CINXE.COM

Search results for: substation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: substation</title> <meta name="description" content="Search results for: substation"> <meta name="keywords" content="substation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="substation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="substation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 41</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: substation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Grebeniuk">Stepan Grebeniuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ersi%20Hodo"> Ersi Hodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri%20Ruotsalainen"> Henri Ruotsalainen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Tavolato"> Paul Tavolato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anomaly%20detection" title="Anomaly detection">Anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=IEC-60870-5-104" title=" IEC-60870-5-104"> IEC-60870-5-104</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20learning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Man-in-the-Middle%20attacks" title=" Man-in-the-Middle attacks"> Man-in-the-Middle attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=Substation%20security" title=" Substation security"> Substation security</a> </p> <a href="https://publications.waset.org/abstracts/66169/machine-learning-approach-for-anomaly-detection-in-the-simulated-iec-60870-5-104-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Z.%20Gabr">Ahmed Z. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Helal"> Ahmed A. Helal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20E.%20Said"> Hussein E. Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20grounding%20grid%20design" title=" optimum grounding grid design"> optimum grounding grid design</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20analysis" title=" power system analysis"> power system analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20protection" title=" power system protection"> power system protection</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20layer%20model" title=" single layer model"> single layer model</a>, <a href="https://publications.waset.org/abstracts/search?q=substation" title=" substation"> substation</a> </p> <a href="https://publications.waset.org/abstracts/51818/optimal-design-of-substation-grounding-grid-based-on-genetic-algorithm-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Practical Aspects Pertaining to the Selection of Size and Location of Source Substations in an Oil Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yadavalli%20Venkata%20Sridhar">Yadavalli Venkata Sridhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finalization of Substation sizing and location is an important task to be carried out by electrical designers in an oil field. Practical issues influence the selection of size and location of the source substations that feed multiple production facilities are listed. Importance of selection of appropriately rated short circuit level for 11KV switchboards and constraints pertaining to availability of manufacturers are highlighted. Without being lost in the research of absolute optimum solution, under time constraints, the importance of practical approach is brought out. Focus on identifying near optimum solutions by process of elimination of unfeasible substation locations with the support of cost figures, is emphasized through a case study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substation" title="substation">substation</a>, <a href="https://publications.waset.org/abstracts/search?q=size" title=" size"> size</a>, <a href="https://publications.waset.org/abstracts/search?q=location" title=" location"> location</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20field" title=" oil field"> oil field</a> </p> <a href="https://publications.waset.org/abstracts/28734/practical-aspects-pertaining-to-the-selection-of-size-and-location-of-source-substations-in-an-oil-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Naeemi%20Nooghabi">Mahdi Naeemi Nooghabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tofiqu%20Arif"> Mohammad Tofiqu Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AIS%20substation" title="AIS substation">AIS substation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20substation" title=" GIS substation"> GIS substation</a>, <a href="https://publications.waset.org/abstracts/search?q=SF6" title=" SF6"> SF6</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming%20potential" title=" global warming potential"> global warming potential</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20price" title=" carbon price"> carbon price</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/40621/sustainable-development-of-hv-substation-in-urban-areas-considering-environmental-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Feasibility Assessment of High-Temperature Superconducting AC Cable Lines Implementation in Megacities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Kashcheev">Andrey Kashcheev</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Sytnikov"> Victor Sytnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Dubinin"> Mikhail Dubinin</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Filipeva"> Elena Filipeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitriy%20Sorokin"> Dmitriy Sorokin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various variants of technical solutions aimed at improving the reliability of power supply to consumers of 110 kV substation are considered. For each technical solution, the results of calculation and analysis of electrical modes and short-circuit currents in the electrical network are presented. The estimation of electric energy consumption for losses within the boundaries of substation reconstruction was carried out in accordance with the methodology for determining the standards of technological losses of electricity during its transmission through electric networks. The assessment of the technical and economic feasibility of the use of HTS CL compared with the complex reconstruction of the 110 kV substation was carried out. It is shown that the use of high-temperature superconducting AC cable lines is a possible alternative to traditional technical solutions used in the reconstruction of substations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title="superconductivity">superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20lines" title=" cable lines"> cable lines</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20cable" title=" superconducting cable"> superconducting cable</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20cable" title=" AC cable"> AC cable</a>, <a href="https://publications.waset.org/abstracts/search?q=feasibility" title=" feasibility"> feasibility</a> </p> <a href="https://publications.waset.org/abstracts/172507/feasibility-assessment-of-high-temperature-superconducting-ac-cable-lines-implementation-in-megacities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Diagnostic of Breakdown in High Voltage Bushing Power Transformer 500 kV Cirata Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andika%20Bagaskara">Andika Bagaskara</a>, <a href="https://publications.waset.org/abstracts/search?q=Andhika%20Rizki%20Pratama"> Andhika Rizki Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalu%20Arya%20Repatmaja"> Lalu Arya Repatmaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Septhian%20Ditaputra%20Raharja"> Septhian Ditaputra Raharja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power transformer is one of the critical things in system transmission. Regular testing of the power transformer is very important to maintain the reliability of the power. One of the causes of the failure of the transformer is the breakdown of insulation caused by the presence of voids in the equipment that is electrified. As a result of the voids that occur in this power transformer equipment, it can cause partial discharge. Several methods were used to determine the occurrence of damage to the power transformer equipment, such as Sweep Frequency Response Analysis (SFRA) and Tan Delta. In Inter Bus Transformer (IBT) 500/150 kV Cirata Extra High Voltage (EHV) Substation, a breakdown occurred in the T-phase tertiary bushing. From the lessons learned in this case, a complete electrical test was carried out. From the results of the complete electrical test, there was a suspicion of deterioration in the post-breakdown SFRA results. After overhaul and inspection, traces of voids were found on the tertiary bushing, which indicated a breakdown in the tertiary bushing of the IBT 500/150kV Cirata Substation transformer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=void" title="void">void</a>, <a href="https://publications.waset.org/abstracts/search?q=bushing" title=" bushing"> bushing</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRA" title=" SFRA"> SFRA</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Delta" title=" Tan Delta"> Tan Delta</a> </p> <a href="https://publications.waset.org/abstracts/158237/diagnostic-of-breakdown-in-high-voltage-bushing-power-transformer-500-kv-cirata-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Harmonics and Flicker Levels at Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Borhani%20Manesh">Ali Borhani Manesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirus%20Mohammadi"> Sirus Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonics" title=" harmonics"> harmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=flicker" title=" flicker"> flicker</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=substation" title=" substation"> substation</a> </p> <a href="https://publications.waset.org/abstracts/21026/harmonics-and-flicker-levels-at-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">696</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Impact of Harmonic Resonance and V-THD in Sohar Industrial Port–C Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Al%20Abri">R. S. Al Abri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Albadi"> M. H. Albadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Al%20Abri"> M. H. Al Abri</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20K.%20Al%20Rasbi"> U. K. Al Rasbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Al%20Hasni"> M. H. Al Hasni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Al%20Shidi"> S. M. Al Shidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis study on the impacts of the changes of the capacitor banks, the loss of a transformer, and the installation of distributed generation on the voltage total harmonic distortion and harmonic resonance. The study is applied in a real system in Oman, Sohar Industrial Port–C Substation Network. Frequency scan method and Fourier series analysis method are used with the help of EDSA software. Moreover, the results are compared with limits specified by national Oman distribution code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor%20bank" title=" capacitor bank"> capacitor bank</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20total%20harmonics%20distortion" title=" voltage total harmonics distortion"> voltage total harmonics distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20resonance" title=" harmonic resonance"> harmonic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20scan" title=" frequency scan"> frequency scan</a> </p> <a href="https://publications.waset.org/abstracts/35249/impact-of-harmonic-resonance-and-v-thd-in-sohar-industrial-port-c-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Comparison and Description of Enhanced Department-Based Arc Flash Safety Assessment with Substation-Based Arc Flash Safety Assessment for the Improvement of Work Place Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abid%20Khan">Md. Abid Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arc Flash safety assessment is a critical component for continuous improvement of any company’s safe electrical arc flash standard (SEAFS). The standard requires periodic internal or external audits to verify compliance and assess implementation. Assessments will identify strengths and opportunities for improvement, and serve as the basis for corrective actions. An arc flash safety assessment is comprised of a review of any existing safe electrical arc flash standard documentation (e.g., such as work procedures or other supporting documents), onsite interviews, and observations (e.g., facility inspections and work task observations). Substation-based arc flash assessment is very popular as it is more specific for each substation. The enhanced department-based arc flash safety assessment will shift focus to more effective hazard control measures and emphasis will be placed on highlighting inherently unsafe equipment to support resolution actions by facility management, rather than relying on lessor effective control methods in the hierarchy of controls currently deployed at a number of facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20racking%20device%20%28RRD%29" title=" remote racking device (RRD)"> remote racking device (RRD)</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20performance%20indicator%20%28KPI%29" title=" key performance indicator (KPI)"> key performance indicator (KPI)</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20protective%20equipment%20%28PPE%29" title=" personal protective equipment (PPE)"> personal protective equipment (PPE)</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20%26%20maintenance%20%28O%26M%29" title=" operation &amp; maintenance (O&amp;M)"> operation &amp; maintenance (O&amp;M)</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20management%20system%20%28SMS%29" title=" safety management system (SMS)"> safety management system (SMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20electrical%20arc%20flash%20standard%20%28SEAFS%29" title=" safe electrical arc flash standard (SEAFS)"> safe electrical arc flash standard (SEAFS)</a> </p> <a href="https://publications.waset.org/abstracts/170103/comparison-and-description-of-enhanced-department-based-arc-flash-safety-assessment-with-substation-based-arc-flash-safety-assessment-for-the-improvement-of-work-place-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Quantification of Polychlorinated Biphenyls (PCBs) in Soil Samples of Electrical Power Substations from Different Cities in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omasan%20Urhie%20Urhie">Omasan Urhie Urhie</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenipekun%20C.%20O"> Adenipekun C. O</a>, <a href="https://publications.waset.org/abstracts/search?q=Eke%20W."> Eke W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogwu%20K."> Ogwu K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Erinle%20K.%20O">Erinle K. O</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polychlorinated Biphenyls (PCBs) are Persistent organic pollutants (POPs) that are very toxic; they possess ability to accumulate in soil and in human tissues hence resulting in health issues like birth defect, reproductive disorder and cancer. The air is polluted by PCBs through volatilization and dispersion; they also contaminate soil and sediments and are not easily degraded. Soil samples were collected from a depth of 0-15 cm from three substations (Warri, Ughelli and Ibadan) of Power Holding Company of Nigeria (PHCN) where old transformers were dumped in Nigeria. Extraction and cleanup of soil samples were conducted using Accelerated Solvent Extraction (ASE) with Pressurized Liquid extraction (PLE). The concentration of PCBs was determined using gsas chromatography/mass spectrometry (GC/MS). Mean total PCB concentrations in the soil samples increased in the order Ughelli ˂ Ibadan˂ Warri, 2.457757ppm Ughelli substation 4.198926ppm, for Ibadan substation and 14.05065ppm at Warri substation. In the Warri samples, PCB-167 was the most abundant at about 30% (4.28086ppm) followed by PCB-157 at about 20% (2.77871), of the total PCB concentrations (14.05065ppm). Of the total PCBs in the Ughelli and Ibadan samples, PCB-156 was the most abundant at about 44% and 40%, respectively. This study provides a baseline report on the presence of PCBs in the vicinity of abandoned electrical power facilities in different cities in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polychlorintated%20biphenyls" title="polychlorintated biphenyls">polychlorintated biphenyls</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20organic%20pollutants" title=" persistent organic pollutants"> persistent organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a> </p> <a href="https://publications.waset.org/abstracts/136256/quantification-of-polychlorinated-biphenyls-pcbs-in-soil-samples-of-electrical-power-substations-from-different-cities-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Analysis of Standard Tramway Surge Protection Methods Based on Real Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alain%20Rousseau">Alain Rousseau</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Aragones"> Alfred Aragones</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Rougier"> Gilles Rougier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is based on lightning and surge standards mainly the EN series 62305 for facility protection, EN series 61643 for Low Voltage Surge Protective Devices, High Voltage surge arrester standard en 60099-4 and the traction arrester standards namely EN 50526-1 and 50526-1 dealing respectively with railway applications fixed installations D.C. surge arresters and voltage limiting devices. The more severe stress for tramways installations is caused by direct lightning on the catenary line. In such case, the surge current propagates towards the various poles and sparkover the insulators leading to a lower stress. If the impact point is near enough, a significant surge current will flow towards the traction surge arrester that is installed on the catenary at the location the substation is connected. Another surge arrester can be installed at the entrance of the substation or even inside the rectifier to avoid insulation damages. In addition, surge arresters can be installed between + and – to avoid damaging sensitive circuits. Based on disturbances encountered in a substation following a lighting event, the engineering department of RATP has decided to investigate the cause of such damage and more generally to question the efficiency of the various possible protection means. Based on the example of a recent tramway line the paper present the result of a lightning study based on direct lightning strikes. As a matter of fact, the induced surges on the catenary are much more frequent but much less damaging. First, a lightning risk assessment is performed for the substations that takes into account direct lightning and induced lightning both on the substation and its connected lines such as the catenary. Then the paper deals with efficiency of the various surge arresters is discussed based on field experience and calculations. The efficiency of the earthing system used at the bottom of the pole is also addressed based on high frequency earthing measurement. As a conclusion, the paper is making recommendations for an enhanced efficiency of existing protection means. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge%20arrester" title="surge arrester">surge arrester</a>, <a href="https://publications.waset.org/abstracts/search?q=traction" title=" traction"> traction</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20protective%20device" title=" surge protective device"> surge protective device</a> </p> <a href="https://publications.waset.org/abstracts/75875/analysis-of-standard-tramway-surge-protection-methods-based-on-real-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Optimal Analysis of Grounding System Design for Distribution Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thong%20Lantharthong">Thong Lantharthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nattchote%20Rugthaicharoencheep"> Nattchote Rugthaicharoencheep</a>, <a href="https://publications.waset.org/abstracts/search?q=Att%20Phayomhom"> Att Phayomhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounding%20system" title="grounding system">grounding system</a>, <a href="https://publications.waset.org/abstracts/search?q=touch%20voltage" title=" touch voltage"> touch voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20voltage" title=" step voltage"> step voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20criteria" title=" safety criteria"> safety criteria</a> </p> <a href="https://publications.waset.org/abstracts/14242/optimal-analysis-of-grounding-system-design-for-distribution-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20A.%20Gruber">Yuri A. Gruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Rosendo"> Matheus Rosendo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulisses%20G.%20A.%20Casemiro"> Ulisses G. A. Casemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20de%20Geus"> Klaus de Geus</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20T.%20Bee"> Rafael T. Bee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal&reg; Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20engine" title="game engine">game engine</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20spheres%20method" title=" rolling spheres method"> rolling spheres method</a>, <a href="https://publications.waset.org/abstracts/search?q=substation%20protection" title=" substation protection"> substation protection</a>, <a href="https://publications.waset.org/abstracts/search?q=UE4" title=" UE4"> UE4</a>, <a href="https://publications.waset.org/abstracts/search?q=Unreal%20Engine%204" title=" Unreal Engine 4"> Unreal Engine 4</a> </p> <a href="https://publications.waset.org/abstracts/80764/using-game-engines-in-lightning-shielding-the-application-of-the-rolling-spheres-method-on-virtual-as-built-power-substations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> PD Test in Gas Insulated Substation Using UHF Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Prabakaran">T. Prabakaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas Insulated Substations (GIS) are widely used as important switchgear equipment because of its high reliability, low space requirement, low risk factor and easy maintenance, yet some failures have been reported. Some of the failures are due to presence of metallic particles inside the GIS compartment. The defect can be generated in GIS during production, maintenance, installation and can be due to ageing of the component. The Ultra-High Frequency (UHF) method is used to diagnose the insulation condition of GIS by detecting the PD signals in GIS. This paper identifies PD patterns for free moving particle defect and particle fixed on cone using UHF method. As insulation failure usually starts with PD activity, this paper investigates the differences in PD characteristics in SF6 gas with different types of defects. Experimental results show that correct identification of defects can be achieved based on considered PD characteristics. The method can be applied to prove the quality of assembly work at commissioning, also on a regular basis after many years in service to detect aged and conducting particles as a part of the condition based maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20insulated%20substation" title="gas insulated substation">gas insulated substation</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title=" partial discharge"> partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20moving%20particle%20defect" title=" free moving particle defect"> free moving particle defect</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20fixed%20on%20cone%20defect" title=" particle fixed on cone defect"> particle fixed on cone defect</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20frequency%20method" title=" ultra high frequency method"> ultra high frequency method</a> </p> <a href="https://publications.waset.org/abstracts/6895/pd-test-in-gas-insulated-substation-using-uhf-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Computer-Based Model for Design Selection of Lightning Arrester for 132/33kV Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uma%20U.%20Uma">Uma U. Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzoechi%20Laz"> Uzoechi Laz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protection of equipment insulation against lightning over voltages and selection of lightning arrester that will discharge at lower voltage level than the voltage required to breakdown the electrical equipment insulation is examined. The objectives of this paper are to design a computer based model using standard equations for the selection of appropriate lightning arrester with the lowest rated surge arrester that will provide adequate protection of equipment insulation and equally have a satisfactory service life when connected to a specified line voltage in power system network. The effectiveness and non-effectiveness of the earthing system of substation determine arrester properties. MATLAB program with GUI (graphic user interphase) its subprogram is used in the development of the model for the determination of required parameters like voltage rating, impulse spark over voltage, power frequency spark over voltage, discharge current, current rating and protection level of lightning arrester of a specified voltage level of a particular line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20arrester" title="lightning arrester">lightning arrester</a>, <a href="https://publications.waset.org/abstracts/search?q=GUIs" title=" GUIs"> GUIs</a>, <a href="https://publications.waset.org/abstracts/search?q=MatLab%20program" title=" MatLab program"> MatLab program</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20based%20model" title=" computer based model"> computer based model</a> </p> <a href="https://publications.waset.org/abstracts/5446/computer-based-model-for-design-selection-of-lightning-arrester-for-13233kv-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serzhan%20Ashirov">Serzhan Ashirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Nour"> Dana Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafat%20Rob"> Rafat Rob</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alotaibi"> Khaled Alotaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitization <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title="cybersecurity">cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20methodology" title=" supply chain methodology"> supply chain methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20substation" title=" secure substation"> secure substation</a>, <a href="https://publications.waset.org/abstracts/search?q=digitization" title=" digitization"> digitization</a> </p> <a href="https://publications.waset.org/abstracts/173095/substation-automation-digitization-cyber-risk-and-chain-risk-management-reliability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Analysis of the Touch and Step Potential Characteristics of an Earthing System Based on Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkwa%20Agbor%20Etobi%20Arreneke">Nkwa Agbor Etobi Arreneke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A well-designed earthing/grounding system will not only provide an effective path for direct dissipation of faulty currents into the earth/soil, but also ensure the safety of personnels withing and around its immediate surrounding perimeter is free from the possibility of fatal electric shock. In order to achieve the latter, it is of paramount importance to ensuring that both the step and touch potentials are kept within the allowable tolerance set by standards IEEE Std-80-2000. In this article, the step and touch potentials of an earthing system are simulated and conformity verified using the Finite Element Method (FEM), and has been found to be 242.4V and 194.80V respectively. The effect of injection current position is also analyzed to observe its effect on a person within or in contact with any active part of the earthing system of the substation. The values obtained closely matches those of other published works which made using different numerical methods and/or simulations Genetic Algorithm (GA). This current study is aimed at throwing more light to the dangers of step and touch potential of earthing systems of substation and electrical facilities as a whole, and the need for further in-dept analysis of these parameters. Observations made on this current paper shows that, the position of contact with an energize earthing system is of paramount important in determining its effect on living organisms in contact with any energized part of the earthing systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthing%2Fgrounding%20systems" title="earthing/grounding systems">earthing/grounding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28fem%29" title=" finite element method (fem)"> finite element method (fem)</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%2Fearth%20resistance" title=" ground/earth resistance"> ground/earth resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=touch%20and%20step%20potentials" title=" touch and step potentials"> touch and step potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=generic%20algorithm" title=" generic algorithm"> generic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/170779/analysis-of-the-touch-and-step-potential-characteristics-of-an-earthing-system-based-on-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aderonke%20Oluseun%20Akinwumi">Aderonke Oluseun Akinwumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusola%20A.%20Komolaf"> Olusola A. Komolaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20utility" title="electric utility">electric utility</a>, <a href="https://publications.waset.org/abstracts/search?q=consumers" title=" consumers"> consumers</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title=" remote monitoring"> remote monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic" title=" diagnostic"> diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20reliability" title=" system reliability"> system reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=manned%20and%20unintelligent%20networks" title=" manned and unintelligent networks"> manned and unintelligent networks</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20smart%20grids" title=" unmanned smart grids"> unmanned smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20activities" title=" switching activities"> switching activities</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20voltage" title=" medium voltage"> medium voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage" title=" low voltage"> low voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20transformer" title=" distribution transformer"> distribution transformer</a> </p> <a href="https://publications.waset.org/abstracts/84884/automated-distribution-system-management-substation-remote-diagnostic-and-operation-solution-for-obafemi-awolowo-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jang-Hwan%20Yin">Jang-Hwan Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae-Jeong%20Jeong"> Hae-Jeong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Geun%20Jeong"> Hyo-Geun Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20generation%20system" title="PV generation system">PV generation system</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy"> clean energy</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20growth" title=" green growth"> green growth</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/48114/application-case-and-result-consideration-about-basic-and-working-design-of-floating-pv-generation-system-installed-in-the-upstream-of-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edafe%20Lucky%20Okotie">Edafe Lucky Okotie</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Osawaru%20Omosigho"> Emmanuel Osawaru Omosigho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20generation%20%28DEG%29" title="distributed energy generation (DEG)">distributed energy generation (DEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29" title=" genetic algorithm (GA)"> genetic algorithm (GA)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20load%20demand" title=" total load demand"> total load demand</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20profile" title=" voltage profile"> voltage profile</a> </p> <a href="https://publications.waset.org/abstracts/165680/distribution-network-optimization-by-optimal-placement-of-photovoltaic-based-distributed-generation-a-case-study-of-the-nigerian-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Power Quality Issues: Power Supply Interruptions as Key Constraint to Development in Ekiti State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20S.%20Adeoye">Oluwatosin S. Adeoye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power quality issues in the world today are critical to the development of different nations. Prosperity of each nation depends on availability of constant power supply. Constant power supply is a major challenge in Africa particularly in Nigeria where the generated power is than thirty percent of the required power. The metrics of power quality are voltage dip, flickers, spikes, harmonics and interruptions. The level of interruptions in Ekiti State was examined through the investigation of the causes of power interruptions in the State. The method used was the collection of data from the Distribution Company, assessment through simple programming as a command for plotting the graphs through the use of MATLAB 2015 depicting the behavioural pattern of the interruption for a period of six months in 2016. The result shows that the interrelationship between the interruptions and development. Recommendations were suggested with the objective of solving the problems being set up by interruptions in the State and these include installation of reactors, automatic voltage regulators and effective tap changing system on the lines, busses and transformer substation respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=interruption" title=" interruption"> interruption</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/94538/power-quality-issues-power-supply-interruptions-as-key-constraint-to-development-in-ekiti-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Araujo%20Carvalho">Adriano Araujo Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Alatrista%20Corrales"> Arturo Alatrista Corrales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20production%20data%20analysis" title="energy and production data analysis">energy and production data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%2050001" title=" ISO 50001"> ISO 50001</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment%20plant%20energy%20analysis" title=" wastewater treatment plant energy analysis"> wastewater treatment plant energy analysis</a> </p> <a href="https://publications.waset.org/abstracts/78356/saving-energy-at-a-wastewater-treatment-plant-through-electrical-and-production-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Effect of Integrity of the Earthing System on the Rise of Earth Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ullah">N. Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Haddad"> A. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Van%20Der%20Linde"> F. Van Der Linde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding" title="bonding">bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=earthing" title=" earthing"> earthing</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR" title=" EPR"> EPR</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity" title=" integrity"> integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a> </p> <a href="https://publications.waset.org/abstracts/43049/effect-of-integrity-of-the-earthing-system-on-the-rise-of-earth-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Othman">Mahmoud M. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Almoataz%20Y.%20Abdelaziz"> Almoataz Y. Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20G.%20Hegazy"> Yasser G. Hegazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20bang%20big%20crunch" title="big bang big crunch">big bang big crunch</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20control" title=" load control"> load control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=planning" title=" planning"> planning</a> </p> <a href="https://publications.waset.org/abstracts/44666/optimal-load-control-strategy-in-the-presence-of-stochastically-dependent-renewable-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kiran">R. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Lakshmikantha"> B. R. Lakshmikantha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Parimala"> R. V. Parimala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state%20estimator%20%28SE%29" title="state estimator (SE)">state estimator (SE)</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20ac%20transmission%20systems%20%28FACTS%29" title=" flexible ac transmission systems (FACTS)"> flexible ac transmission systems (FACTS)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20location" title=" optimal location"> optimal location</a>, <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20units%20%28PMU%29" title=" phasor measurement units (PMU)"> phasor measurement units (PMU)</a> </p> <a href="https://publications.waset.org/abstracts/39366/a-novel-software-model-for-enhancement-of-system-performance-and-security-through-an-optimal-placement-of-pmu-and-facts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin">Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim"> Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20farm" title="offshore wind farm">offshore wind farm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20layout" title=" optimal layout"> optimal layout</a>, <a href="https://publications.waset.org/abstracts/search?q=k-clustering%20algorithm" title=" k-clustering algorithm"> k-clustering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20spanning%20algorithm" title=" minimum spanning algorithm"> minimum spanning algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20type%20selection" title=" cable type selection"> cable type selection</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20loss%20cost" title=" power loss cost"> power loss cost</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20cost" title=" reliability cost "> reliability cost </a> </p> <a href="https://publications.waset.org/abstracts/39131/study-for-an-optimal-cable-connection-within-an-inner-grid-of-an-offshore-wind-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Criticality Assessment of Power Transformer by Using Entropy Weight Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rattanakorn%20Phadungthin">Rattanakorn Phadungthin</a>, <a href="https://publications.waset.org/abstracts/search?q=Juthathip%20Haema"> Juthathip Haema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents an assessment of the criticality of the substation's power transformer using the Entropy Weight method to enable more effective maintenance planning. Typically, transformers fail due to heat, electricity, chemical reactions, mechanical stress, and extreme climatic conditions. Effective monitoring of the insulating oil is critical to prevent transformer failure. However, finding appropriate weights for dissolved gases is a major difficulty due to the lack of a defined baseline and the requirement for subjective expert opinion. To decrease expert prejudice and subjectivity, the Entropy Weight method is used to optimise the weightings of eleven key dissolved gases. The algorithm to assess the criticality operates through five steps: create a decision matrix, normalise the decision matrix, compute the entropy, calculate the weight, and calculate the criticality score. This study not only optimises gas weighing but also greatly minimises the need for expert judgment in transformer maintenance. It is expected to improve the efficiency and reliability of power transformers so failures and related economic costs are minimized. Furthermore, maintenance schemes and ranking are accomplished appropriately when the assessment of criticality is reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criticality%20assessment" title="criticality assessment">criticality assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20gas" title=" dissolved gas"> dissolved gas</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20scheme" title=" maintenance scheme"> maintenance scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title=" power transformer"> power transformer</a> </p> <a href="https://publications.waset.org/abstracts/193437/criticality-assessment-of-power-transformer-by-using-entropy-weight-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Experimental and Theoretical Analysis of the Electromagnetic Environment in the Vicinity of Two 220Kv Power Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Tourab">Wafa Tourab</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessalem%20Babouri"> Abdessalem Babouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Nemamcha"> Mohamed Nemamcha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an experimental and theoretical characterization of electromagnetic environment in the vicinity of EL-HADJAR high voltage substation located in the eastern Algerian within a very high populated zone. There have been analyses on the effects of electromagnetic fields emanating from coupled multi-lines power systems on the health of the workers and people living in proximity of substations. An experimental investigation has been conducted around a circuit of two 220Kv lines running in parallel. The experimental results are validated by a flexible code of calculus developed in the environment Matlab. The implications of the results are discussed and are in very good agreement with the ICNIRP reference levels for occupational and non-occupational exposures. In a case of study, the separation between the two structures “S” is varied to demonstrate its influence on the electric and magnetic charges quantities generated by the circuit of lines proposed. It is found that increasing S decreases the electric and magnetic fields which occur at the center of the structure then reduces the coupling between lines. We concluded that the evaluation of the spacing between the phase conductors is of paramount interest in the preparation of the line’s implantation inside the electrical posts to reduce them radiations in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20frequency" title="low frequency">low frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20fields" title=" electromagnetic fields"> electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20coupling" title=" electromagnetic coupling"> electromagnetic coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20power%20lines" title=" high voltage power lines"> high voltage power lines</a> </p> <a href="https://publications.waset.org/abstracts/12019/experimental-and-theoretical-analysis-of-the-electromagnetic-environment-in-the-vicinity-of-two-220kv-power-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Ntardas">Dimitrios Ntardas</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Tzanetos"> Alexandros Tzanetos</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Dounias"> Georgios Dounias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20meta-heuristic%20methods" title="hybrid meta-heuristic methods">hybrid meta-heuristic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=substation%20construction" title=" substation construction"> substation construction</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=time-cost%20efficiency" title=" time-cost efficiency"> time-cost efficiency</a> </p> <a href="https://publications.waset.org/abstracts/106782/resource-leveling-optimization-in-construction-projects-of-high-voltage-substations-using-nature-inspired-intelligent-evolutionary-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Neelima">S. Neelima</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Subramanyam"> P. S. Subramanyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimension%20reducing%20distribution%20load%20flow%20algorithm" title="dimension reducing distribution load flow algorithm">dimension reducing distribution load flow algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=DRDLFA" title=" DRDLFA"> DRDLFA</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20network" title=" electrical distribution network"> electrical distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20capacitors%20placement" title=" optimal capacitors placement"> optimal capacitors placement</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20profile%20improvement" title=" voltage profile improvement"> voltage profile improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20reduction" title=" loss reduction"> loss reduction</a> </p> <a href="https://publications.waset.org/abstracts/34573/intelligent-minimal-allocation-of-capacitors-in-distribution-networks-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=substation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=substation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10