=" large language model"> large language model</a> </p> <a href="https://publications.waset.org/abstracts/190794/a-large-language-model-driven-method-for-automated-building-energy-model-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4043</span> 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Jasmee">J. Jasmee</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Roslina"> I. Roslina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammed%20Yaziz%20%26%20A.H%20Juazer%20Rizal"> A. Mohammed Yaziz &amp; A.H Juazer Rizal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LiDAR%20datasets" title="LiDAR datasets">LiDAR datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=DSM" title=" DSM"> DSM</a>, <a href="https://publications.waset.org/abstracts/search?q=DTM" title=" DTM"> DTM</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20building%20models" title=" 3D building models"> 3D building models</a> </p> <a href="https://publications.waset.org/abstracts/13620/3d-building-model-utilizing-airborne-lidar-dataset-and-terrestrial-photographic-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4042</span> Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zwalnan%20Selfa%20Johnson">Zwalnan Selfa Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Caleb%20Nanchen%20Nimyel"> Caleb Nanchen Nimyel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gideon%20Duvuna%20Ayuba"> Gideon Duvuna Ayuba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20heat%20gain" title="solar heat gain">solar heat gain</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20zone" title=" building zone"> building zone</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20energy" title=" cooling energy"> cooling energy</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title=" air conditioning"> air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=zone%20temperature" title=" zone temperature"> zone temperature</a> </p> <a href="https://publications.waset.org/abstracts/167301/assessment-of-the-effect-of-building-materials-on-energy-demand-of-buildings-in-jos-an-experimental-and-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4041</span> A Robust Implementation of a Building Resources Access Rights Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugen%20Neagoe">Eugen Neagoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Balanica"> Victor Balanica</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20building%20controller" title="smart building controller">smart building controller</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20security" title=" software security"> software security</a>, <a href="https://publications.waset.org/abstracts/search?q=access%20rights" title=" access rights"> access rights</a>, <a href="https://publications.waset.org/abstracts/search?q=access%20authorization" title=" access authorization"> access authorization</a> </p> <a href="https://publications.waset.org/abstracts/25907/a-robust-implementation-of-a-building-resources-access-rights-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4040</span> Assessment of the Effect of Building Materials on Indoor Comfort and Energy Demand of Residential Buildings in Jos: An Experimental and Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selfa%20Johnson%20Zwalnan">Selfa Johnson Zwalnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanchen%20Nimyel%20Caleb"> Nanchen Nimyel Caleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Gideon%20Duvuna%20Ayuba"> Gideon Duvuna Ayuba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the somewhat lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio of external opening area to the area of the external walls). This result shows that the innovative building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title="building simulation">building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20gain" title=" solar gain"> solar gain</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20temperature" title=" comfort temperature"> comfort temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20foot%20print" title=" carbon foot print"> carbon foot print</a> </p> <a href="https://publications.waset.org/abstracts/163453/assessment-of-the-effect-of-building-materials-on-indoor-comfort-and-energy-demand-of-residential-buildings-in-jos-an-experimental-and-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4039</span> Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Kabirifar">Kamyar Kabirifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Azarniush"> Majid Azarniush</a>, <a href="https://publications.waset.org/abstracts/search?q=Behbood%20Maashkar"> Behbood Maashkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, Proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power. Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but also it will cause the promotion of quality level of life of the people living in the surrounding area and the society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title="quality of life">quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20pollution" title=" environment pollution"> environment pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sick%20building" title=" sick building"> sick building</a> </p> <a href="https://publications.waset.org/abstracts/3205/worth-of-sick-building-syndrome-and-enhance-the-quality-of-life-in-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4038</span> Everyday Life Information Seeking among Female Students: A Survey of University and Private Hostels at Lahore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Rafiq">Sadaf Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waqas"> Muhammad Waqas</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakeel%20Ahmad%20Khan"> Shakeel Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisar%20Ahmad"> Nisar Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Everyday life information seeking (ELIS) is considered as the mastery of life. It plays an important role in daily problem solving activities. Female students living in university hostels need variety of information to fulfil their everyday information needs. To find accurate and timely information is really challenging for females students who move from rural areas for educational purposes. These challenges involve culture differences, stress, financial issues, homesickness, diet needs and change in sleeping and eating habits. These complications create numerous problems for female students to adjust themselves in new and unfamiliar environment. Although the Internet has increased the ease of seeking everyday life information to survive successfully but there is still uncertainty to fully rely on the quality of information available on the web. Pakistan is an underdeveloped country where limited budget is allocated for educational institutions to enable them in developing well established hostels for their students. Female students who pursue for higher education has to stay at hostels for years to obtain education goals. It really becomes very difficult for them to spend life in hostels if they are not properly facilitated with relevant information sources to acquire everyday life information. The proposed study attempts to investigate the everyday life information seeking behavior of female students who are living in university and private hostels of Lahore. It investigates the various sources of information used by female students. It also identifies the problems faced by the female students in accessing everyday life information. The results of this study will be helpful for university management to understand their information need and provide required information sources which are essential for them to spend a comfortable, successful and peaceful life in hostels and achieve their educational goals. To achieve the objectives of the study, we will use quantitative research approach by using questionnaire as a data collection tool. The population of this study will be the university students living in public and private hostels of Lahore, Pakistan. This study will increase the understanding of everyday life information seeking behavior of female students living in hostels. Results of the study will be helpful for hostel administrations to better understand the students’ everyday life information needs and provide high quality of information services and living environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=everyday" title="everyday">everyday</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20seeking" title=" information seeking"> information seeking</a>, <a href="https://publications.waset.org/abstracts/search?q=hostel" title=" hostel"> hostel</a>, <a href="https://publications.waset.org/abstracts/search?q=female" title=" female"> female</a> </p> <a href="https://publications.waset.org/abstracts/100797/everyday-life-information-seeking-among-female-students-a-survey-of-university-and-private-hostels-at-lahore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4037</span> An Overview of Sustainable Development for Greening Roadmap in Asia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robby%20Dwiko%20Juliardi">Robby Dwiko Juliardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Queena%20K.%20Qian"> Queena K. Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Economic, environmental, and human considerations, as sustainable building design principles, are to be balanced and integrated into building design strategy. Building codes often suggest the efficient and sustainable building products, such as energy-efficient fixtures. However, building departments sometimes fail to manage the full range of requirements in the building assessment, such as siting, neighborhood proximity, and public facility, etc. Hence, it shows roadmap develops the future, an extended look at the future of a chosen field of inquiry composed from the collective knowledge and imagination of the brightest drivers of change in that field. This paper is taken from the best practice of green building implementation in a few countries of Asia (China, Malaysia, and India). Sustainable development will be presented on developing the roadmap of sustainability development of a country. Findings on the similarities and dissimilarities of those countries will show: (1) A general knowledge development on the sustainable green roadmap in Asia, (2) What are the components of developing the roadmap, and (3) What affects the government regulation in a political ecology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=developing%20roadmap" title="developing roadmap">developing roadmap</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20ecology" title=" political ecology"> political ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/74839/an-overview-of-sustainable-development-for-greening-roadmap-in-asia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4036</span> Universal Design Building Standard for India: A Critical Inquiry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar%20Solanki">Sushil Kumar Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachna%20Khare"> Rachna Khare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Universal Design is a concept of built environment creation, where all people are facilitated to the maximum extent possible without using any type of specialized design. However, accessible design is a design process in which the needs of people with disabilities are specifically considered. Building standards on accessibility contains scoping and technical requirements for accessibility to sites, facilities, building and elements by individual with disability. India is also following its prescriptive types of various building standards for the creation of physical environment for people with disabilities. These building standards are based on western models instead of research based standards to serve Indian needs. These standards lack contextual connect when reflects in its application in the urban and rural environment. This study focuses on critical and comparative study of various international building standards and codes, with existing Indian accessibility standards to understand problems and prospects of concept of Universal Design building standards for India. The result of this study is an analysis of existing state of Indian building standard pertaining to accessibility and future need of performance based Universal Design concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility" title="accessibility">accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20standard" title=" building standard"> building standard</a>, <a href="https://publications.waset.org/abstracts/search?q=built-environment" title=" built-environment"> built-environment</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20design" title=" universal design"> universal design</a> </p> <a href="https://publications.waset.org/abstracts/77824/universal-design-building-standard-for-india-a-critical-inquiry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4035</span> Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morten%20Br%C3%B8gger">Morten Brøgger</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Wittchen"> Kim Wittchen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes&rsquo; ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings&rsquo; energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20stock%20energy%20modelling" title="building stock energy modelling">building stock energy modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-savings" title=" energy-savings"> energy-savings</a>, <a href="https://publications.waset.org/abstracts/search?q=archetype" title=" archetype"> archetype</a> </p> <a href="https://publications.waset.org/abstracts/99676/quantifying-uncertainties-in-an-archetype-based-building-stock-energy-model-by-use-of-individual-building-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4034</span> BIM-Based Tool for Sustainability Assessment and Certification Documents Provision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taki%20Eddine%20Seghier">Taki Eddine Seghier</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hamdan%20Ahmad"> Mohd Hamdan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaik-Wah%20Lim"> Yaik-Wah Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Opeyemi%20Williams"> Samuel Opeyemi Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building%20rating%20system" title="green building rating system">green building rating system</a>, <a href="https://publications.waset.org/abstracts/search?q=GBRS" title=" GBRS"> GBRS</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling" title=" building information modeling"> building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM" title=" BIM"> BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20programming" title=" visual programming"> visual programming</a>, <a href="https://publications.waset.org/abstracts/search?q=VP" title=" VP"> VP</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20assessment" title=" sustainability assessment"> sustainability assessment</a> </p> <a href="https://publications.waset.org/abstracts/58825/bim-based-tool-for-sustainability-assessment-and-certification-documents-provision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=135">135</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=136">136</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hostel%20building&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10