CINXE.COM

Search results for: M. K. Praveen Kumar

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: M. K. Praveen Kumar</title> <meta name="description" content="Search results for: M. K. Praveen Kumar"> <meta name="keywords" content="M. K. Praveen Kumar"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="M. K. Praveen Kumar" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="M. K. Praveen Kumar"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1713</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: M. K. Praveen Kumar</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1713</span> Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Kumar"> Nitin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Kumar"> Hemant Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid&ndash;liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5&deg; pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5&deg; pipe bend for two-phase (solid and liquid) flow using finite volume method with standard <em>k-&epsilon;</em> turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20transportation" title=" slurry transportation"> slurry transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CE%B5%20Model" title=" k-ε Model"> k-ε Model</a> </p> <a href="https://publications.waset.org/abstracts/57647/numerical-investigation-of-pressure-drop-and-erosion-wear-by-computational-fluid-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1712</span> Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Pradeep">O. S. Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vigneshwaran"> S. Vigneshwaran</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Praveen%20Kumar"> K. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jeyendran"> K. Jeyendran</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0<sup>o</sup>, 30<sup>o</sup>, 45<sup>o</sup>, and 60<sup>o</sup>. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title="combustion chamber">combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket" title=" liquid rocket"> liquid rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine%20wall%20heat%20flux" title=" rocket engine wall heat flux"> rocket engine wall heat flux</a> </p> <a href="https://publications.waset.org/abstracts/62084/wall-heat-flux-mapping-in-liquid-rocket-combustion-chamber-with-different-jet-impingement-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1711</span> Science behind Quantum Teleportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20G.">Ananya G.</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Varshitha"> B. Varshitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Shwetha%20S."> Shwetha S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20S.%20N."> Kavitha S. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar%20Gupta"> Praveen Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teleportation is the ability to travel by just reappearing at some other spot. Though teleportation has never been achieved, quantum teleportation is possible. Quantum teleportation is a process of transferring the quantum state of a particle onto another particle, under the circumstance that one does not get to know any information about the state in the process of transformation. This paper presents a brief overview of quantum teleportation, discussing the topics like Entanglement, EPR Paradox, Bell's Theorem, Qubits, elements for a successful teleport, some examples of advanced teleportation systems (also covers few ongoing experiments), applications (that includes quantum cryptography), and the current hurdles for future scientists interested in this field. Finally, major advantages and limitations to the existing teleportation theory are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teleportation" title="teleportation">teleportation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20teleportation" title=" quantum teleportation"> quantum teleportation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20entanglement" title=" quantum entanglement"> quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=qubits" title=" qubits"> qubits</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR%20paradox" title=" EPR paradox"> EPR paradox</a>, <a href="https://publications.waset.org/abstracts/search?q=bell%20states" title=" bell states"> bell states</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20particles" title=" quantum particles"> quantum particles</a>, <a href="https://publications.waset.org/abstracts/search?q=spooky%20action%20at%20a%20distance" title=" spooky action at a distance"> spooky action at a distance</a> </p> <a href="https://publications.waset.org/abstracts/148679/science-behind-quantum-teleportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1710</span> Improving Equipment Life and Overall Equipment Effectiveness (O.E.E.) through Proper Maintenance Strategy Using Value Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malay%20Niraj">Malay Niraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar"> Praveen Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is a new approach for improving equipment life and Overall Equipment Efficiency (O.E.E.) through suitable maintenance practice with the help of value engineering. Value engineering is a one of the most powerful decision-making techniques which depend on many factors. The improvements are the result of recommendations made by multidisciplinary teams representing all parties involved. VE is a rigorous, systematic effort to improve the OEE and optimize the life cycle cost of a facility. The study describes problems in maintenance arising due to the absence of having clear criteria and strong decision constrain how to maintain failing equipment. Using factor comparisons, the study has been made between different maintenance practices and finally best maintenance practice based on value engineering technique has been selected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance%20strategy" title="maintenance strategy">maintenance strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20equipment%20efficiency" title=" overall equipment efficiency"> overall equipment efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20engineering" title=" value engineering"> value engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making" title=" decision-making"> decision-making</a> </p> <a href="https://publications.waset.org/abstracts/2052/improving-equipment-life-and-overall-equipment-effectiveness-oee-through-proper-maintenance-strategy-using-value-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1709</span> Rheological and Computational Analysis of Crude Oil Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar"> Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jashanpreet%20Singh"> Jashanpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 &deg;C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactant" title="surfactant">surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/57573/rheological-and-computational-analysis-of-crude-oil-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1708</span> Isotherm Study for Phenol Removal onto GAC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lallan%20Singh%20Yadav">Lallan Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Mishra"> Bijay Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra"> Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20activated%20carbon" title=" granular activated carbon"> granular activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/8892/isotherm-study-for-phenol-removal-onto-gac" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1707</span> The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Uma"> R. Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title="water waves">water waves</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20instability" title=" modulation instability"> modulation instability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schr%C3%B6dinger%27s%20equation" title=" nonlinear Schrödinger&#039;s equation"> nonlinear Schrödinger&#039;s equation</a> </p> <a href="https://publications.waset.org/abstracts/179074/the-physics-of-turbulence-generation-in-a-fluid-numerical-investigation-using-a-1d-damped-mnls-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1706</span> Numerical Studies on the Performance of the Finned-Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Praveen%20Kumar">S. P. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Su%20Sin"> Bong-Su Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwon-Hee%20Lee"> Kwon-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc. Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper, numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables, maximizing the temperature difference and minimizing the pressure drop was suggested by applying DOE. In this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using Analysis of Variance (ANOVA) to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title="heat exchanger">heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20analysis" title=" fluid analysis"> fluid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title=" analysis of variance"> analysis of variance</a> </p> <a href="https://publications.waset.org/abstracts/4352/numerical-studies-on-the-performance-of-the-finned-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1705</span> Insect Inducible Methanol Production in Plants for Insect Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gourav%20Jain">Gourav Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Dixit"> Sameer Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Surjeet%20Kumar%20Arya"> Surjeet Kumar Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20C.%20Verma"> Praveen C. Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant cell wall plays a major role in defence mechanism against biotic and abiotic stress as it constitutes the physical barrier between the microenvironment and internal component of the cell. It is a complex structure composed of mostly carbohydrates among which cellulose and hemicelluloses are most abundant that is embedded in a matrix of pectins and proteins. Multiple enzymes have been reported which plays a vital role in cell wall modification, Pectin Methylesterase (PME) is one of them which catalyses the demethylesterification of homogalacturonans component of pectin which releases acidic pectin and methanol. As emitted methanol is toxic to the insect pest, we use PME gene for the better methanol production. In the current study we showed overexpression of PME gene isolated from Withania somnifera under the insect inducible promoter causes enhancement of methanol production at the time of insect feeds to plants, and that provides better insect resistance property. We found that the 85-90% mortality causes by transgenic tobacco in both chewing (Spodoptera litura larvae and Helicoverpa armigera) and sap-sucking (Aphid, mealybug, and whitefly) pest. The methanol content and emission level were also enhanced by 10-15 folds at different inducible time point interval (15min, 30min, 45min, 60min) which would be analysed by Purpald/Alcohol Oxidase method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methanol" title="methanol">methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=Pectin%20methylesterase" title=" Pectin methylesterase"> Pectin methylesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=inducible%20promoters" title=" inducible promoters"> inducible promoters</a>, <a href="https://publications.waset.org/abstracts/search?q=Purpald%2FAlcohol%20oxidase" title=" Purpald/Alcohol oxidase"> Purpald/Alcohol oxidase</a> </p> <a href="https://publications.waset.org/abstracts/67908/insect-inducible-methanol-production-in-plants-for-insect-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1704</span> Non Interferometric Quantitative Phase Imaging of Yeast Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Praveen%20Kumar">P. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vimal%20Prabhu"> P. Vimal Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Renu%20John"> Renu John</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In biology most microscopy specimens, in particular living cells are transparent. In cell imaging, it is hard to create an image of a cell which is transparent with a very small refractive index change with respect to the surrounding media. Various techniques like addition of staining and contrast agents, markers have been applied in the past for creating contrast. Many of the staining agents or markers are not applicable to live cell imaging as they are toxic. In this paper, we report theoretical and experimental results from quantitative phase imaging of yeast cells with a commercial bright field microscope. We reconstruct the phase of cells non-interferometrically based on the transport of intensity equations (TIE). This technique estimates the axial derivative from positive through-focus intensity measurements. This technique allows phase imaging using a regular microscope with white light illumination. We demonstrate nano-metric depth sensitivity in imaging live yeast cells using this technique. Experimental results will be shown in the paper demonstrating the capability of the technique in 3-D volume estimation of living cells. This real-time imaging technique would be highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any pre-processing of samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20derivative" title="axial derivative">axial derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=non-interferometric%20imaging" title=" non-interferometric imaging"> non-interferometric imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20phase%20imaging" title=" quantitative phase imaging"> quantitative phase imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20of%20intensity%20equation" title=" transport of intensity equation"> transport of intensity equation</a> </p> <a href="https://publications.waset.org/abstracts/35038/non-interferometric-quantitative-phase-imaging-of-yeast-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1703</span> Fractional Order Differentiator Using Chebyshev Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Pandey"> Rajesh Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20derivative" title="fractional order derivative">fractional order derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%0D%0Apolynomials" title=" chebyshev polynomials"> chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=signals" title=" signals"> signals</a>, <a href="https://publications.waset.org/abstracts/search?q=S-G%20differentiator" title=" S-G differentiator"> S-G differentiator</a> </p> <a href="https://publications.waset.org/abstracts/21346/fractional-order-differentiator-using-chebyshev-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">648</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1702</span> Performance Comparison of Reactive, Proactive and Hybrid Routing Protocols in Wireless Ad Hoc Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Manoj">Kumar Manoj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Kumar"> Ramesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumari%20Arti"> Kumari Arti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Prashant"> Kumar Prashant </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper we compare AODV, DSDV, DSR and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyses these routing protocols by extensive simulations in OPNET simulator and show that how pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, data traffic sent, throughput, retransmission attempts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MANET" title="MANET">MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=AODV" title=" AODV"> AODV</a>, <a href="https://publications.waset.org/abstracts/search?q=DSDV" title=" DSDV"> DSDV</a>, <a href="https://publications.waset.org/abstracts/search?q=DSR" title=" DSR"> DSR</a>, <a href="https://publications.waset.org/abstracts/search?q=ZRP" title=" ZRP"> ZRP</a> </p> <a href="https://publications.waset.org/abstracts/16614/performance-comparison-of-reactive-proactive-and-hybrid-routing-protocols-in-wireless-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">678</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1701</span> Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kumar%20Singh">Krishna Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Jain"> Praveen Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to the problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm, and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for the experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with a higher thickness of MS media indicated recharge rate slightly more than that of all treatment with a lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20sand-mixed%20storm%20water%20filter" title=" medium sand-mixed storm water filter"> medium sand-mixed storm water filter</a>, <a href="https://publications.waset.org/abstracts/search?q=inflow%20sediment%20load" title=" inflow sediment load"> inflow sediment load</a> </p> <a href="https://publications.waset.org/abstracts/23289/performance-evaluation-of-filtration-system-for-groundwater-recharging-well-in-the-presence-of-medium-sand-mixed-storm-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1700</span> Democracy in Gaming: An Artificial Neural Network Based Approach towards Rule Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelvin%20Joseph">Nelvin Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Krishna%20Milan%20Rao"> K. Krishna Milan Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Dwarakanath"> Praveen Dwarakanath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The explosive growth of Smart phones around the world has led to the shift of the primary engagement tool for entertainment from traditional consoles and music players to an all integrated device. Augmented Reality is the next big shift in bringing in a new dimension to the play. The paper explores the construct and working of the community engine in Delta T – an Augmented Reality game that allows users to evolve rules in the game basis collective bargaining mirroring democracy even in a gaming world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20engine" title=" community engine"> community engine</a> </p> <a href="https://publications.waset.org/abstracts/42990/democracy-in-gaming-an-artificial-neural-network-based-approach-towards-rule-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1699</span> Investigation of the Growth Kinetics of Phases in Ni–Sn System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varun%20A%20Baheti">Varun A Baheti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kashyap"> Sanjay Kashyap</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamanio%20Chattopadhyay"> Kamanio Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar"> Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aloke%20Paul"> Aloke Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion" title="diffusion">diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20phase" title=" equilibrium phase"> equilibrium phase</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20phase" title=" metastable phase"> metastable phase</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Ni-Sn%20system" title=" the Ni-Sn system"> the Ni-Sn system</a> </p> <a href="https://publications.waset.org/abstracts/65844/investigation-of-the-growth-kinetics-of-phases-in-ni-sn-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1698</span> Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mridul%20Sharma">Mridul Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Saroha"> Praveen Saroha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today&#39;s world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20derived%20neurotrophic%20factor" title="brain derived neurotrophic factor">brain derived neurotrophic factor</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20plasticity" title=" brain plasticity"> brain plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a> </p> <a href="https://publications.waset.org/abstracts/112374/descriptive-study-of-role-played-by-exercise-and-diet-on-brain-plasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1697</span> Investigation of Delivery of Triple Play Service in GE-PON Fiber to the Home Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Sharma">Anurag Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar"> Dinesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Malhotra"> Rahul Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BER" title="BER">BER</a>, <a href="https://publications.waset.org/abstracts/search?q=PON" title=" PON"> PON</a>, <a href="https://publications.waset.org/abstracts/search?q=TDMPON" title=" TDMPON"> TDMPON</a>, <a href="https://publications.waset.org/abstracts/search?q=GPON" title=" GPON"> GPON</a>, <a href="https://publications.waset.org/abstracts/search?q=CWDM" title=" CWDM"> CWDM</a>, <a href="https://publications.waset.org/abstracts/search?q=OLT" title=" OLT"> OLT</a>, <a href="https://publications.waset.org/abstracts/search?q=ONT" title=" ONT"> ONT</a> </p> <a href="https://publications.waset.org/abstracts/4036/investigation-of-delivery-of-triple-play-service-in-ge-pon-fiber-to-the-home-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">733</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1696</span> A Problem in Microstretch Thermoelastic Diffusive Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20force" title="normal force">normal force</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20force" title="tangential force">tangential force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstretch" title=" microstretch"> microstretch</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20integral%20transform%20technique" title=" the integral transform technique"> the integral transform technique</a>, <a href="https://publications.waset.org/abstracts/search?q=deforming%20force" title=" deforming force"> deforming force</a>, <a href="https://publications.waset.org/abstracts/search?q=microstress%20force" title=" microstress force"> microstress force</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problem" title=" boundary value problem"> boundary value problem</a> </p> <a href="https://publications.waset.org/abstracts/2040/a-problem-in-microstretch-thermoelastic-diffusive-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1695</span> Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tulika%20%20Malviya">Tulika Malviya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritesh%20Chandra%20%20Shukla"> Ritesh Chandra Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar%20%20Tandon"> Praveen Kumar Tandon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic%20removal" title="arsenic removal">arsenic removal</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite%20K10" title=" montmorillonite K10"> montmorillonite K10</a>, <a href="https://publications.waset.org/abstracts/search?q=tea%20liquor" title=" tea liquor"> tea liquor</a>, <a href="https://publications.waset.org/abstracts/search?q=zerovalent%20iron%20nanoparticles" title=" zerovalent iron nanoparticles "> zerovalent iron nanoparticles </a> </p> <a href="https://publications.waset.org/abstracts/117721/arsenic-iii-removal-by-zerovalent-iron-nanoparticles-synthesized-with-the-help-of-tea-liquor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1694</span> Effect of Yb and Sm doping on Thermoluminescence and Optical Properties of LiF Nanophosphor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Dogra">Rakesh Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Sharma"> Arvind Kumar Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the thermoluminescence as well as optical properties of rare earth doped lithium fluoride (LiF) nanophosphor, synthesized via chemical route. The rare earth impurities (Yb and Sm) have been observed to increase the deep trap center capacity, which, in turn, enhance the radiation resistance of the LiF. This suggests the viability of these materials to be used as high dose thermoluminescent detectors at high temperature. Further, optical absorption measurements revealed the formation of radiation induced stable color centers in LiF at room temperature, which are independent of the rare earth dopant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20flouride" title="lithium flouride">lithium flouride</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-VIS%20spectroscopy" title=" UV-VIS spectroscopy"> UV-VIS spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamma%20radiations" title=" Gamma radiations"> Gamma radiations</a> </p> <a href="https://publications.waset.org/abstracts/164905/effect-of-yb-and-sm-doping-on-thermoluminescence-and-optical-properties-of-lif-nanophosphor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1693</span> Synthesis and Antimicrobial Activity of Tolyloxy Derived Oxadiazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivkanya%20Fuloria">Shivkanya Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Fuloria"> Neeraj Kumar Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokinder%20Kumar"> Sokinder Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> m-Cresol and oxadiazoles are the potent antimicrobial moieties. 2-(m-Tolyloxy)acetohydrazide (1) on cyclization with aromatic acids yielded 2-(aryl)-5-(m-tolyloxymethyl)-1,3,4-oxadiazole (1A-E). The structures of newer oxadiazoles were confirmed by elemental and spectral analysis. The newer compounds were evaluated for their antimicrobial potential. The compound 1E containing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the tolyloxy derived oxadiazoles enhanced their antimicrobial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cresol" title=" cresol"> cresol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrazide" title=" hydrazide"> hydrazide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazoles" title=" oxadiazoles"> oxadiazoles</a> </p> <a href="https://publications.waset.org/abstracts/67547/synthesis-and-antimicrobial-activity-of-tolyloxy-derived-oxadiazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1692</span> Edge Detection in Low Contrast Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K.%20Pandey"> Rajesh K. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20contrast%20image" title="low contrast image">low contrast image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20differentiator" title="fractional order differentiator">fractional order differentiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian%20%28LoG%29%20method" title="Laplacian of Gaussian (LoG) method">Laplacian of Gaussian (LoG) method</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%20polynomial" title=" chebyshev polynomial"> chebyshev polynomial</a> </p> <a href="https://publications.waset.org/abstracts/21264/edge-detection-in-low-contrast-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1691</span> The Effect of Stent Coating on the Stent Flexibility: Comparison of Covered Stent and Bare Metal Stent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keping%20Zuo">Keping Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Foad%20Kabinejadian"> Foad Kabinejadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Gideon%20Praveen%20Kumar%20Vijayakumar"> Gideon Praveen Kumar Vijayakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fangsen%20Cui"> Fangsen Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei%20Ho"> Pei Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwa%20Liang%20Leo"> Hwa Liang Leo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carotid artery stenting (CAS) is the standard procedure for patients with severe carotid stenosis at high risk for carotid endarterectomy (CAE). A major drawback of CAS is the higher incidence of procedure-related stroke compared with traditional open surgical treatment for carotid stenosis - CEA, even with the use of the embolic protection devices (EPD). As the currently available bare metal stents cannot address this problem, our research group developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet maintaining the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. The purpose of this study is to evaluate the effect of membrane coating on the stent flexibility in order to improve the clinical performance of our novel covered stents. A total of 21 stents were evaluated in this study: 15 self expanding bare nitinol stents and 6 PTFE-covered stents. 10 of the bare stents were coated with 11%, 16% and 22% Polyurethane(PU), 4%, 6.25% and 11% EE, as well as 22% PU plus 5 μm Parylene. Different laser cutting designs were performed on 4 of the PTFE covert stents. All the stents, with or without the covered membrane, were subjected to a three-point flexural test. The stents were placed on two supports that are 30 mm apart, and the actuator is applying a force in the exact middle of the two supports with a loading pin with radius 2.5 mm. The loading pin displacement change, the force and the variation in stent shape were recorded for analysis. The flexibility of the stents was evaluated by the lumen area preservation at three displacement bending levels: 5mm, 7mm, and 10mm. All the lumen areas in all stents decreased with the increase of the displacement from 0 to 10 mm. The bare stents were able to maintain 0.864 ± 0.015, 0.740 ± 0.025 and 0.597 ± 0.031of original lumen area at 5 mm, 7 mm and 10mm displacement respectively. For covered stents, the stents with EE coating membrane showed the best lumen area preservation (0.839 ± 0.005, 0.7334 ± 0.043 and 0.559 ± 0.014), whereas, the stents with PU and Parylene coating were only 0.662, 0.439 and 0.305. Bending stiffness was also calculated and compared. These results provided optimal material information and it was crucial for enhancing clinical performance of our novel covered stents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotid%20artery" title="carotid artery">carotid artery</a>, <a href="https://publications.waset.org/abstracts/search?q=covered%20stent" title=" covered stent"> covered stent</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/41357/the-effect-of-stent-coating-on-the-stent-flexibility-comparison-of-covered-stent-and-bare-metal-stent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1690</span> Durability Analysis of a Knuckle Arm Using VPG System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geun-Yeon%20Kim">Geun-Yeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Praveen%20Kumar"> S. P. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwon-Hee%20Lee"> Kwon-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knuckle%20arm" title="knuckle arm">knuckle arm</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Metamodel" title=" Metamodel"> Metamodel</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=VPG%20%28Virtual%20Proving%20Ground%29" title=" VPG (Virtual Proving Ground) "> VPG (Virtual Proving Ground) </a> </p> <a href="https://publications.waset.org/abstracts/22955/durability-analysis-of-a-knuckle-arm-using-vpg-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1689</span> Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalla%20Somaiah">Nalla Somaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar"> Praveen Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blech%20structure" title="Blech structure">Blech structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electromigration" title=" electromigration"> electromigration</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20gradient" title=" temperature gradient"> temperature gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/69174/observation-of-inverse-blech-length-effect-during-electromigration-of-cu-thin-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1688</span> An Overview of Heating and Cooling Techniques Used in Green Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Kumar%20Soni">Umesh Kumar Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kumar%20Soni"> Suresh Kumar Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Awasthi"> S. R. Awasthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide biggest difficulties are climate change, future availability of fossil fuels, and economical feasibility of renewable energy. They force us to use to a greater extent renewable energy and develop suitable hybrid renewable systems. Building heating/cooling consumes significant amount of energy. It can be conserved by use of proper heating/cooling techniques. This paper reviews and critically analyzes various active, passive and hybrid heating/cooling techniques used in green buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title="natural ventilation">natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation"> energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20ventilation%20techniques" title=" hybrid ventilation techniques"> hybrid ventilation techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/57920/an-overview-of-heating-and-cooling-techniques-used-in-green-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1687</span> The Creation of a Yeast Model for 5-oxoproline Accumulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratiksha%20Dubey">Pratiksha Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Singh"> Praveen Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Sen%20Gupta"> Shantanu Sen Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Anand%20K.%20Bachhawat"> Anand K. Bachhawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 5-oxoproline (pyroglutamic acid) is a cyclic lactam of glutamic acid. In the cell, it can be produced by several different pathways and is metabolized into glutamate with the help of the 5-oxoprolinase enzyme (OPLAH or OXP1). The inhibition of 5-oxoprolinase enzyme in mammals was found to result in heart failure and is thought to be a consequence of oxidative stress [1]. To analyze the consequences of 5-oxoproline accumulation more clearly, we are generating models for 5-oxoproline accumulation in yeast. The 5-oxoproline accumulation model in yeast is being developed by two different strategies. The first one is by overexpression of the mouse  -glutamylcyclotransferase enzyme. It degrades -glu-met dipeptide into 5-oxoproline and methionine taken by the cell from the medium. The second strategy is by providing high concentration of 5-oxoproline externally to the yeast cells. The intracellular 5-oxoproline levels in both models are being evaluated. In addition, the metabolic and cellular consequences are being investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5-oxoproline" title="5-oxoproline">5-oxoproline</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroglutamic%20acid" title=" pyroglutamic acid"> pyroglutamic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=genetics" title=" genetics"> genetics</a> </p> <a href="https://publications.waset.org/abstracts/171881/the-creation-of-a-yeast-model-for-5-oxoproline-accumulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1686</span> Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pushpendra%20Kumar">Pushpendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar"> Sanjeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Balasubramanian"> R. Balasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title="optical flow">optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20methods" title=" variational methods"> variational methods</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20operator" title=" anisotropic operator"> anisotropic operator</a> </p> <a href="https://publications.waset.org/abstracts/20827/anisotropic-approach-for-discontinuity-preserving-in-optical-flow-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">873</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1685</span> Assessment of ATC with Shunt FACTS Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitender%20Kumar"> Jitender Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=available%20transfer%20capability" title="available transfer capability">available transfer capability</a>, <a href="https://publications.waset.org/abstracts/search?q=FACTS%20devices" title=" FACTS devices"> FACTS devices</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20contingency" title=" line contingency"> line contingency</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-transactions" title=" multi-transactions"> multi-transactions</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIP%20load%20model" title=" ZIP load model"> ZIP load model</a> </p> <a href="https://publications.waset.org/abstracts/1583/assessment-of-atc-with-shunt-facts-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1684</span> Design of Saddle Support for Horizontal Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar">Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navin%20Kumar"> Navin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra"> Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Sharma"> Prince Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in Ansys. Stresses are calculated using mathematical approach and Ansys software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessel" title=" pressure vessel"> pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle" title=" saddle"> saddle</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/14966/design-of-saddle-support-for-horizontal-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">743</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Praveen%20Kumar&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10