CINXE.COM
Search results for: driver education
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: driver education</title> <meta name="description" content="Search results for: driver education"> <meta name="keywords" content="driver education"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="driver education" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="driver education"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7722</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: driver education</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7722</span> The Influence of Trait of Personality, Stress and Driver Behavior on Road Accident among Bas Driver in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fikri">Fikri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozmi%20Ismail"> Rozmi Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Wati%20Halim"> Fatimah Wati Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Waheeda"> Sarah Waheeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to investigate the influence of personality and driver behavior on road accident among bus driver who have the high risk behavior on road accident in Riau Province. The hypotheses proposed this research is there are has a significant influences of Treat of Personality and Driver Behavior among bus driver in Riau Province Indonesia. Subject participated in this research are 100 bus driver in Riau Province. This study using the purposive random sampling technique and quantitative design. The data is collected using the Big Five Personality questionnaires, Driver Behavior questionnaires and Road Accident Inventory. Research found that there are significant influence of personality and driver behavior on road accident among bus driver in Riau Province Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=personality" title="personality">personality</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20behavior" title=" driver behavior"> driver behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20stress" title=" driver stress"> driver stress</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20accident" title=" road accident"> road accident</a> </p> <a href="https://publications.waset.org/abstracts/14832/the-influence-of-trait-of-personality-stress-and-driver-behavior-on-road-accident-among-bas-driver-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7721</span> Intelligent Driver Safety System Using Fatigue Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samra%20Naz">Samra Naz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneeqa%20Ahmed"> Aneeqa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Qurat-ul-ain%20Mubarak"> Qurat-ul-ain Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Irum%20Nausheen"> Irum Nausheen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drowsiness" title="drowsiness">drowsiness</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20closure" title=" eye closure"> eye closure</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20detection" title=" fatigue detection"> fatigue detection</a>, <a href="https://publications.waset.org/abstracts/search?q=yawn%20detection" title=" yawn detection"> yawn detection</a> </p> <a href="https://publications.waset.org/abstracts/58479/intelligent-driver-safety-system-using-fatigue-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7720</span> Verification of the Effect of the Hazard-Perception Training Tool for Drivers Ported from a Tablet Device to a Smartphone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shimazaki">K. Shimazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mishina"> M. Mishina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fujii"> A. Fujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a previous study, we developed a hazard-perception training tool for drivers using a tablet device and verified its effectiveness. Accident movies recorded by drive recorders were separated into scenes before and after the collision. The scene before the collision is presented to the driver. The driver then touches the screen to point out where he/she feels danger. After the screen is touched, the tool presents the collision scene and tells the driver if what he/she pointed out is correct. Various effects were observed such as this tool increased the discovery rate of collision targets and reduced the reaction time. In this study, we optimized this tool for the smartphone and verified its effectiveness. Verifying in the same way as in the previous study on tablet devices clarified that the same effect can be obtained on the smartphone screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20perception" title="hazard perception">hazard perception</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone"> smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20devices" title=" tablet devices"> tablet devices</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20education" title=" driver education"> driver education</a> </p> <a href="https://publications.waset.org/abstracts/75831/verification-of-the-effect-of-the-hazard-perception-training-tool-for-drivers-ported-from-a-tablet-device-to-a-smartphone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7719</span> Correlation Test of Psychomotor Vigilance Test Fatigue Scores on Sleep Quality at Home in Oil and Gas Tanker Driver: A Diagnostic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pandega%20Gama%20Mahardika">Pandega Gama Mahardika</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rifki%20Al%20Iksan"> Muhammad Rifki Al Iksan</a>, <a href="https://publications.waset.org/abstracts/search?q=Datuk%20Fachrul%20Razy"> Datuk Fachrul Razy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil And Gas Tanker Driver is a high-risk jobdesc. drivers drive with sleep circadian rhythm disturbances. Therefore, FAMOUS (Fatigue Management Online Ultimate System) conducted a diagnostic test on the effectiveness and accuracy of the Psychomotor vigilance test (PVT) in the field to capture the fatigue level of Oil And Gas Tanker Driver. Fatigue examination with the PVP method for 3 minutes using the Pertamina FAMOUS system (Fatigue Management Online Ultimate System). The research sample was Oil And Gas Tanker Driver Elnusa petrofin drivers as many as 2205 people. PVT is categorical data that states a driver has a low or high fatigue level. The quality of sleep at home was recorded by filling in a score of 1 = not well, 2 = not well, 3 = well, per person. A total of 1852 (84%) driver had a low fatigue level, while 353 (16%) driver had a high fatigue level. Poor sleep quality was experienced by 68 (79%) driver who had a high fatigue level. Oil And Gas Tanker Driver who slept soundly at home as many as 1804 (87%) had a low fatigue level. The correlation coefficient of sleep quality home and fatigue level is significant because it shows a probability value of 0.00 (p <5%). Fatigue level can be diagnosed through examining sleep quality, using FAMOUS Program for occupational medicine, particularly in the oil and gas sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychomotor%20vigilance%20test" title="psychomotor vigilance test">psychomotor vigilance test</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep" title=" sleep"> sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20tanker%20driver%20drivers" title=" oil and gas tanker driver drivers"> oil and gas tanker driver drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=pertamina%20FAMOUS" title=" pertamina FAMOUS"> pertamina FAMOUS</a> </p> <a href="https://publications.waset.org/abstracts/170592/correlation-test-of-psychomotor-vigilance-test-fatigue-scores-on-sleep-quality-at-home-in-oil-and-gas-tanker-driver-a-diagnostic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7718</span> Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Miyaji">Masahiro Miyaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kohonen%20neural%20network" title="Kohonen neural network">Kohonen neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%E2%80%99s%20anger%20state" title=" driver’s anger state"> driver’s anger state</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20of%20traffic%20accidents" title=" reduction of traffic accidents"> reduction of traffic accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%E2%80%99s%20state%20adaptive%20driving%20support%20safety" title=" driver’s state adaptive driving support safety"> driver’s state adaptive driving support safety</a> </p> <a href="https://publications.waset.org/abstracts/48011/reduction-of-the-number-of-traffic-accidents-by-function-of-drivers-anger-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7717</span> From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabariah%20Mohd%20Yusoff">Sabariah Mohd Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Qamaruddin%20Adzeem%20Muhamad%20Murad"> Qamaruddin Adzeem Muhamad Murad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20seat%20design" title="car seat design">car seat design</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20response%20time" title=" driver response time"> driver response time</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20driving" title=" cognitive driving"> cognitive driving</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomics%20optimization" title=" ergonomics optimization"> ergonomics optimization</a> </p> <a href="https://publications.waset.org/abstracts/190738/from-comfort-to-safety-assessing-the-influence-of-car-seat-design-on-driver-reaction-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7716</span> Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Chattaraj">U. Chattaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Dhusiya"> K. Dhusiya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Raviteja"> M. Raviteja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver" title="driver">driver</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=perception%20reaction%20time" title=" perception reaction time"> perception reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=premise%20variable" title=" premise variable"> premise variable</a> </p> <a href="https://publications.waset.org/abstracts/54324/fuzzy-inference-based-modelling-of-perception-reaction-time-of-drivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7715</span> Methodology to Affirm Driver Engagement in Dynamic Driving Task (DDT) for a Level 2 Adas Feature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praneeth%20Puvvula">Praneeth Puvvula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomy in has become increasingly common in modern automotive cars. There are 5 levels of autonomy as defined by SAE. This paper focuses on a SAE level 2 feature which, by definition, is able to control the vehicle longitudinally and laterally at the same time. The system keeps the vehicle centred with in the lane by detecting the lane boundaries while maintaining the vehicle speed. As with the features from SAE level 1 to level 3, the primary responsibility of dynamic driving task lies with the driver. This will need monitoring techniques to ensure the driver is always engaged even while the feature is active. This paper focuses on the these techniques, which would help the safe usage of the feature and provide appropriate warnings to the driver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title="autonomous driving">autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=adas" title=" adas"> adas</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20technology" title=" automotive technology"> automotive technology</a> </p> <a href="https://publications.waset.org/abstracts/166616/methodology-to-affirm-driver-engagement-in-dynamic-driving-task-ddt-for-a-level-2-adas-feature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7714</span> Eco-Drive Predictive Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharif%20Muddsair">Sharif Muddsair</a>, <a href="https://publications.waset.org/abstracts/search?q=Eisels%20Martin"> Eisels Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Giesbrecht%20Eugenie"> Giesbrecht Eugenie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=iot" title=" iot"> iot</a>, <a href="https://publications.waset.org/abstracts/search?q=connected%20vehicle" title=" connected vehicle"> connected vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=cv" title=" cv"> cv</a>, <a href="https://publications.waset.org/abstracts/search?q=ts" title=" ts"> ts</a>, <a href="https://publications.waset.org/abstracts/search?q=telematics%20services" title=" telematics services"> telematics services</a>, <a href="https://publications.waset.org/abstracts/search?q=ml" title=" ml"> ml</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/31164/eco-drive-predictive-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7713</span> Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Moazen">Isa Moazen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nahvi"> Ali Nahvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20systems" title="advanced driver assistance systems">advanced driver assistance systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20drowsiness%20detection" title=" driver drowsiness detection"> driver drowsiness detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/131366/implementation-of-a-low-cost-driver-drowsiness-evaluation-system-using-a-thermal-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7712</span> A Statistical Study on Young UAE Driver’s Behavior towards Road Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Afroza">Sadia Afroza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakiba%20Rouf"> Rakiba Rouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road safety and associated behaviors have received significant attention in recent years, reflecting general public concern. This paper portrays a statistical scenario of the young drivers in UAE with emphasis on various concern points of young driver’s behavior and license issuance. Although there are many factors contributing to road accidents, statistically it is evident that age plays a major role in road accidents. Despite ensuring strict road safety laws enforced by the UAE government, there is a staggering correlation among road accidents and young driver’s at UAE. However, private organizations like BMW and RoadSafetyUAE have extended its support on conducting surveys on driver’s behavior with an aim to ensure road safety. Various strategies such as road safety law enforcement, license issuance, adapting new technologies like safety cameras and raising awareness can be implemented to improve the road safety concerns among young drivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driving%20behavior" title="driving behavior">driving behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Graduated%20Driver%20Licensing%20System%20%28GLDS%29" title=" Graduated Driver Licensing System (GLDS)"> Graduated Driver Licensing System (GLDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title=" road safety"> road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=UAE%20drivers" title=" UAE drivers"> UAE drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20drivers" title=" young drivers"> young drivers</a> </p> <a href="https://publications.waset.org/abstracts/80430/a-statistical-study-on-young-uae-drivers-behavior-towards-road-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7711</span> Driver Take-Over Time When Resuming Control from Highly Automated Driving in Truck Platooning Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Zhang">Bo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20S.%20Wilschut"> Ellen S. Wilschut</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehlia%20M.%20C.%20Willemsen"> Dehlia M. C. Willemsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Marieke%20H.%20Martens"> Marieke H. Martens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of intelligent transportation systems, automated platooning of trucks is drawing increasing interest for its beneficial effects on safety, energy consumption and traffic flow efficiency. Nevertheless, one major challenge lies in the safe transition of control from the automated system back to the human drivers, especially when they have been inattentive after a long period of highly automated driving. In this study, we investigated driver take-over time after a system initiated request to leave the platooning system Virtual Tow Bar in a non-critical scenario. 22 professional truck drivers participated in the truck driving simulator experiment, and each was instructed to drive under three experimental conditions before the presentation of the take-over request (TOR): driver ready (drivers were instructed to monitor the road constantly), driver not-ready (drivers were provided with a tablet) and eye-shut. The results showed significantly longer take-over time in both driver not-ready and eye-shut conditions compared with the driver ready condition. Further analysis revealed hand movement time as the main factor causing long response time in the driver not-ready condition, while in the eye-shut condition, gaze reaction time also influenced the total take-over time largely. In addition to comparing the means, large individual differences can be found especially in two driver, not attentive conditions. The importance of a personalized driver readiness predictor for a safe transition is concluded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driving%20simulation" title="driving simulation">driving simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20automated%20driving" title=" highly automated driving"> highly automated driving</a>, <a href="https://publications.waset.org/abstracts/search?q=take-over%20time" title=" take-over time"> take-over time</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20of%20control" title=" transition of control"> transition of control</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20platooning" title=" truck platooning"> truck platooning</a> </p> <a href="https://publications.waset.org/abstracts/55425/driver-take-over-time-when-resuming-control-from-highly-automated-driving-in-truck-platooning-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7710</span> Distracted Driving among Young Drivers in Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Shaaban">Khaled Shaaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distracted driving, which includes anything that distracts a driver from the main task of driving, is one of the main causes of traffic accidents in modern societies. The objective of this research was to understand the type of activities that young drivers perform while driving in Qatar and to identify which activities cause the most distraction to the driver based on their experience. The data was collected through administered questionnaires in the city of Doha, Qatar. According to the participants, the majority reported that they use their cell phone all the time or occasionally while driving. Other significantly cited activities while driving included listening to music or radio, talking with passengers, and eating, drinking or smoking. When asked about the activities that distract the driver, using cell phone was listed as the most distracting activity followed by mental activities and adjusting GPS and audio device vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver%20distraction" title="driver distraction">driver distraction</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20drivers" title=" young drivers"> young drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20phone%20use" title=" cell phone use"> cell phone use</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a> </p> <a href="https://publications.waset.org/abstracts/16281/distracted-driving-among-young-drivers-in-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7709</span> Advanced Driver Assistance System: Veibra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Fernanda%20da%20S.%20Sampaio">C. Fernanda da S. Sampaio</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gabriela%20Sadith%20Perez%20Paredes"> M. Gabriela Sadith Perez Paredes</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Antonio%20de%20O.%20Martins"> V. Antonio de O. Martins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20systems" title="advanced driver assistance systems">advanced driver assistance systems</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20signal%20detection" title=" traffic signal detection"> traffic signal detection</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20perception%20system" title=" vehicle perception system"> vehicle perception system</a> </p> <a href="https://publications.waset.org/abstracts/99299/advanced-driver-assistance-system-veibra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7708</span> A Conceptual Model of the 'Driver – Highly Automated Vehicle' System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Dubovsky">V. A. Dubovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Savchenko"> V. V. Savchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Baryskevich"> A. A. Baryskevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20vehicle" title="automated vehicle">automated vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20behavior" title=" driver behavior"> driver behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors" title=" human factors"> human factors</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20system" title=" human-machine system"> human-machine system</a> </p> <a href="https://publications.waset.org/abstracts/123623/a-conceptual-model-of-the-driver-highly-automated-vehicle-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7707</span> An Approaching Index to Evaluate a forward Collision Probability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lin%20Chen">Yuan-Lin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approaching forward collision probability index (AFCPI) for alerting and assisting driver in keeping safety distance to avoid the forward collision accident in highway driving. The time to collision (TTC) and time headway (TH) are used to evaluate the TTC forward collision probability index (TFCPI) and the TH forward collision probability index (HFCPI), respectively. The Mamdani fuzzy inference algorithm is presented combining TFCPI and HFCPI to calculate the approaching collision probability index of the vehicle. The AFCPI is easier to understand for the driver who did not even have any professional knowledge in vehicle professional field. At the same time, the driver’s behavior is taken into account for suiting each driver. For the approaching index, the value 0 is indicating the 0% probability of forward collision, and the values 0.5 and 1 are indicating the 50% and 100% probabilities of forward collision, respectively. The AFCPI is useful and easy-to-understand for alerting driver to avoid the forward collision accidents when driving in highway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approaching%20index" title="approaching index">approaching index</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20collision%20probability" title=" forward collision probability"> forward collision probability</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20collision" title=" time to collision"> time to collision</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20headway" title=" time headway"> time headway</a> </p> <a href="https://publications.waset.org/abstracts/74855/an-approaching-index-to-evaluate-a-forward-collision-probability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7706</span> Case Study of Obstructive Sleep Apnea and Methods of Treatment for a Professional Driver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20P%C3%A4%C3%A4kk%C3%B6nen">R. Pääkkönen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Korpinen"> L. Korpinen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kava"> T. Kava</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Salmi"> I. Salmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluates obstructive sleep apnea treatment through a case study involving a 67-year-old male driver who had a successful continuous positive airway pressure (CPAP) treatment at home but experienced difficulties with traveling and dental care. There are many cheap sleep apnea and snoring devices available, but there is little professional advice on what kind of devices can help. Professional drivers receive yearly specialized medical care follow-up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sleep" title="sleep">sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=apnea%20patient" title=" apnea patient"> apnea patient</a>, <a href="https://publications.waset.org/abstracts/search?q=CPAP" title=" CPAP"> CPAP</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20driver" title=" professional driver"> professional driver</a> </p> <a href="https://publications.waset.org/abstracts/111884/case-study-of-obstructive-sleep-apnea-and-methods-of-treatment-for-a-professional-driver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7705</span> Vibration Control of a Tracked Vehicle Driver Seat via Magnetorheological Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ata">Wael Ata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tracked vehicles are exposed to severe operating conditions during their battlefield. The suspension system of such vehicles plays a crucial role in the mitigation of vibration transmitted from unevenness to vehicle hull and consequently to the crew. When the vehicles are crossing the road with high speeds, the driver is subjected to a high magnitude of vibration dose. This is because of the passive suspension system of the tracked vehicle lack the effectiveness to withstand induced vibration from irregular terrains. This paper presents vibration control of a semi-active seat suspension incorporating Magnetorheological (MR) damper fitted to a driver seat of an amphibious tracked vehicle (BMP-1). A half vehicle model featuring the proposed semi-active seat suspension is developed and its governing equations are derived. Two controllers namely; skyhook and fuzzy logic skyhook based to suppress the vibration dose at driver’s seat are formulated. The results show that the controlled MR suspension seat along with the vehicle model has substantially suppressed vibration levels at the driver’s seat under bump and sinusoidal excitations <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tracked%20Vehicles" title="Tracked Vehicles">Tracked Vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20dampers" title=" MR dampers"> MR dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=Skyhook%20%20controller" title=" Skyhook controller"> Skyhook controller</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20controller" title=" fuzzy logic controller"> fuzzy logic controller</a> </p> <a href="https://publications.waset.org/abstracts/118209/vibration-control-of-a-tracked-vehicle-driver-seat-via-magnetorheological-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7704</span> The Combined Methodology To Detect Onboard Driver Fatigue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Senthil%20Nathan">K. Senthil Nathan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rajasekaran"> P. Rajasekaran </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eye%20blink%20sensor" title="eye blink sensor">eye blink sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Flexiforce%20sensor" title=" Flexiforce sensor"> Flexiforce sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=EOG" title=" EOG"> EOG</a>, <a href="https://publications.waset.org/abstracts/search?q=EMG" title=" EMG "> EMG </a> </p> <a href="https://publications.waset.org/abstracts/30061/the-combined-methodology-to-detect-onboard-driver-fatigue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7703</span> Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zhao">Lu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadir%20Farhi"> Nadir Farhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoi%20Christoforou"> Zoi Christoforou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Haddadou"> Nadia Haddadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicular%20collisions" title="vehicular collisions">vehicular collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20driving%20behavior" title=" human driving behavior"> human driving behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20modeling" title=" traffic modeling"> traffic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=car-following%20models" title=" car-following models"> car-following models</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20traffic%20simulation" title=" microscopic traffic simulation"> microscopic traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/139723/driver-behavior-analysis-and-inter-vehicular-collision-simulation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7702</span> Development of Configuration Software of Space Environment Simulator Control System Based on Linux </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Haiyang">Zhan Haiyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Juan"> Ning Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a configuration software solution in Linux, which is used for the control of space environment simulator. After introducing the structure and basic principle, it is said that the developing of QT software frame and the dynamic data exchanging between PLC and computer. The OPC driver in Linux is also developed. This driver realizes many-to-many communication between hardware devices and SCADA software. Moreover, an algorithm named “Scan PRI” is put forward. This algorithm is much more optimizable and efficient compared with "Scan in sequence" in Windows. This software has been used in practical project. It has a good control effect and can achieve the expected goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linux%20OS" title="Linux OS">Linux OS</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration%20software" title=" configuration software"> configuration software</a>, <a href="https://publications.waset.org/abstracts/search?q=OPC%20Server%20driver" title=" OPC Server driver"> OPC Server driver</a>, <a href="https://publications.waset.org/abstracts/search?q=MYSQL%20database" title=" MYSQL database"> MYSQL database</a> </p> <a href="https://publications.waset.org/abstracts/54104/development-of-configuration-software-of-space-environment-simulator-control-system-based-on-linux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7701</span> Electrolytic Capacitor-Less Transformer-Less AC-DC LED Driver with Current Ripple Canceller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Kobori">Yasunori Kobori</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Quan"> Li Quan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Wu"> Shu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizam%20Mohyar"> Nizam Mohyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zachary%20Nosker"> Zachary Nosker</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobukazu%20Tsukiji"> Nobukazu Tsukiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobukazu%20Takai"> Nobukazu Takai</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruo%20Kobayashi"> Haruo Kobayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors which capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the typical current of 350 mA. We are now making the proposed circuit on a universal board in order to measure the experimental characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LED%20driver" title="LED driver">LED driver</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytic" title=" electrolytic"> electrolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor-less" title=" capacitor-less"> capacitor-less</a>, <a href="https://publications.waset.org/abstracts/search?q=AC-DC%20converter" title=" AC-DC converter"> AC-DC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=buck-boost%20converter" title=" buck-boost converter"> buck-boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20ripple%20canceller" title=" current ripple canceller "> current ripple canceller </a> </p> <a href="https://publications.waset.org/abstracts/7454/electrolytic-capacitor-less-transformer-less-ac-dc-led-driver-with-current-ripple-canceller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7700</span> Restructuring Cameroon's Educational System: The Value of Inclusive Education for Children with Visual Impairment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samanta%20Tiague">Samanta Tiague</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Michel%20Gachig"> Igor Michel Gachig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The practice of inclusive education within general education classrooms is becoming more prevalent in Cameroon. In this context, quality Education is an important driver of the development agenda in this era of global sustainable development. This requires that the Cameroon’s educational system be strategically restructured to provide every citizen with the needed quality education for sustainable development. This study thus examined the need for the restructuring of the Cameroon educational system towards inclusive education as a target of the Sustainable Development Goal #4 (Ensure Quality Education), from a critical disability theory perspective. Special focus was on the education of children with visual impairment in the early childhood classroom. This study is suggesting a model design of responsive and contextual inclusive education policies, and the provision of quality human, material and financial educational resources to support the improvement of curriculums and inclusive instructional strategies. This paper is therefore designed as a basic starting point for early childhood educators with limited to no experience in working with students having visual impairments. Ultimately, this work represents a contribution to early childhood educators toward understanding visual impairment challenges and innovative practices to approach accessibility in a meaningful way to students in Cameroon. This is important to achieve quality education due to the peculiar nature of the educational needs of children with visual impairment, toward attainment of the global sustainable development agenda. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20childhood%20educators" title="early childhood educators">early childhood educators</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusive%20education" title=" inclusive education"> inclusive education</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20impairment" title=" visual impairment"> visual impairment</a> </p> <a href="https://publications.waset.org/abstracts/126337/restructuring-cameroons-educational-system-the-value-of-inclusive-education-for-children-with-visual-impairment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7699</span> Cognition of Driving Context for Driving Assistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manolo%20Dulva%20Hina">Manolo Dulva Hina</a>, <a href="https://publications.waset.org/abstracts/search?q=Clement%20Thierry"> Clement Thierry</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Soukane"> Assia Soukane</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Ramdane-Cherif"> Amar Ramdane-Cherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20driving" title="cognitive driving">cognitive driving</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transportation%20system" title=" intelligent transportation system"> intelligent transportation system</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20system" title=" multimodal system"> multimodal system</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/79015/cognition-of-driving-context-for-driving-assistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7698</span> Comparative Study of Fatigue and Drowsiness in the Night-Time Passenger Transportation Industry in Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Ikeda">Hiroshi Ikeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a questionnaire survey was conducted to measure nap, drowsiness and fatigue of drivers who work long shifts, to discuss about the work environment and health conditions for taxi and bus drivers who work at night time. The questionnaire sheet used for this research was organized into the following categories: tension/tiredness, drowsiness while driving, and the nap situation during night-time work. The number of taxi drivers was 127 and the number of bus drivers was 40. Concerning the results of a comparison of nap hours of taxi and bus drivers, the taxi drivers’ nap hours are overwhelmingly shorter, and also the frequency of drivers who feel drowsiness is higher. The burden on bus drivers does not change because of the system of a two-driver rotation shift. In particular, the working environment of the taxi driver may lead to greater fatigue accumulation than the bus driver’s environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bus%20and%20taxi" title="bus and taxi">bus and taxi</a>, <a href="https://publications.waset.org/abstracts/search?q=drowsiness" title=" drowsiness"> drowsiness</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=nap" title=" nap"> nap</a> </p> <a href="https://publications.waset.org/abstracts/32338/comparative-study-of-fatigue-and-drowsiness-in-the-night-time-passenger-transportation-industry-in-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7697</span> Advantages of Electrifying Offshore Compression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siva%20Sankara%20Arudra">Siva Sankara Arudra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaruzaman%20Baharuddin"> Kamaruzaman Baharuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ir.%20Ahmed%20Fadzil%20Mustafa%20Kamal"> Ir. Ahmed Fadzil Mustafa Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ir.%20Abdul%20Latif%20Mohamed"> Ir. Abdul Latif Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement of electrical and electronics technologies has rewarded the oil and gas industry with great opportunities to embed more environmentally solutions into design. Most offshore oil and gas producers have their engineering and production asset goals to promote greater use of environmentally friendly compression system technologies to eliminate hazardous emissions from conventional gas compressor drivers. Therefore, this paper comprehensively elaborates the parametric study conducted in integrating the latest electrical and electronics drives technology into the existing compression system. This study was conducted in aspects of layout, reliability & availability, maintainability, emission, and cost. An existing offshore facility that utilized gas turbines as the driver for gas compression was set as Conventional Case for this study. The Electrification Case will utilize electric motor drives as the driver for the compression system. Findings from this study indicate more advantages in driver electrification compared to conventional compression systems. The findings of this paper can be set as a benchmark for future offshore driver selection for gas compression systems of similar operating parameters and power range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbomachinery" title="turbomachinery">turbomachinery</a>, <a href="https://publications.waset.org/abstracts/search?q=electrification" title=" electrification"> electrification</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20system" title=" compression system"> compression system</a> </p> <a href="https://publications.waset.org/abstracts/146076/advantages-of-electrifying-offshore-compression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7696</span> Smart Alert System for Dangerous Bend</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathapath%20Kilaso">Sathapath Kilaso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thailand has a large range of geographic diversity. Thailand can be divided into 5 regions which are North Region, East Region, West Region, South Region and North-East Region which each region has a different geographic and climate. Especially in North Region, the geographic is mountain and intermontane plateau which will be a reason that the roads in the North Region have a lot of bends. So the driver in the North Region road will have to have a very high skill of driving. If the accident is occurred, the emergency rescue will have a hard time to reach the accident area and rescue the victim of the accident as the long distance and steep road. This article will apply the concept of the wireless sensor network with the micro-controller to alert the driver when the driver reaches the very dangerous bend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20sensor" title=" motion sensor"> motion sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20alert" title=" smart alert"> smart alert</a>, <a href="https://publications.waset.org/abstracts/search?q=dangerous%20bend" title=" dangerous bend"> dangerous bend</a> </p> <a href="https://publications.waset.org/abstracts/2801/smart-alert-system-for-dangerous-bend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7695</span> Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Katherine%20Gonzalez%20Galindo">Diana Katherine Gonzalez Galindo</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Rolando%20Suarez%20Mora"> David Rolando Suarez Mora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent" title="agent">agent</a>, <a href="https://publications.waset.org/abstracts/search?q=driver" title=" driver"> driver</a>, <a href="https://publications.waset.org/abstracts/search?q=deactivation" title=" deactivation"> deactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=rider" title=" rider"> rider</a> </p> <a href="https://publications.waset.org/abstracts/85990/case-study-analysis-for-drivers-company-in-the-transport-sector-with-the-help-of-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7694</span> Smart Side View Mirror Camera for Real Time System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nunziata%20Ivana%20Guarneri">Nunziata Ivana Guarneri</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcangelo%20Bruna"> Arcangelo Bruna</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Spampinato"> Giuseppe Spampinato</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Buemi"> Antonio Buemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, automotive companies have invested a lot in terms of innovation about many aspects regarding the automatic driver assistance systems. One innovation regards the usage of a smart camera placed on the car’s side mirror for monitoring the back and lateral road situation. A common road scenario is the overtaking of the preceding car and, in this case, a brief distraction or a loss of concentration can lead the driver to undertake this action, even if there is an already overtaking vehicle, leading to serious accidents. A valid support for a secure drive can be a smart camera system, which is able to automatically analyze the road scenario and consequentially to warn the driver when another vehicle is overtaking. This paper describes a method for monitoring the side view of a vehicle by using camera optical flow motion vectors. The proposed solution detects the presence of incoming vehicles, assesses their distance from the host car, and warns the driver through different levels of alert according to the estimated distance. Due to the low complexity and computational cost, the proposed system ensures real time performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title="camera calibration">camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=ego-motion" title=" ego-motion"> ego-motion</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filters" title=" Kalman filters"> Kalman filters</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20systems" title=" real time systems"> real time systems</a> </p> <a href="https://publications.waset.org/abstracts/79998/smart-side-view-mirror-camera-for-real-time-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7693</span> Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sorin%20Valcan">Sorin Valcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20Gaianu"> Mihail Gaianu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=labeling%20automation" title="labeling automation">labeling automation</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20camera" title=" infrared camera"> infrared camera</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20monitoring" title=" driver monitoring"> driver monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20detection" title=" eye detection"> eye detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/148969/improvement-of-ground-truth-data-for-eye-location-on-infrared-driver-recordings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=257">257</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=258">258</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=driver%20education&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>