CINXE.COM

Search results for: Cinnamomum tamala

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Cinnamomum tamala</title> <meta name="description" content="Search results for: Cinnamomum tamala"> <meta name="keywords" content="Cinnamomum tamala"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Cinnamomum tamala" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Cinnamomum tamala"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Cinnamomum tamala</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> SFE as a Superior Technique for Extraction of Eugenol-Rich Fraction from Cinnamomum tamala Nees (Bay Leaf) - Process Analysis and Phytochemical Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudip%20Ghosh">Sudip Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipanwita%20Roy"> Dipanwita Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipan%20Chatterjee"> Dipan Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramita%20Bhattacharjee"> Paramita Bhattacharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Satadal%20Das"> Satadal Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highest yield of eugenol-rich fractions from Cinnamomum tamala (bay leaf) leaves were obtained by supercritical carbon dioxide (SC-CO2), compared to hydro-distillation, organic solvents, liquid CO2 and subcritical CO2 extractions. Optimization of SC-CO2 extraction parameters was carried out to obtain an extract with maximum eugenol content. This was achieved using a sample size of 10 g at 55°C, 512 bar after 60 min at a flow rate of 25.0 cm3/sof gaseous CO2. This extract has the best combination of phytochemical properties such as phenolic content (1.77 mg gallic acid/g dry bay leaf), reducing power (0.80 mg BHT/g dry bay leaf), antioxidant activity (IC50 of 0.20 mg/ml) and anti-inflammatory potency (IC50 of 1.89 mg/ml). Identification of compounds in this extract was performed by GC-MS analysis and its antimicrobial potency was also evaluated. The MIC values against E. coli, P. aeruginosa and S. aureus were 0.5, 0.25 and 0.5 mg/ml, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20potency" title="antimicrobial potency">antimicrobial potency</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20tamala" title=" Cinnamomum tamala"> Cinnamomum tamala</a>, <a href="https://publications.waset.org/abstracts/search?q=eugenol" title=" eugenol"> eugenol</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide%20extraction" title=" supercritical carbon dioxide extraction"> supercritical carbon dioxide extraction</a> </p> <a href="https://publications.waset.org/abstracts/4135/sfe-as-a-superior-technique-for-extraction-of-eugenol-rich-fraction-from-cinnamomum-tamala-nees-bay-leaf-process-analysis-and-phytochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shailaja">K. Shailaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20antioxidant%20activity" title="in vitro antioxidant activity">in vitro antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-glycation%20activity" title=" anti-glycation activity"> anti-glycation activity</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20extracts" title=" ethanol extracts"> ethanol extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=Catharanthus%20roseus" title=" Catharanthus roseus"> Catharanthus roseus</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20tamala" title=" Cinnamomum tamala"> Cinnamomum tamala</a> </p> <a href="https://publications.waset.org/abstracts/11908/evaluation-of-certain-medicinal-plants-for-in-vitro-anti-oxidant-and-anti-glycation-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Extraction and Uses of Essential Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Prasad%20Baral">Ram Prasad Baral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large number of herb materials contain Essential Oils with extensive bioactivities. Acknowledging the importance of plants and its medicinal value, extraction of Essential Oil had been done using Steam Distillation method. In this project, Steam Distillation was used to extract oil from different plant materials like Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha Arvensia, Nardostachys Jatamansi, Wintergreen Essential Oil, and Valeriana Officinalis. Research has confirmed centuries of practical use of essential oils, and we now know that the 'fragrant pharmacy' contains compounds with an extremely broad range of biochemical effects. Essential oils are so termed as they are believed to represent the very essence of odor and flavor. The recovery of Essential Oil from the raw botanical starting material is very important since the quality of the oil is greatly influenced during this step. There is a variety of methods for obtaining volatile oils from plants. Steam distillation method was found to be one of the promising techniques for the extraction of essential oil from plants as reputable distiller will preserve the original qualities of the plant. The distillation was conducted in Clevenger apparatus in which boiling, condensing, and decantation was done. Analysis of essential oil was done using Gas Chromatography-Mass Spectrometer apparatus, which gives evaluates essential oil qualitatively and quantitatively. The volume of essential oil obtained was changing with respect to temperature and time of heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chamomilla%20recutita%20%28L.%29%20Rauschert" title="Chamomilla recutita (L.) Rauschert">Chamomilla recutita (L.) Rauschert</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20Vulgaris%20L" title=" Artemisia Vulgaris L"> Artemisia Vulgaris L</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhododendron%20anthopogon%20D.%20Don" title=" Rhododendron anthopogon D. Don"> Rhododendron anthopogon D. Don</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20nardus%20L" title=" Cymbopogon nardus L"> Cymbopogon nardus L</a>, <a href="https://publications.waset.org/abstracts/search?q=Andropogon%20nardus" title=" Andropogon nardus"> Andropogon nardus</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20tamala" title=" Cinnamomum tamala"> Cinnamomum tamala</a>, <a href="https://publications.waset.org/abstracts/search?q=Juniperus%20spp" title=" Juniperus spp"> Juniperus spp</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopohonflexuosus%20flexuous" title=" Cymbopohonflexuosus flexuous"> Cymbopohonflexuosus flexuous</a>, <a href="https://publications.waset.org/abstracts/search?q=Mantha" title=" Mantha"> Mantha</a> </p> <a href="https://publications.waset.org/abstracts/26780/extraction-and-uses-of-essential-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Rheological Characterization of Gels Based on Medicinal Plant Extracts Mixture (Zingibar Officinale and Cinnamomum Cassia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahia%20Aliche">Zahia Aliche</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Boudjema"> Fatiha Boudjema</a>, <a href="https://publications.waset.org/abstracts/search?q=Benyoucef%20Khelidj"> Benyoucef Khelidj</a>, <a href="https://publications.waset.org/abstracts/search?q=Selma%20Mettai"> Selma Mettai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Bouriahi"> Zohra Bouriahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saliha%20Mohammed%20Belkebir"> Saliha Mohammed Belkebir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Mazouz"> Ridha Mazouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this work is the study of the viscoelastic behaviour formulating gels based plant extractions. The extracts of Zingibar officinale and Cinnamomum cassia were included in the gel at different concentrations of these plants in order to be applied in anti-inflammatory drugs. The yield of ethanolic extraction of Zingibar o. is 3.98% and for Cinnamomum c., essential oil by hydrodistillation is 1.67 %. The ethanolic extract of Zingibar.o, the essential oil of Cinnamomum c. and the mixture showed an anti-DPPH radicals’ activity, presented by EC50 values of 11.32, 13.48 and 14.39 mg/ml respectively. A gel based on different concentrations of these extracts was prepared. Microbiological tests conducted against Staphylococcus aureus and Escherichia colishowed moderate inhibition of Cinnamomum c. gel and less the gel based on Cinnamomum c./ Zingibar o. (20/80). The yeast Candida albicansis resistant to gels. The viscoelastic formulation property was carried out in dynamic and creep and modeled with the Kelvin-Voigt model. The influence of some parameters on the stability of the gel (time, temperature and applied stress) has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20cassia" title="Cinnamomum cassia">Cinnamomum cassia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zingibar%20officinale" title=" Zingibar officinale"> Zingibar officinale</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobien%20activity" title=" antimicrobien activity"> antimicrobien activity</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20behaviour" title=" viscoelastic behaviour"> viscoelastic behaviour</a> </p> <a href="https://publications.waset.org/abstracts/168525/rheological-characterization-of-gels-based-on-medicinal-plant-extracts-mixture-zingibar-officinale-and-cinnamomum-cassia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Protective Effect of Cinnamomum zeylanicum Bark Extract against Doxorubicin Induced Cardiotoxicity: A Preliminary Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20N.%20Sandamali">J. A. N. Sandamali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Hewawasam"> R. P. Hewawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20P.%20W.%20Jayatilaka"> K. A. P. W. Jayatilaka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20K.%20B.%20Mudduwa"> L. K. B. Mudduwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Doxorubicin is widely used in the treatment of solid organ tumors and hematological malignancies, but the dose-dependent cardiotoxicity due to free radical formation compromises its clinical utility. Therapeutic strategies which enhance cellular endogenous defense systems have been identified as promising approaches to combat oxidative stress-associated conditions. Cinnamomum zeylanicum (Ceylon cinnamon) has a number antioxidant compounds, which can effectively scavenge reactive oxygen including superoxide anions, hydroxyl radicals and as well as other free radicals. Therefore, the objective of the study was to elucidate the most effective dose of Cinnamomum bark extract which ameliorates doxorubicin-induced cardiotoxicity. Materials and methods: Wistar rats were divided into seven groups of 10 animals in each. Group 1: normal control (distilled water, orally, for 14 days, 10 mL/kg saline, ip, after 16 hours fast on the 11th day); Group 2: doxorubicin control (distilled water, orally, for 14 days, 18 mg/kg doxorubicin, ip, after 16 hour fast on the 11th day); Groups 3-7: five doses of freeze dried aqueous bark extracts (0.125, 0.25, 0.5, 1.0, 2.0g/kg, orally, daily for 14 days, 18 mg/kg doxorubicin, ip, after 16 hours fast on the 11th day). Animals were sacrificed on the 15th day and blood was collected for the estimation of cardiac troponin I (cTnI), AST and LDH concentrations and myocardial tissues were collected for histopathological assessment of myocardial damage and irreversible changes were graded by developing a score. Results: cTnI concentration of groups 1-7 were 0, 161.9, 128.6, 95.9, 38, 19.41 & 12.36 pg/mL showing significant differences (p<0.05) between group 2 and groups 4-7. In groups 1-7, serum AST concentration were 26.82, 68.1, 37.18, 36.23, 26.8, 26.62 & 22.43U/L and LDH concentrations were 1166.13, 2428.84, 1658.35, 1474.34, 1277.58, 1110.21 & 974.40U/L and a significant difference (p<0.05) was observed between group 2 and groups 3-7. The maximum score for myocardial necrosis was observed in group 2. Parallel to the increase of the dosage of plant extract, a gradual reduction of the score for myocardial necrosis was observed in groups 3-7. Reversible histological changes such as vacuolation, congestion were observed in group 2 and all plant treated groups. Haemorrhages, inflammatory cell infiltrations, and interstitial oedema were observed in group 2, but absent in groups treated with higher doses of the plant extract. Discussion & Conclusion: According to the in vitro antioxidant assays performed, Cinnamomum zeylanicum (Ceylon cinnamon) bark possesses high amounts of polyphenolic substances and high antioxidant activity. The present study showed that Cinnamomum zeylanicum extract at 2.0 g/kg possesses the most significant cardioprotective effect against doxorubicin-induced cardiotoxicity. It can be postulated that pretreatment with Cinnamomum bark extract may replenish the cardiomyocytes with antioxidants that are needed for the defense against oxidative stress induced by doxorubicin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title="cardioprotection">cardioprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20zeylanicum" title=" Cinnamomum zeylanicum"> Cinnamomum zeylanicum</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radicals" title=" free radicals"> free radicals</a> </p> <a href="https://publications.waset.org/abstracts/84919/protective-effect-of-cinnamomum-zeylanicum-bark-extract-against-doxorubicin-induced-cardiotoxicity-a-preliminary-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> A Comparative Study of Anti-Diabetic Activity of Cinnamomum zeylanicum and Artemisia absinthium and Combination with Difference Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Mohamed%20Eltayeb">Ikram Mohamed Eltayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ustina%20Saeed%20Barsoumbolice"> Ustina Saeed Barsoumbolice</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cinnamomum zeylanicum belong to the family Lauraceae and Artemisia absinthium belong to the family Asteraceae. Both were traditionally used as antiemetic, anti-inflammatory and antidiabetic. In Sudan, the mixtures of the two plants were traditionally used for the treatment of diabetes. Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia. It is mainly classified into two major groups, type-1 and type-2. Type-2 is a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. The treatment of type-2 diabetes mellitus (DM) with synthetic drugs have many side effects so many researches were conducted to overcome or reduce this side effects by using alternative medicine. The objective of this study is to investigate and compare the anti-diabetic activity of C. zeylanicum and A. absinthium and their combination with difference ratio. C. zeylanicum and A. absinthium were extracted by 96% ethanol using Soxhlet apparatus. Thirty-two rats were divided into eight groups; each group contains four rats. 1st group was administered with distilled water at dose of 10ml/kg, 2nd group had received glucose only at dose of 2g/kg intraperitoneal, the standard group (3rd group) had received Glibenclamide orally at dose of 0.45mg/kg, 4th group received 100 mg C. zeylanicum + 300 mg A. absinthium with a ratio of (25:75), 5th group received 300 mg C. zeylanicum + 100 mg A. absinthium with a ratio of (75:25), 6th group received 200 mg C. zeylanicum + 200 mg A. absinthiumwith a ratio of (50:50), 7th group received 400 mg of A. absinthium, 8th group received 400 mg of C. zeylanicum. Then the blood samples were taken Retro-orbitally at 0, 1, 2 and 4 hours and the glucose level was measured. Each plant alone and their combination with different ratios shows antidiabetic effect. The significant activity was shown by A. absinthium extract (400 mg/kg), combination of ratio of (75:25) A. absinthium: C. zeylanicum(400mg/kg) and then C. zeylanicum(400mg/kg) with p-value 0.001, 0.022, 0.030 respectively, the activity was found to be increased with time. The other combinations showed less activity with p-value > 0.05. The result concludes that the good antidiabetic activity was performed by A. absinthium alone and its activity decreased by increase combination ratio with C. zeylanicum. Which maybe explains by the antagonistic effect between the compounds of C. zeylanicum and A. absinthium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidiabetic" title="antidiabetic">antidiabetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20absinthium" title=" Artemisia absinthium "> Artemisia absinthium </a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamomum%20zeylanicum" title=" cinnamomum zeylanicum"> cinnamomum zeylanicum</a>, <a href="https://publications.waset.org/abstracts/search?q=combination" title=" combination"> combination</a> </p> <a href="https://publications.waset.org/abstracts/77971/a-comparative-study-of-anti-diabetic-activity-of-cinnamomum-zeylanicum-and-artemisia-absinthium-and-combination-with-difference-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aasaithambi%20Kalaiselvi">Aasaithambi Kalaiselvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Gabriel%20Paulraj"> Michael Gabriel Paulraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekambaram%20Nakkeeran"> Ekambaram Nakkeeran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20verum" title="Cinnamomum verum">Cinnamomum verum</a>, <a href="https://publications.waset.org/abstracts/search?q=niosomes" title=" niosomes"> niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=entrapment%20efficiency" title=" entrapment efficiency"> entrapment efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bactericidal%20and%20fungicidal" title=" bactericidal and fungicidal"> bactericidal and fungicidal</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito%20larvicidal%20activity" title=" mosquito larvicidal activity"> mosquito larvicidal activity</a> </p> <a href="https://publications.waset.org/abstracts/100109/bioefficiency-of-cinnamomum-verum-loaded-niosomes-and-its-microbicidal-and-mosquito-larvicidal-activity-against-aedes-aegypti-anopheles-stephensi-and-culex-quinquefasciatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Addition Cinnamon Extract (Cinnamomum burmannii) to Water Content, pH Value, Total Lactid Acid Bacteria Colonies, Antioxidant Activity and Cholesterol Levels of Goat Milk Yoghurt Isolates Dadih (Pediococcus pentosaceus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endang%20Purwati">Endang Purwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ely%20Vebriyanti"> Ely Vebriyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Puji%20Hartini"> R. Puji Hartini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendri%20Purwanto"> Hendri Purwanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the effect of addition cinnamon extract (Cinnamomum burmannii) in making goat milk yogurt product isolates dadih (Pediococcus pentosaceus) to antioxidant activity and cholesterol levels. The method of research was the experimental method by using a Randomized Block Design (RBD), which consists of 5 treatments with 4 groups as replication. Treatment in this study was used of cinnamon extract as A (0%), B (1%), C (2%), D (3%), E (4%) in a goat’s milk yoghurt. This study was used 4200 ml of Peranakan Etawa goat’s milk and 80 ml of cinnamon extract. The variable analyzed were water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. The average water content ranged from 81.2-85.56%. Mean pH values rang between 4.74–4.30. Mean total lactic acid bacteria colonies ranged from 3.87 x 10⁸ - 7.95 x 10⁸ CFU/ml. The average of the antioxidant activity ranged between 10.98%-27.88%. Average of cholesterol levels ranged from 14.0 mg/ml–17.5 mg/ml. The results showed that the addition of cinnamon extract in making goat milk yoghurt product isolates dadih (Pediococcus pentosaceus) significantly different (P < 0.05) to water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. In conclusion, the study shows that using of cinnamon extract 4% is the best in making goat milk yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamon" title=" cinnamon"> cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pediococcus%20pentosaceus" title=" Pediococcus pentosaceus"> Pediococcus pentosaceus</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a> </p> <a href="https://publications.waset.org/abstracts/68244/effect-of-addition-cinnamon-extract-cinnamomum-burmannii-to-water-content-ph-value-total-lactid-acid-bacteria-colonies-antioxidant-activity-and-cholesterol-levels-of-goat-milk-yoghurt-isolates-dadih-pediococcus-pentosaceus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Economics of Sugandhakokila (Cinnamomum Glaucescens (Nees) Dury) in Dang District of Nepal: A Value Chain Perspective </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keshav%20Raj%20Acharya">Keshav Raj Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabina%20Sharma"> Prabina Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sugandhakokila (Cinnamomum glaucescens Nees. Dury) is a large evergreen native tree species; mostly confined naturally in mid-hills of Rapti Zone of Nepal. The species is identified as prioritized for agro-technology development as well as for research and development by a department of plant resources. This species is band for export outside the country without processing by the government of Nepal to encourage the value addition within the country. The present study was carried out in Chillikot village of Dang district to find out the economic contribution of C. glaucescens in the local economy and to document the major conservation threats for this species. Participatory Rural Appraisal (PRA) tools such as Household survey, key informants interviews and focus group discussions were carried out to collect the data. The present study reveals that about 1.7 million Nepalese rupees (NPR) have been contributed annually in the local economy of 29 households from the collection of C. glaucescens berries in the study area. The average annual income of each family was around NPR 67,165.38 (US$ 569.19) from the sale of the berries which contributes about 53% of the total household income. Six different value chain actors are involved in C. glaucescens business. Maximum profit margin was taken by collector followed by producer, exporter and processor. The profit margin was found minimum to regional and village traders. The total profit margin for producers was NPR 138.86/kg, and regional traders have gained NPR 17/kg. However, there is a possibility to increase the profit of producers by NPR 8.00 more for each kg of berries through the initiation of community forest user group and village cooperatives in the area. Open access resource, infestation by an insect to over matured trees and browsing by goats were identified as major conservation threats for this species. Handing over the national forest as a community forest, linking the producers with the processor through organized market channel and replacing the old tree through new plantation has been recommended for future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forest" title="community forest">community forest</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20threats" title=" conservation threats"> conservation threats</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20glaucescens" title=" C. glaucescens"> C. glaucescens</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20chain%20analysis" title=" value chain analysis"> value chain analysis</a> </p> <a href="https://publications.waset.org/abstracts/105084/economics-of-sugandhakokila-cinnamomum-glaucescens-nees-dury-in-dang-district-of-nepal-a-value-chain-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Antioxidant Potency of Ethanolic Extracts from Selected Aromatic Plants by in vitro Spectrophotometric Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatjana%20Kadifkova%20Panovska">Tatjana Kadifkova Panovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Kulevanova"> Svetlana Kulevanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Blagica%20Jovanova"> Blagica Jovanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological systems possess the ability to neutralize the excess of reactive oxygen species (ROS) and to protect cells from destructive alterations. However, many pathological conditions (cardiovascular diseases, autoimmune disorders, cancer) are associated with inflammatory processes that generate an excessive amount of reactive oxygen species (ROS) that shift the balance between endogenous antioxidant systems and free oxygen radicals in favor of the latter, leading to oxidative stress. Therefore, an additional source of natural compounds with antioxidant properties that will reduce the amount of ROS in cells is much needed despite their broad utilization; many plant species remain largely unexplored. Therefore, the purpose of the present study is to investigate the antioxidant activity of twenty-five selected medicinal and aromatic plant species. The antioxidant activity of the ethanol extracts was evaluated with in vitro assays: 2,2’-diphenyl-1-pycryl-hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), non-site-specific- (NSSOH) and site-specific hydroxyl radical-2-deoxy-D-ribose degradation (SSOH) assays. The Folin-Ciocalteu method and AlCl3 method were performed to determine total phenolic content (TPC) and total flavonoid content (TFC). All examined plant extracts manifested antioxidant activity to a different extent. Cinnamomum verum J.Presl bark and Ocimum basilicum L. Herba demonstrated strong radical scavenging activity and reducing power with the DPPH and FRAP assay, respectively. Additionally, significant hydroxyl scavenging potential and metal chelating properties were observed using the NSSOH and SSOH assays. Furthermore, significant variations were determined in the total polyphenolic content (TPC) and total flavonoid content (TFC), with Cinnamomum verum and Ocimum basilicum showing the highest amount of total polyphenols. The considerably strong radical scavenging activity, hydroxyl scavenging potential and reducing power for the species mentioned above suggest of a presence of highly bioactive phytochemical compounds, predominantly polyphenols. Since flavonoids are the most abundant group of polyphenols that possess a large number of available reactive OH groups in their structure, it is considered that they are the main contributors to the radical scavenging properties of the examined plant extracts. This observation is supported by the positive correlation between the radical scavenging activity and the total polyphenolic and flavonoid content obtained in the current research. The observations from the current research nominate Cinnamomum verum bark and Ocimum basilicum herba as potential sources of bioactive compounds that could be utilized as antioxidative additives in the food and pharmaceutical industries. Moreover, the present study will help the researchers as basic data for future research in exploiting the hidden potential of these important plants that have not been explored so far. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethanol%20extracts" title="ethanol extracts">ethanol extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20scavenging%20activity" title=" radical scavenging activity"> radical scavenging activity</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20power" title=" reducing power"> reducing power</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20polyphenols." title=" total polyphenols."> total polyphenols.</a> </p> <a href="https://publications.waset.org/abstracts/104292/antioxidant-potency-of-ethanolic-extracts-from-selected-aromatic-plants-by-in-vitro-spectrophotometric-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Use of Antioxidant and Antimicrobial Properties of Plant Extracts for Increased Safety and Sustainability of Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loreta%20Serniene">Loreta Serniene</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Sekmokiene"> Dalia Sekmokiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Justina%20Tomkeviciute"> Justina Tomkeviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Lauciene"> Lina Lauciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaida%20Andruleviciute"> Vaida Andruleviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrida%20Sinkeviciene"> Ingrida Sinkeviciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Kondrotiene"> Kristina Kondrotiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Neringa%20Kasetiene"> Neringa Kasetiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindaugas%20Malakauskas"> Mindaugas Malakauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important areas of product development and research in the dairy industry is the product enrichment with active ingredients as well as leading to increased product safety and sustainability. The most expanding field of the active ingredients is the various plants' CO₂ extracts with aromatic, antioxidant and antimicrobial properties. In this study, 15 plant extracts were evaluated based on their antioxidant, antimicrobial properties as well as sensory acceptance indicators for the development of new dairy products. In order to increase the total antioxidant capacity of the milk products, it was important to determine the content of phenolic compounds and antioxidant activity of CO₂ extract. The total phenolic content of fifteen different commercial CO₂ extracts was determined by the Folin-Ciocalteu reagent and expressed as milligrams of the Gallic acid equivalents (GAE) in gram of extract. The antioxidant activities were determined by 2.2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonate (ABTS) methods. The study revealed that the antioxidant activities of investigated CO₂ extract vary from 4.478-62.035 µmole Trolox/g, while the total phenolic content was in the range of 2.021-38.906 mg GAE/g of extract. For the example, the estimated antioxidant activity of Chinese cinnamon (Cinammonum aromaticum) CO₂ extract was 62.023 ± 0.15 µmole Trolox/g and the total flavonoid content reached 17.962 ± 0.35 mg GAE/g. These two parameters suggest that cinnamon could be a promising supplement for the development of new cheese. The inhibitory effects of these essential oils were tested by using agar disc diffusion method against pathogenic bacteria, most commonly found in dairy products. The obtained results showed that essential oil of lemon myrtle (Backhousia citriodora) and cinnamon (Cinnamomum cassia) has antimicrobial activity against E. coli, S. aureus, B. cereus, P. florescens, L. monocytogenes, Br. thermosphacta, P. aeruginosa and S. typhimurium with the diameter of inhibition zones variation from 10 to 52 mm. The sensory taste acceptability of plant extracts in combination with a dairy product was evaluated by a group of sensory evaluation experts (31 individuals) by the criteria of overall taste acceptability in the scale of 0 (not acceptable) to 10 (very acceptable). Each of the tested samples included 200g grams of natural unsweetened greek yogurt without additives and 1 drop of single plant extract (essential oil). The highest average of overall taste acceptability was defined for the samples with essential oils of orange (Citrus sinensis) - average score 6.67, lemon myrtle (Backhousia citriodora) – 6.62, elderberry flower (Sambucus nigra flos.) – 6.61, lemon (Citrus limon) – 5.75 and cinnamon (Cinnamomum cassia) – 5.41, respectively. The results of this study indicate plant extracts of Cinnamomum cassia and Backhousia citriodora as a promising additive not only to increase the total antioxidant capacity of the milk products and as alternative antibacterial agent to combat pathogenic bacteria commonly found in dairy products but also as a desirable flavour for the taste pallet of the consumers with expressed need for safe, sustainable and innovative dairy products. Acknowledgment: This research was funded by the European Regional Development Fund according to the supported activity 'Research Projects Implemented by World-class Researcher Groups' under Measure No. 01.2.2-LMT-K-718. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title="antioxidant properties">antioxidant properties</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20properties" title=" antimicrobial properties"> antimicrobial properties</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamon" title=" cinnamon"> cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20plant%20extracts" title=" CO₂ plant extracts"> CO₂ plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=lemon%20myrtle" title=" lemon myrtle"> lemon myrtle</a> </p> <a href="https://publications.waset.org/abstracts/100956/the-use-of-antioxidant-and-antimicrobial-properties-of-plant-extracts-for-increased-safety-and-sustainability-of-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Inhibition of the Activity of Polyphenol Oxidase Enzyme Present in Annona muricata and Musa acuminata by the Experimentally Identified Natural Anti-Browning Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Belinda%20S.%20Weerawardana">Michelle Belinda S. Weerawardana</a>, <a href="https://publications.waset.org/abstracts/search?q=Gobika%20Thiripuranathar"> Gobika Thiripuranathar</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyani%20A.%20Paranagama"> Priyani A. Paranagama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of fresh vegetables and fruits available in the retail markets undergo a physiological disorder in its appearance and coloration, which indeed discourages consumer purchase. A loss of millions of dollars yearly to the food industry had been due to this pronounced color reaction called Enzymatic Browning which is driven due to the catalytic activity by an oxidoreductase enzyme, polyphenol oxidase (PPO). The enzyme oxidizes the phenolic compounds which are abundantly available in fruits and vegetables as substrates into quinones, which could react with proteins in its surrounding to generate black pigments, called melanins, which are highly UV-active compounds. Annona muricata (Katu anoda) and Musa acuminata (Ash plantains) is a fruit and a vegetable consumed by Sri Lankans widely due to their high nutritional values, medicinal properties and economical importance. The objective of the present study was to evaluate and determine the effective natural anti-browning inhibitors that could prevent PPO activity in the selected fruit and vegetable. Enzyme extracts from Annona muricata (Katu anoda) and Musa acuminata (Ash plantains), were prepared by homogenizing with analytical grade acetone, and pH of each enzyme extract was maintained at 7.0 using a phosphate buffer. The extracts of inhibitors were prepared using powdered ginger rhizomes and essential oil from the bark of Cinnamomum zeylanicum. Water extracts of ginger were prepared and the essential oil from Ceylon cinnamon bark was extracted using steam distillation method. Since the essential oil is not soluble in water, 0.1µl of cinnamon bark oil was mixed with 0.1µl of Triton X-100 emulsifier and 5.00 ml of water. The effect of each inhibitor on the PPO activity was investigated using catechol (0.1 mol dm-3) as the substrate and two samples of enzyme extracts prepared. The dosages of the prepared Cinnamon bark oil, and ginger (2 samples) which were used to measure the activity were 0.0035 g/ml, 0.091 g/ml and 0.087 g/ml respectively. The measurements of the inhibitory activity were obtained at a wavelength of 525 nm using the UV-visible spectrophotometer. The results evaluated thus revealed that % inhibition observed with cinnamon bark oil, and ginger for Annona muricata was 51.97%, and 60.90% respectively. The effects of cinnamon bark oil, and ginger extract on PPO activity of Musa acuminata were 49.51%, and 48.10%. The experimental findings thus revealed that Cinnamomum zeylanicum bark oil was a more effective inhibitor for PPO enzyme present in Musa acuminata and ginger was effective for PPO enzyme present in Annona muricata. Overall both the inhibitors were proven to be more effective towards the activities of PPO enzyme present in both samples. These inhibitors can thus be corroborated as effective, natural, non-toxic, anti-browning extracts, which when added to the above fruit and vegetable will increase the shelf life and also the acceptance of the product by the consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-browning%20agent" title="anti-browning agent">anti-browning agent</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20browning" title=" enzymatic browning"> enzymatic browning</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitory%20activity" title=" inhibitory activity"> inhibitory activity</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol%20oxidase" title=" polyphenol oxidase"> polyphenol oxidase</a> </p> <a href="https://publications.waset.org/abstracts/41434/inhibition-of-the-activity-of-polyphenol-oxidase-enzyme-present-in-annona-muricata-and-musa-acuminata-by-the-experimentally-identified-natural-anti-browning-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Unconventional Strategies for Combating Multidrug Resistant Bacterial Biofilms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheir%20Mohamed%20Fathey">Soheir Mohamed Fathey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofilms are complex biological communities which are hard to be eliminated by conventional antibiotic administration and implemented in eighty percent of humans infections. Green remedies have been used for centuries and have shown obvious effects in hindering and combating microbial biofilm infections. Nowadays, there has been a growth in the number of researches on the anti-biofilm performance of natural agents such as plant essential oil (EOs) and propolis. In this study, we investigated the antibiofilm performance of various natural agents, including four essential oils (EOs), cinnamon (Cinnamomum cassia), tea tree (Melaleuca alternifolia), and clove (Syzygium aromaticum), as well as propolis versus the biofilm of both Gram-positive pathogenic bacterium Staphylococcus aureus and Gram-negative pathogenic bacterium Pseudomonas aeruginosa which are major human and animal pathogens rendering a high risk due to their biofilm development ability. The antibiofilm activity of the tested agents was evaluated by crystal violet staining assay and detected by scanning electron and fluorescent microscopy. Antibiofilm performance declared a potent effect of the tested products versus the tested bacterial biofilms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent" title=" fluorescent"> fluorescent</a> </p> <a href="https://publications.waset.org/abstracts/160279/unconventional-strategies-for-combating-multidrug-resistant-bacterial-biofilms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Lead and Cadmium Residue Determination in Spices Available in Tripoli City Markets (Libya)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ziyaina">Mohamed Ziyaina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Rajab"> Ahlam Rajab</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20Alkhweldi"> Khadija Alkhweldi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafia%20Algami"> Wafia Algami</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Al.%20Toumi"> Omer Al. Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Rasco1"> Barbara Rasco1</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a growing interest in monitoring heavy metal contamination in food products. Spices can improve the taste of food and can also be a source of many bioactive compounds but can unfortunately, also be contaminated with dangerous materials, potentially heavy metals. This study was conducted to investigate lead (Pb) and cadmium (Cd) contamination in selected spices commonly consumed in Libya including Capsicum frutescens (chili pepper) Piper nigrum, (black pepper), Curcuma longa (turmeric), and mixed spices (HRARAT) which consist of a combination of: Alpinia officinarum, Zingiber officinale and Cinnamomum zeylanicum. Spices were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide. The highest level of lead (Pb) was found in Curcuma longa and Capsicum frutescens in wholesale markets (1.05 ± 0.01 mg/kg, 0.96 ± 0.06 mg/kg). Cadmium (Cd) levels exceeded FAO/WHO permissible limit. Curcuma longa and Piper nigrum sold in retail markets had a high concentration of Cd (0.36 ± 0.09, 0.35 ± 0.07 mg/kg, respectively) followed by (0.32 ± 0.04 mg/kg) for Capsicum frutescens. Mixed spices purchased from wholesale markets also had high levels of Cd (0.31 ± 0.08 mg/kg). Curcuma longa and Capsicum frutescens may pose a food safety risk due to high levels of lead and cadmium. Cadmium levels exceeded FAO/WHO recommendations (0.2 ppm) for Piper nigrum, Curcuma longa, and mixed spices (HRARAT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20determination" title=" cadmium determination"> cadmium determination</a>, <a href="https://publications.waset.org/abstracts/search?q=spice" title=" spice"> spice</a> </p> <a href="https://publications.waset.org/abstracts/20441/lead-and-cadmium-residue-determination-in-spices-available-in-tripoli-city-markets-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Elimination of Mixed-Culture Biofilms Using Biological Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Vidacs">Anita Vidacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Csaba%20Vagvolgyi"> Csaba Vagvolgyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Judit%20Krisch"> Judit Krisch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The attachment of microorganisms to different surfaces and the development of biofilms can lead to outbreaks of food-borne diseases and economic losses due to perished food. In food processing environments, bacterial communities are generally formed by mixed cultures of different species. Plants are sources of several antimicrobial substances that may be potential candidates for the development of new disinfectants. We aimed to investigate cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris). Essential oils and their major components (cinnamaldehyde, terpinene-4-ol, and thymol) on four-species biofilms of E. coli, L. monocytogenes, P. putida, and S. aureus. Experiments had three parts: (i) determination of minimum bactericide concentration and the killing time with microdilution methods; (ii) elimination of the four-species 24– and 168-hours old biofilm from stainless steel, polypropylene, tile and wood surfaces; and (iii) comparing the disinfectant effect with industrial used per-acetic based sanitizer (HC-DPE). E. coli and P. putida were more resistant to investigated essential oils and their main components in biofilm, than L. monocytogenes and S. aureus. These Gram-negative bacteria were detected on the surfaces, where the natural based disinfectant had not total biofilm elimination effect. Most promoted solutions were the cinnamon essential oil and the terpinene-4-ol that could eradicate the biofilm from stainless steel, polypropylene and even from tile, too. They have a better disinfectant effect than HC-DPE. These natural agents can be used as alternative solutions in the battle against bacterial biofilms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=surfaces" title=" surfaces"> surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=terpinene-4-ol" title=" terpinene-4-ol"> terpinene-4-ol</a> </p> <a href="https://publications.waset.org/abstracts/116994/elimination-of-mixed-culture-biofilms-using-biological-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Evaluation of Antidiabetic Activity of a Combination Extract of Nigella Sativa &amp; Cinnamomum Cassia in Streptozotocin Induced Type-I Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ginpreet%20Kaur">Ginpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yasir%20Usmani"> Mohammad Yasir Usmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kamil%20Khan"> Mohammed Kamil Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is a disease with a high global burden and results in significant morbidity and mortality. In India, the number of people suffering with diabetes is expected to rise from 19 to 57 million in 2025. At present, interest in herbal remedies is growing to reduce the side effects associated with conventional dosage form like oral hypoglycemic agents and insulin for the treatment of diabetes mellitus. Our aim was to investigate the antidiabetic activities of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats. Thus, the present study was undertaken to screen postprandial glucose excursion potential through α- glucosidase inhibitory activity (In Vitro) and effect of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats (In Vivo). In addition changes in body weight, plasma glucose, lipid profile and kidney profile were also determined. The IC50 values for both extract and Acarbose was calculated by extrapolation method. Combinatorial extract of N. sativa & C. cassia at different dosages (100 and 200 mg/kg orally) and Metformin (50 mg/kg orally) as the standard drug was administered for 28 days and then biochemical estimation, body weights and OGTT (Oral glucose tolerance test) were determined. Histopathological studies were also performed on kidney and pancreatic tissue. In In-Vitro the combinatorial extract shows much more inhibiting effect than the individual extracts. The results reveals that combinatorial extract of N. sativa & C. cassia has shown significant decrease in plasma glucose (p<0.0001), total cholesterol and LDL levels when compared with the STZ group The decreasing level of BUN and creatinine revealed the protection of N. sativa & C. cassia extracts against nephropathy associated with diabetes. Combination of N. sativa & C. cassia significantly improved glucose tolerance to exogenously administered glucose (2 g/kg) after 60, 90 and 120 min interval on OGTT in high dose streptozotocin induced diabetic rats compared with the untreated control group. Histopathological studies shown that treatment with N. sativa & C. cassia extract alone and in combination restored pancreatic tissue integrity and was able to regenerate the STZ damaged pancreatic β cells. Thus, the present study reveals that combination of N. sativa & C. cassia extract has significant α- glucosidase inhibitory activity and thus has great potential as a new source for diabetes treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid%20levels" title="lipid levels">lipid levels</a>, <a href="https://publications.waset.org/abstracts/search?q=OGTT" title=" OGTT"> OGTT</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=herbs" title=" herbs"> herbs</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosidase" title=" glucosidase"> glucosidase</a> </p> <a href="https://publications.waset.org/abstracts/11444/evaluation-of-antidiabetic-activity-of-a-combination-extract-of-nigella-sativa-cinnamomum-cassia-in-streptozotocin-induced-type-i-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Investigating Sub-daily Responses of Water Flow of Trees in Tropical Successional Forests in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pantana%20Tor-Ngern">Pantana Tor-Ngern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the global water cycle, tree water use (Tr) largely contributes to evapotranspiration which is the total amount of water evaporated from terrestrial ecosystems to the atmosphere, regulating climates. Tree water use responds to environmental factors, including atmospheric humidity and sunlight (represented by vapor pressure deficit or VPD and photosynthetically active radiation or PAR, respectively) and soil moisture. In forests, Tr responses to such factors depend on species and their spatial and temporal variations. Tropical forests in Southeast Asia (SEA) have experienced land-use conversion from abandoned agricultural practices, resulting in patches of forests at different stages including old-growth and secondary forests. Because the inherent structures, such as canopy height and tree density, significantly vary among forests at different stages and can strongly affect their respective microclimate, Tr and its responses to changing environmental conditions in successional forests may differ. Daily and seasonal variations in the environmental factors may exert significant impacts on the respective Tr patterns. Extrapolating Tr data from short periods of days to longer periods of seasons or years can be complex and is important for estimating long-term ecosystem water use which often includes normal and abnormal climatic conditions. Thus, this study aims to investigate the diurnal variation of Tr, using measured sap flux density (JS) data, with changes in VPD in eight evergreen tree species in an old-growth forest (hereafter OF; >200 years old) and a young forest (hereafter YF, <10 years old) in Khao Yai National Park, Thailand. The studied species included Sysygium syzygoides, Aquilaria crassna, Cinnamomum subavenium, Nephelium melliferum, Altingia excelsa in OF, and Syzygium nervosum and Adinandra integerrima in YF. Only Sysygium antisepticum was found in both forest stages. Specifically, hysteresis, which indicates the asymmetrical changes of JS in response to changing VPD across daily timescale, was examined in these species. Results showed no hysteresis in all species in OF, except Altingia excelsa which exhibited a 3-hour delayed JS response to VPD. In contrast, JS of all species in YF displayed one-hour delayed responses to VPD. The OF species that showed no hysteresis indicated their well-coupling of their canopies with the atmosphere, facilitating the gas exchange which is essential for tree growth. The delayed responses in Altingia excelsa in OF and all species in YF were associated with higher JS in the morning than that in the afternoon. This implies that these species were sensitive to drying air, closing stomata relatively rapidly compared to the decreasing atmospheric humidity (VPD). Such behavior is often observed in trees growing in dry environments. This study suggests that detailed investigation of JS at sub-daily timescales is imperative for better understanding of mechanistic responses of trees to the changing climate, which will benefit the improvement of earth system models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sap%20flow" title="sap flow">sap flow</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20forest" title=" tropical forest"> tropical forest</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20succession" title=" forest succession"> forest succession</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20dissipcation%20probe" title=" thermal dissipcation probe"> thermal dissipcation probe</a> </p> <a href="https://publications.waset.org/abstracts/172751/investigating-sub-daily-responses-of-water-flow-of-trees-in-tropical-successional-forests-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Synergistic Studies of Liposomes of Clove and Cinnamon Oil in Oral Health Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Parameswaran">Sandhya Parameswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajakta%20Dhuri"> Prajakta Dhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite great improvements in health care, the world oral health report states that dental problems still persist, particularly among underprivileged groups in both developing and developed countries. Dental caries and periodontal diseases are identified as the most important oral health problems globally. Acidic foods and beverages can affect natural teeth, and chronic exposure often leads to the development of dental erosion, abrasion, and decay. In recent years, there has been an increased interest toward essential oils. These are secondary metabolites and possess antibacterial, antifungal and antioxidant properties. Essential oils are volatile and chemically unstable in the presence of air, light, moisture and high temperature. Hence many novel methods like a liposomal encapsulation of oils have been introduced to enhance the stability and bioavailability. This research paper focuses on two essential oils, clove and cinnamon oil. Clove oil was obtained from Syzygium aromaticum Linn using clavengers apparatus. It contains eugenol and β caryophyllene. Cinnamon oil, from the barks of Cinnamomum cassia, contains cinnamaldehyde, The objective of the current research was to develop a liposomal carrier system containing clove and cinnamon oil and study their synergistic activity against dental pathogens when formulated as a gel. Methodology: The essential oil were first tested for their antimicrobial activity against dental pathogens, Lactobacillus acidophillus (MTCC No. 10307, MRS broth) and Streptococcus Mutans (MTCC No .890, Brain Heart Infusion agar). The oils were analysed by UV spectroscopy for eugenol and cinnamaldehyde content. Standard eugenol was linear between 5ppm to 25ppm at 282nm and standard cinnamaldehde from 1ppm to 5pmm at 284nm. The concentration of eugenol in clove oil was found to be 62.65 % w/w, and that of cinnamaldehyde was found to be 5.15%s w/w. The oils were then formulated into liposomes. Liposomes were prepared by thin film hydration method using Phospholipid, Cholesterol, and other oils dissolved in a chloroform methanol (3:1) mixture. The organic solvent was evaporated in a rotary evaporator above lipid transition temperature. The film was hydrated with phosphate buffer (pH 5.5).The various batches of liposomes were characterized and compared for their size, loading rate, encapsulation efficiency and morphology. The prepared liposomes when evaluated for entrapment efficiency showed 65% entrapment for clove and 85% for cinnamon oil. They were also tested for their antimicrobial activity against dental pathogens and their synergistic activity studied. Based on the activity and the entrapment efficiency the amount of liposomes required to prepare 1gm of the gel was calculated. The gel was prepared using a simple ointment base and contained 0.56% of cinnamon and clove liposomes. A simultaneous method of analysis for eugenol and cinnamaldehyde.was then developed using HPLC. The prepared gels were then studied for their stability as per ICH guidelines. Conclusion: It was found that liposomes exhibited spherical shaped vesicles and protected the essential oil from degradation. Liposomes, therefore, constitute a suitable system for encapsulation of volatile, unstable essential oil constituents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cinnamon%20oil" title="cinnamon oil">cinnamon oil</a>, <a href="https://publications.waset.org/abstracts/search?q=clove%20oil" title=" clove oil"> clove oil</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20caries" title=" dental caries"> dental caries</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a> </p> <a href="https://publications.waset.org/abstracts/72986/synergistic-studies-of-liposomes-of-clove-and-cinnamon-oil-in-oral-health-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10