CINXE.COM

Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms | Journal of Computational and Cognitive Engineering

<!DOCTYPE html> <html lang="en" xml:lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms | Journal of Computational and Cognitive Engineering </title> <link rel="icon" href="https://ojs.bonviewpress.com/public/journals/4/favicon_en_US.png"> <meta name="generator" content="Open Journal Systems 3.4.0.7"> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="Journal of Computational and Cognitive Engineering"/> <meta name="citation_journal_abbrev" content="JCCE"/> <meta name="citation_issn" content="2810-9503"/> <meta name="citation_author" content="Yanhui Guo"/> <meta name="citation_author_institution" content="Department of Computer Science, University of Illinois Springfield, USA"/> <meta name="citation_author" content="Zelal Mustafaoglu"/> <meta name="citation_author_institution" content="Department of Computer Science, University of Illinois Springfield, USA"/> <meta name="citation_author" content="Deepika Koundal"/> <meta name="citation_author_institution" content="Department of Systemics, University of Petroleum and Energy Studies, India"/> <meta name="citation_title" content="Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2023"/> <meta name="citation_volume" content="2"/> <meta name="citation_issue" content="1"/> <meta name="citation_firstpage" content="5"/> <meta name="citation_lastpage" content="9"/> <meta name="citation_doi" content="10.47852/bonviewJCCE2202192"/> <meta name="citation_abstract_html_url" content="https://ojs.bonviewpress.com/index.php/JCCE/article/view/192"/> <meta name="citation_abstract" xml:lang="en" content="Spam email has accounted for a high percentage of email traffic and has created problems worldwide. The deep learning transformer model is an efficient tool in natural language processing. This study proposed an efficient spam detection approach using a pretrained bidirectional encoder representation from transformer (BERT) and machine learning algorithms to classify ham or spam emails. Email texts were fed into the BERT, and features obtained from the BERT outputs were used to represent the texts. Four classifier algorithms in machine learning were employed to classify the features of the text into ham or spam categories. The proposed model was tested using two public datasets in the experiments. The results of the evaluation metrics demonstrate that the logistic regression algorithm achieved the best classification performance in both datasets. They also justified the efficient ability of the proposed model in detecting spam emails. 聽 Received: 16 March 2022 | Revised: 21 April 2022 | Accepted: 22 April 2022 聽 Conflicts of Interest Yanhui Guo is an editorial board member for Journal of Computational and Cognitive Engineering, and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflicts of interest to this work."/> <meta name="citation_keywords" xml:lang="en" content="spam detection"/> <meta name="citation_keywords" xml:lang="en" content="transfer learning"/> <meta name="citation_keywords" xml:lang="en" content=" transformer"/> <meta name="citation_keywords" xml:lang="en" content="BERT"/> <meta name="citation_keywords" xml:lang="en" content="classifier"/> <meta name="citation_keywords" xml:lang="en" content="machine learning"/> <meta name="citation_pdf_url" content="https://ojs.bonviewpress.com/index.php/JCCE/article/download/192/131"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Yanhui Guo"/> <meta name="DC.Creator.PersonalName" content="Zelal Mustafaoglu"/> <meta name="DC.Creator.PersonalName" content="Deepika Koundal"/> <meta name="DC.Date.created" scheme="ISO8601" content="2022-04-24"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2022-03-16"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2023-02-22"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-01-10"/> <meta name="DC.Description" xml:lang="en" content="Spam email has accounted for a high percentage of email traffic and has created problems worldwide. The deep learning transformer model is an efficient tool in natural language processing. This study proposed an efficient spam detection approach using a pretrained bidirectional encoder representation from transformer (BERT) and machine learning algorithms to classify ham or spam emails. Email texts were fed into the BERT, and features obtained from the BERT outputs were used to represent the texts. Four classifier algorithms in machine learning were employed to classify the features of the text into ham or spam categories. The proposed model was tested using two public datasets in the experiments. The results of the evaluation metrics demonstrate that the logistic regression algorithm achieved the best classification performance in both datasets. They also justified the efficient ability of the proposed model in detecting spam emails. 聽 Received: 16 March 2022 | Revised: 21 April 2022 | Accepted: 22 April 2022 聽 Conflicts of Interest Yanhui Guo is an editorial board member for Journal of Computational and Cognitive Engineering, and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflicts of interest to this work."/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="192"/> <meta name="DC.Identifier.pageNumber" content="5-9"/> <meta name="DC.Identifier.DOI" content="10.47852/bonviewJCCE2202192"/> <meta name="DC.Identifier.URI" content="https://ojs.bonviewpress.com/index.php/JCCE/article/view/192"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2022 Authors"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0/"/> <meta name="DC.Source" content="Journal of Computational and Cognitive Engineering"/> <meta name="DC.Source.ISSN" content="2810-9503"/> <meta name="DC.Source.Issue" content="1"/> <meta name="DC.Source.Volume" content="2"/> <meta name="DC.Source.URI" content="https://ojs.bonviewpress.com/index.php/JCCE"/> <meta name="DC.Subject" xml:lang="en" content="spam detection"/> <meta name="DC.Subject" xml:lang="en" content="transfer learning"/> <meta name="DC.Subject" xml:lang="en" content=" transformer"/> <meta name="DC.Subject" xml:lang="en" content="BERT"/> <meta name="DC.Subject" xml:lang="en" content="classifier"/> <meta name="DC.Subject" xml:lang="en" content="machine learning"/> <meta name="DC.Title" content="Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Research Articles"/> <link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/JCCE/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/JCCE/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/lib/pkp/styles/fontawesome/fontawesome.css?v=3.4.0.7" type="text/css" /><style type="text/css">.pkp_structure_head { background: center / cover no-repeat url("https://ojs.bonviewpress.com/public/journals/4/homepageImage_en_US.png");}</style><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/doiInSummary/styles/doi.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/orcidProfile/css/orcidProfile.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/assets/css/paperbuzzviz.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/public/journals/4/styleSheet.css?d=2023-02-03+10%3A29%3A10" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/css/citationStyleLanguagePlugin.css?v=3.4.0.7" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://ojs.bonviewpress.com/index.php/JCCE/index " class="is_text">Journal of Computational and Cognitive Engineering</a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="http://ojs.bonviewpress.com/index.php/JCCE/index"> HOME </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about"> ABOUT </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/aims_and_scope"> Aims and Scope </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/JM"> Journal Metrics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/indexing"> Indexing & Abstracting </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/privacy"> Privacy Statement </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/contact"> Contact Us </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/browse"> BROWSE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/onlinefirst"> Online First </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/current"> Current Issue </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/archive"> All Issues </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/contribute"> CONTRIBUTE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/submissions"> Author Guidelines </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/OA"> Open Access </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/APC"> Article Processing Charge </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/peer_review_process"> Peer Review Process </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/pe"> Publishing Ethics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/for_reviewers"> For Reviewers </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/EBMembers"> EDITORIAL BOARD </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/special_issues"> SPECIAL ISSUES </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/JCCE/submittingproposal"> Submitting a Proposal </a> </li> </ul> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://ojs.bonviewpress.com/index.php/index/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/user/register"> Register </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/browse"> BROWSE </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/35"> Vol. 2 No. 1 (2023) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Research Articles </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms </h1> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Yanhui Guo </span> <span class="affiliation"> Department of Computer Science, University of Illinois Springfield, USA </span> </li> <li> <span class="name"> Zelal Mustafaoglu </span> <span class="affiliation"> Department of Computer Science, University of Illinois Springfield, USA </span> </li> <li> <span class="name"> Deepika Koundal </span> <span class="affiliation"> Department of Systemics, University of Petroleum and Energy Studies, India </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.47852/bonviewJCCE2202192"> https://doi.org/10.47852/bonviewJCCE2202192 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> spam detection, transfer learning, transformer, BERT, classifier, machine learning </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>Spam email has accounted for a high percentage of email traffic and has created problems worldwide. The deep learning transformer model is an efficient tool in natural language processing. This study proposed an efficient spam detection approach using a pretrained bidirectional encoder representation from transformer (BERT) and machine learning algorithms to classify ham or spam emails. Email texts were fed into the BERT, and features obtained from the BERT outputs were used to represent the texts. Four classifier algorithms in machine learning were employed to classify the features of the text into ham or spam categories. The proposed model was tested using two public datasets in the experiments. The results of the evaluation metrics demonstrate that the logistic regression algorithm achieved the best classification performance in both datasets. They also justified the efficient ability of the proposed model in detecting spam emails.</p> <p>聽</p> <p><strong>Received</strong>: 16 March 2022 | <strong>Revised</strong>: 21 April 2022 | <strong>Accepted</strong>: 22 April 2022</p> <p>聽</p> <p><strong>Conflicts of Interest</strong></p> <p>Yanhui Guo is an editorial board member for <em>Journal of Computational and Cognitive Engineering</em>, and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflicts of interest to this work.</p> </section> <br /><div class="separator"></div><div class="item abstract" id="trendmd-suggestions"></div><script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"website_id":"89267", "element":"#trendmd-suggestions"}'></script><div class="item downloads_chart"> <h3 class="label"> Metrics </h3> <div id="paperbuzz"><div id="loading">Metrics Loading ...</div></div> <script type="text/javascript"> window.onload = function () { var options = { paperbuzzStatsJson: JSON.parse('{\"altmetrics_sources\":[{\"events\":null,\"events_count\":2574,\"events_count_by_day\":[{\"count\":\"2\",\"date\":\"2022-04-24\"},{\"count\":\"3\",\"date\":\"2022-04-25\"},{\"count\":\"1\",\"date\":\"2022-04-26\"},{\"count\":\"6\",\"date\":\"2022-04-30\"},{\"count\":\"1\",\"date\":\"2022-05-02\"},{\"count\":\"1\",\"date\":\"2022-05-03\"},{\"count\":\"1\",\"date\":\"2022-05-05\"},{\"count\":\"2\",\"date\":\"2022-05-06\"},{\"count\":\"1\",\"date\":\"2022-05-07\"},{\"count\":\"1\",\"date\":\"2022-05-08\"},{\"count\":\"1\",\"date\":\"2022-05-09\"},{\"count\":\"2\",\"date\":\"2022-05-11\"},{\"count\":\"2\",\"date\":\"2022-05-12\"},{\"count\":\"4\",\"date\":\"2022-05-13\"},{\"count\":\"1\",\"date\":\"2022-05-14\"},{\"count\":\"1\",\"date\":\"2022-05-15\"},{\"count\":\"1\",\"date\":\"2022-05-16\"},{\"count\":\"2\",\"date\":\"2022-05-17\"},{\"count\":\"3\",\"date\":\"2022-05-18\"},{\"count\":\"1\",\"date\":\"2022-05-20\"},{\"count\":\"2\",\"date\":\"2022-05-24\"}],\"events_count_by_month\":[{\"count\":\"12\",\"date\":\"2022-04\"},{\"count\":\"40\",\"date\":\"2022-05\"},{\"count\":\"22\",\"date\":\"2022-06\"},{\"count\":\"47\",\"date\":\"2022-07\"},{\"count\":\"18\",\"date\":\"2022-08\"},{\"count\":\"34\",\"date\":\"2022-09\"},{\"count\":\"10\",\"date\":\"2022-10\"},{\"count\":\"28\",\"date\":\"2022-11\"},{\"count\":\"25\",\"date\":\"2022-12\"},{\"count\":\"36\",\"date\":\"2023-01\"},{\"count\":\"74\",\"date\":\"2023-02\"},{\"count\":\"115\",\"date\":\"2023-03\"},{\"count\":\"139\",\"date\":\"2023-04\"},{\"count\":\"113\",\"date\":\"2023-05\"},{\"count\":\"83\",\"date\":\"2023-06\"},{\"count\":\"80\",\"date\":\"2023-07\"},{\"count\":\"92\",\"date\":\"2023-08\"},{\"count\":\"119\",\"date\":\"2023-09\"},{\"count\":\"112\",\"date\":\"2023-10\"},{\"count\":\"89\",\"date\":\"2023-11\"},{\"count\":\"77\",\"date\":\"2023-12\"},{\"count\":\"58\",\"date\":\"2024-01\"},{\"count\":\"44\",\"date\":\"2024-02\"},{\"count\":\"109\",\"date\":\"2024-03\"},{\"count\":\"156\",\"date\":\"2024-04\"},{\"count\":\"114\",\"date\":\"2024-05\"},{\"count\":\"97\",\"date\":\"2024-06\"},{\"count\":\"84\",\"date\":\"2024-07\"},{\"count\":\"106\",\"date\":\"2024-08\"},{\"count\":\"83\",\"date\":\"2024-09\"},{\"count\":\"90\",\"date\":\"2024-10\"},{\"count\":\"83\",\"date\":\"2024-11\"},{\"count\":\"70\",\"date\":\"2024-12\"},{\"count\":\"92\",\"date\":\"2025-01\"},{\"count\":\"23\",\"date\":\"2025-02\"}],\"events_count_by_year\":[{\"count\":\"236\",\"date\":\"2022\"},{\"count\":\"1129\",\"date\":\"2023\"},{\"count\":\"1094\",\"date\":\"2024\"},{\"count\":\"115\",\"date\":\"2025\"}],\"source\":{\"display_name\":\"File downloads\"},\"source_id\":\"fileDownloads\"},{\"events\":[{\"author\":null,\"occurred_at\":\"2024-03-20T17:10:40.000Z\",\"url\":\"https:\\/\\/doi.org\\/10.2298\\/tsci231116001g\"}],\"events_count\":1,\"events_count_by_day\":[{\"count\":1,\"date\":\"2024-03-20\"}],\"events_count_by_month\":[{\"count\":1,\"date\":\"2024-03\"}],\"events_count_by_year\":[{\"count\":1,\"date\":\"2024\"}],\"first_event_date\":\"2024-03-20\",\"source\":{\"display_name\":\"Crossref\",\"icon_url\":\"https:\\/\\/api.paperbuzz.org\\/static\\/img\\/favicons\\/crossref.ico\",\"id\":\"crossref\"},\"source_id\":\"crossref\"}],\"crossref_event_data_url\":\"https:\\/\\/api.eventdata.crossref.org\\/v1\\/events?rows=1000&filter=from-collected-date:1990-01-01,until-collected-date:2099-01-01,obj-id:10.47852\\/bonviewjcce2202192\",\"doi\":\"10.47852\\/bonviewjcce2202192\",\"metadata\":{\"DOI\":\"10.47852\\/bonviewjcce2202192\",\"ISSN\":[\"2810-9503\"],\"URL\":\"http:\\/\\/dx.doi.org\\/10.47852\\/bonviewjcce2202192\",\"abstract\":\"<jats:p>Spam email has accounted for a high percentage of email traffic and has created problems worldwide. The deep learning transformer model is an efficient tool in natural language processing. This study proposed an efficient spam detection approach using a pretrained bidirectional encoder representation from transformer (BERT) and machine learning algorithms to classify ham or spam emails. Email texts were fed into the BERT, and features obtained from the BERT outputs were used to represent the texts. Four classifier algorithms in machine learning were employed to classify the features of the text into ham or spam categories. The proposed model was tested using two public datasets in the experiments. The results of the evaluation metrics demonstrate that the logistic regression algorithm achieved the best classification performance in both datasets. They also justified the efficient ability of the proposed model in detecting spam emails.<\\/jats:p>\",\"author\":[{\"affiliation\":[],\"name\":\"Department of Computer Science, University of Illinois Springfield, USA\",\"sequence\":\"first\"},{\"affiliation\":[],\"family\":\"Guo\",\"given\":\"Yanhui\",\"sequence\":\"first\"},{\"affiliation\":[],\"family\":\"Mustafaoglu\",\"given\":\"Zelal\",\"sequence\":\"additional\"},{\"affiliation\":[],\"name\":\"Department of Computer Science, University of Illinois Springfield, USA\",\"sequence\":\"additional\"},{\"affiliation\":[],\"family\":\"Koundal\",\"given\":\"Deepika\",\"sequence\":\"additional\"},{\"affiliation\":[],\"name\":\"Department of Systemics, University of Petroleum and Energy Studies, India\",\"sequence\":\"additional\"}],\"container-title\":\"Journal of Computational and Cognitive Engineering\",\"container-title-short\":\"JCCE\",\"content-domain\":{\"crossmark-restriction\":false,\"domain\":[]},\"created\":{\"date-parts\":[[2022,4,24]],\"date-time\":\"2022-04-24T11:55:27Z\",\"timestamp\":1650801327000},\"crossref_url\":\"https:\\/\\/api.crossref.org\\/works\\/10.47852\\/bonviewjcce2202192\\/transform\\/application\\/vnd.citationstyles.csl+json\",\"deposited\":{\"date-parts\":[[2024,3,11]],\"date-time\":\"2024-03-11T08:27:32Z\",\"timestamp\":1710145652000},\"indexed\":{\"date-parts\":[[2024,9,23]],\"date-time\":\"2024-09-23T04:28:30Z\",\"timestamp\":1727065710736},\"is-referenced-by-count\":83,\"issue\":\"1\",\"issued\":{\"date-parts\":[[2022,4,24]]},\"journal-issue\":{\"issue\":\"1\",\"published-online\":{\"date-parts\":[[2023,2,22]]}},\"member\":\"27601\",\"original-title\":[],\"page\":\"5-9\",\"prefix\":\"10.47852\",\"published\":{\"date-parts\":[[2022,4,24]]},\"published-online\":{\"date-parts\":[[2022,4,24]]},\"publisher\":\"BON VIEW PUBLISHING PTE\",\"reference-count\":0,\"references-count\":0,\"relation\":[],\"resource\":{\"primary\":{\"URL\":\"http:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/view\\/192\"}},\"score\":1,\"short-title\":[],\"source\":\"Crossref\",\"subject\":[],\"subtitle\":[],\"title\":\"Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms\",\"type\":\"journal-article\",\"volume\":\"2\"},\"open_access\":{\"best_oa_location\":{\"endpoint_id\":null,\"evidence\":\"open (via page says license)\",\"host_type\":\"publisher\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2022-04-24\",\"pmh_id\":null,\"repository_institution\":null,\"updated\":\"2023-04-01T14:11:35.845343\",\"url\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/download\\/192\\/131\",\"url_for_landing_page\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewjcce2202192\",\"url_for_pdf\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/download\\/192\\/131\",\"version\":\"publishedVersion\"},\"data_standard\":2,\"doi\":\"10.47852\\/bonviewjcce2202192\",\"doi_url\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewjcce2202192\",\"first_oa_location\":{\"endpoint_id\":null,\"evidence\":\"open (via page says license)\",\"host_type\":\"publisher\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2022-04-24\",\"pmh_id\":null,\"repository_institution\":null,\"updated\":\"2023-04-01T14:11:35.845343\",\"url\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/download\\/192\\/131\",\"url_for_landing_page\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewjcce2202192\",\"url_for_pdf\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/download\\/192\\/131\",\"version\":\"publishedVersion\"},\"genre\":\"journal-article\",\"has_repository_copy\":false,\"is_oa\":true,\"is_paratext\":false,\"journal_is_in_doaj\":false,\"journal_is_oa\":false,\"journal_issn_l\":\"2810-9570\",\"journal_issns\":\"2810-9503,2810-9570\",\"journal_name\":\"Journal of Computational and Cognitive Engineering\",\"oa_locations\":[{\"endpoint_id\":null,\"evidence\":\"open (via page says license)\",\"host_type\":\"publisher\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2022-04-24\",\"pmh_id\":null,\"repository_institution\":null,\"updated\":\"2023-04-01T14:11:35.845343\",\"url\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/download\\/192\\/131\",\"url_for_landing_page\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewjcce2202192\",\"url_for_pdf\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/JCCE\\/article\\/download\\/192\\/131\",\"version\":\"publishedVersion\"}],\"oa_locations_embargoed\":[],\"oa_status\":\"hybrid\",\"oadoi_url\":\"https:\\/\\/api.oadoi.org\\/v2\\/10.47852\\/bonviewjcce2202192\",\"published_date\":\"2022-04-24\",\"publisher\":\"BON VIEW PUBLISHING PTE\",\"title\":\"Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms\",\"updated\":\"2024-09-28T08:06:44.725615\",\"year\":2022,\"z_authors\":[{\"family\":\"Guo\",\"given\":\"Yanhui\",\"sequence\":\"first\"},{\"family\":\"Mustafaoglu\",\"given\":\"Zelal\",\"sequence\":\"additional\"},{\"family\":\"Koundal\",\"given\":\"Deepika\",\"sequence\":\"additional\"}]}}'), minItemsToShowGraph: { minEventsForYearly: 10, minEventsForMonthly: 10, minEventsForDaily: 6, minYearsForYearly: 3, minMonthsForMonthly: 2, minDaysForDaily: 1 //first 30 days only }, graphheight: 150, graphwidth: 300, showTitle: false, showMini: false, published_date: [2022, 4, 24], } var paperbuzzviz = undefined; paperbuzzviz = new PaperbuzzViz(options); paperbuzzviz.initViz(); } </script> </div> </div><!-- .main_entry --> <div class="entry_details"> <div class="item cover_image"> <div class="sub_item"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/35"> <img src="https://ojs.bonviewpress.com/public/journals/4/cover_issue_35_en_US.png" alt=""> </a> </div> </div> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/192/131"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>2022-04-24</span> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://ojs.bonviewpress.com/index.php/JCCE/issue/view/35"> Vol. 2 No. 1 (2023) </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Research Articles </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2022 Authors</p> <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry">Guo, Y., Mustafaoglu, Z. ., &#38; Koundal, D. . (2022). Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms. <i>Journal of Computational and Cognitive Engineering</i>, <i>2</i>(1), 5-9. <a href="https://doi.org/10.47852/bonviewJCCE2202192">https://doi.org/10.47852/bonviewJCCE2202192</a></div> </div> </div> <div class="citation_formats"> <button class="citation_formats_button label" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acm-sig-proceedings?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acm-sig-proceedings?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acs-nano?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/acs-nano?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/apa?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/apa?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/chicago-author-date?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/chicago-author-date?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/harvard-cite-them-right?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/harvard-cite-them-right?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ieee?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ieee?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/modern-language-association?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/modern-language-association?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/vancouver?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/vancouver?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > Vancouver </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ama?submissionId=192&amp;publicationId=1365&amp;issueId=35" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/get/ama?submissionId=192&amp;publicationId=1365&amp;issueId=35&amp;return=json" > AMA </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/download/ris?submissionId=192&amp;publicationId=1365&amp;issueId=35"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/JCCE/citationstylelanguage/download/bibtex?submissionId=192&amp;publicationId=1365&amp;issueId=35"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> <div class="item addthis"> <div class="value"> <!-- AddThis Button BEGIN --> <div class="addthis_toolbox addthis_default_style addthis_32x32_style"> <a class="addthis_button_preferred_1"></a> <a class="addthis_button_preferred_2"></a> <a class="addthis_button_preferred_3"></a> <a class="addthis_button_preferred_4"></a> <a class="addthis_button_compact"></a> <a class="addthis_counter addthis_bubble_style"></a> </div> <script type="text/javascript" src="//s7.addthis.com/js/250/addthis_widget.js#pubid="></script> <!-- AddThis Button END --> </div> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary"> <div class="pkp_block block_custom" id="customblock-right_links"> <h2 class="title">Journal Information</h2> <div class="content"> <div class="journalcard__metrics border"> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Editor-in-Chief:</strong> <span class=" jgG6ef">Harish Garg</span></span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr">Thapar Institute of Engineering and Technology, India</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Frequency: </strong>Quarterly</span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Submission to First Decision: </strong>21 days<br><strong>Submission to Acceptance:</strong> <span class="sc-kPVwWT hZDpyF">95 days</span><br><strong>Accept to Publish:</strong> <span class="sc-kPVwWT hZDpyF">14 days</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Acceptance Rate: </strong>21%</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>eISSN:</strong> 2810-9503</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>pISSN:</strong> 2810-9570&nbsp;&nbsp;</span></span></div> </div> <div class="journalcard__metrics border"> <p class="journalcard__metrics border">漏 2025 Bon View Publishing Pte Ltd.</p> </div> </div> </div> <div class="pkp_block block_make_submission"> <h2 class="pkp_screen_reader"> Make a Submission </h2> <div class="content"> <a class="block_make_submission_link" href="https://ojs.bonviewpress.com/index.php/JCCE/about/submissions"> Make a Submission </a> </div> </div> <style type="text/css"> .block_announcements_article:not(:last-child) { padding-bottom: 1.5em; border-bottom: 1px solid; } .block_announcements_article { text-align: left; } .block_announcements #show-all{ font-style: italic; } </style> <div class="pkp_block block_announcements"> <h2 class="title">Announcements</h2> <div class="content"> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/81"> First CiteScore Released: 13.5 </a> </h3> <time class="block_announcements_article_date" datetime="2024-06-06"> <strong>June 6, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are delighted to announce that the CiteScore 2023 for the <em>Journal of Computational and Cognitive Engineering</em> is <strong>13.5</strong>, which ranks it 9 out of 204 journals in the Engineering (miscellaneous) category and 53 out of 817 journals in the Computer Science Applications category.<br><br>This achievement reflects the dedication and hard work of our editorial team, authors, and reviewers. We are immensely grateful for the valuable contributions and unwavering support from our community. This milestone not only highlights the quality of research we publish but also sets a higher standard for our future endeavors.<br><br>Thank you to everyone who has been a part of this journey. We look forward to continuing to provide cutting-edge research and making significant impacts in our field.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/79"> JCCE Published Volume 3, Issue 2 on May 21, 2024 </a> </h3> <time class="block_announcements_article_date" datetime="2024-05-21"> <strong>May 21, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are excited to announce that聽<em><strong>Journal of Computational and Cognitive Engineering (JCCE)聽</strong></em>published Volume 3 Issue 2 on May 21, 2024.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/announcement/view/71"> STM Membership Announcement </a> </h3> <time class="block_announcements_article_date" datetime="2024-04-24"> <strong>April 24, 2024</strong> </time> <div class="block_announcements_article_content"> <p>Bon View Publishing Pte. Ltd. proudly announces its membership in the esteemed聽<a href="https://www.stm-assoc.org/"><u>International Association of Scientific, Technical and Medical Publishers(STM)</u></a>, effective 2024. This collaboration marks a significant milestone in advancing global knowledge exchange and promoting cutting-edge research.</p> </div> </article> <a id="show-all" href="https://ojs.bonviewpress.com/index.php/JCCE/announcement">Show all announcements ...</a> </div> </div> <div class="pkp_block block_keyword_cloud"> <h2 class="title">Keywords</h2> <div class="content" id='wordcloud'></div> <script> function randomColor() { var cores = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']; return cores[Math.floor(Math.random()*cores.length)]; } document.addEventListener("DOMContentLoaded", function() { var keywords = [{"text":"thermochemical conversion","size":1},{"text":"biomass energy conversion","size":1},{"text":"deep learning","size":1},{"text":"adversarial networks","size":1},{"text":"shap framework","size":1},{"text":"multiple sclerosis lesion segmentation","size":1},{"text":"gated recurrent unit (gru)","size":1},{"text":"atrous spatial pyramid pooling (aspp)","size":1},{"text":"longitudinal mri analysis","size":1},{"text":"authentication mechanism","size":1},{"text":" face recognition","size":1},{"text":"generative adversarial network","size":1},{"text":"multi-credential","size":1},{"text":"password","size":1},{"text":"malware","size":1},{"text":"k-nearest neighbor algorithm (knn)","size":1},{"text":"feature selection","size":1},{"text":"whale optimization algorithm (woa)","size":1},{"text":"classification","size":1},{"text":"sit-yolov9","size":1},{"text":"sitbehaviors dataset","size":1},{"text":"home environment","size":1},{"text":"learning behavior recognition","size":1},{"text":"image enhancement","size":1},{"text":"cyber security","size":1},{"text":"intrusion detection","size":1},{"text":"machine learning","size":1},{"text":"centralized detection","size":1},{"text":"malicious behavior","size":1},{"text":"fraud management","size":1},{"text":"stealth protocols","size":1},{"text":"obfsproxy","size":1},{"text":"shadowsocks","size":1},{"text":"wireguard","size":1},{"text":" vpns","size":1},{"text":"internet service providers","size":1},{"text":"proxying strategies","size":1},{"text":"fire-vit","size":1},{"text":"tunnel fire dataset","size":1},{"text":" tunnel fire detection","size":1},{"text":"fire alarm","size":1},{"text":"visual transformer","size":1},{"text":"autism spectrum disorder","size":1},{"text":"electroencephalography","size":1},{"text":"congruence correlative feature selection","size":1},{"text":"discrete global threshold wavelet transform","size":1},{"text":"piecewise regressive data analysis","size":1},{"text":"e-commerce","size":1},{"text":" recurrent neural network (rnn)","size":1},{"text":"authorship","size":1}]; var totalWeight = 0; var blockWidth = 300; var blockHeight = 200; var transitionDuration = 200; var length_keywords = keywords.length; var layout = d3.layout.cloud(); layout.size([blockWidth, blockHeight]) .words(keywords) .fontSize(function(d) { return fontSize(+d.size); }) .on('end', draw); var svg = d3.select("#wordcloud").append("svg") .attr("viewBox", "0 0 " + blockWidth + " " + blockHeight) .attr("width", '100%'); function update() { var words = layout.words(); fontSize = d3.scaleLinear().range([16, 34]); if (words.length) { fontSize.domain([+words[words.length - 1].size || 1, +words[0].size]); } } keywords.forEach(function(item,index){totalWeight += item.size;}); update(); function draw(words, bounds) { var width = layout.size()[0], height = layout.size()[1]; scaling = bounds ? Math.min( width / Math.abs(bounds[1].x - width / 2), width / Math.abs(bounds[0].x - width / 2), height / Math.abs(bounds[1].y - height / 2), height / Math.abs(bounds[0].y - height / 2), ) / 2 : 1; svg .append("g") .attr( "transform", "translate(" + [width >> 1, height >> 1] + ")scale(" + scaling + ")", ) .selectAll("text") .data(words) .enter().append("text") .style("font-size", function(d) { return d.size + "px"; }) .style("font-family", 'serif') .style("fill", randomColor) .style('cursor', 'pointer') .style('opacity', 0.7) .attr('class', 'keyword') .attr("text-anchor", "middle") .attr("transform", function(d) { return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")"; }) .text(function(d) { return d.text; }) .on("click", function(d, i){ window.location = "https://ojs.bonviewpress.com/index.php/index/search?query=QUERY_SLUG".replace(/QUERY_SLUG/, encodeURIComponent(''+d.text+'')); }) .on("mouseover", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return (d.size + 3) + "px"; }) .style('opacity', 1); }) .on("mouseout", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return d.size + "px"; }) .style('opacity', 0.7); }) .on('resize', function() { update() }); } layout.start(); }); </script> </div> <div class="pkp_block block_developed_by"> <div class="content"> <span class="title">Most Read</span> <ul class="most_read"> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/1062">Assessment of Machine Learning Techniques and Traffic Flow: A Qualitative and Quantitative Analysis</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 3990</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/174">Implementation of Artificial Intelligence in Agriculture</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 2968</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/838">Comparing BERT Against Traditional Machine Learning Models in Text Classification</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1449</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/803">Implementation of Artificial Intelligence in Aquaculture and Fisheries: Deep Learning, Machine Vision, Big Data, Internet of Things, Robots and Beyond</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1251</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/JCCE/article/view/192">Spam Detection Using Bidirectional Transformers and Machine Learning Classifier Algorithms</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1130</div> </li> </ul> </div> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p>聽<a href="http://creativecommons.org/licenses/by/4.0/"><img src="https://ojs.bonviewpress.com/public/site/images/admin/88x31.png" alt="" width="88" height="31" /></a> All site content, except where otherwise noted, is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> <p>pISSN 2810-9570, eISSN 2810-9503 | Published by <a href="http://www.bonviewpress.com/">Bon View Publishing Pte Ltd.</a></p> <p><strong>Member of</strong></p> <p><img style="width: 997px; height: 62px;" src="https://bonview.oss-ap-southeast-1.aliyuncs.com/resource/ojs-logo-quanji.png" />聽</p> </div> <div class="pkp_brand_footer"> <a href="https://ojs.bonviewpress.com/index.php/JCCE/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://ojs.bonviewpress.com/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/popper/popper.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/util.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/main.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.4.0.7" type="text/javascript"></script><script src="https://d3js.org/d3.v4.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/d3-tip/0.9.1/d3-tip.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/paperbuzzviz.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdn.jsdelivr.net/gh/holtzy/D3-graph-gallery@master/LIB/d3.layout.cloud.js?v=3.4.0.7" type="text/javascript"></script><script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtag/js?id=' + i + dl; f.parentNode.insertBefore(j, f); function gtag(){dataLayer.push(arguments)}; gtag('js', new Date()); gtag('config', i); }) (window, document, 'script', 'dataLayer', 'UA-284252596-1'); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10