CINXE.COM

Absolute Position Encodings Explained | Papers With Code

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <script> const GTAG_ENABLED = true ; const GTAG_TRACKING_ID = "UA-121182717-1"; const SENTRY_DSN_FRONTEND = "".trim(); const GLOBAL_CSRF_TOKEN = 'LyBbjd3jVv2occO6LUddF9DtUwTDmJXL8te13RLI4expVOXDo5Ms9MmBBEZ0Nnzt'; const MEDIA_URL = "https://production-media.paperswithcode.com/"; const ASSETS_URL = "https://production-assets.paperswithcode.com"; run_after_frontend_loaded = window.run_after_frontend_loaded || []; </script> <link rel="preconnect" href="https://production-assets.paperswithcode.com"><link rel="dns-prefetch" href="https://production-assets.paperswithcode.com"><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/65e877e527022735c1a1.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/917632e36982ca7933c8.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/f1405bd8a987c2ea8a67.woff2" crossorigin><script>(()=>{if(GTAG_ENABLED){const t=document.createElement("script");function n(){window.dataLayer.push(arguments)}t.src=`https://www.googletagmanager.com/gtag/js?id=${GTAG_TRACKING_ID}`,document.head.appendChild(t),window.dataLayer=window.dataLayer||[],window.gtag=n,n("js",new Date),n("config",GTAG_TRACKING_ID),window.captureOutboundLink=function(t){n("event","click",{event_category:"outbound",event_label:t})}}else window.captureOutboundLink=function(n){document.location=n}})();</script><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/351.a22a9607.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/814.49dcf06c.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/view_method.e499b4af.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/view_method.c1f0a493.js"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/view_method.e499b4af.css"> <!-- Metadata --> <title>Absolute Position Encodings Explained | Papers With Code</title> <meta name="description" content="Absolute Position Encodings are a type of position embeddings for [Transformer-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used: $$ \text{PE}\left(pos, 2i\right) = \sin\left(pos/10000^{2i/d_{model}}\right) $$ $$ \text{PE}\left(pos, 2i+1\right) = \cos\left(pos/10000^{2i/d_{model}}\right) $$ where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \dot 2\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\text{PE}_{pos+k}$ can be represented as a linear function of $\text{PE}_{pos}$. Image Source: D2L.ai" /> <!-- Open Graph protocol metadata --> <meta property="og:title" content="Papers with Code - Absolute Position Encodings Explained"> <meta property="og:description" content="Absolute Position Encodings are a type of position embeddings for [Transformer-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used: $$ \text{PE}\left(pos, 2i\right) = \sin\left(pos/10000^{2i/d_{model}}\right) $$ $$ \text{PE}\left(pos, 2i+1\right) = \cos\left(pos/10000^{2i/d_{model}}\right) $$ where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \dot 2\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\text{PE}_{pos+k}$ can be represented as a linear function of $\text{PE}_{pos}$. Image Source: D2L.ai"> <meta property="og:image" content="https://production-media.paperswithcode.com/methods/05577c08-d6ac-4b8b-9fd0-55739ba42383.png"> <meta property="og:url" content="https://paperswithcode.com/method/absolute-position-encodings"> <!-- Twitter metadata --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@paperswithcode"> <meta name="twitter:title" content="Papers with Code - Absolute Position Encodings Explained"> <meta name="twitter:description" content="Absolute Position Encodings are a type of position embeddings for [Transformer-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used: $$ \text{PE}\left(pos, 2i\right) = \sin\left(pos/10000^{2i/d_{model}}\right) $$ $$ \text{PE}\left(pos, 2i+1\right) = \cos\left(pos/10000^{2i/d_{model}}\right) $$ where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \dot 2\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\text{PE}_{pos+k}$ can be represented as a linear function of $\text{PE}_{pos}$. Image Source: D2L.ai"> <meta name="twitter:creator" content="@paperswithcode"> <meta name="twitter:url" content="https://paperswithcode.com/method/absolute-position-encodings"> <meta name="twitter:domain" content="paperswithcode.com"> <!-- JSON LD --> <script type="application/ld+json">{ "@context": "http://schema.org", "@graph": { "@type": "CreativeWork", "@id": "absolute-position-encodings", "name": "Absolute Position Encodings Explained", "description": "Absolute Position Encodings are a type of position embeddings for [Transformer-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\n\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d_{model}}\\right) $$\n\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d_{model}}\\right) $$\n\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}_{pos+k}$ can be represented as a linear function of $\\text{PE}_{pos}$.\n\nImage Source: D2L.ai", "url": "https://paperswithcode.com/method/absolute-position-encodings", "image": "https://production-media.paperswithcode.com/methods/05577c08-d6ac-4b8b-9fd0-55739ba42383.png", "headline": "Absolute Position Encodings Explained" } }</script> <meta name="theme-color" content="#fff"/> <link rel="manifest" href="https://production-assets.paperswithcode.com/static/manifest.web.json"> </head> <body> <nav class="navbar navbar-expand-lg navbar-light header"> <a class="navbar-brand" href="/"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> </a> <div class="navbar-mobile-twitter d-lg-none"> <a rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class=" icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-bs-toggle="collapse" data-target="#top-menu" data-bs-target="#top-menu" aria-controls="top-menu" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="top-menu"> <ul class="navbar-nav mr-auto navbar-nav__left light-header"> <li class="nav-item header-search"> <form action="/search" method="get" id="id_global_search_form" autocomplete="off"> <input type="text" name="q_meta" style="display:none" id="q_meta" /> <input type="hidden" name="q_type" id="q_type" /> <input id="id_global_search_input" autocomplete="off" value="" name='q' class="global-search" type="search" placeholder='Search'/> <button type="submit" class="icon"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="search"><svg viewBox="0 0 512.025 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M508.5 482.6c4.7 4.7 4.7 12.3 0 17l-9.9 9.9c-4.7 4.7-12.3 4.7-17 0l-129-129c-2.2-2.3-3.5-5.3-3.5-8.5v-10.2C312 396 262.5 417 208 417 93.1 417 0 323.9 0 209S93.1 1 208 1s208 93.1 208 208c0 54.5-21 104-55.3 141.1H371c3.2 0 6.2 1.2 8.5 3.5zM208 385c97.3 0 176-78.7 176-176S305.3 33 208 33 32 111.7 32 209s78.7 176 176 176z"/></svg></span></button> </form> </li> <li class="nav-item"> <a class="nav-link" href="/sota"> Browse State-of-the-Art </a> </li> <li class="nav-item"> <a class="nav-link" href="/datasets"> Datasets </a> </li> <li class="nav-item"> <a class="nav-link" href="/methods">Methods</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" role="button" id="navbarDropdownRepro" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false" > More </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownRepro"> <a class="dropdown-item" href="/newsletter">Newsletter</a> <a class="dropdown-item" href="/rc2022">RC2022</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="/about">About</a> <a class="dropdown-item" href="/trends">Trends</a> <a class="dropdown-item" href="https://portal.paperswithcode.com/"> Portals </a> <a class="dropdown-item" href="/libraries"> Libraries </a> </div> </li> </ul> <ul class="navbar-nav ml-auto navbar-nav__right navbar-subscribe justify-content-center align-items-center"> <li class="nav-item"> <a class="nav-link" rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class="nav-link-social-icon icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </li> <li class="nav-item"> <a id="signin-link" class="nav-link" href="/accounts/login?next=/method/absolute-position-encodings">Sign In</a> </li> </ul> </div> </nav> <!-- Page modals --> <div class="modal fade" id="emailModal" tabindex="-1" role="dialog" aria-labelledby="emailModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h3 class="modal-title" id="emailModalLabel">Subscribe to the PwC Newsletter</h3> <button type="button" class="close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <div class="modal-body-info-text"> Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets.<br/><br/> <a href="/newsletter">Read previous issues</a> </div> <input type="hidden" name="csrfmiddlewaretoken" value="LyBbjd3jVv2occO6LUddF9DtUwTDmJXL8te13RLI4expVOXDo5Ms9MmBBEZ0Nnzt"> <input placeholder="Enter your email" type="email" class="form-control pwc-email" name="address" id="id_address" max_length="100" required> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Subscribe</button> </div> </form> </div> </div> </div> <!-- Login --> <div class="modal fade" id="loginModal" tabindex="-1" role="dialog" aria-labelledby="loginModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="loginModalLabel">Join the community</h5> <button type="button" class="close btn-close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="login-modal-message"> You need to <a href="/accounts/login?next=/method/absolute-position-encodings">log in</a> to edit.<br/> You can <a href="/accounts/register?next=/method/absolute-position-encodings">create a new account</a> if you don't have one.<br/><br/> </div> </div> </div> </div> <!-- Edit Method --> <div class="modal fade" id="editMethod" role="dialog" aria-labelledby="editMethodLabel" aria-hidden="true"> <div class="modal-dialog modal-lg" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="editMethodLabel">Edit Method</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <form action="" method="post" enctype="multipart/form-data"> <input type="hidden" name="csrfmiddlewaretoken" value="LyBbjd3jVv2occO6LUddF9DtUwTDmJXL8te13RLI4expVOXDo5Ms9MmBBEZ0Nnzt"> <div id="div_id_name" class="form-group"> <label for="id_name" class=" requiredField"> Method Name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="name" value="Absolute Position Encodings" maxlength="200" class="textinput textInput form-control" required id="id_name"> </div> </div> <div id="div_id_full_name" class="form-group"> <label for="id_full_name" class=" requiredField"> Method Full Name:<span class="asteriskField">*</span> </label> <div class=""> <input type="text" name="full_name" value="Absolute Position Encodings" maxlength="200" class="textinput textInput form-control" required id="id_full_name"> </div> </div> <div id="div_id_description" class="form-group"> <label for="id_description" class=""> Description with Markdown (optional): </label> <div class=""> <textarea name="description" cols="40" rows="12" class="textarea form-control" id="id_description"> **Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used: $$ \text{PE}\left(pos, 2i\right) = \sin\left(pos/10000^{2i/d\_{model}}\right) $$ $$ \text{PE}\left(pos, 2i+1\right) = \cos\left(pos/10000^{2i/d\_{model}}\right) $$ where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \dot 2\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\text{PE}\_{pos+k}$ can be represented as a linear function of $\text{PE}\_{pos}$. Image Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)</textarea> </div> </div> <div id="div_id_code_snippet_url" class="form-group"> <label for="id_code_snippet_url" class=""> Code Snippet URL (optional): </label> <div class=""> <input type="text" name="code_snippet_url" maxlength="200" class="textinput textInput form-control" id="id_code_snippet_url"> </div> </div> <div id="div_id_image" class="form-group"> <label for="id_image" class=""> Image </label> <div class=""> Currently: <a href="https://production-media.paperswithcode.com/methods/05577c08-d6ac-4b8b-9fd0-55739ba42383.png">methods/05577c08-d6ac-4b8b-9fd0-55739ba42383.png</a> <input type="checkbox" name="image-clear" id="image-clear_id"> <label for="image-clear_id">Clear</label><br> Change: <input type="file" name="image" accept="image/*" class="clearablefileinput form-control-file" id="id_image"> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Add Collection --> <div class="modal fade" id="addCollection" role="dialog" aria-labelledby="addCollectionLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addCollectionLabel">Add A Method Collection</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="current-tasks-title">Attached collections:</div> <ul class="list-unstyled"> <li> <a href="/methods/category/position-embeddings"> <span class="badge badge-primary">POSITION EMBEDDINGS</span> </a> </li> </ul> <form action="" method="post"> <input type="hidden" name="csrfmiddlewaretoken" value="LyBbjd3jVv2occO6LUddF9DtUwTDmJXL8te13RLI4expVOXDo5Ms9MmBBEZ0Nnzt"> <div id="div_id_collection" class="form-group"> <label for="id_collection" class=""> Add: </label> <div class=""> <select name="collection" class="modelselect2 form-control" id="id_collection" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-collection-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div class="modal-help-text"> Not in the list?<br/> <a href="#" id="show-new-collection-form-hidden"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Create a new collection</a>. </div> <div class="new-collection-form-hidden"> <div id="div_id_new_collection_name" class="form-group"> <label for="id_new_collection_name" class=""> New collection name: </label> <div class=""> <input type="text" name="new_collection_name" maxlength="200" class="textinput textInput form-control" id="id_new_collection_name"> </div> </div> <div id="div_id_new_collection_area" class="form-group"> <label for="id_new_collection_area" class=""> Top-level area: </label> <div class=""> <select name="new_collection_area" class="select form-control" id="id_new_collection_area"> <option value="" selected>---------</option> <option value="7">Audio</option> <option value="1">Computer Vision</option> <option value="3">General</option> <option value="4">Graphs</option> <option value="2">Natural Language Processing</option> <option value="5">Reinforcement Learning</option> <option value="6">Sequential</option> </select> </div> </div> <div id="div_id_new_collection_parent" class="form-group"> <label for="id_new_collection_parent" class=""> Parent collection (if any): </label> <div class=""> <select name="new_collection_parent" class="modelselect2 form-control" id="id_new_collection_parent" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-collection-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div id="div_id_new_collection_desc" class="form-group"> <label for="id_new_collection_desc" class=""> Description (optional): </label> <div class=""> <textarea name="new_collection_desc" cols="40" rows="3" class="textarea form-control" id="id_new_collection_desc"> </textarea> </div> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Remove Collection --> <div class="modal fade" id="removeCollection" tabindex="-1" role="dialog" aria-labelledby="removeCollectionLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="removeCollectionLabel">Remove a collection</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/methods/category/position-embeddings"> <span class="badge badge-primary">POSITION EMBEDDINGS</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="LyBbjd3jVv2occO6LUddF9DtUwTDmJXL8te13RLI4expVOXDo5Ms9MmBBEZ0Nnzt"> <input type="hidden" name="remove_collection_pk" value="235"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> </div> </form> </div> </div> </div> <!-- Add Component --> <div class="modal fade" id="addComponent" role="dialog" aria-labelledby="addComponentLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="addComponentLabel">Add A Method Component</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="current-tasks-title">Attached components:</div> <ul class="list-unstyled"> <li> <a href="/method/3d-dynamic-scene-graph"> <span class="badge badge-primary">3D DYNAMIC SCENE GRAPH</span> </a> </li> </ul> <form action="" method="post"> <input type="hidden" name="csrfmiddlewaretoken" value="LyBbjd3jVv2occO6LUddF9DtUwTDmJXL8te13RLI4expVOXDo5Ms9MmBBEZ0Nnzt"> <div id="div_id_dependency" class="form-group"> <label for="id_dependency" class=" requiredField"> Add:<span class="asteriskField">*</span> </label> <div class=""> <select name="dependency" class="modelselect2 form-control" required id="id_dependency" data-autocomplete-light-language="en" data-autocomplete-light-url="/method-autocomplete/" data-autocomplete-light-function="select2"> <option value="" selected>---------</option> </select> </div> </div> <div class="form-group"> <div id="div_id_optional" class="form-check"> <input type="checkbox" name="optional" class="checkboxinput form-check-input" id="id_optional"> <label for="id_optional" class="form-check-label"> Tick if this dependency is optional </label> </div> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary"> Submit </button> </div> </form> </div> </div> </div> </div> <!-- Remove Component --> <div class="modal fade" id="removeComponent" tabindex="-1" role="dialog" aria-labelledby="removeComponentLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="removeCompoenntnLabel">Remove a method component</h5> <button type="button" class="close btn-close" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <ul class="list-unstyled"> <form action="" method="post"> <li> <a href="/method/3d-dynamic-scene-graph"> <span class="badge badge-primary">3D DYNAMIC SCENE GRAPH</span> </a> <input type="hidden" name="csrfmiddlewaretoken" value="LyBbjd3jVv2occO6LUddF9DtUwTDmJXL8te13RLI4expVOXDo5Ms9MmBBEZ0Nnzt"> <input type="hidden" name="remove_component_pk" value="1356"> <button type="submit" class="btn btn-danger" style="width:2.5em">- </button> </li> </form> </ul> </div> </form> </div> </div> </div> <div class="container content content-buffer "> <div class="mobile-width"> <div class="method-header"> <a href="/methods/category/position-embeddings"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Position Embeddings</span> </span> </a> <div class="method-title"> <div class="row"> <div class="col-md-11"> <h1>Absolute Position Encodings</h1> <span class="method-subtitle">Introduced by Vaswani et al. in <a href="/paper/attention-is-all-you-need">Attention Is All You Need</a></span> </div> <div class="col-md-1"> <div class="float-right">聽 <div class="dropdown edit-button"> <a data-bs-toggle="modal" data-bs-target="#loginModal"> <span class="badge badge-method-edit" style="padding-top:10px;"><span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit</span> </a> </div> </div> </div> </div> </div> <div class="method-content" style="margin-top: 2rem;"> <div class="row"> <div class="col-md-8 description"> <p><strong>Absolute Position Encodings</strong> are a type of position embeddings for [<a href="https://paperswithcode.com/method/transformer">Transformer</a>-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:</p> <p>$$ \text{PE}\left(pos, 2i\right) = \sin\left(pos/10000^{2i/d_{model}}\right) $$</p> <p>$$ \text{PE}\left(pos, 2i+1\right) = \cos\left(pos/10000^{2i/d_{model}}\right) $$</p> <p>where $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\pi$ to $10000 \dot 2\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\text{PE}_{pos+k}$ can be represented as a linear function of $\text{PE}_{pos}$.</p> <p>Image Source: <a href="https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html">D2L.ai</a></p> <span class="description-source"> Source: <a href="https://arxiv.org/abs/1706.03762v7"><span class=" icon-wrapper icon-ion" data-name="document-outline"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M416 221.25V416a48 48 0 0 1-48 48H144a48 48 0 0 1-48-48V96a48 48 0 0 1 48-48h98.75a32 32 0 0 1 22.62 9.37l141.26 141.26a32 32 0 0 1 9.37 22.62z" fill="none" stroke="#000" stroke-linejoin="round" stroke-width="32"/><path d="M256 56v120a32 32 0 0 0 32 32h120" fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32"/></svg></span> Attention Is All You Need</a> </span> <div class="context"> <div class="row"> <div class="col-md-12"> <a href="https://arxiv.org/abs/1706.03762v7" onclick="captureOutboundLink('https://arxiv.org/abs/1706.03762v7'); return true;" class="badge badge-light"> Read Paper </a> <a href="/paper/attention-is-all-you-need#code" class="badge badge-light"> See Code </a> </div> </div> </div> </div> <div class="col-md-4"> <a href="#" id="pop"> <a href="https://production-media.paperswithcode.com/methods/05577c08-d6ac-4b8b-9fd0-55739ba42383.png" data-lightbox="imageresource"> <img id="imageresource" width=100% src="https://production-media.paperswithcode.com/methods/05577c08-d6ac-4b8b-9fd0-55739ba42383.png"> </a> </a> <div class="modal fade" id="imagemodal" tabindex="-1" role="dialog" aria-labelledby="imagePreview" aria-hidden="true"> <div class="modal-dialog modal-lg"> <div class="modal-content"> <div class="modal-body text-center"> <img class="method-image" src="" id="imagepreview" style="max-width: 750px;"> </div> </div> </div> </div> </div> </div> <div id="papers"> <h4 style="margin-bottom: 0.5rem">Papers</h4> <hr> <div class="sota-table-preview papers-datatable-component"> <table style="width: 100% !important;" id="datatable-papers" class="table-striped table-responsive"> <thead style="width: 100% !important;"> <tr> <th style="text-left"><span>Paper</span></th> <th class="text-center"><span>Code</span></th> <th class="text-center"><span>Results</span></th> <th class="text-right"><span>Date</span></th> <th class="text-center"><span>Stars</span></th> </tr> </thead> </table> </div> <script> const DATATABLE_PAPERS_FILTER_NAME = 'papermethod__method_id'; const DATATABLE_PAPERS_FILTER_VALUE = '1604'; </script> </div> <div id="tasks"> <h4 style="margin-bottom: 0.5rem">Tasks</h4> <hr> <div class="row"> <div class="col-lg-6"> <figure class="highcharts-figure"> <div id="usage-container"></div> </figure> </div> <div class="col-lg-6 task-methods"> <table> <tr> <th>Task</th> <th class="text-right">Papers</th> <th class="text-right">Share</th> </tr> <tr> <td><span class="dot" style="background-color: #2f7ed8"></span> <a href="/task/language-modelling">Language Modelling</a> </td> <td class="text-right">37</td> <td class="text-right">4.24%</td> </tr> <tr> <td><span class="dot" style="background-color: #0d233a"></span> <a href="/task/language-modeling">Language Modeling</a> </td> <td class="text-right">36</td> <td class="text-right">4.12%</td> </tr> <tr> <td><span class="dot" style="background-color: #8bbc21"></span> <a href="/task/decoder">Decoder</a> </td> <td class="text-right">23</td> <td class="text-right">2.63%</td> </tr> <tr> <td><span class="dot" style="background-color: #f28f43"></span> <a href="/task/computational-efficiency">Computational Efficiency</a> </td> <td class="text-right">22</td> <td class="text-right">2.52%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(128, 133, 233)"></span> <a href="/task/semantic-segmentation">Semantic Segmentation</a> </td> <td class="text-right">21</td> <td class="text-right">2.41%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(241, 92, 128)"></span> <a href="/task/object-detection">Object Detection</a> </td> <td class="text-right">18</td> <td class="text-right">2.06%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(228, 211, 84)"></span> <a href="/task/large-language-model">Large Language Model</a> </td> <td class="text-right">16</td> <td class="text-right">1.83%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(43, 144, 143)"></span> <a href="/task/question-answering">Question Answering</a> </td> <td class="text-right">14</td> <td class="text-right">1.60%</td> </tr> <tr> <td><span class="dot" style="background-color: rgb(255, 116, 116)"></span> <a href="/task/denoising">Denoising</a> </td> <td class="text-right">12</td> <td class="text-right">1.37%</td> </tr> </table> </div> </div> </div> <div id="trends"> <h4 style="margin-bottom: 0.5rem">Usage Over Time</h4> <hr> <figure style="margin-top: 2.5rem" class="highcharts-figure"> <div id="container"></div> </figure> <span class="experimental-note hidden-element"><span class=" icon-wrapper icon-ion" data-name="flask-outline"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-miterlimit="10" stroke-width="32" d="M176 48h160M118 304h276M208 48v93.48a64.09 64.09 0 0 1-9.88 34.18L73.21 373.49C48.4 412.78 76.63 464 123.08 464h265.84c46.45 0 74.68-51.22 49.87-90.51L313.87 175.66a64.09 64.09 0 0 1-9.87-34.18V48"/></svg></span> This feature is experimental; we are continuously improving our matching algorithm.</span> </div> <div id="components"> <h4 style="margin-bottom: 0.5rem">Components</h4> <hr> <table> <tr> <th>Component</th> <th>Type</th> <th class="hidden-element"> <div class="float-right"> <div class="dropdown edit-button"> <button class="dropdown-toggle badge badge-edit" type="button" id="compEditMenu" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit </button> <div class="dropdown-menu dropdown-menu-end" aria-labelledby="compEditMenu" x-placement="bottom-end" style="position: absolute; transform: translate3d(55px, 35px, 0px); top: 0px; left: 0px; will-change: transform;"> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Add</a> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="remove"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M400 256H112"/></svg></span> Remove</a> </div> </div> </div> </th> </tr> <tr> <td><a href="/method/3d-dynamic-scene-graph"> <div class="method-image"> <img src="https://production-media.paperswithcode.com/thumbnails/method/method-0000001429-78c2e0d8.jpg"> 3D Dynamic Scene Graph </div> </a> </td> <td> <a href="/methods/category/3d-representations"> 3D Representations </a> </td> <td class="hidden-element"> (optional) </td> </tr> </table> </div> <div class="collections"> <h4> Categories <div class="float-right"> <div class="dropdown edit-button"> <button class="dropdown-toggle badge badge-edit" type="button" id="evalEditMenu" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> <span class=" icon-wrapper icon-fa icon-fa-solid" data-name="edit"><svg viewBox="0 0 576 514.999" xmlns="http://www.w3.org/2000/svg"><path d="M402.6 85.198l90.2 90.2c3.8 3.8 3.8 10 0 13.8l-218.399 218.4-92.8 10.3c-12.4 1.4-22.9-9.1-21.5-21.5l10.3-92.8 218.4-218.4c3.799-3.8 10-3.8 13.799 0zm162-22.9c15.2 15.2 15.2 39.9 0 55.2l-35.4 35.4c-3.8 3.8-10 3.8-13.8 0l-90.2-90.2c-3.8-3.8-3.8-10 0-13.8l35.4-35.4c15.3-15.2 40-15.2 55.2 0zM384 348.198c0-3.2 1.3-6.2 3.5-8.5l40-40c7.6-7.5 20.5-2.2 20.5 8.5v157.8c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-352c0-26.5 21.5-48 48-48h285.8c10.7 0 16.1 12.9 8.5 20.5l-40 40c-2.3 2.2-5.3 3.5-8.5 3.5H64v320h320v-101.8z"/></svg></span> Edit </button> <div class="dropdown-menu dropdown-menu-end" aria-labelledby="evalEditMenu" x-placement="bottom-end" style="position: absolute; transform: translate3d(55px, 35px, 0px); top: 0px; left: 0px; will-change: transform;"> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="add"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M256 112v288m144-144H112"/></svg></span> Add</a> <a class="dropdown-item" href="#loginModal" data-bs-toggle="modal"> <span class=" icon-wrapper icon-ion" data-name="remove"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path fill="none" stroke="#000" stroke-linecap="round" stroke-linejoin="round" stroke-width="32" d="M400 256H112"/></svg></span> Remove</a> </div> </div> </div><hr> </h4> </div> <div class="row"> <div class="col-md-12"> <ul class="list-unstyled"> <li> <a href="/methods/category/position-embeddings"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/tasks/default.gif"> <span>Position Embeddings</span> </span> </a> </li> </ul> </div> </div> </div> </div> <script id="task_data" type="application/json">[{"name": "Language Modelling", "slug": "language-modelling", "papers": 37, "y": 4.238258877434135, "dot_color": "#2f7ed8"}, {"name": "Language Modeling", "slug": "language-modeling", "papers": 36, "y": 4.123711340206185, "dot_color": "#0d233a"}, {"name": "Decoder", "slug": "decoder", "papers": 23, "y": 2.6345933562428407, "dot_color": "#8bbc21"}, {"name": "Computational Efficiency", "slug": "computational-efficiency", "papers": 22, "y": 2.520045819014891, "dot_color": "#f28f43"}, {"name": "Semantic Segmentation", "slug": "semantic-segmentation", "papers": 21, "y": 2.405498281786942, "dot_color": "rgb(128, 133, 233)"}, {"name": "Object Detection", "slug": "object-detection", "papers": 18, "y": 2.0618556701030926, "dot_color": "rgb(241, 92, 128)"}, {"name": "Large Language Model", "slug": "large-language-model", "papers": 16, "y": 1.8327605956471937, "dot_color": "rgb(228, 211, 84)"}, {"name": "Question Answering", "slug": "question-answering", "papers": 14, "y": 1.6036655211912942, "dot_color": "rgb(43, 144, 143)"}, {"name": "Denoising", "slug": "denoising", "papers": 12, "y": 1.3745704467353952, "dot_color": "rgb(255, 116, 116)"}, {"name": "Other", "y": 77.20504009163788, "dot_color": "rgb(170, 255, 250)"}]</script> <script id="time_series_data" type="application/json">[{"name": "Absolute Position Encodings", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0004321690959808274}, {"time": "2018-06-30 00:00:00", "prop": 0.0007167235494880546}, {"time": "2018-09-30 00:00:00", "prop": 0.001103105932641594}, {"time": "2018-12-31 00:00:00", "prop": 0.001646063970564503}, {"time": "2019-03-31 00:00:00", "prop": 0.0013201096706495616}, {"time": "2019-06-30 00:00:00", "prop": 0.003425158816124594}, {"time": "2019-09-30 00:00:00", "prop": 0.00467869222096956}, {"time": "2019-12-31 00:00:00", "prop": 0.005090436477851186}, {"time": "2020-03-31 00:00:00", "prop": 0.003560570786886144}, {"time": "2020-06-30 00:00:00", "prop": 0.006110916418433502}, {"time": "2020-09-30 00:00:00", "prop": 0.003440638238393222}, {"time": "2020-12-31 00:00:00", "prop": 0.005668682198114885}, {"time": "2021-03-31 00:00:00", "prop": 0.005755029284441049}, {"time": "2021-06-30 00:00:00", "prop": 0.007833653707033752}, {"time": "2021-09-30 00:00:00", "prop": 0.008387599839834777}, {"time": "2021-12-31 00:00:00", "prop": 0.00932716836734694}, {"time": "2022-03-31 00:00:00", "prop": 0.00904131620699398}, {"time": "2022-06-30 00:00:00", "prop": 0.009523412590910038}, {"time": "2022-09-30 00:00:00", "prop": 0.009582463015999482}, {"time": "2022-12-31 00:00:00", "prop": 0.01058742497294106}, {"time": "2023-03-31 00:00:00", "prop": 0.010854421825289555}, {"time": "2023-06-30 00:00:00", "prop": 0.01597564895165712}, {"time": "2023-09-30 00:00:00", "prop": 0.016147287406624914}, {"time": "2023-12-31 00:00:00", "prop": 0.017284251160687894}, {"time": "2024-03-31 00:00:00", "prop": 0.020501919912232585}, {"time": "2024-06-30 00:00:00", "prop": 0.019118227248816413}, {"time": "2024-09-30 00:00:00", "prop": 0.01692706100258965}, {"time": "2024-12-31 00:00:00", "prop": 0.015018601019611446}]}, {"name": "Relative Position Encodings", "data": [{"time": "2018-03-31 00:00:00", "prop": 3.928809963462067e-05}, {"time": "2018-06-30 00:00:00", "prop": 0.0}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 0.0}, {"time": "2019-09-30 00:00:00", "prop": 0.0}, {"time": "2019-12-31 00:00:00", "prop": 0.0}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 4.380585246188891e-05}, {"time": "2020-09-30 00:00:00", "prop": 2.1503988989957638e-05}, {"time": "2020-12-31 00:00:00", "prop": 4.4460252534234394e-05}, {"time": "2021-03-31 00:00:00", "prop": 5.0929462694168576e-05}, {"time": "2021-06-30 00:00:00", "prop": 2.0669270994812014e-05}, {"time": "2021-09-30 00:00:00", "prop": 0.00010537185728435649}, {"time": "2021-12-31 00:00:00", "prop": 7.971938775510203e-05}, {"time": "2022-03-31 00:00:00", "prop": 8.693573275955749e-05}, {"time": "2022-06-30 00:00:00", "prop": 4.167795444599579e-05}, {"time": "2022-09-30 00:00:00", "prop": 0.0}, {"time": "2022-12-31 00:00:00", "prop": 5.903768572271967e-05}, {"time": "2023-03-31 00:00:00", "prop": 0.0}, {"time": "2023-06-30 00:00:00", "prop": 7.5624373735655e-05}, {"time": "2023-09-30 00:00:00", "prop": 1.8863653512412285e-05}, {"time": "2023-12-31 00:00:00", "prop": 3.4777165313255316e-05}, {"time": "2024-03-31 00:00:00", "prop": 1.714207350521119e-05}, {"time": "2024-06-30 00:00:00", "prop": 3.287743293003682e-05}, {"time": "2024-09-30 00:00:00", "prop": 3.4300022295014495e-05}, {"time": "2024-12-31 00:00:00", "prop": 4.592844348505029e-05}]}, {"name": "ALiBi", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 0.0}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 0.0}, {"time": "2019-09-30 00:00:00", "prop": 0.0}, {"time": "2019-12-31 00:00:00", "prop": 0.0}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 0.0}, {"time": "2020-09-30 00:00:00", "prop": 0.0}, {"time": "2020-12-31 00:00:00", "prop": 0.0}, {"time": "2021-03-31 00:00:00", "prop": 0.0}, {"time": "2021-06-30 00:00:00", "prop": 0.0}, {"time": "2021-09-30 00:00:00", "prop": 2.10743714568713e-05}, {"time": "2021-12-31 00:00:00", "prop": 0.0}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 0.0}, {"time": "2022-09-30 00:00:00", "prop": 0.0}, {"time": "2022-12-31 00:00:00", "prop": 1.967922857423989e-05}, {"time": "2023-03-31 00:00:00", "prop": 2.07939115427003e-05}, {"time": "2023-06-30 00:00:00", "prop": 3.78121868678275e-05}, {"time": "2023-09-30 00:00:00", "prop": 3.772730702482457e-05}, {"time": "2023-12-31 00:00:00", "prop": 5.216574796988298e-05}, {"time": "2024-03-31 00:00:00", "prop": 1.714207350521119e-05}, {"time": "2024-06-30 00:00:00", "prop": 3.287743293003682e-05}, {"time": "2024-09-30 00:00:00", "prop": 3.4300022295014495e-05}, {"time": "2024-12-31 00:00:00", "prop": 0.0}]}, {"name": "Rotary Embeddings", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 0.0}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 0.0}, {"time": "2019-09-30 00:00:00", "prop": 0.0}, {"time": "2019-12-31 00:00:00", "prop": 0.0}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 0.0}, {"time": "2020-09-30 00:00:00", "prop": 0.0}, {"time": "2020-12-31 00:00:00", "prop": 0.0}, {"time": "2021-03-31 00:00:00", "prop": 0.0}, {"time": "2021-06-30 00:00:00", "prop": 2.0669270994812014e-05}, {"time": "2021-09-30 00:00:00", "prop": 2.10743714568713e-05}, {"time": "2021-12-31 00:00:00", "prop": 1.992984693877551e-05}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 4.167795444599579e-05}, {"time": "2022-09-30 00:00:00", "prop": 0.0}, {"time": "2022-12-31 00:00:00", "prop": 0.0}, {"time": "2023-03-31 00:00:00", "prop": 0.0}, {"time": "2023-06-30 00:00:00", "prop": 0.0}, {"time": "2023-09-30 00:00:00", "prop": 1.8863653512412285e-05}, {"time": "2023-12-31 00:00:00", "prop": 0.0}, {"time": "2024-03-31 00:00:00", "prop": 0.0}, {"time": "2024-06-30 00:00:00", "prop": 1.643871646501841e-05}, {"time": "2024-09-30 00:00:00", "prop": 1.7150011147507247e-05}, {"time": "2024-12-31 00:00:00", "prop": 0.0}]}, {"name": "Conditional Positional Encoding", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 0.0}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 0.0}, {"time": "2019-09-30 00:00:00", "prop": 0.0}, {"time": "2019-12-31 00:00:00", "prop": 0.0}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 0.0}, {"time": "2020-09-30 00:00:00", "prop": 0.0}, {"time": "2020-12-31 00:00:00", "prop": 0.0}, {"time": "2021-03-31 00:00:00", "prop": 2.5464731347084288e-05}, {"time": "2021-06-30 00:00:00", "prop": 2.0669270994812014e-05}, {"time": "2021-09-30 00:00:00", "prop": 0.0}, {"time": "2021-12-31 00:00:00", "prop": 0.0}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 2.0838977222997895e-05}, {"time": "2022-09-30 00:00:00", "prop": 0.0}, {"time": "2022-12-31 00:00:00", "prop": 0.0}, {"time": "2023-03-31 00:00:00", "prop": 0.0}, {"time": "2023-06-30 00:00:00", "prop": 0.0}, {"time": "2023-09-30 00:00:00", "prop": 0.0}, {"time": "2023-12-31 00:00:00", "prop": 0.0}, {"time": "2024-03-31 00:00:00", "prop": 1.714207350521119e-05}, {"time": "2024-06-30 00:00:00", "prop": 0.0}, {"time": "2024-09-30 00:00:00", "prop": 1.7150011147507247e-05}, {"time": "2024-12-31 00:00:00", "prop": 1.5309481161683432e-05}]}, {"name": "FoPE", "data": [{"time": "2018-03-31 00:00:00", "prop": 0.0}, {"time": "2018-06-30 00:00:00", "prop": 0.0}, {"time": "2018-09-30 00:00:00", "prop": 0.0}, {"time": "2018-12-31 00:00:00", "prop": 0.0}, {"time": "2019-03-31 00:00:00", "prop": 0.0}, {"time": "2019-06-30 00:00:00", "prop": 0.0}, {"time": "2019-09-30 00:00:00", "prop": 0.0}, {"time": "2019-12-31 00:00:00", "prop": 0.0}, {"time": "2020-03-31 00:00:00", "prop": 0.0}, {"time": "2020-06-30 00:00:00", "prop": 0.0}, {"time": "2020-09-30 00:00:00", "prop": 0.0}, {"time": "2020-12-31 00:00:00", "prop": 0.0}, {"time": "2021-03-31 00:00:00", "prop": 0.0}, {"time": "2021-06-30 00:00:00", "prop": 0.0}, {"time": "2021-09-30 00:00:00", "prop": 0.0}, {"time": "2021-12-31 00:00:00", "prop": 0.0}, {"time": "2022-03-31 00:00:00", "prop": 0.0}, {"time": "2022-06-30 00:00:00", "prop": 0.0}, {"time": "2022-09-30 00:00:00", "prop": 0.0}, {"time": "2022-12-31 00:00:00", "prop": 0.0}, {"time": "2023-03-31 00:00:00", "prop": 0.0}, {"time": "2023-06-30 00:00:00", "prop": 0.0}, {"time": "2023-09-30 00:00:00", "prop": 0.0}, {"time": "2023-12-31 00:00:00", "prop": 0.0}, {"time": "2024-03-31 00:00:00", "prop": 0.0}, {"time": "2024-06-30 00:00:00", "prop": 0.0}, {"time": "2024-09-30 00:00:00", "prop": 0.0}, {"time": "2024-12-31 00:00:00", "prop": 1.5309481161683432e-05}]}]</script> </div> <div class="footer"> <div class="footer-contact"> <span class="footer-contact-item">Contact us on:</span> <a class="footer-contact-item" href="mailto:hello@paperswithcode.com"> <span class=" icon-wrapper icon-ion" data-name="mail"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M424 80H88a56.06 56.06 0 0 0-56 56v240a56.06 56.06 0 0 0 56 56h336a56.06 56.06 0 0 0 56-56V136a56.06 56.06 0 0 0-56-56zm-14.18 92.63l-144 112a16 16 0 0 1-19.64 0l-144-112a16 16 0 1 1 19.64-25.26L256 251.73l134.18-104.36a16 16 0 0 1 19.64 25.26z"/></svg></span> hello@paperswithcode.com </a>. <span class="footer-contact-item"> Papers With Code is a free resource with all data licensed under <a rel="noreferrer" href="https://creativecommons.org/licenses/by-sa/4.0/">CC-BY-SA</a>. </span> </div> <div class="footer-links"> <a href="/site/terms">Terms</a> <a href="/site/data-policy">Data policy</a> <a href="/site/cookies-policy">Cookies policy</a> <a href="/about#team" class="fair-logo"> from <img src=""> </a> </div> </div> <script> // MathJax window.MathJax = { tex: { inlineMath: [ ["$", "$"], ["\\(", "\\)"], ], }, }; const mathjaxScript = document.createElement("script"); mathjaxScript.src = "https://production-assets.paperswithcode.com/static/js/mathjax/tex-chtml.js"; document.head.appendChild(mathjaxScript); </script> <script src="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/351.a22a9607.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/814.49dcf06c.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/view_method.c1f0a493.js" defer></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10