CINXE.COM
Search results for: muonic X-ray
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: muonic X-ray</title> <meta name="description" content="Search results for: muonic X-ray"> <meta name="keywords" content="muonic X-ray"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="muonic X-ray" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="muonic X-ray"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: muonic X-ray</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-Huan%20Chiu">I-Huan Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiko%20Ninomiya"> Kazuhiko Ninomiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%E2%80%99ichiro%20Takeda"> Shin’ichiro Takeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Meito%20Kajino"> Meito Kajino</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Katsuragawa"> Miho Katsuragawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunsaku%20Nagasawa"> Shunsaku Nagasawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Shinohara"> Atsushi Shinohara</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadayuki%20Takahashi"> Tadayuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Tomaru"> Ryota Tomaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%20Watanabe"> Shin Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Goro%20Yabu"> Goro Yabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSSD" title="DSSD">DSSD</a>, <a href="https://publications.waset.org/abstracts/search?q=muon" title=" muon"> muon</a>, <a href="https://publications.waset.org/abstracts/search?q=muonic%20X-ray" title=" muonic X-ray"> muonic X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20analysis" title=" non-destructive analysis"> non-destructive analysis</a> </p> <a href="https://publications.waset.org/abstracts/137568/development-of-nondestructive-imaging-analysis-method-using-muonic-x-ray-with-a-double-sided-silicon-strip-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> An Extended X-Ray Absorption Fine Structure Study of CoTi Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Alberto%20Duarte%20Moller">Jose Alberto Duarte Moller</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20Deisy%20Gomez%20Esparza"> Cynthia Deisy Gomez Esparza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cobalt-titanium system was grown as thin films in an INTERCOVAMEX V3 sputtering system, equipped with four magnetrons assisted by DC pulsed and direct DC. A polished highly oriented (400) silicon wafer was used as substrate and the growing temperature was 500 oC. Xray Absorption Spectroscopy experiments were carried out in the SSRL in the 4-3 beam line. The Extenden X-Ray Absorption Fine Structure spectra have been numerically processed by WINXAS software from the background subtraction until the normalization and FFT adjustment. Analyzing the absorption spectra of cobalt in the CoTi2 phase we can appreciate that they agree in energy with the reference spectra that corresponds to the CoO, which indicates that the valence where upon working is Co2+. The RDF experimental results were then compared with those RDF´s generated theoretically by using FEFF software, from a model compound of CoTi2 phase obtained by XRD. The fitting procedure is a highly iterative process. Fits are also checked in R-space using both the real and imaginary parts of Fourier transform. Finally, the presence of overlapping coordination shells and the correctness of the assumption about the nature of the coordinating atom were checked. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XAS" title="XAS">XAS</a>, <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title=" EXAFS"> EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=FEFF" title=" FEFF"> FEFF</a>, <a href="https://publications.waset.org/abstracts/search?q=CoTi" title=" CoTi"> CoTi</a> </p> <a href="https://publications.waset.org/abstracts/87384/an-extended-x-ray-absorption-fine-structure-study-of-coti-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Bolluk">Meltem Bolluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Duman"> Ismail Duman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20boron" title="amorphous boron">amorphous boron</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD" title=" CVD"> CVD</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20production" title=" powder production"> powder production</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20characterization" title=" powder characterization"> powder characterization</a> </p> <a href="https://publications.waset.org/abstracts/57325/production-of-amorphous-boron-powder-via-chemical-vapor-deposition-cvd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> An Application of Hip Arthroscopy after Acute Injury - A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Le%20Nguyen%20Binh">Le Nguyen Binh</a>, <a href="https://publications.waset.org/abstracts/search?q=Luong%20Xuan%20Binh"> Luong Xuan Binh</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Van%20Tuan"> Le Van Tuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Binh%20Duong"> Tran Binh Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Truong%20Nguyen%20Khanh%20Hung"> Truong Nguyen Khanh Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Le%20Hoang%20Son"> Do Le Hoang Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Pham%20Quang%20Vinh"> Pham Quang Vinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoang%20Quoc%20Huy"> Hoang Quoc Huy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Bach"> Nguyen Bach</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quoc%20Khanh%20Le"> Nguyen Quoc Khanh Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiunn%20Horng%20Kang"> Jiunn Horng Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Traumatic hip dislocation is an emergency in young adult which can cause avascular necrosis of femoral head or osteoarthritis of hip joint. The reasons for these may be the loose body of bony or chondral fragments, which are difficult to be detected on CT scan or MRI. In those cases, Hip arthroscopy may be the method of choice for diagnosis and treatment of loose bodies in hip joint after traumatic dislocation. Methods: A case report is performed. A 55-year-old male patient was under hip arthroscopy to retrieve the loose body in the right hip joint. Results: The patient’s hip was reduced under anesthesia in the opeation room. Xray and CT scan post-reduction showed that his right hip was wide and a small fragment of femoral head (< 5mm) locking inside the joint. A hip arthroscopy was done to take the fragment out. Post-operation, the patient went under rehabilition. After 6 months, he can walk with full-weight bearing; no further dislocaion was noted, and the Harris score was 84 points. Conclusions: Although acute traumatic injury of hip joint is usually treated with open surgeries, these methods have many drawbacks, such as soft tissue destruction, blood-loss,….Despite its technical requirement, hip arthroscopy is less invasive and effective treatment. Therefore, it may be an alternative treatment for a traumatic hip injury and can be applied frequently in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hip%20dislocation" title="hip dislocation">hip dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20arthroscopy" title=" hip arthroscopy"> hip arthroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20osteoarthritis" title=" hip osteoarthritis"> hip osteoarthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20hip%20trauma" title=" acute hip trauma"> acute hip trauma</a> </p> <a href="https://publications.waset.org/abstracts/162276/an-application-of-hip-arthroscopy-after-acute-injury-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Preparation of Chemically Activated Carbon from Waste Tire Char for Lead Ions Adsorption and Optimization Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucky%20Malise">Lucky Malise</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of tires in automobiles is very important in the automobile industry. However, there is a serious environmental problem concerning the disposal of these rubber tires once they become worn out. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH on pyrolytic char. Adsorption studies on lead onto chemically activated carbon was carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/1000ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found that the adsorption capacity increases with an increase in contact time, pH, temperature and decreases with an increase in lead concentration. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, XRay diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope was used to characterize the pyrolytic carbon char before and after activation. The optimum points 1g/ 100 ml for adsorbent dosage, 7 for pH value of the solution, 115.2 min for contact time, 100 mg/l for initial metal concentration, and 25°C for temperature were obtained to achieve the highest adsorption capacity of 93.176 mg/g with a desirability of 0.994. Fourier Transform Infrared Spectra (FTIR) analysis and Thermogravimetric analysis (TGA) show the presence of oxygen-containing functional groups on the surface of the activated carbon produced and that the weight loss taking place during the activation step is small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20tire%20pyrolysis%20char" title="waste tire pyrolysis char">waste tire pyrolysis char</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20activation" title=" chemical activation"> chemical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design%20%28CCD%29" title=" central composite design (CCD)"> central composite design (CCD)</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20capacity" title=" adsorption capacity"> adsorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20optimization" title=" numerical optimization"> numerical optimization</a> </p> <a href="https://publications.waset.org/abstracts/78877/preparation-of-chemically-activated-carbon-from-waste-tire-char-for-lead-ions-adsorption-and-optimization-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> A Rare Cause of Abdominal Pain Post Caesarean Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madeleine%20Cox">Madeleine Cox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: discussion of diagnosis of vernix caseosa peritonitis, recovery and subsequent caesarean seciton Case: 30 year old G4P1 presented in labour at 40 weeks, planning a vaginal birth afterprevious caesarean section. She underwent an emergency caesarean section due to concerns for fetal wellbeing on CTG. She was found to have a thin lower segment with a very small area of dehiscence centrally. The operation was uncomplicated, and she recovered and went home 2 days later. She then represented to the emergency department day 6 post partum feeling very unwell, with significant abdominal pain, tachycardia as well as urinary retention. Raised white cell count of 13.7 with neutrophils of 11.64, CRP of 153. An abdominal ultrasound was poorly tolerated by the patient and did not aide in the diagnosis. Chest and abdominal xray were normal. She underwent a CT chest and abdomen, which found a small volume of free fluid with no apparent collection. Given no obvious cause of her symptoms were found and the patient did not improve, she had a repeat CT 2 days later, which showed progression of free fluid. A diagnostic laparoscopy was performed with general surgeons, which reveled turbid fluid, an inflamed appendix which was removed. The patient improved remarkably post operatively. The histology showed periappendicitis with acute appendicitis with marked serosal inflammatory reaction to vernix caseosa. Following this, the patient went on to recover well. 4 years later, the patient was booked for an elective caesarean section, on entry into the abdomen, there were very minimal adhesions, and the surgery and her subsequent recovery was uncomplicated. Discussion: this case represents the diagnostic dilemma of a patient who presents unwell without a clear cause. In this circumstance, multiple modes of imaging did not aide in her diagnosis, and so she underwent diagnostic surgery. It is important to evaluate if a patient is or is not responding to the typical causes of post operative pain and adjust management accordingly. A multiteam approach can help to provide a diagnosis for these patients. Conclusion: Vernix caseosa peritonitis is a rare cause of acute abdomen post partum. There are few reports in the literature of the initial presentation and no reports on the possible effects on future pregnancies. This patient did not have any complications in her following pregnancy or delivery secondary to her diagnosis of vernix caseosa peritonitis. This may assist in counselling other women who have had this uncommon diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peritonitis" title="peritonitis">peritonitis</a>, <a href="https://publications.waset.org/abstracts/search?q=obstetrics" title=" obstetrics"> obstetrics</a>, <a href="https://publications.waset.org/abstracts/search?q=caesarean%20section" title=" caesarean section"> caesarean section</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/148756/a-rare-cause-of-abdominal-pain-post-caesarean-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Ankle Fracture Management: A Unique Cross Departmental Quality Improvement Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Langhit%20Kurar">Langhit Kurar</a>, <a href="https://publications.waset.org/abstracts/search?q=Loren%20Charles"> Loren Charles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In light of recent BOAST 12 (August 2016) published guidance on management of ankle fractures, the project aimed to highlight key discrepancies throughout the care trajectory from admission to point of discharge at a district general hospital. Wide breadth of data covering three key domains: accident and emergency, radiology, and orthopaedic surgery were subsequently stratified and recommendations on note documentation, and outpatient follow up were made. Methods: A retrospective twelve month audit was conducted reviewing results of ankle fracture management in 37 patients. Inclusion criterion involved all patients seen at Darent Valley Hospital (DVH) emergency department with radiographic evidence of an ankle fracture. Exclusion criterion involved all patients managed solely by nursing staff or having sustained purely ligamentous injury. Medical notes, including discharge summaries and the PACS online radiographic tool were used for data extraction. Results: Cross-examination of the A & E domain revealed limited awareness of the BOAST 12 recent publication including requirements to document skin integrity and neurovascular assessment. This had direct implications as this would have changed the surgical plan for acutely compromised patients. The majority of results obtained from the radiographic domain were satisfactory with appropriate X-rays taken in over 95% of cases. However, due to time pressures within A & E, patients were often left without a post manipulation XRAY in a backslab. Poorly reduced fractures were subsequently left for a long period resulting in swollen ankles and a time-dependent lag to surgical intervention. This had knocked on implications for prolonged inpatient stay resulting in hospital-acquired co-morbidity including pressure sores. Discussion: The audit has highlighted several areas of improvement throughout the disease trajectory from review in the emergency department to follow up as an outpatient. This has prompted the creation of an algorithm to ensure patients with significant fractures presenting to the emergency department are seen promptly and treatment expedited as per recent guidance. This includes timing for X-rays taken in A & E. Re-audit has shown significant improvement in both documentation at time of presentation and appropriate follow-up strategies. Within the orthopedic domain, we are in the process of creating an ankle fracture pathway to ensure imaging and weight bearing status are made clear to the consulting clinicians in an outpatient setting. Significance/Clinical Relevance: As a result of the ankle fracture algorithm we have adapted the BOAST 12 guidance to shape an intrinsic pathway to not only improve patient management within the emergency department but also create a standardised format for follow up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle" title="ankle">ankle</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=BOAST" title=" BOAST"> BOAST</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a> </p> <a href="https://publications.waset.org/abstracts/85692/ankle-fracture-management-a-unique-cross-departmental-quality-improvement-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>