CINXE.COM

Eye spectral response

<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Eye spectral response</title> <meta name="keywords" content="eye spectral response, eye spectral sensitivity, human eye color sensitivity, telescope, scotopic vision, photopic vision, mesopic vision, rods, cones"> <meta name="description" content="Spectral response of the human eye; visual adaptation to the light intensity level."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFDF5E"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">&#1138;</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3">&nbsp;&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3">&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font> <font size="1" color="#95AAA6">&#9642;</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1">&nbsp;</font></font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;&#9642;&#9642;&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</font><font face="Verdana" color="#518FBD"><b><font size="2">&nbsp;</font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> &nbsp;</font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"><font size="2" face="Arial"> <font color="#336699">&#9668;</font> </font></span> <font face="Verdana" size="2"> <a href="eye_intensity_response.htm">13.8. Eye intensity response</a>&nbsp;</font><font size="2" face="Arial"><font color="#C0C0C0">&nbsp; &#9616;</font> &nbsp; </font><font face="Verdana" size="2">&nbsp; <a href="early telescopes.htm">14. Telescopes</a></font></p> <h1 align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font face="Trebuchet MS" color="#336699" size="3"><b>13.9. <span style="text-transform: uppercase">Eye spectral response</span></b></font></span></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0"> PAGE HIGHLIGHTS<br> &bull; <a href="#terminology">Terminology</a>&nbsp;&nbsp; &bull; <a href="#Sensitivity">Rods and cones, sensitivity</a>&nbsp;&nbsp; &bull; <a href="#plot">Rods and cones, distribution</a>&nbsp;&nbsp; &bull; <a href="#field">Mesopic vision</a> </div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">There are two basic types of retinal photo-receptors: <b><font color="#000080">cones</font></b>, responding to bright-light conditions, and <b><font color="#000080">rods</font></b>, responding to low-intensity light. Depending on their spectral sensitivity, the former belong to either <b>L</b> (long-wavelengths sensitive), <b>M</b> (mid-wavelengths sensitive) or <b>S</b> (short-wavelengths sensitive) cones. By combining their separate inputs, the brain creates colors. The cones are concentrated in the center of the retina (fovea), where they are as small as ~2&#956; in diameter. That puts the angular size of the smallest individual foveal cones at ~1/3 arc minute. Cones become larger - up to about four times - toward outer areas of the retina. </font> <p align="justify" style="line-height: 150%"> Therefore, eye spectral response is directly related, and influenced by illuminance levels (light intensity) to which it is exposed. Illuminance level determines the level of activity of cones and rods, and with it main characteristics of human vision (<b>FIG. 248</b>).<div style="padding-left:3px; padding-right:3px; background-color:#FFFFFF"> <p align="center" style="text-indent: 0"> &nbsp;<font face="Arial"><b><img border="0" src="images/vision.PNG" width="744" height="311"><br> FIGURE 248</b>: The main three modes of eye function under different illuminance levels, <b><font color="#000080">photopic</font></b> (bright light), <font color="#000080"><b>scotopic</b></font> (low light conditions) and <b><font color="#000080">mesopic</font></b> (intermediary), result from the specific response of its two types of photoreceptor cells, cones and rods. Their activity is specific to retinal illuminance level, which is determined by the brightness level of the object observed, as well as brightness of the background and surroundings. Unit of retinal illuminance is <i>Troland</i>, defined as retinal illumination from 1mm</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Arial"> pupil area exposed to 1cd/m</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Arial"> (candelas/m</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Arial">) luminance, hence illumination in trolands is a product of luminance in cd/m</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Arial"> and pupil area in mm</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Arial"> (inset at right is the relation between pupil area and luminance level, from Hecht, 1924). Due to different modes of operation, size and distribution, cones and rods have different level of retinal illuminance for a given input: photopic (cone) retinal illuminance is proportional to the weighted sum of photons absorbed by <b>L</b>- and <b>M</b>-cones, while for scotopic (rod) <a name="illuminance_is_proportional">illuminance is proportional</a> to the number of photons absorbed by rods (based on Hood and Finkeistein, 1984).</font></div> </div> <p align="justify" style="line-height: 150%"> Note that there is no general agreement on the illuminance level that effectively inactivates cones or rods. Estimates of the mesopic range vary by tenfold, or more, on both, low (0.001 vs. 0.01 cd/m<font size="1"><span style="vertical-align: super">2</span></font>) and high end (0.6 vs. 10 cd/m<font size="1" face="Terminal"><span style="vertical-align: super">2 </span></font> or even higher). Two recent models are fairly close in their estimate of the low end (~0.01 cd/m<font size="1"><span style="vertical-align: super">2</span></font>, or somewhat lower, depending on the type of light), but not at the high end: one puts it at about 0.6cd/m<font size="1"><span style="vertical-align: super">2</span></font> (X-model, Rea et al. 2004, based on results of He et al. 1997/8), and the other at 10 cd/m<font size="1"><span style="vertical-align: super">2</span></font> (<i>Mesopic Optimisation of Visual Efficiency</i>, or MOVE model of the European research consortium, Eloholma and Halonen 2006). Several others, mainly compromising models also have been proposed. <p align="justify" style="line-height: 150%"> It is helpful to clarify some basic <a name="terminology">terminology</a> related to this subject, since it can be confusing. While the physical light intensity is measured with <i>radiometric</i> units, its human perception is subjected to eye's selective reaction to it, which is measured in <i>photometric</i> units. The basic radiometric unit is <i>watt</i> (<b>W</b>), and photometric <i>candela</i> (<b>cd</b>), with the latter defined as the luminous intensity produced by<font face="TimesNewRomanPS"> </font><i> a </i>monochromatic light source emitting radiant (photon) flux of 1/683 watt at 555nm into the solid angle of 1 steradian (<b>sr</b>)<i>. </i> The original definition of one candela (which was called <i>candle</i>, or <i>candlepower</i>) was the light intensity emitted by a plumber's candle made to specified standards. <p align="justify" style="line-height: 150%"> Closely related to candela is the luminous flux unit, <i>lumen </i>(<b>lm</b>), defined as a flux (i.e. photon density) corresponding to 1cd of luminous intensity (thus, 1cd=1lm/sr, and a point radiating freely at 1cd luminous intensity produces a 4<font face="Trebuchet MS">&#960;</font> lm luminous flux). And the illuminance unit <i>lux</i> is defined as 1lux=1lm/m<font size="1"><span style="vertical-align: super">2</span></font>.<p align="justify" style="line-height: 150%"> &nbsp;Following table summarizes these units and related terms.<font face="TimesNewRomanPS"><br> &nbsp;</font><table border="1" width="100%" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center" bordercolor="#4383B1"> <tr> <td colspan="3"><b>PHOTOMETRIC UNITS</b></td> <td colspan="2"><b>RADIOMETRIC UNITS</b></td> </tr> <tr> <td colspan="2">QUALITY</td> <td>UNIT</td> <td>QUALITY</td> <td>UNIT</td> </tr> <tr> <td colspan="2">Luminous flux</td> <td>lumen (lm)</td> <td>Radiant flux</td> <td>watt (W)</td> </tr> <tr> <td colspan="2">Luminous intensity</td> <td>candela (1cd=1lm/sr)</td> <td>Radiant intensity</td> <td>W/sr</td> </tr> <tr> <td colspan="2">Luminance</td> <td>cd/m<font size="1" face="Verdana"><span style="vertical-align: super">2</span></font>, or<br> millilambert <font size="2"> <font face="Tahoma">(1mL=10/</font><font face="Trebuchet MS">&#960;</font><font face="Tahoma"> cd/m</font><font size="1" face="Verdana"><span style="vertical-align: super">2</span></font><font face="Tahoma">)</font></font></td> <td>Radiance</td> <td>W/(sr m<font size="1" face="Verdana"><span style="vertical-align: super">2</span></font>)</td> </tr> <tr> <td rowspan="2">Illuminance</td> <td>general</td> <td>lux (lm/m<font size="1" face="Verdana"><span style="vertical-align: super">2</span></font>)</td> <td rowspan="2">Irradiance</td> <td rowspan="2">W/m<font size="1" face="Verdana"><span style="vertical-align: super">2</span></font></td> </tr> <tr> <td>retinal</td> <td>troland (<font size="2">cd/m<font size="1" face="Verdana"><span style="vertical-align: super">2</span></font></font> per mm<font size="1" face="Verdana"><span style="vertical-align: super">2</span></font> of pupil area)</td> </tr> </table> <p align="justify" style="line-height: 150%"> <a name="Sensitivity">S<font face="Verdana" size="2">ensitivity</font></a><font face="Verdana" size="2"> of cones and rods varies with the wavelength, within so called <b> <font color="#000080">visible spectrum</font></b>, extending from ~370nm to ~730nm. Energy level corresponding to the wavelength of light wave - inversely proportional to the wavelength, and in proportion to the frequency - stimulates eye photoreceptors, which send received stimulus to the brain. Specific combinations of stimuli from the three different cone receptor types produce an input from which the brain creates perception of color.<br> &nbsp;</font><table border="1" width="100%" cellspacing="0" bordercolor="#FFFFFF" height="168"> <tr> <td colspan="3" align="center" bgcolor="#DEE4E3"> <p style="text-indent: 0"><b><font face="Tahoma" size="2"> VISIBLE SPECTRUM OF LIGHT</font></b></td> </tr> <tr> <td align="center" bgcolor="#DEE4E3"> <p style="text-indent: 0"><font face="Tahoma" size="2">Vacuum wavelength (nm)</font></td> <td align="center" bgcolor="#DEE4E3"> <p style="text-indent: 0"><font face="Tahoma" size="2">Frequency (10</font><font size="1" face="Arial"><span style="vertical-align: super">12</span></font><font face="Tahoma" size="2">Hz)</font></td> <td align="center" bgcolor="#DEE4E3"> <p style="text-indent: 0"><font face="Tahoma" size="2">Brain color response </font></td> </tr> <tr> <td align="center"> <p style="text-indent: 0"><font face="Tahoma" size="2">730-622</font></td> <td align="center"> <p style="text-indent: 0"><font face="Tahoma" size="2">410-482</font></td> <td align="center" bgcolor="#FF5959"> <p style="text-indent: 0"><font face="Tahoma" size="2">RED</font></td> </tr> <tr> <td align="center" bgcolor="#F4F7F5"> <p style="text-indent: 0"><font face="Tahoma" size="2">622-597</font></td> <td align="center" bgcolor="#F4F7F5"> <p style="text-indent: 0"><font face="Tahoma" size="2">482-503</font></td> <td align="center" bgcolor="#FFB062"> <p style="text-indent: 0"><font face="Tahoma" size="2">ORANGE</font></td> </tr> <tr> <td align="center"> <p style="text-indent: 0"><font face="Tahoma" size="2">597-577</font></td> <td align="center"> <p style="text-indent: 0"><font face="Tahoma" size="2">503-520</font></td> <td align="center" bgcolor="#FFFF6C"> <p style="text-indent: 0"><font face="Tahoma" size="2">YELLOW</font></td> </tr> <tr> <td align="center" bgcolor="#F4F7F5"> <p style="text-indent: 0"><font face="Tahoma" size="2">577-492</font></td> <td align="center" bgcolor="#F4F7F5"> <p style="text-indent: 0"><font face="Tahoma" size="2">520-610</font></td> <td align="center" bgcolor="#80FF80"> <p style="text-indent: 0"><font face="Tahoma" size="2">GREEN</font></td> </tr> <tr> <td align="center"> <p style="text-indent: 0"><font face="Tahoma" size="2">492-455</font></td> <td align="center"> <p style="text-indent: 0"><font face="Tahoma" size="2">610-659</font></td> <td align="center" bgcolor="#7171FF"> <p style="text-indent: 0"><font face="Tahoma" size="2">BLUE</font></td> </tr> <tr> <td align="center" bgcolor="#F4F7F5"> <p style="text-indent: 0"><font face="Tahoma" size="2">455-370</font></td> <td align="center" bgcolor="#F4F7F5"> <p style="text-indent: 0"><font face="Tahoma" size="2">659-810</font></td> <td align="center" bgcolor="#D88BD8"> <p style="text-indent: 0"><font face="Tahoma" size="2">VIOLET</font></td> </tr> </table> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">&nbsp;Photon of light has the energy E=h</font><font face="Lucida Sans Unicode" size="2">&#957;</font><font face="Verdana" size="2">, <b>h</b> being the Plank's constant, h=6.6256x10</font><font size="1"><span style="vertical-align: super">-34</span></font><font face="Verdana" size="2"> J (Joul), with 1J=6.2418x10</font><font size="1"><span style="vertical-align: super">18</span></font><font face="Verdana" size="2"> eV (electron-volts), and </font><b> <font face="Lucida Sans Unicode" size="2">&#957;</font></b><font face="Verdana" size="2"> the frequency, the number of waves per unit of time usually expressed in Hertz, as the number of complete oscillations per second (so </font> <font face="Lucida Sans Unicode" size="2">&#957;</font><font face="Verdana" size="2">=c/&#955; Hz, <b>c</b> being the speed of light per second and <b>&#955;</b> the wavelength, in the same unit). </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">In general, eye sensitivity to light increases exponentially with the decrease in light intensity, with the wavelength of peak sensitivity shifting from ~550nm in day-light conditions, to ~510nm in total darkness. As illuminance decreases, cone function transforms toward more effective light collection (elevated pigments level, suppression of lateral inhibition, and convergence of individual outputs) at a price of lower acuity. Bellow certain illumination level, cone function enters dormancy, but cones are still ready to respond to a sufficiently intense light.</font><p align="justify" style="line-height: 150%"> On the other hand, decreasing illumination level stimulates accumulation of rhodopsin (pigment) in rods, which was washed out at higher illumination levels. It activates rods, enabling the eye to respond to light stimuli of much lower intensity. As mentioned, this gradual shift in eye sensitivity mode goes through three main stages: (1) photopic, in bright light conditions, (2) mesopic (or mesotopic), in low light conditions, and (3) scotopic in near total <a name="darkness">darkness</a> <font face="Verdana" size="2">&nbsp;(<b>FIG. 249</b>)</font>.<div style="background-color: #EEF2EF"> <div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 0"> <font face="Arial" size="2"><b> <img border="0" src="images/eye_spectral_response.PNG" width="706" height="448"><br> <br> FIGURE 249</b>: <font color="#000080"><b>Top right</b></font>: Spectral response of the eye for point sources. Peak cone sensitivity is over 200 times lower than peak rod sensitivity. Relative sensitivities of <b>S</b>, <b>L</b> and <b>M</b> cones are shown within photopic mode; by combining their inputs, the brain creates colors. <font color="#000080"><b>Bottom left</b></font>: Exposed to low-light conditions in full photopic mode, cone sensitivity increases 30-100 times within ~10 minutes, reaching its maximum sensitivity level (the darker it is, the faster transition from cones-to-rods function; in near-complete darkness, the cones shut down almost instantly). At the point of cones-rods break, rods become dominant, gaining in sensitivity some 200-1000 times over peak cone sensitivity within the next ~20 minutes (individual sensitivity varies within the shown approximate range: by a factor of ~3&nbsp; and ~10 for the cones and rods, respectively). In the process, peak sensitivity shifts from ~555nm (photopic) to ~507nm (scotopic). The response range shifts from ~400-730nm to ~370-650nm, respectively. Dark-to-light <a name="eye">eye</a> adaptation takes considerably less: only&nbsp; about 7 minutes.<br> </font><font face="Verdana" size="1"> <span style="vertical-align: super"><b>a</b></span><b>Maximum sensitivity level, after ~10 min in darkness; maximum bright-light cone sensitivity is 30-100 times lower.</b></font></div> </div> <font FACE="Verdana" SIZE="1"> <div align="center"> <table border="1" width="100%" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center"> <tr> <td colspan="12"><b>RELATIVE SPECTRAL SENSITIVITY OF THE EYE</b></td> </tr> <tr> <td><font size="2"><b><font FACE="Verdana-Bold" SIZE="1">&#955; </font><font FACE="Verdana" SIZE="1">(nm)</font></b></font></td> <td bgcolor="#FEF0C5">Photopic</td> <td bgcolor="#FEF0C5">Scotopic</td> <td><font size="2"><b><font FACE="Verdana-Bold" SIZE="1">&#955; </font><font FACE="Verdana" SIZE="1">(nm)</font></b></font></td> <td bgcolor="#FEF0C5">Photopic</td> <td bgcolor="#FEF0C5">Scotopic</td> <td><font size="2"><b><font FACE="Verdana-Bold" SIZE="1">&#955; </font><font FACE="Verdana" SIZE="1">(nm)</font></b></font></td> <td bgcolor="#FEF0C5">Photopic</td> <td bgcolor="#FEF0C5">Scotopic</td> <td><font size="2"><b><font FACE="Verdana-Bold" SIZE="1">&#955; </font><font FACE="Verdana" SIZE="1">(nm)</font></b></font></td> <td bgcolor="#FEF0C5">Photopic</td> <td bgcolor="#FEF0C5">Scotopic</td> </tr> <tr> <td><font size="2">380</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000039</font><font FACE="Verdana" SIZE="1">*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000589</font></td> <td>480</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.139020</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.793000</font></td> <td>580</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.870000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.121200</font></td> <td>680</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.017000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000072</font></td> </tr> <tr> <td>390</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000120</font><font FACE="Verdana" SIZE="1">*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.002209</font></td> <td>490</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.208020</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.904000</font></td> <td>590</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.757000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.065500</font></td> <td>690</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.008210</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000035</font></td> </tr> <tr> <td>400</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000396</font><font FACE="Verdana" SIZE="1">*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.009290</font></td> <td>500</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.323000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.982000</font></td> <td>600</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.631000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.033150</font></td> <td>700</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.004102</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000018</font></td> </tr> <tr> <td>410</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.001210</font><font FACE="Verdana" SIZE="1">*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.034840</font></td> <td>510</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.503000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.997000</font></td> <td>610</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.503000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.015930</font></td> <td>710</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.002091</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000009</font></td> </tr> <tr> <td>420</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.004000</font><font FACE="Verdana" SIZE="1">*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.096600</font></td> <td>520</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.710000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.935000 </font></td> <td>620</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.381000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.007370</font></td> <td>720</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.001047</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000005</font></td> </tr> <tr> <td>430</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.011600</font><font FACE="Verdana" SIZE="1">*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.199800</font></td> <td>530</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.862000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.811000</font></td> <td>630</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.265000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.003335</font></td> <td>730</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000520</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000003</font></td> </tr> <tr> <td>440</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.023000</font><font FACE="Verdana" SIZE="1">*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.328100</font></td> <td>540</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.954000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.655000</font></td> <td>640</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.175000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.001497</font></td> <td>740</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000249</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000001</font></td> </tr> <tr> <td>450</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.038000*</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.455000</font></td> <td>550</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.994950</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.481000</font></td> <td>650</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.107000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000677</font></td> <td>750</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000120</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000001</font></td> </tr> <tr> <td>460</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.060000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.567000</font></td> <td>560</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.995000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.328800</font></td> <td>660</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.061000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000313</font></td> <td>760</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000060</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000000</font></td> </tr> <tr> <td>470</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.090980</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.676000</font></td> <td>570</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.952000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.207600</font></td> <td>670</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.032000</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000148</font></td> <td>770</td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000030</font></td> <td bgcolor="#FEF0C5"><font FACE="Verdana" SIZE="1">0.000000</font></td> </tr> </table> <p><b>*according to CIE (</b><span style="font-weight: 700"><a onmousedown="return rwt(this,'','','','6','AFQjCNGKsI0fPQD8VC_j9F7w5VgdDuhFNg','CqSXh8G2kPDlvGPg4Oq9Fw','0CEwQFjAF','','',event)" href="http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEwQFjAF&url=http%3A%2F%2Fwww.techstreet.com%2Fpublishers%2F60&ei=jMhTVaq2F9TZsAT984C4DA&usg=AFQjCNGKsI0fPQD8VC_j9F7w5VgdDuhFNg&sig2=CqSXh8G2kPDlvGPg4Oq9Fw&bvm=bv.93112503,d.cWc" style="text-decoration: none"><font color="#000000" size="1">Commission Internationale de L'Eclairage</font></a><font size="1"> - </font> </span><b>International Commission on Illumination) 1931 V(</b></font><b><font FACE="Tahoma" SIZE="1">&#955;</font><font FACE="Verdana" SIZE="1">) function. In the modified function from 1978 (Judd and Vos), sensitivity assigned to wavelengths shorter than 460nm is somewhat higher:<br> </font></b></font><b><font size="1">450nm-0.0468, 440nm-0.0379, 430nm-0.0273, 420nm-0.0175, 410nm-0.0074, 400nm-0.0028, 390nm-0.0008, 389nm-0.0002</font></b><font size="2"></div> <p align="justify" style="line-height: 150%"> For commonly used Fraunhofer lines, photopic sensitivity (slightly rounded) are:<br> &nbsp;<div align="center"> <table border="2" width="100%" style="font-family: Tahoma; text-indent: 0; text-align: center; font-size: 10pt" bordercolor="#FFFFFF" cellspacing="0"> <tr> <td>LINE (nm)</td> <td>405 (<b>h</b>)</td> <td>436 (<b>g</b>)</td> <td>486 (<b>F</b>)</td> <td>515</td> <td>546 (<b>e</b>)</td> <td>588 (<b>d</b>)</td> <td>633</td> <td>656 (<b>C</b>)</td> <td>707 (<b>r</b>)</td> </tr> <tr> <td>SENSITIVITY</td> <td>0.0045</td> <td>0.035</td> <td>0.18</td> <td>0.61</td> <td>0.98</td> <td>0.78</td> <td>0.23</td> <td>0.075</td> <td>0.0028</td> </tr> </table> </div> <p align="justify" style="line-height: 150%"> &nbsp;It should be noted that these sensitivity figures assume the same level of light intensity. As already mentioned, photon energy is inversely proportional to the wavelength, but what ultimately determines magnitude of response over the visible spectrum - assuming no selective absorption in the imaging system - is the spectral intensity distribution of the emission. For the sunlight, it peaks at about 500nm wavelength, with about 10% decrease at the violet end and about 20% decrease at the red end of the visible spectrum. Stellar peak emissions can be shifted significantly to either side and, to a smaller extent, planetary emissions (for instance, typical reflectance from Mars' reddish iron oxide areas is about 2.5 times higher at the red end of the visible spectrum than in the green). <p align="justify" style="line-height: 150%"> Mesopic eye function is considerably more complex than either photopic or scotopic, due to the simultaneous input of cones and rods, both only partly activated. As a result, there is no agreement (within U.S. or internationally) about its exact modeling. It is most commonly presented as a simple sum of the cones and rods functions, as V<font face="Terminal" size="1"><span style="vertical-align: sub">mes</span></font>=xV<font face="Terminal" size="1"><b><span style="vertical-align: sub">ph</span></b><span style="vertical-align: sub">o</span></font>+(1-x)V<font face="Terminal" size="1"><span style="vertical-align: sub">sco</span></font>, respectively, with <b>x</b> varying with illumination level from 0 at the low, to 1 at the high of mesopic range. As illumination continues to decrease bellow photopic level, this theoretical curve (<b>FIG. 249</b> top right) gradually shifts from the photopic to scotopic curve, maintaining a single peak, and similar overall shape. <p align="justify" style="line-height: 150%"> However, more recent empirical evidence (<i>Mesopic vision, optimized illumination</i>, Varady et al. 2008, ten young subjects) suggests that the actual mesopic sensitivity follows more complex patterns, with the mesopic sensitivity curve having two main peaks, one converging toward peak rods sensitivity, the other toward yellow range of the spectrum (<b>FIG. 249</b> bottom right, based on detecting 2&#176 disc on darkened background). Such outcome is logically plausible, since both types of photoreceptors are active, widening eye sensitivity curve. The shift of the cone peak from green to yellow is caused by their relative sensitivity under reduced illumination increasing more in the red and blue than in green/yellow (<b>FIG. 249</b> bottom left; keep in mind that the plots to the right show normalized sensitivities - rods sensitivity is generally much higher). Simply summing up the adjusted photopic and scotopic function also neglects the fact that the cone sensitivity in mesopic light conditions also increases relative to that in full photopic mode. Similarly to the rod function, but to a smaller extent, this increase in sensitivity comes at a price of lowered acuity.<p align="justify" style="line-height: 150%"> Both mesopic plots in <b>FIG. 249</b> (right) approximate foveal retinal sensitivity as combined sensitivity of cones and rods (note that the third plot, for 10 off center, is outside of fovea). However, actual sensitivity varies from predominantly cone sensitivity in the inner fovea (particularly foveola), to predominantly rods sensitivity toward the outskirts of fovea and further off. In other words, within approximately inner half of the fovea mesopic sensitivity is approximated with the right mesopic wing on the bottom plot, which is higher toward both, red and blue wavelength, than cone sensitivity in the photopic mode. Toward outer portions of foveola, and beyond, where rods become dominant, relative sensitivity increases for medium to short (green-to-violet) wavelengths, and decreases for longer (red) wavelengths, nearly vanishing for the deep red; mesopic sensitivity for this portion of the retina is approximated mainly by the left mesopic wing on the bottom right <a name="plot">plot</a> on <b>FIG. 249</b>.<p align="justify" style="line-height: 150%"> Obviously, sensitivity properties of the retina vary greatly with its particular area. Its small off-center portion, foveola, is nearly exclusively covered by a dense cone structure; cones remain dominant up to about half the radius of fovea, an area surrounding foveola, 4-5 times larger in diameter. Outer half of the fovea has a mixed cones/rods structure.<p align="justify" style="line-height: 150%"> Rods begin to dominate at the outskirts of fovea, <font face="Verdana" size="2"> nearly exclusively populating</font> the o<font face="Verdana" size="2">uter area of the retina. They become predominant at less than 1mm off the center of fovea, and reach the highest concentration at about 15&#176 (5mm) from the center. Similarly to the cones, their size varies from the smallest - about 2.5 microns - in the area of highest concentration, to roughly double that size far out. Rods are more numerous than cones in roughly 100:1 ratio in the retinal area out of the &lt;2mm of central fovea (<b>FIG. 250</b>). In the entire retina, rods outnumber the cones approx. 20:1 (120 millions vs. 6 millions). Despite similar average size, rods have much poorer resolution than cones. This is mainly a consequence of so called &quot;convergence&quot;: neural output from several rods converge into a single neural brain connection, as opposed to the cones, which have individual neural outputs. Neural convergence of the rods improves sensitivity, sacrificing the resolution.</font><p align="justify"> <div style="background-color: #FFFFFF; padding-left:3px; padding-right:3px"> <p align="center" style="text-indent: 0"> <font face="Arial" size="2"><b> <img border="0" src="images/eye2rec.PNG" width="422" height="600" align="left">FIGURE 250</b>: Distribution of photoreceptors on the retina of the human eye. The total field of view, approximately 140&#176 is constructed through the principal point (<b>P</b>) of the eye. The cones (yellow line), sensitive to bright light, have highest concentration in the small area (foveola) of ~1/3 mm (1&#176) in diameter, shifted nearly 12&#176 from the optical center. The three cone types, <b>L</b> (most sensitive to longer visual wavelengths), <b>M</b> (mid wavelengths) and <b>S</b> (short wavelengths), have different color pigments, providing input from which the brain creates sensation of colors. The <b>S</b> cones are by far the least numerous; also, they are least sensitive, with their main function being supplying the brain with needed input to create color blue. Since the<b> S</b> cones are entirely absent from the central ~0.1mm of fovea, this spot is blue blind (it has so called tritanopic vision, in which blue wavelengths are seen as green). The rods (violet line), active in low light conditions, are absent from the central ~1/3 mm of fovea (foveola), but their concentration quickly rises toward the edges of <i>macula</i>, and farther out, to reach the maximum some 18&#176 off the foveal center. While rods, similarly to cones, also differ in size depending on their position on the retina (generally being larger in the outer areas), they only have a single pigment, <i>rhodopsin</i>. It is ultra-sensitive to light in the green/blue wavelength range but, being a single pigment available in low-light conditions, doesn't allow to the brain to create sensation of color. As the surrounding light intensifies, <i>rhodopsin</i> level diminishes, until rods gradually deactivate and cones, also gradually, take over. And vice versa, as the light intensity decreases toward low-light conditions, it falls below the threshold of the cones, while the rods get activated, and become dominant visual receptors. For illustration, size of Jupiter's disc on retina, when magnified 200 times, is shown next to the areas dominated by the cones (smaller than Jupiter's disc), mixed, and rods dominated.</font></div> <p align="justify" style="text-indent: 22px; line-height:150%"> The above comparison of the common size of Jupiter on the retina with the size of its respective cones- and rods-dominated areas suggests that centering an object that requires high resolution in the field of view significantly improves its definition. On the other hand, averted vision will be more helpful with objects where detection is more important than resolution - as long as they radiate mainly in the green-to-violet portion of the visible spectrum. The highest rods' acuity is at about 4<font face="Tahoma">&#176</font> from foveola, near to half-radius of the macula. So, for detection of very faint objects, it should work best with the eye directed some 4<font face="Tahoma">&#176</font> off the field center (about 1/5 and 1/10 of the field radius in 40<font face="Tahoma">&#176</font> AFOV and 80<font face="Tahoma">&#176</font> AFOV eyepiece, respectively), with the object centered in the <a name="field">field</a>.</p></font> <p align="center" style="text-indent: 0; "> <font face="Trebuchet MS" color="#2C5783">Mesopic vision</font></p><font size="2"> <p align="justify" style="text-indent: 22px; line-height:150%"> During the typical nighttime observing, eye is most likely to be in the mesopic mode. That warrants its more detailed coverage.</p> <p align="justify" style="text-indent: 22px; line-height:150%"> Determining characteristics of the eye function during typical observing session is not a simple mater, even very approximately. Eye response varies with the surrounding luminance level, with the telescopic view (brightness, size, shape of the object observed, background characteristics), time at and off of the eyepiece, and other factors. In general, dark-to-light adaptation is much faster than light-to-dark, although the latter very much depends on the intensity of pre-adapting illuminance. A large, bright object like Moon will quickly shift the observing eye into photopic mode, but the other eye will have mixed signals from the light-exposed eye and its own dark environment, while also being a source of conflicting feedback for the other eye. </p> <p align="justify" style="text-indent: 22px; line-height:150%"> In the upper range of mesopic mode cones function is still dominant. Sensitivity of the cones and rods soon equalizes with the further drop in luminance level, after which the rods become increasingly dominant for most of the mesopic range (<b>FIG. 251</b>, based mainly on data from<b> </b><i>Fundamentals of spatial vision</i>, J. A. Ferwerda). Along with it, both acuity (<a href="eye.htm#receptor">FIG. 218</a>) and color response deteriorate, with the latter vanishing as the eye enters scotopic mode. Since the upper mesopic luminance is well over a hundred times closer to the indoor lighting level than that of a starry moonless night, we can assume that the surrounding-induced spectral response mode is mesopic, varying between cone and rode dominated sub-mode with the object of observation. </p> <div style="background-color: #FFFFFF"> <p align="center" style="text-indent: 0; "> <br> <font face="Tahoma"><b> <img border="0" src="images/eye_spectral_sensitivity2.png" width="741" height="490"><br> FIGURE 251</b>: Mesopic range of eye spectral sensitivity in the continuum from photopic to scotopic mode. Plotted pairs of cone and rode spectral sensitivity are for the illumination levels approximated with the vertical dotted lines centered at 550nm wavelength, extended to the horizontal (illumination) scale. The two plots descending from left to right mark the peak cones and rods sensitivity as a function of luminance level. Sensitivity of both cones and rods increases with the decrease in luminance, but the cones reach their upper sensitivity limit sooner, which leaves them blind at low luminance levels, when eye can only see through the rods. The sensitivity of either type of photoreceptor changes over the spectrum with the luminance level. Shown is the approximate sensitivity for the mode of dominance (i.e. photopic conditions for the cones, scotopic for the rods) for the two photoreceptors. Cone sensitivity initially increases with the conditions shifting toward mesopic/scotopic, on both red and blue/violet end, more in the latter, which makes the sensitivity curve somewhat wider (still too close to show clearly on the graph). Rods sensitivity curve doesn't change significantly toward mesopic/photopic conditions, falling rapidly in the blue/violet through the mesopic range.</font></p> </div> <p align="justify" style="line-height: 150%; text-indent:22px"> As plots above indicate, peak sensitivity for either cones or rods is nearly constant, about 555nm for the former, and 510nm for the latter. Every whole number increment indicates 10-fold difference in sensitivity. Thus sensitivity toward the ends of visual spectrum for either receptor type is a small fraction of their peak sensitivity. At the upper mesopic limit, cone function is still dominant, hence acuity and color response are nearly as good as in photopic mode. At the lower mesopic limit, however, rod function is fully dominant, acuity is poor and color response nearly non-existent.<p align="justify" style="line-height: 150%; text-indent:22px"> Cone function remains dominant in the red throughout the mesopic range, and for wavelengths of about 650nm and longer in the scotopic range as well. On the other hand, rod function is dominant in the blue/violet throughout mesopic range, and more so in the scotopic. Even in the lower photopic mode, up to about indoor light luminance level, it is partly dominant partly equal, or near the level of the cone sensitivity.<br> &nbsp;<p align="center" style="line-height: 150%; text-indent:0"> <span style="font-weight: 400"><font size="2" face="Arial"> <font color="#4383B1">&#9668;</font> </font></span> <font face="Verdana" size="2"> <a href="eye_intensity_response.htm">13.8. Eye intensity response</a>&nbsp; &nbsp;</font> <font size="2" face="Arial"><font color="#C0C0C0">&nbsp; &#9616;</font> &nbsp; </font><font face="Verdana" size="2">&nbsp; <a href="early telescopes.htm">14. Telescopes</a></font></p> <p align="center" style="text-indent: 0"> <a href="index.htm">Home</a>&nbsp; |&nbsp; <a href="mailto:webpub@fastmail.com">Comments</a><br> &nbsp;</font></td> </tr> </table> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10