CINXE.COM
Abstand – Wikipedia
<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Abstand – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"e009f3eb-f9f0-4779-929e-24aae6ba44a7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Abstand","wgTitle":"Abstand","wgCurRevisionId":243778450,"wgRevisionId":243778450,"wgArticleId":205422,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":[ "Euklidische Geometrie","Navigation","Dimensionale Messtechnik","Messgröße"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Abstand","wgRelevantArticleId":205422,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":243778450,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled": true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q126017","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&only=styles&skin=vector"> <script async="" src="/w/load.php?lang=de&modules=startup&only=scripts&raw=1&skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&only=styles&skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&modules=site.styles&only=styles&skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/01_Abstand_zweier_Punkte.svg/1200px-01_Abstand_zweier_Punkte.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="419"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/01_Abstand_zweier_Punkte.svg/800px-01_Abstand_zweier_Punkte.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="279"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/01_Abstand_zweier_Punkte.svg/640px-01_Abstand_zweier_Punkte.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="223"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Abstand – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Abstand"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Abstand&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Abstand"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Abstand rootpage-Abstand skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Abstand</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable noprint" style="border-bottom-style: solid; border-bottom-width: 1px; font-size:95%; margin-bottom:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="Vorlage_Begriffsklärungshinweis"><div class="noviewer noresize bksicon" style="display: table-cell; padding-bottom: 0.2em; padding-left: 0.25em; padding-right: 1em; padding-top: 0.2em; vertical-align: middle;" aria-hidden="true" role="presentation"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Disambig-dark.svg/25px-Disambig-dark.svg.png" decoding="async" width="25" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Disambig-dark.svg/38px-Disambig-dark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Disambig-dark.svg/50px-Disambig-dark.svg.png 2x" data-file-width="444" data-file-height="340" /></span></span></div> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div role="navigation"> Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter <a href="/wiki/Abstand_(Begriffskl%C3%A4rung)" class="mw-disambig" title="Abstand (Begriffsklärung)">Abstand (Begriffsklärung)</a> aufgeführt.</div> </div></div> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/Datei:01_Abstand_zweier_Punkte.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/01_Abstand_zweier_Punkte.svg/300px-01_Abstand_zweier_Punkte.svg.png" decoding="async" width="300" height="105" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/01_Abstand_zweier_Punkte.svg/450px-01_Abstand_zweier_Punkte.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3d/01_Abstand_zweier_Punkte.svg/600px-01_Abstand_zweier_Punkte.svg.png 2x" data-file-width="341" data-file-height="119" /></a><figcaption></figcaption></figure> <p>Der <b>Abstand</b> (auch <b>Entfernung</b> oder <b>Distanz)</b> zweier <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkte</a> ist die <a href="/wiki/L%C3%A4nge_(Mathematik)" title="Länge (Mathematik)">Länge</a> der kürzesten Verbindung dieser Punkte. </p><p>Im <a href="/wiki/Euklidischer_Raum" title="Euklidischer Raum">euklidischen Raum</a> ist dies die Länge der <a href="/wiki/Strecke_(Geometrie)" title="Strecke (Geometrie)">Strecke</a> zwischen den beiden Punkten. Der Abstand zweier <a href="/wiki/Geometrische_Figur" title="Geometrische Figur">geometrischer Objekte</a> ist die Länge der kürzesten Verbindungslinie der beiden Objekte, also der Abstand der beiden einander nächstliegenden Punkte. Werden nicht die einander nächstliegenden Punkte zweier Objekte betrachtet, so wird dies explizit angegeben oder ergibt sich aus dem Zusammenhang, wie beispielsweise der Abstand der geometrischen Mittelpunkte oder der <a href="/wiki/Geometrischer_Schwerpunkt" title="Geometrischer Schwerpunkt">geometrischen Schwerpunkte</a>. </p><p>Die <a href="/wiki/Metrischer_Raum" title="Metrischer Raum">Metrik</a> ist der Teil der Mathematik, der sich mit der Abstandsmessung beschäftigt. </p><p>Der <i>Abstand</i>, die <i>Entfernung</i>, die <i>Distanz</i> zwischen zwei Werten einer Größe oder zwischen zwei <a href="/wiki/Zeitpunkt" title="Zeitpunkt">Zeitpunkten</a> wird bestimmt, indem man den Absolutbetrag ihrer <a href="/wiki/Subtraktion" title="Subtraktion">Differenz</a> bildet, das heißt, indem sie voneinander abgezogen werden und vom Ergebnis der Absolutbetrag gebildet wird. Der gemessene Abstand ist unabhängig vom gewählten <a href="/wiki/Referenzpunkt" class="mw-redirect" title="Referenzpunkt">Referenzpunkt</a> des <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinatensystems</a>, nicht aber von dessen Skalierung <i>(siehe auch <a href="/wiki/Ma%C3%9Fstabsfaktor" title="Maßstabsfaktor">Maßstabsfaktor</a>)</i>. </p><p>In der <a href="/wiki/Beobachtende_Astronomie" title="Beobachtende Astronomie">beobachtenden Astronomie</a> wird der scheinbare Abstand am Himmel zwischen zwei Himmelsobjekten als <i><a href="/wiki/Winkelabstand" class="mw-redirect" title="Winkelabstand">Winkelabstand</a></i> angegeben. </p><p>Der Abstand zweier <a href="/wiki/Mengentheorie" class="mw-redirect" title="Mengentheorie">Mengen</a> im euklidischen Raum (oder allgemeiner in einem <a href="/wiki/Metrischer_Raum" title="Metrischer Raum">metrischen Raum</a>) kann über die <a href="/wiki/Hausdorff-Metrik" title="Hausdorff-Metrik">Hausdorff-Metrik</a> definiert werden. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="de" dir="ltr"><h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Euklidischer_Abstand"><span class="tocnumber">1</span> <span class="toctext">Euklidischer Abstand</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Abstand_in_der_Ebene"><span class="tocnumber">1.1</span> <span class="toctext">Abstand in der Ebene</span></a> <ul> <li class="toclevel-3 tocsection-3"><a href="#Abstand_zwischen_Punkt_und_Gerade"><span class="tocnumber">1.1.1</span> <span class="toctext">Abstand zwischen Punkt und Gerade</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-4"><a href="#Abstand_im_dreidimensionalen_Raum"><span class="tocnumber">1.2</span> <span class="toctext">Abstand im dreidimensionalen Raum</span></a> <ul> <li class="toclevel-3 tocsection-5"><a href="#Abstand_zwischen_Punkt_und_Gerade_2"><span class="tocnumber">1.2.1</span> <span class="toctext">Abstand zwischen Punkt und Gerade</span></a></li> <li class="toclevel-3 tocsection-6"><a href="#Abstand_zwischen_zwei_windschiefen_Geraden"><span class="tocnumber">1.2.2</span> <span class="toctext">Abstand zwischen zwei windschiefen Geraden</span></a></li> <li class="toclevel-3 tocsection-7"><a href="#Abstand_zwischen_Punkt_und_Ebene"><span class="tocnumber">1.2.3</span> <span class="toctext">Abstand zwischen Punkt und Ebene</span></a></li> </ul> </li> </ul> </li> <li class="toclevel-1 tocsection-8"><a href="#Andere_Definitionen"><span class="tocnumber">2</span> <span class="toctext">Andere Definitionen</span></a> <ul> <li class="toclevel-2 tocsection-9"><a href="#Manhattan-Metrik"><span class="tocnumber">2.1</span> <span class="toctext">Manhattan-Metrik</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-10"><a href="#Abstandsmessung_auf_gekrümmten_Flächen"><span class="tocnumber">3</span> <span class="toctext">Abstandsmessung auf gekrümmten Flächen</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#Dichtestes_Punktpaar"><span class="tocnumber">4</span> <span class="toctext">Dichtestes Punktpaar</span></a></li> <li class="toclevel-1 tocsection-12"><a href="#Siehe_auch"><span class="tocnumber">5</span> <span class="toctext">Siehe auch</span></a></li> <li class="toclevel-1 tocsection-13"><a href="#Weblinks"><span class="tocnumber">6</span> <span class="toctext">Weblinks</span></a></li> <li class="toclevel-1 tocsection-14"><a href="#Anmerkungen"><span class="tocnumber">7</span> <span class="toctext">Anmerkungen</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#Einzelnachweise"><span class="tocnumber">8</span> <span class="toctext">Einzelnachweise</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Euklidischer_Abstand">Euklidischer Abstand</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=1" title="Abschnitt bearbeiten: Euklidischer Abstand" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=1" title="Quellcode des Abschnitts bearbeiten: Euklidischer Abstand"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Euklidischer_Abstand" title="Euklidischer Abstand">Euklidischer Abstand</a></i></div> <p>Im <a href="/wiki/Kartesisches_Koordinatensystem" title="Kartesisches Koordinatensystem">kartesischen Koordinatensystem</a> berechnet man den Abstand (euklidischer Abstand) zweier Punkte mit Hilfe des <a href="/wiki/Satz_von_Pythagoras" class="mw-redirect" title="Satz von Pythagoras">Satzes von Pythagoras</a>: </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01-Abstand_zweier_Punkte.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/01-Abstand_zweier_Punkte.svg/290px-01-Abstand_zweier_Punkte.svg.png" decoding="async" width="290" height="249" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/01-Abstand_zweier_Punkte.svg/435px-01-Abstand_zweier_Punkte.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/01-Abstand_zweier_Punkte.svg/580px-01-Abstand_zweier_Punkte.svg.png 2x" data-file-width="423" data-file-height="363" /></a><figcaption>Der Abstand zweier Punkte in der Ebene</figcaption></figure> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)={\sqrt {\sum _{i=1}^{n}(a_{i}-b_{i})^{2}}}{\text{, wobei }}A=(a_{1},\dotsc ,a_{n})\in \mathbb {R} ^{n}{\text{ und }}B=(b_{1},\dotsc ,b_{n})\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>, wobei </mtext> </mrow> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext> und </mtext> </mrow> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)={\sqrt {\sum _{i=1}^{n}(a_{i}-b_{i})^{2}}}{\text{, wobei }}A=(a_{1},\dotsc ,a_{n})\in \mathbb {R} ^{n}{\text{ und }}B=(b_{1},\dotsc ,b_{n})\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e1f9362f8dae1089f0e59199342d1b045ff386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:82.687ex; height:7.509ex;" alt="{\displaystyle d(A,B)={\sqrt {\sum _{i=1}^{n}(a_{i}-b_{i})^{2}}}{\text{, wobei }}A=(a_{1},\dotsc ,a_{n})\in \mathbb {R} ^{n}{\text{ und }}B=(b_{1},\dotsc ,b_{n})\in \mathbb {R} ^{n}}"></span><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></dd></dl> <p>Für die Ebene (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d8c2e1c58da45c6b01844054c652be124463a2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.114ex; height:3.009ex;" alt="{\displaystyle A,B\in \mathbb {R} ^{2}}"></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)={\sqrt {(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)={\sqrt {(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9e7d18552ecd457573fed2b6ff560b61d0290f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:35.908ex; height:4.843ex;" alt="{\displaystyle d(A,B)={\sqrt {(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}}}}"></span></dd></dl> <p>Für den dreidimensionalen Raum (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B\in \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B\in \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf89b6cac097d017bfc3c7db30c4af046483c639" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.114ex; height:3.009ex;" alt="{\displaystyle A,B\in \mathbb {R} ^{3}}"></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)={\sqrt {(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}+(a_{3}-b_{3})^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)={\sqrt {(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}+(a_{3}-b_{3})^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50c2718252d6fca09a701672635215c3fcbd441a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:48.789ex; height:4.843ex;" alt="{\displaystyle d(A,B)={\sqrt {(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}+(a_{3}-b_{3})^{2}}}}"></span><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></dd></dl> <p>Der Abstand eines Punkts von einer <a href="/wiki/Gerade" title="Gerade">Geraden</a> oder einer ebenen Fläche ist der Abstand vom <a href="/wiki/Fu%C3%9Fpunkt" title="Fußpunkt">Fußpunkt</a> des darauf gefällten <a href="/wiki/Lot_(Mathematik)" title="Lot (Mathematik)">Lots</a>, der von einer gekrümmten Linie ist stets ein Abstand von einer ihrer <a href="/wiki/Tangente" title="Tangente">Tangenten</a>. </p><p>Berechnungsmöglichkeiten für die Abstände von Punkten zu Geraden oder Ebenen sind in der <a href="/wiki/Formelsammlung_analytische_Geometrie" title="Formelsammlung analytische Geometrie">Formelsammlung analytische Geometrie</a> aufgeführt. </p> <div class="mw-heading mw-heading3"><h3 id="Abstand_in_der_Ebene">Abstand in der Ebene</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=2" title="Abschnitt bearbeiten: Abstand in der Ebene" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=2" title="Quellcode des Abschnitts bearbeiten: Abstand in der Ebene"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Abstand_zwischen_Punkt_und_Gerade">Abstand zwischen Punkt und Gerade</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=3" title="Abschnitt bearbeiten: Abstand zwischen Punkt und Gerade" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=3" title="Quellcode des Abschnitts bearbeiten: Abstand zwischen Punkt und Gerade"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Abstand_Ebene_Punkt-Gerade.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/01_Abstand_Ebene_Punkt-Gerade.svg/290px-01_Abstand_Ebene_Punkt-Gerade.svg.png" decoding="async" width="290" height="233" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/01_Abstand_Ebene_Punkt-Gerade.svg/435px-01_Abstand_Ebene_Punkt-Gerade.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/01_Abstand_Ebene_Punkt-Gerade.svg/580px-01_Abstand_Ebene_Punkt-Gerade.svg.png 2x" data-file-width="596" data-file-height="478" /></a><figcaption>Beispiel: Abstand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P,g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P,g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc6f0f204c2851d263548a59a2a02f694973ea8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.921ex; height:2.843ex;" alt="{\displaystyle d(P,g)}"></span> zwischen Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> und Geraden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> in der Ebene.</figcaption></figure> <p>Der Abstand zwischen dem <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkt</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x_{0},y_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x_{0},y_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4c7b4383bfe8c664f9feae5c2c132db4bafce3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.166ex; height:2.843ex;" alt="{\displaystyle P(x_{0},y_{0})}"></span> und der <a href="/wiki/Gerade" title="Gerade">Geraden</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> mit der <a href="/wiki/Koordinatenform" title="Koordinatenform">Koordinatenform</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+by+c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>y</mi> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+by+c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26ffa3f9c01bec425db7c1acc330497b6831697b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.661ex; height:2.509ex;" alt="{\displaystyle ax+by+c=0}"></span> beträgt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P,g)={\frac {|ax_{0}+by_{0}+c|}{\sqrt {a^{2}+b^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>b</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P,g)={\frac {|ax_{0}+by_{0}+c|}{\sqrt {a^{2}+b^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce40c3655fe72a4829b2f5c52d9845cef81b832b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:25.641ex; height:7.009ex;" alt="{\displaystyle d(P,g)={\frac {|ax_{0}+by_{0}+c|}{\sqrt {a^{2}+b^{2}}}}}"></span></dd></dl> <p>Der Punkt auf der Geraden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>, der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},y_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c296094af9a1c665425debeac5eaab99a37a04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0})}"></span> am nächsten liegt, hat die <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinaten</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(x={\frac {b(bx_{0}-ay_{0})-ac}{a^{2}+b^{2}}},\;y={\frac {a(-bx_{0}+ay_{0})-bc}{a^{2}+b^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>b</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mi>a</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mi>c</mi> </mrow> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>b</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>a</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>b</mi> <mi>c</mi> </mrow> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(x={\frac {b(bx_{0}-ay_{0})-ac}{a^{2}+b^{2}}},\;y={\frac {a(-bx_{0}+ay_{0})-bc}{a^{2}+b^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/516c92405d1a378c38a36d449dbb1c9d36817788" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:52.321ex; height:6.343ex;" alt="{\displaystyle \left(x={\frac {b(bx_{0}-ay_{0})-ac}{a^{2}+b^{2}}},\;y={\frac {a(-bx_{0}+ay_{0})-bc}{a^{2}+b^{2}}}\right)}"></span></dd></dl> <p>Wenn die Gerade <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> durch die Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc74086e56542bd28b46a84faaee3cebdd4a899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{1},y_{1})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{2},y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{2},y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d52d44e16a796acee486af49af05f678566d181a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{2},y_{2})}"></span> verläuft, ist </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=y_{2}-y_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=y_{2}-y_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18e9139c2034ab09e003e077564fdfedf0b924d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.556ex; height:2.343ex;" alt="{\displaystyle a=y_{2}-y_{1}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=x_{1}-x_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=x_{1}-x_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1202427da4aa2a25c39f284194f879459d36ffd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.704ex; height:2.509ex;" alt="{\displaystyle b=x_{1}-x_{2}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=x_{2}y_{1}-x_{1}y_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=x_{2}y_{1}-x_{1}y_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e37a1363a89cdd892a82bcc643e3c54f5b63059b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.1ex; height:2.343ex;" alt="{\displaystyle c=x_{2}y_{1}-x_{1}y_{2}}"></span></dd></dl> <p>Diese Werte können in die <a href="/wiki/Formel" title="Formel">Formeln</a> eingesetzt werden.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p><b>Beispiel</b> </p><p>Eingesetzte Werte für Gerade <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=-3,\;b=4,\;c=10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>b</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>c</mi> <mo>=</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=-3,\;b=4,\;c=10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bee9d0eead5ba41ce58f6e4fd3e1e6c6c9f1d67e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.346ex; height:2.509ex;" alt="{\displaystyle a=-3,\;b=4,\;c=10}"></span> und für Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P:\;x_{0}=4,\;y_{0}=6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>:</mo> <mspace width="thickmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P:\;x_{0}=4,\;y_{0}=6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33e005ad7a54ebcfb8d8f847013fbbfde98332bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.106ex; height:2.509ex;" alt="{\displaystyle P:\;x_{0}=4,\;y_{0}=6}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P,g)={\frac {(-3)\cdot 4+4\cdot 6+10}{\sqrt {(-3)^{2}+4^{2}}}}={\frac {22}{5}}=4{,}4\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>+</mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>+</mo> <mn>10</mn> </mrow> <msqrt> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>22</mn> <mn>5</mn> </mfrac> </mrow> <mo>=</mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>4</mn> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P,g)={\frac {(-3)\cdot 4+4\cdot 6+10}{\sqrt {(-3)^{2}+4^{2}}}}={\frac {22}{5}}=4{,}4\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb0a9e53955cfee5b9ab6f24c2164d3964d480b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:43.461ex; height:8.509ex;" alt="{\displaystyle d(P,g)={\frac {(-3)\cdot 4+4\cdot 6+10}{\sqrt {(-3)^{2}+4^{2}}}}={\frac {22}{5}}=4{,}4\;}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Abstand_im_dreidimensionalen_Raum">Abstand im dreidimensionalen Raum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=4" title="Abschnitt bearbeiten: Abstand im dreidimensionalen Raum" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=4" title="Quellcode des Abschnitts bearbeiten: Abstand im dreidimensionalen Raum"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Für die Konstruktion des Abstandes bedarf es als zusätzliches Hilfsmittel einer <a href="/wiki/Dynamische_Geometrie" title="Dynamische Geometrie">Dynamischen-Geometrie-Software (DGS).</a> </p> <div class="mw-heading mw-heading4"><h4 id="Abstand_zwischen_Punkt_und_Gerade_2">Abstand zwischen Punkt und Gerade</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=5" title="Abschnitt bearbeiten: Abstand zwischen Punkt und Gerade" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=5" title="Quellcode des Abschnitts bearbeiten: Abstand zwischen Punkt und Gerade"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Der Abstand zwischen dem <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkt</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}=(x_{0},y_{0},z_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}=(x_{0},y_{0},z_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2728b2a274122fbaf50539fa2dd9c885afca413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{0}=(x_{0},y_{0},z_{0})}"></span> und der <a href="/wiki/Gerade" title="Gerade">Geraden</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>, die durch die Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a846e6741a44ffc62819d8842ef8677e888bf0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec3b67f42fe95e4cf78de50e3a82fdcd66aca95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}"></span> verläuft, beträgt mit den Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p_{0}}},\;{\vec {p_{1}}},\;{\vec {p_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p_{0}}},\;{\vec {p_{1}}},\;{\vec {p_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1cca2fa99c6a65cbb57814fff87296352124c20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.039ex; width:10.369ex; height:3.343ex;" alt="{\displaystyle {\vec {p_{0}}},\;{\vec {p_{1}}},\;{\vec {p_{2}}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P_{0},g)={\frac {\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{1}}}-{\vec {p_{0}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}={\frac {\left|({\vec {p_{0}}}-{\vec {p_{1}}})\times ({\vec {p_{0}}}-{\vec {p_{2}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P_{0},g)={\frac {\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{1}}}-{\vec {p_{0}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}={\frac {\left|({\vec {p_{0}}}-{\vec {p_{1}}})\times ({\vec {p_{0}}}-{\vec {p_{2}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91f38cdac3a782608bb9bc1509257c7198e5e523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:61.048ex; height:9.509ex;" alt="{\displaystyle d(P_{0},g)={\frac {\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{1}}}-{\vec {p_{0}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}={\frac {\left|({\vec {p_{0}}}-{\vec {p_{1}}})\times ({\vec {p_{0}}}-{\vec {p_{2}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}}"></span><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></dd></dl> <p><b>Beispiel</b> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Abstand_Raum_Punkte-Gerade.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/01_Abstand_Raum_Punkte-Gerade.png/330px-01_Abstand_Raum_Punkte-Gerade.png" decoding="async" width="330" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/01_Abstand_Raum_Punkte-Gerade.png/495px-01_Abstand_Raum_Punkte-Gerade.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b4/01_Abstand_Raum_Punkte-Gerade.png 2x" data-file-width="586" data-file-height="418" /></a><figcaption>Beispiel: Abstand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P_{0},g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P_{0},g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b9e752e4716f35ca63a991c2306dd322399a10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.722ex; height:2.843ex;" alt="{\displaystyle d(P_{0},g)}"></span> zwischen Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/671bd891701e0d6cfa6da0114a5dd64233b58709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{0}}"></span> und Geraden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> im Raum.</figcaption></figure> <p>Konstruktion des Abstandes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P_{0},g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P_{0},g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13b9e752e4716f35ca63a991c2306dd322399a10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.722ex; height:2.843ex;" alt="{\displaystyle d(P_{0},g)}"></span>. </p><p>Gegeben sind die Koordinaten der Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}=\left(3{,}5\left|2{,}5\right|0\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> <mrow> <mo>|</mo> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mrow> <mo>|</mo> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}=\left(3{,}5\left|2{,}5\right|0\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea50a63c67e4fc8643a3a6d03a363b448791678" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.628ex; height:2.843ex;" alt="{\displaystyle P_{1}=\left(3{,}5\left|2{,}5\right|0\right)}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}=\left(-1\left|7\right|0\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mrow> <mo>|</mo> <mn>7</mn> <mo>|</mo> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}=\left(-1\left|7\right|0\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd05f8a0f2c54f2523170ec7d2af12a9602ce92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.818ex; height:2.843ex;" alt="{\displaystyle P_{2}=\left(-1\left|7\right|0\right)}"></span>, durch die die Gerade <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> verläuft, und der Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}=\left(5\left|6\right|3{,}5\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mrow> <mo>|</mo> <mn>6</mn> <mo>|</mo> </mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}=\left(5\left|6\right|3{,}5\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/479a1823c90ce1e6007b33209f8eeab93dd915be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.819ex; height:2.843ex;" alt="{\displaystyle P_{0}=\left(5\left|6\right|3{,}5\right)}"></span>. </p><p>Nach dem Einzeichnen der Geraden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87858df7457aa93caaef5a316db87a7240cc8c29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{2}}"></span> und dem Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/671bd891701e0d6cfa6da0114a5dd64233b58709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{0}}"></span> werden die <a href="/wiki/Vektor#Definition" title="Vektor">Verbindungsvektoren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c77ed661878e6e1cdd2a207b689f7d4ccad31ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.039ex; width:6.366ex; height:3.343ex;" alt="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2728382cfe9fd2e278bd7cd7692243d2002864d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.039ex; width:2.363ex; height:3.343ex;" alt="{\displaystyle {\vec {p_{0}}}}"></span> eingezeichnet. Eine abschließend errichtete <a href="/wiki/Orthogonalit%C3%A4t" title="Orthogonalität">Senkrechte</a> auf die Gerade <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> durch Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/671bd891701e0d6cfa6da0114a5dd64233b58709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{0}}"></span> liefert den Abstand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P_{0},g)=4{,}974\ldots \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4,974</mn> <mo>…<!-- … --></mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P_{0},g)=4{,}974\ldots \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8148d57a7e00237cd9589c91162b9db914c3a41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.872ex; height:2.843ex;" alt="{\displaystyle d(P_{0},g)=4{,}974\ldots \;}"></span>[LE]. </p><p><b>Nachrechnung</b> </p><p>Diese Werte in die Formel eingesetzt, ergeben </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P_{0},g)={\frac {\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{1}}}-{\vec {p_{0}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}={\frac {\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-1{,}5\\-3{,}5\\-3{,}5\end{pmatrix}}\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\right|}}={\frac {\left|{\begin{pmatrix}-15{,}75\\-15{,}75\\22{,}5\end{pmatrix}}\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\right|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>15</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>75</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>15</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>75</mn> </mtd> </mtr> <mtr> <mtd> <mn>22</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P_{0},g)={\frac {\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{1}}}-{\vec {p_{0}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}={\frac {\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-1{,}5\\-3{,}5\\-3{,}5\end{pmatrix}}\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\right|}}={\frac {\left|{\begin{pmatrix}-15{,}75\\-15{,}75\\22{,}5\end{pmatrix}}\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\right|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8076987fde06c8e4b05532937b1ee1fe234b9679" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.171ex; width:78.801ex; height:19.509ex;" alt="{\displaystyle d(P_{0},g)={\frac {\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{1}}}-{\vec {p_{0}}})\right|}{\left|{\vec {p_{2}}}-{\vec {p_{1}}}\right|}}={\frac {\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-1{,}5\\-3{,}5\\-3{,}5\end{pmatrix}}\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\right|}}={\frac {\left|{\begin{pmatrix}-15{,}75\\-15{,}75\\22{,}5\end{pmatrix}}\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\right|}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {\left|{\sqrt {(-15{,}75)^{2}+(-15{,}75)^{2}+22{,}5^{2}}}\right|}{\left|{\sqrt {(-4{,}5)^{2}+4{,}5^{2}+0^{2}}}\right|}}=4{,}974\ldots \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>15</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>75</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>15</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>75</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>22</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>4,974</mn> <mo>…<!-- … --></mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {\left|{\sqrt {(-15{,}75)^{2}+(-15{,}75)^{2}+22{,}5^{2}}}\right|}{\left|{\sqrt {(-4{,}5)^{2}+4{,}5^{2}+0^{2}}}\right|}}=4{,}974\ldots \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a64a4b897b023f0470c9fd97647cb92b9801a4a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:49.863ex; height:11.176ex;" alt="{\displaystyle ={\frac {\left|{\sqrt {(-15{,}75)^{2}+(-15{,}75)^{2}+22{,}5^{2}}}\right|}{\left|{\sqrt {(-4{,}5)^{2}+4{,}5^{2}+0^{2}}}\right|}}=4{,}974\ldots \;}"></span>[LE].</dd></dl> <div class="mw-heading mw-heading4"><h4 id="Abstand_zwischen_zwei_windschiefen_Geraden">Abstand zwischen zwei windschiefen Geraden</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=6" title="Abschnitt bearbeiten: Abstand zwischen zwei windschiefen Geraden" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=6" title="Quellcode des Abschnitts bearbeiten: Abstand zwischen zwei windschiefen Geraden"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Windschiefe" title="Windschiefe">Windschiefe</a></i></div> <p>Zwei windschiefe Geraden (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1},\;g_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1},\;g_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f193f7305cab5f98e031936136d159090abbb23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.006ex; height:2.009ex;" alt="{\displaystyle g_{1},\;g_{2}}"></span>), wobei die eine durch die Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a846e6741a44ffc62819d8842ef8677e888bf0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec3b67f42fe95e4cf78de50e3a82fdcd66aca95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}"></span> und die andere durch die Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{3}=(x_{3},y_{3},z_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{3}=(x_{3},y_{3},z_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2842a5d94e8010623e5112ee2548de52a996af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{3}=(x_{3},y_{3},z_{3})}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{4}=(x_{4},y_{4},z_{4})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{4}=(x_{4},y_{4},z_{4})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aa74771d370169adaca9aad1c6ee186d807bb9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{4}=(x_{4},y_{4},z_{4})}"></span> verläuft, haben mit den Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}},\;{\vec {p_{3}}},\;{\vec {p_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}},\;{\vec {p_{3}}},\;{\vec {p_{4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfa937243e64800eeea2d3b993a20a414643da61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.039ex; width:14.372ex; height:3.343ex;" alt="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}},\;{\vec {p_{3}}},\;{\vec {p_{4}}}}"></span> folgenden Abstand: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(g_{1},g_{2})={\frac {\left|({\vec {p_{3}}}-{\vec {p_{1}}})\cdot (({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}}))\right|}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}})\right|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(g_{1},g_{2})={\frac {\left|({\vec {p_{3}}}-{\vec {p_{1}}})\cdot (({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}}))\right|}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}})\right|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce52770a61592c4e7b625262ffd898817ca573e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:47.834ex; height:9.509ex;" alt="{\displaystyle d(g_{1},g_{2})={\frac {\left|({\vec {p_{3}}}-{\vec {p_{1}}})\cdot (({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}}))\right|}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}})\right|}}}"></span><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></dd></dl> <p><b>Beispiel</b> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Abstand_Raum_Gerade-Gerade.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/01_Abstand_Raum_Gerade-Gerade.png/330px-01_Abstand_Raum_Gerade-Gerade.png" decoding="async" width="330" height="263" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/01_Abstand_Raum_Gerade-Gerade.png/495px-01_Abstand_Raum_Gerade-Gerade.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/01_Abstand_Raum_Gerade-Gerade.png/660px-01_Abstand_Raum_Gerade-Gerade.png 2x" data-file-width="889" data-file-height="708" /></a><figcaption>Beispiel: Konstruktion des Abstandes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(g_{1},g_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(g_{1},g_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59e8ecc88ca5655b7f67b25020903785eb5b3187" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.386ex; height:2.843ex;" alt="{\displaystyle d(g_{1},g_{2})}"></span> zwischen zwei windschiefen Geraden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3755e3e04ec295992b2b5331655ef83a500a05c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0261c34f2ad1e1b5317708b7f98ae13ee70ff1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{2}}"></span> im Raum.</figcaption></figure> <p>Konstruktion des Abstandes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(g_{1},g_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(g_{1},g_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59e8ecc88ca5655b7f67b25020903785eb5b3187" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.386ex; height:2.843ex;" alt="{\displaystyle d(g_{1},g_{2})}"></span> mithilfe einer Hilfsebene. </p><p>Gegeben seien die Koordinaten der vier Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}=\left(3{,}5\left|2{,}5\right|0\right),\;P_{2}=\left(-1\left|7\right|0\right),\;P_{3}=\left(5\left|6\right|3{,}5\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> <mrow> <mo>|</mo> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mrow> <mo>|</mo> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mrow> <mo>|</mo> <mn>7</mn> <mo>|</mo> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mrow> <mo>|</mo> <mn>6</mn> <mo>|</mo> </mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}=\left(3{,}5\left|2{,}5\right|0\right),\;P_{2}=\left(-1\left|7\right|0\right),\;P_{3}=\left(5\left|6\right|3{,}5\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dae426b5eb214a8face084bcd39b9191c8c2ddbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.397ex; height:2.843ex;" alt="{\displaystyle P_{1}=\left(3{,}5\left|2{,}5\right|0\right),\;P_{2}=\left(-1\left|7\right|0\right),\;P_{3}=\left(5\left|6\right|3{,}5\right)}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{4}=\left(0{,}2\left|2{,}5\right|6\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>2</mn> <mrow> <mo>|</mo> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mrow> <mo>|</mo> </mrow> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{4}=\left(0{,}2\left|2{,}5\right|6\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ed881f99337e5b350b300b8709374eb99d5b8fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.662ex; height:2.843ex;" alt="{\displaystyle P_{4}=\left(0{,}2\left|2{,}5\right|6\right).}"></span> </p><p>Nach dem Einzeichnen der Geraden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3755e3e04ec295992b2b5331655ef83a500a05c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{1}}"></span> durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87858df7457aa93caaef5a316db87a7240cc8c29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{2}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0261c34f2ad1e1b5317708b7f98ae13ee70ff1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{2}}"></span> durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92db8e65bb75b79799f0f3a29e975b37e227069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{3}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48763cb9875de7b4125c40e95e542e775c1cbc4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{4}}"></span> werden zunächst die <a href="/wiki/Vektor#Definition" title="Vektor">Verbindungsvektoren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}}\;{\vec {p_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}}\;{\vec {p_{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d188d469d5d378e85b2887c0c2e0a9ffd75c9917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.039ex; width:9.335ex; height:3.343ex;" alt="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}}\;{\vec {p_{3}}}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p_{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p_{4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da8f845ab5b9a0221e3c234cfb6f6e59e3677cb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.039ex; width:2.363ex; height:3.343ex;" alt="{\displaystyle {\vec {p_{4}}}}"></span> eingezeichnet. Für das Bestimmen der Hilfsebene wird eine Parallele zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0261c34f2ad1e1b5317708b7f98ae13ee70ff1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{2}}"></span> durch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398f438d75434e6fbf48dc232c1ad7228a738568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{1}}"></span> gezogen und anschließend der Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> beliebig auf der Parallele markiert. Mithilfe der somit gegebenen drei Punktes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,P_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,P_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/759a2b27d0a3c7a7aac00854437891337e04b93e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.324ex; height:2.509ex;" alt="{\displaystyle A,P_{1}}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87858df7457aa93caaef5a316db87a7240cc8c29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{2}}"></span> wird die Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> generiert. Es folgt das Fällen des Lots vom Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92db8e65bb75b79799f0f3a29e975b37e227069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.547ex; height:2.509ex;" alt="{\displaystyle P_{3}}"></span> auf die Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> mit Fußpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> und eine Parallele zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee518ac53e84056ba9ff09b34fef75f627992470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.81ex; height:2.009ex;" alt="{\displaystyle g_{2},}"></span> die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3755e3e04ec295992b2b5331655ef83a500a05c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{1}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> (rot) schneidet. Abschließend liefert die Parallele zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {P_{3}B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>B</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {P_{3}B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77c79b8fb65fa37c4ee1289a4ca94a1c20ef78b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.425ex; height:3.343ex;" alt="{\displaystyle {\overline {P_{3}B}}}"></span> ab dem Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> bis zur Geraden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0261c34f2ad1e1b5317708b7f98ae13ee70ff1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{2}}"></span> den Abstand: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(g_{1},g_{2})=4{,}605\ldots \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4,605</mn> <mo>…<!-- … --></mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(g_{1},g_{2})=4{,}605\ldots \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84d6df812973096117ac5ca6458f5cda89415ac5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.536ex; height:2.843ex;" alt="{\displaystyle d(g_{1},g_{2})=4{,}605\ldots \;}"></span>[LE]. </p><p><b>Nachrechnung</b> </p><p>Diese Werte eingesetzt in die Formel ergeben </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(g_{1},g_{2})={\frac {\left|({\vec {p_{3}}}-{\vec {p_{1}}})\cdot (({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}}))\right|}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}})\right|}}={\frac {\left|{\begin{pmatrix}1{,}5\\3{,}5\\3{,}5\end{pmatrix}}\cdot \left({\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-4{,}8\\-3{,}5\\2{,}5\end{pmatrix}}\right)\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-4{,}8\\-3{,}5\\2{,}5\end{pmatrix}}\right|}}={\frac {\left|{\begin{pmatrix}1{,}5\\3{,}5\\3{,}5\end{pmatrix}}\cdot {\begin{pmatrix}11{,}25\\11{,}25\\37{,}35\end{pmatrix}}\right|}{\left|{\begin{pmatrix}11{,}25\\11{,}25\\37{,}35\end{pmatrix}}\right|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>25</mn> </mtd> </mtr> <mtr> <mtd> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>25</mn> </mtd> </mtr> <mtr> <mtd> <mn>37</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>35</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>25</mn> </mtd> </mtr> <mtr> <mtd> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>25</mn> </mtd> </mtr> <mtr> <mtd> <mn>37</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>35</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(g_{1},g_{2})={\frac {\left|({\vec {p_{3}}}-{\vec {p_{1}}})\cdot (({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}}))\right|}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}})\right|}}={\frac {\left|{\begin{pmatrix}1{,}5\\3{,}5\\3{,}5\end{pmatrix}}\cdot \left({\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-4{,}8\\-3{,}5\\2{,}5\end{pmatrix}}\right)\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-4{,}8\\-3{,}5\\2{,}5\end{pmatrix}}\right|}}={\frac {\left|{\begin{pmatrix}1{,}5\\3{,}5\\3{,}5\end{pmatrix}}\cdot {\begin{pmatrix}11{,}25\\11{,}25\\37{,}35\end{pmatrix}}\right|}{\left|{\begin{pmatrix}11{,}25\\11{,}25\\37{,}35\end{pmatrix}}\right|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ae699a36a6e2ae243edf0721cdf1cddcee9a588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.171ex; width:113.448ex; height:19.509ex;" alt="{\displaystyle d(g_{1},g_{2})={\frac {\left|({\vec {p_{3}}}-{\vec {p_{1}}})\cdot (({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}}))\right|}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{4}}}-{\vec {p_{3}}})\right|}}={\frac {\left|{\begin{pmatrix}1{,}5\\3{,}5\\3{,}5\end{pmatrix}}\cdot \left({\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-4{,}8\\-3{,}5\\2{,}5\end{pmatrix}}\right)\right|}{\left|{\begin{pmatrix}-4{,}5\\4{,}5\\0\end{pmatrix}}\times {\begin{pmatrix}-4{,}8\\-3{,}5\\2{,}5\end{pmatrix}}\right|}}={\frac {\left|{\begin{pmatrix}1{,}5\\3{,}5\\3{,}5\end{pmatrix}}\cdot {\begin{pmatrix}11{,}25\\11{,}25\\37{,}35\end{pmatrix}}\right|}{\left|{\begin{pmatrix}11{,}25\\11{,}25\\37{,}35\end{pmatrix}}\right|}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {\left|186{,}975\right|}{\left|{\sqrt {11{,}25^{2}+11{,}25^{2}+37{,}35^{2}}}\right|}}=4{,}605\ldots \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mn>186,975</mn> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <msup> <mn>25</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>11</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <msup> <mn>25</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>37</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <msup> <mn>35</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>4,605</mn> <mo>…<!-- … --></mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {\left|186{,}975\right|}{\left|{\sqrt {11{,}25^{2}+11{,}25^{2}+37{,}35^{2}}}\right|}}=4{,}605\ldots \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dbacf4ddefdd7069a77e296b283e0126ab9e7a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:43.791ex; height:9.009ex;" alt="{\displaystyle ={\frac {\left|186{,}975\right|}{\left|{\sqrt {11{,}25^{2}+11{,}25^{2}+37{,}35^{2}}}\right|}}=4{,}605\ldots \;}"></span>[LE].</dd></dl> <div class="mw-heading mw-heading4"><h4 id="Abstand_zwischen_Punkt_und_Ebene">Abstand zwischen Punkt und Ebene</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=7" title="Abschnitt bearbeiten: Abstand zwischen Punkt und Ebene" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=7" title="Quellcode des Abschnitts bearbeiten: Abstand zwischen Punkt und Ebene"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Der Abstand zwischen dem <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkt</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{0}=(x_{0},y_{0},z_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{0}=(x_{0},y_{0},z_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2728b2a274122fbaf50539fa2dd9c885afca413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{0}=(x_{0},y_{0},z_{0})}"></span> und der <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> mit der <a href="/wiki/Koordinatenform#Koordinatenform_einer_Ebenengleichung" title="Koordinatenform">Koordinatenform</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+by+cz-f=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>y</mi> <mo>+</mo> <mi>c</mi> <mi>z</mi> <mo>−<!-- − --></mo> <mi>f</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+by+cz-f=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77041352e46ea5634ffdb3cf27a8414abf106d2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.868ex; height:2.509ex;" alt="{\displaystyle ax+by+cz-f=0}"></span><sup id="cite_ref-Konstante_f_6-0" class="reference"><a href="#cite_note-Konstante_f-6"><span class="cite-bracket">[</span>A 1<span class="cite-bracket">]</span></a></sup> beträgt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;\;(1)\;\;d(P_{0},E)={\frac {|ax_{0}+by_{0}+cz_{0}-f|}{\sqrt {a^{2}+b^{2}+c^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>b</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>c</mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;\;(1)\;\;d(P_{0},E)={\frac {|ax_{0}+by_{0}+cz_{0}-f|}{\sqrt {a^{2}+b^{2}+c^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8749d36e6c590a3df2bb12bfd29e7ba96cf6c851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.909ex; height:7.009ex;" alt="{\displaystyle \;\;(1)\;\;d(P_{0},E)={\frac {|ax_{0}+by_{0}+cz_{0}-f|}{\sqrt {a^{2}+b^{2}+c^{2}}}}}"></span><sup id="cite_ref-Konstante_f_6-1" class="reference"><a href="#cite_note-Konstante_f-6"><span class="cite-bracket">[</span>A 1<span class="cite-bracket">]</span></a></sup></dd></dl> <p>Für die einzusetzenden Werte gilt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;{\begin{aligned}&\left(2\right)a=y_{1}z_{2}-y_{2}z_{1}+y_{2}z_{3}-y_{3}z_{2}+y_{3}z_{1}-y_{1}z_{3}\\&\left(3\right)b=z_{1}x_{2}-z_{2}x_{1}+z_{2}x_{3}-z_{3}x_{2}+z_{3}x_{1}-z_{1}x_{3}\\&\left(4\right)c=x_{1}y_{2}-x_{2}y_{1}+x_{2}y_{3}-x_{3}y_{2}+x_{3}y_{1}-x_{1}y_{3}\\&\left(5\right)f=x_{1}y_{2}z_{3}-x_{1}y_{3}z_{2}+x_{2}y_{3}z_{1}-x_{2}y_{1}z_{3}+x_{3}y_{1}z_{2}-x_{3}y_{2}z_{1}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>a</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mi>b</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mi>c</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mi>f</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;{\begin{aligned}&\left(2\right)a=y_{1}z_{2}-y_{2}z_{1}+y_{2}z_{3}-y_{3}z_{2}+y_{3}z_{1}-y_{1}z_{3}\\&\left(3\right)b=z_{1}x_{2}-z_{2}x_{1}+z_{2}x_{3}-z_{3}x_{2}+z_{3}x_{1}-z_{1}x_{3}\\&\left(4\right)c=x_{1}y_{2}-x_{2}y_{1}+x_{2}y_{3}-x_{3}y_{2}+x_{3}y_{1}-x_{1}y_{3}\\&\left(5\right)f=x_{1}y_{2}z_{3}-x_{1}y_{3}z_{2}+x_{2}y_{3}z_{1}-x_{2}y_{1}z_{3}+x_{3}y_{1}z_{2}-x_{3}y_{2}z_{1}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d52c907c49083f16cd3fa671b5ee8ab7919f801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:63.611ex; height:12.509ex;" alt="{\displaystyle \;{\begin{aligned}&\left(2\right)a=y_{1}z_{2}-y_{2}z_{1}+y_{2}z_{3}-y_{3}z_{2}+y_{3}z_{1}-y_{1}z_{3}\\&\left(3\right)b=z_{1}x_{2}-z_{2}x_{1}+z_{2}x_{3}-z_{3}x_{2}+z_{3}x_{1}-z_{1}x_{3}\\&\left(4\right)c=x_{1}y_{2}-x_{2}y_{1}+x_{2}y_{3}-x_{3}y_{2}+x_{3}y_{1}-x_{1}y_{3}\\&\left(5\right)f=x_{1}y_{2}z_{3}-x_{1}y_{3}z_{2}+x_{2}y_{3}z_{1}-x_{2}y_{1}z_{3}+x_{3}y_{1}z_{2}-x_{3}y_{2}z_{1}\\\end{aligned}}}"></span></dd></dl> <p>Wenn drei Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a846e6741a44ffc62819d8842ef8677e888bf0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{1}=(x_{1},y_{1},z_{1})}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec3b67f42fe95e4cf78de50e3a82fdcd66aca95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{2}=(x_{2},y_{2},z_{2})}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{3}=(x_{3},y_{3},z_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{3}=(x_{3},y_{3},z_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2842a5d94e8010623e5112ee2548de52a996af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.235ex; height:2.843ex;" alt="{\displaystyle P_{3}=(x_{3},y_{3},z_{3})}"></span> gegeben sind, die eine Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> bestimmen (siehe <a href="/wiki/Dreipunkteform" title="Dreipunkteform">Dreipunkteform</a>) dann lässt sich der Abstand mithilfe der Vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}},\;{\vec {p_{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}},\;{\vec {p_{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98cc3d2ccaac7ad20e49cd85adb44fd93bdd7f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.039ex; width:10.369ex; height:3.343ex;" alt="{\displaystyle {\vec {p_{1}}},\;{\vec {p_{2}}},\;{\vec {p_{3}}}}"></span> mit folgender <a href="/wiki/Formel" title="Formel">Formel</a> berechnen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;\;(6)\;\;d(P_{0},E)=\left|{\frac {({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{3}}}-{\vec {p_{1}}})}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{3}}}-{\vec {p_{1}}})\right|}}\cdot ({\vec {p_{0}}}-{\vec {p_{1}}})\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;\;(6)\;\;d(P_{0},E)=\left|{\frac {({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{3}}}-{\vec {p_{1}}})}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{3}}}-{\vec {p_{1}}})\right|}}\cdot ({\vec {p_{0}}}-{\vec {p_{1}}})\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d93b00847914137883acaab924c4131392091872" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:52.867ex; height:9.509ex;" alt="{\displaystyle \;\;(6)\;\;d(P_{0},E)=\left|{\frac {({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{3}}}-{\vec {p_{1}}})}{\left|({\vec {p_{2}}}-{\vec {p_{1}}})\times ({\vec {p_{3}}}-{\vec {p_{1}}})\right|}}\cdot ({\vec {p_{0}}}-{\vec {p_{1}}})\right|}"></span><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>A 2<span class="cite-bracket">]</span></a></sup></dd></dl> <p>Dabei steht <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>×<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.019ex; margin-bottom: -0.19ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \times }"></span> für das <a href="/wiki/Kreuzprodukt" title="Kreuzprodukt">Kreuzprodukt</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> für das <a href="/wiki/Skalarprodukt" title="Skalarprodukt">Skalarprodukt</a> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\quad \right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mspace width="1em" /> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\quad \right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85f0a27d435f017bc00e28b99de480f494948dc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.616ex; height:2.843ex;" alt="{\displaystyle \left|\quad \right|}"></span> für den <a href="/wiki/Vektor#Länge/Betrag_eines_Vektors" title="Vektor">Betrag des Vektors</a>. </p><p><b>Beispiel</b> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:01_Abstand_Raum_Punkt-Ebene.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/01_Abstand_Raum_Punkt-Ebene.png/330px-01_Abstand_Raum_Punkt-Ebene.png" decoding="async" width="330" height="268" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/01_Abstand_Raum_Punkt-Ebene.png/495px-01_Abstand_Raum_Punkt-Ebene.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3c/01_Abstand_Raum_Punkt-Ebene.png/660px-01_Abstand_Raum_Punkt-Ebene.png 2x" data-file-width="870" data-file-height="707" /></a><figcaption>Beispiel: Konstruktion des Abstandes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c32338c4e5e0ea50fe57124c394d1f962d623b83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.58ex; height:2.843ex;" alt="{\displaystyle d(P,E)}"></span> zwischen dem Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> und der Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> im Raum.</figcaption></figure> <p>Konstruktion des Abstandes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c32338c4e5e0ea50fe57124c394d1f962d623b83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.58ex; height:2.843ex;" alt="{\displaystyle d(P,E)}"></span><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>Gegeben seien die Koordinaten der drei Punkte der Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/377c615c7b86c01c5a1fcfab1f5b3791a7a16f1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.421ex; height:2.176ex;" alt="{\displaystyle E\;}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\left(1\left|0\right|0\right),\;B=\left(2\left|1\right|1\right),\;C=\left(3\left|0\right|2\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mrow> <mo>|</mo> <mn>0</mn> <mo>|</mo> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>B</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <mo>|</mo> <mn>1</mn> <mo>|</mo> </mrow> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>C</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <mo>|</mo> <mn>0</mn> <mo>|</mo> </mrow> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\left(1\left|0\right|0\right),\;B=\left(2\left|1\right|1\right),\;C=\left(3\left|0\right|2\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0c78cb81474453b1d6b9df386e77d4a0da441cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.795ex; height:2.843ex;" alt="{\displaystyle A=\left(1\left|0\right|0\right),\;B=\left(2\left|1\right|1\right),\;C=\left(3\left|0\right|2\right)}"></span> sowie des außerhalb liegenden Punktes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=\left(4\left|5\right|-3\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <mrow> <mo>|</mo> <mn>5</mn> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=\left(4\left|5\right|-3\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ce7ffa5c8e9168a8982c88060d8c3363f193958" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.696ex; height:2.843ex;" alt="{\displaystyle P=\left(4\left|5\right|-3\right).}"></span> </p><p>Nach dem Eintragen der Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,\;B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,\;B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed23246542b8cd3fec05ea404cd81034fcbe78a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.186ex; height:2.509ex;" alt="{\displaystyle A,\;B}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> sowie des außerhalb liegenden Punktes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd35af9d5901e795c83d9f519ac73264e74fa595" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.392ex; height:2.509ex;" alt="{\displaystyle P,}"></span> kann die Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E:2x-2z-2=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>:</mo> <mn>2</mn> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>z</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E:2x-2z-2=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e58c72e22c3cc30b5f515bc6a7fbb28b1b23d492" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.56ex; height:2.343ex;" alt="{\displaystyle E:2x-2z-2=0}"></span> generiert werden. Anschließend fällt man das Lot vom Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> des <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinatenursprungs</a> auf die Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> mit dem Fußpunkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f173f63969b15d29f4efe8403a0a7032ec8f8186" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.571ex; height:2.176ex;" alt="{\displaystyle D.}"></span> Durch die Punkte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> verläuft auch der, aus der Parameterdarstellung von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> ermittelbare, <a href="/wiki/Normalenvektor" title="Normalenvektor">Normalenvektor</a> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {n}}=\left(2\left|0\right|-2\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <mo>|</mo> <mn>0</mn> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {n}}=\left(2\left|0\right|-2\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de4cbc86a228d21ba9f9dbec1eb3c8f63e9c4bcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.345ex; height:2.843ex;" alt="{\displaystyle {\vec {n}}=\left(2\left|0\right|-2\right).}"></span> Abschließend liefert die Parallele zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {OD}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>D</mi> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {OD}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15e3f1afa9739fa3023770a4b85936cf654ecced" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.813ex; height:3.009ex;" alt="{\displaystyle {\overline {OD}}}"></span> ab dem Punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> bis zur Ebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> den Abstand: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(P,E)=3\cdot {\sqrt {2}}\;=4{,}2426\ldots \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mspace width="thickmathspace" /> <mo>=</mo> <mn>4,242</mn> <mn>6</mn> <mo>…<!-- … --></mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(P,E)=3\cdot {\sqrt {2}}\;=4{,}2426\ldots \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64c046f61a530001555fd04b8bd1ec762727df0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.577ex; height:3.176ex;" alt="{\displaystyle d(P,E)=3\cdot {\sqrt {2}}\;=4{,}2426\ldots \;}"></span>[LE]. </p><p><b>Nachrechnung</b> </p><p>Ermittlung der einzusetzenden Werte für Formel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25115739469707c4758b189fe310a750092a80a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle (1)}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;{\begin{aligned}&\left(2\right)a=0\cdot 1-1\cdot 0+1\cdot 2-0\cdot 1+0\cdot 0-0\cdot 2=2\\&\left(3\right)b=0\cdot 2-1\cdot 1+1\cdot 3-2\cdot 2+2\cdot 1-0\cdot 3=0\\&\left(4\right)c=1\cdot 1-2\cdot 0+2\cdot 0-3\cdot 1+3\cdot 0-1\cdot 0=-2\\&\left(5\right)f=1\cdot 1\cdot 2-1\cdot 0\cdot 1+2\cdot 0\cdot 0-2\cdot 0\cdot 2+3\cdot 0\cdot 1-3\cdot 1\cdot 0=2\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>−<!-- − --></mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>=</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mi>b</mi> <mo>=</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>−<!-- − --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>=</mo> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>=</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;{\begin{aligned}&\left(2\right)a=0\cdot 1-1\cdot 0+1\cdot 2-0\cdot 1+0\cdot 0-0\cdot 2=2\\&\left(3\right)b=0\cdot 2-1\cdot 1+1\cdot 3-2\cdot 2+2\cdot 1-0\cdot 3=0\\&\left(4\right)c=1\cdot 1-2\cdot 0+2\cdot 0-3\cdot 1+3\cdot 0-1\cdot 0=-2\\&\left(5\right)f=1\cdot 1\cdot 2-1\cdot 0\cdot 1+2\cdot 0\cdot 0-2\cdot 0\cdot 2+3\cdot 0\cdot 1-3\cdot 1\cdot 0=2\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61da39389ba6793b27d77f0342e61f14650a65e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:68.669ex; height:12.509ex;" alt="{\displaystyle \;{\begin{aligned}&\left(2\right)a=0\cdot 1-1\cdot 0+1\cdot 2-0\cdot 1+0\cdot 0-0\cdot 2=2\\&\left(3\right)b=0\cdot 2-1\cdot 1+1\cdot 3-2\cdot 2+2\cdot 1-0\cdot 3=0\\&\left(4\right)c=1\cdot 1-2\cdot 0+2\cdot 0-3\cdot 1+3\cdot 0-1\cdot 0=-2\\&\left(5\right)f=1\cdot 1\cdot 2-1\cdot 0\cdot 1+2\cdot 0\cdot 0-2\cdot 0\cdot 2+3\cdot 0\cdot 1-3\cdot 1\cdot 0=2\\\end{aligned}}}"></span></dd></dl> <p>Diese Werte eingesetzt in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25115739469707c4758b189fe310a750092a80a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle (1)}"></span> ergeben schließlich </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;\;(1)\;\;d(P_{0},E)={\frac {|2\cdot 4+0\cdot 5+(-2)\cdot (-3)-2|}{\sqrt {2^{2}+0^{2}+(-2)^{2}}}}=3\cdot {\sqrt {2}}\;=4{,}2426\ldots \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>+</mo> <mn>0</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mspace width="thickmathspace" /> <mo>=</mo> <mn>4,242</mn> <mn>6</mn> <mo>…<!-- … --></mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;\;(1)\;\;d(P_{0},E)={\frac {|2\cdot 4+0\cdot 5+(-2)\cdot (-3)-2|}{\sqrt {2^{2}+0^{2}+(-2)^{2}}}}=3\cdot {\sqrt {2}}\;=4{,}2426\ldots \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28364da8efce313beb7413febb5d4017ed6a75ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:71.089ex; height:8.509ex;" alt="{\displaystyle \;\;(1)\;\;d(P_{0},E)={\frac {|2\cdot 4+0\cdot 5+(-2)\cdot (-3)-2|}{\sqrt {2^{2}+0^{2}+(-2)^{2}}}}=3\cdot {\sqrt {2}}\;=4{,}2426\ldots \;}"></span>[LE].</dd></dl> <p>Das Ergebnis gleicht dem des Beispiels. </p> <div class="mw-heading mw-heading2"><h2 id="Andere_Definitionen">Andere Definitionen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=8" title="Abschnitt bearbeiten: Andere Definitionen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=8" title="Quellcode des Abschnitts bearbeiten: Andere Definitionen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Definition des <a href="/wiki/Euklidischer_Abstand" title="Euklidischer Abstand">euklidischen Abstands</a> kann mithilfe von <a href="/wiki/Metrik_(Mathematik)" class="mw-redirect" title="Metrik (Mathematik)">Metriken</a> verallgemeinert werden. Der euklidische Abstand ist der <a href="/wiki/Euklidische_Norm" title="Euklidische Norm">euklidischen Norm</a> (2-Norm) eines <a href="/wiki/Vektorraum" title="Vektorraum">Vektorraums</a>, z. B. des <a href="/wiki/Dreidimensional" class="mw-redirect" title="Dreidimensional">dreidimensionalen</a> <a href="/wiki/Euklidischer_Raum" title="Euklidischer Raum">euklidischen Raums</a>, zugeordnet, siehe <a href="/wiki/Metrischer_Raum#Beispiele" title="Metrischer Raum">Metrischer Raum - Beispiele</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Manhattan-Metrik">Manhattan-Metrik</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=9" title="Abschnitt bearbeiten: Manhattan-Metrik" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=9" title="Quellcode des Abschnitts bearbeiten: Manhattan-Metrik"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Manhattan-Metrik" title="Manhattan-Metrik">Manhattan-Metrik</a></i></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Manhattan_distance.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/220px-Manhattan_distance.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/330px-Manhattan_distance.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/440px-Manhattan_distance.svg.png 2x" data-file-width="283" data-file-height="283" /></a><figcaption>Die Linien in rot, blau und gelb sind drei Beispiele für die Manhattan-Metrik zwischen den zwei schwarzen Punkten (je 12 Einheiten lang). Die grüne Linie stellt zum Vergleich den euklidischen Abstand dar, der eine Länge von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6{\sqrt {2}}\approx 8{,}5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>≈<!-- ≈ --></mo> <mn>8</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6{\sqrt {2}}\approx 8{,}5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49f16e2d67f5b84450a9d8e97f9239a32b3499b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.331ex; height:3.009ex;" alt="{\displaystyle 6{\sqrt {2}}\approx 8{,}5}"></span> Einheiten hat.</figcaption></figure> <p>Die sogenannte Manhattan-Metrik ist eine <a href="/wiki/Metrischer_Raum" title="Metrischer Raum">Metrik</a>, in der der Abstand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> zwischen zwei <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkten</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> als die <a href="/wiki/Summe" title="Summe">Summe</a> der <a href="/wiki/Absolutbetrag" class="mw-redirect" title="Absolutbetrag">absoluten</a> <a href="/wiki/Subtraktion" title="Subtraktion">Differenzen</a> ihrer Einzel<a href="/wiki/Koordinaten" class="mw-redirect" title="Koordinaten">koordinaten</a> definiert wird:<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)=\sum _{i}\left|A_{i}-B_{i}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)=\sum _{i}\left|A_{i}-B_{i}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b76c674c9acab4e21a6df7c755679bc6f3601b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.647ex; height:5.509ex;" alt="{\displaystyle d(A,B)=\sum _{i}\left|A_{i}-B_{i}\right|}"></span></dd></dl> <p>Die Manhattan-Metrik ist die von der <a href="/wiki/Summennorm" title="Summennorm">Summennorm</a> (1-Norm) eines <a href="/wiki/Vektorraum" title="Vektorraum">Vektorraums</a> erzeugte Metrik. </p><p>Weil die Wege zwischen zwei Punkten immer <a href="/wiki/Rechtwinklig" class="mw-redirect" title="Rechtwinklig">rechtwinklig</a> entlang den horizontalen und vertikalen Linien (Straßen) verlaufen, aber nicht durch die quadratischen „Gebäudeblöcke“, ist der Abstand zwischen zwei Punkten nicht kleiner und im Allgemeinen größer als der <a href="/wiki/Euklidischer_Abstand" title="Euklidischer Abstand">euklidischen Abstand</a>. Der Abstand zwischen zwei Punkten mit ganzzahligen <a href="/wiki/Koordinatensystem" title="Koordinatensystem">Koordinaten</a> (Kreuzungen) ist immer eine <a href="/wiki/Ganze_Zahl" title="Ganze Zahl">ganze Zahl</a>. </p><p>So ist beispielsweise in der nebenstehenden Grafik die Manhattan-Metrik in einem <a href="/wiki/Zweidimensional" class="mw-redirect" title="Zweidimensional">zweidimensionalen</a> <a href="/wiki/Raum_(Mathematik)" title="Raum (Mathematik)">Raum</a>, sodass sich </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)=\left|A_{1}-B_{1}\right|+\left|A_{2}-B_{2}\right|=\left|0-6\right|+\left|0-6\right|=\left|-6\right|+\left|-6\right|=12}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mn>0</mn> <mo>−<!-- − --></mo> <mn>6</mn> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <mn>0</mn> <mo>−<!-- − --></mo> <mn>6</mn> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mo>−<!-- − --></mo> <mn>6</mn> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow> <mo>−<!-- − --></mo> <mn>6</mn> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>12</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)=\left|A_{1}-B_{1}\right|+\left|A_{2}-B_{2}\right|=\left|0-6\right|+\left|0-6\right|=\left|-6\right|+\left|-6\right|=12}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/858affe1cea51e7e343fae4b9083831778f3fd05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:71.752ex; height:2.843ex;" alt="{\displaystyle d(A,B)=\left|A_{1}-B_{1}\right|+\left|A_{2}-B_{2}\right|=\left|0-6\right|+\left|0-6\right|=\left|-6\right|+\left|-6\right|=12}"></span></dd></dl> <p>ergibt, wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(A_{1},A_{2})=(0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(A_{1},A_{2})=(0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e30b8cbe97fafe68e90aecbecc9b6c88add26041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.546ex; height:2.843ex;" alt="{\displaystyle A=(A_{1},A_{2})=(0,0)}"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=(B_{1},B_{2})=(6,6)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>6</mn> <mo>,</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=(B_{1},B_{2})=(6,6)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69972774678d2ec55b44fa0bb6e21b45f3fc3b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.609ex; height:2.843ex;" alt="{\displaystyle B=(B_{1},B_{2})=(6,6)}"></span> die schwarz markierten Punkte sind. </p> <div class="mw-heading mw-heading2"><h2 id="Abstandsmessung_auf_gekrümmten_Flächen"><span id="Abstandsmessung_auf_gekr.C3.BCmmten_Fl.C3.A4chen"></span>Abstandsmessung auf gekrümmten Flächen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=10" title="Abschnitt bearbeiten: Abstandsmessung auf gekrümmten Flächen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=10" title="Quellcode des Abschnitts bearbeiten: Abstandsmessung auf gekrümmten Flächen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Auf der <a href="/wiki/Kugeloberfl%C3%A4che" class="mw-redirect" title="Kugeloberfläche">Kugeloberfläche</a> wird der Abstand entlang von <a href="/wiki/Gro%C3%9Fkreis" title="Großkreis">Großkreisen</a> bestimmt und im <a href="/wiki/Gradma%C3%9F" class="mw-redirect" title="Gradmaß">Gradmaß</a> oder <a href="/wiki/Bogenma%C3%9F" class="mw-redirect" title="Bogenmaß">Bogenmaß</a> angegeben. Zur Berechnung des Abstandes siehe <a href="/wiki/Orthodrome" title="Orthodrome">Orthodrome</a>. </p><p>Auf dem <a href="/wiki/Erdellipsoid" class="mw-redirect" title="Erdellipsoid">Erdellipsoid</a> oder anderen <a href="/wiki/Konvexe_Menge" title="Konvexe Menge">konvexen</a> Flächen benutzt man die <a href="/wiki/Geod%C3%A4tische_Linie" class="mw-redirect" title="Geodätische Linie">geodätische Linie</a> oder den <a href="/w/index.php?title=Normalschnitt&action=edit&redlink=1" class="new" title="Normalschnitt (Seite nicht vorhanden)">Normalschnitt</a>. </p><p>In der <a href="/wiki/Geod%C3%A4sie" title="Geodäsie">Geodäsie</a> und den <a href="/wiki/Geowissenschaften" title="Geowissenschaften">Geowissenschaften</a> spricht man eher von Distanz oder Entfernung, die metrisch angegeben wird. </p> <div class="mw-heading mw-heading2"><h2 id="Dichtestes_Punktpaar">Dichtestes Punktpaar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=11" title="Abschnitt bearbeiten: Dichtestes Punktpaar" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=11" title="Quellcode des Abschnitts bearbeiten: Dichtestes Punktpaar"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Closest_pair_of_points.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Closest_pair_of_points.svg/220px-Closest_pair_of_points.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Closest_pair_of_points.svg/330px-Closest_pair_of_points.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/Closest_pair_of_points.svg/440px-Closest_pair_of_points.svg.png 2x" data-file-width="256" data-file-height="256" /></a><figcaption>Die zwei Punkte mit dem kleinsten Abstand sind rot markiert.</figcaption></figure> <div class="hauptartikel" role="navigation"><span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="/wiki/Dichtestes_Punktpaar" title="Dichtestes Punktpaar">Dichtestes Punktpaar</a></i></div> <p>Das Problem des dichtesten Punktpaares (<i>englisch</i> closest pair of points problem) ist die Suche nach den zwei am dichtesten beieinander liegenden <a href="/wiki/Punkt_(Geometrie)" title="Punkt (Geometrie)">Punkten</a> in einer <a href="/wiki/Ebene_(Mathematik)" title="Ebene (Mathematik)">Ebene</a>. Gegeben ist eine beliebige <a href="/wiki/Menge_(Mathematik)" title="Menge (Mathematik)">Menge</a> von Punkten in der Ebene und gesucht sind zwei dieser Punkte, sodass der <a href="/wiki/Euklidischer_Abstand" title="Euklidischer Abstand">euklidische Abstand</a> minimal ist. Ein ähnliches Problem ist die Suche nach den zwei am weitesten voneinander entfernten Punkten in der Ebene, also den zwei Punkten mit dem maximalen <a href="/wiki/Euklidischer_Abstand" title="Euklidischer Abstand">euklidischen Abstand</a>. </p><p>Der <a href="/wiki/Brute_Force" class="mw-redirect" title="Brute Force">Brute-force</a>-Algorithmus berechnet die Abstände zwischen allen möglichen Punktpaaren und wählt das Punktpaar mit dem kleinsten Abstand aus. Die <a href="/wiki/Laufzeit_(Informatik)" title="Laufzeit (Informatik)">Laufzeit</a> des <a href="/wiki/Algorithmus" title="Algorithmus">Algorithmus</a> ist quadratisch und liegt in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd9594a16cb898b8f2a2dff9227a385ec183392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.032ex; height:3.176ex;" alt="{\displaystyle O(n^{2})}"></span>. Ein <a href="/wiki/Teile_und_herrsche_(Informatik)" class="mw-redirect" title="Teile und herrsche (Informatik)">Divide-and-conquer</a>-Algorithmus hat eine <a href="/wiki/Laufzeit_(Informatik)" title="Laufzeit (Informatik)">Laufzeit</a>, die in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n\cdot \log n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>⋅<!-- ⋅ --></mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n\cdot \log n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/837218b6d28ce003c0f81f7af156da3ede782fe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.41ex; height:2.843ex;" alt="{\displaystyle O(n\cdot \log n)}"></span> liegt. </p> <div class="mw-heading mw-heading2"><h2 id="Siehe_auch">Siehe auch</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=12" title="Abschnitt bearbeiten: Siehe auch" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=12" title="Quellcode des Abschnitts bearbeiten: Siehe auch"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Entfernungsma%C3%9F" class="mw-redirect" title="Entfernungsmaß">Entfernungsmaß</a></li> <li><a href="/wiki/Entfernungsmessung" title="Entfernungsmessung">Entfernungsmessung</a></li> <li><a href="/wiki/Geod%C3%A4tische_Distanz" title="Geodätische Distanz">Geodätische Distanz</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=13" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=13" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noresize noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Commons"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div><b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Distance_between_two_points?uselang=de"><span lang="en">Commons</span>: Abstand</a></span></b> – Sammlung von Bildern</div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><span class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Wiktionary"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/16px-Wiktfavicon_en.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/24px-Wiktfavicon_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wiktfavicon_en.svg/32px-Wiktfavicon_en.svg.png 2x" data-file-width="16" data-file-height="16" /></span></span></span><b><a href="https://de.wiktionary.org/wiki/Abstand" class="extiw" title="wikt:Abstand">Wiktionary: Abstand</a></b> – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen</div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size skin-invert-image" typeof="mw:File"><span title="Wikiquote"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/13px-Wikiquote-logo.svg.png" decoding="async" width="13" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/20px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/27px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div><b><a href="https://de.wikiquote.org/wiki/Abstand" class="extiw" title="q:Abstand">Wikiquote: Abstand</a></b> – Zitate </div> <div class="mw-heading mw-heading2"><h2 id="Anmerkungen">Anmerkungen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=14" title="Abschnitt bearbeiten: Anmerkungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=14" title="Quellcode des Abschnitts bearbeiten: Anmerkungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-Konstante_f-6"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Konstante_f_6-0">a</a></sup> <sup><a href="#cite_ref-Konstante_f_6-1">b</a></sup></span> <span class="reference-text">Um eine Doppelbezeichnung der Konstante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> zu vermeiden wurde mit passendem Vorzeichen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0edfedee3fca0a26dd6f515e7ed9517a4e2cd04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.087ex; height:2.509ex;" alt="{\displaystyle -f}"></span> gewählt.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">Im Gegensatz zur Formel aus dem englischen Sprachraum wurde für den Abstand die Bezeichnung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> anstatt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> gewählt.</span> </li> </ol> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise">Einzelnachweise</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Abstand&veaction=edit&section=15" title="Abschnitt bearbeiten: Einzelnachweise" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Abstand&action=edit&section=15" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><span class="cite"><a href="/wiki/Petra_Stein" title="Petra Stein">Petra Stein</a>, Sven Vollnhals: <a rel="nofollow" class="external text" href="https://www.uni-due.de/imperia/md/content/soziologie/stein/skript_clusteranalyse_sose2011.pdf#page=18&zoom=80,-502,847"><i>3.5.1 Spezialfälle der Minkowski-Metrik: Das euklidische Distanzmaß.</i></a> 3.5 Distanz- und Ähnlichkeitsmaße für metrische Variablen. In: <i>Grundlagen clusteranalytischer Verfahren.</i> Universität Duisburg-Essen, 1. April 2011, <span style="white-space:nowrap;">S. 15</span>,<span class="Abrufdatum"> abgerufen am 19. Oktober 2018</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2Fde.wikipedia.org%3AAbstand&rft.title=3.5.1+Spezialf%C3%A4lle+der+Minkowski-Metrik%3A+Das+euklidische+Distanzma%C3%9F&rft.description=3.5.1+Spezialf%C3%A4lle+der+Minkowski-Metrik%3A+Das+euklidische+Distanzma%C3%9F&rft.identifier=https%3A%2F%2Fwww.uni-due.de%2Fimperia%2Fmd%2Fcontent%2Fsoziologie%2Fstein%2Fskript_clusteranalyse_sose2011.pdf%23page%3D18%26zoom%3D80%2C-502%2C847&rft.creator=%5B%5BPetra+Stein%5D%5D%2C+Sven+Vollnhals&rft.publisher=Universit%C3%A4t+Duisburg-Essen"> </span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><span class="cite">Klaus Hefft: <a rel="nofollow" class="external text" href="https://www.thphys.uni-heidelberg.de/~hefft/vk1/#913d"><i>9.1.3 Euklidischer Raum.</i></a> 9.1 Dreidimensionaler euklidischer Raum. In: <i>MATHEMATISCHER VORKURS zum Studium der Physik.</i> Universität Heidelberg, 8. Juli 2018,<span class="Abrufdatum"> abgerufen am 19. Oktober 2018</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2Fde.wikipedia.org%3AAbstand&rft.title=9.1.3+Euklidischer+Raum&rft.description=9.1.3+Euklidischer+Raum&rft.identifier=https%3A%2F%2Fwww.thphys.uni-heidelberg.de%2F%7Ehefft%2Fvk1%2F%23913d&rft.creator=Klaus+Hefft&rft.publisher=Universit%C3%A4t+Heidelberg"> </span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">Wolfram MathWorld: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html">Point-Line Distance--2-Dimensional</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">Wolfram MathWorld: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html">Point-Line Distance--3-Dimensional</a></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Wolfram MathWorld: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Line-LineDistance.html">Line-Line Distance</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text">Wolfram MathWorld: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Point-PlaneDistance.html">Point-Plane Distance</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><span class="cite">R. Verfürth: <a rel="nofollow" class="external text" href="https://www.ruhr-uni-bochum.de/num1/files/lectures/MBBI1.pdf#page=37&zoom=auto,-13,632"><i>I.5.7. Parameterfreie Darstellungen einer Ebene.; Beispiel I.5.6.</i></a> Mathematik für Maschinenbauer, Bauingenieure und Umwelttechniker I. Ruhr-Universität Bochum, Dezember 2006, <span style="white-space:nowrap;">S. 37―39</span>,<span class="Abrufdatum"> abgerufen am 22. Mai 2021</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rfr_id=info%3Asid%2Fde.wikipedia.org%3AAbstand&rft.title=I.5.7.+Parameterfreie+Darstellungen+einer+Ebene.%3B+Beispiel+I.5.6.&rft.description=I.5.7.+Parameterfreie+Darstellungen+einer+Ebene.%3B+Beispiel+I.5.6.&rft.identifier=https%3A%2F%2Fwww.ruhr-uni-bochum.de%2Fnum1%2Ffiles%2Flectures%2FMBBI1.pdf%23page%3D37%26zoom%3Dauto%2C-13%2C632&rft.creator=R.+Verf%C3%BCrth&rft.publisher=Ruhr-Universit%C3%A4t+Bochum&rft.date=2006-12"> </span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">Wolfram MathWorld: <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/TaxicabMetric.html">Taxicab Metric</a></span> </li> </ol> <div class="hintergrundfarbe1 rahmenfarbe1 navigation-not-searchable normdaten-typ-s" style="border-style: solid; border-width: 1px; clear: left; margin-bottom:1em; margin-top:1em; padding: 0.25em; overflow: hidden; word-break: break-word; word-wrap: break-word;" id="normdaten"> <div style="display: table-cell; vertical-align: middle; width: 100%;"> <div> Normdaten (Sachbegriff): <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="plainlinks-print"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4228463-6">4228463-6</a></span> <span class="noprint">(<a rel="nofollow" class="external text" href="https://lobid.org/gnd/4228463-6">lobid</a>, <a rel="nofollow" class="external text" href="https://swb.bsz-bw.de/DB=2.104/SET=1/TTL=1/CMD?retrace=0&trm_old=&ACT=SRCHA&IKT=2999&SRT=RLV&TRM=4228463-6">OGND</a><span class="metadata">, <a rel="nofollow" class="external text" href="https://prometheus.lmu.de/gnd/4228463-6">AKS</a></span>)</span> <span class="metadata"></span></div> </div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Abstand&oldid=243778450">https://de.wikipedia.org/w/index.php?title=Abstand&oldid=243778450</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Euklidische_Geometrie" title="Kategorie:Euklidische Geometrie">Euklidische Geometrie</a></li><li><a href="/wiki/Kategorie:Navigation" title="Kategorie:Navigation">Navigation</a></li><li><a href="/wiki/Kategorie:Dimensionale_Messtechnik" title="Kategorie:Dimensionale Messtechnik">Dimensionale Messtechnik</a></li><li><a href="/wiki/Kategorie:Messgr%C3%B6%C3%9Fe" title="Kategorie:Messgröße">Messgröße</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&returnto=Abstand" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&returnto=Abstand" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Abstand" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/Diskussion:Abstand" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Abstand"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Abstand&veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Abstand&action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Abstand&action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_de.wikipedia.org&uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Abstand" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Abstand" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Abstand&oldid=243778450" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Abstand&action=info" title="Weitere Informationen über diese Seite"><span>Seiteninformationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&page=Abstand&id=243778450&wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FAbstand"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FAbstand"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&page=Abstand&action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Abstand&printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Distance" hreflang="en"><span>Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://de.wikiquote.org/wiki/Abstand" hreflang="de"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q126017" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Afstand" title="Afstand – Afrikaans" lang="af" hreflang="af" data-title="Afstand" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%AD%E1%89%80%E1%89%B5" title="ርቀት – Amharisch" lang="am" hreflang="am" data-title="ርቀት" data-language-autonym="አማርኛ" data-language-local-name="Amharisch" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Distancia" title="Distancia – Aragonesisch" lang="an" hreflang="an" data-title="Distancia" data-language-autonym="Aragonés" data-language-local-name="Aragonesisch" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B3%D8%A7%D9%81%D8%A9" title="مسافة – Arabisch" lang="ar" hreflang="ar" data-title="مسافة" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%A8%D8%B9%D9%88%D8%AF%D9%8A%D8%A9" title="بعودية – Marokkanisches Arabisch" lang="ary" hreflang="ary" data-title="بعودية" data-language-autonym="الدارجة" data-language-local-name="Marokkanisches Arabisch" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Distancia" title="Distancia – Asturisch" lang="ast" hreflang="ast" data-title="Distancia" data-language-autonym="Asturianu" data-language-local-name="Asturisch" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/M%C9%99saf%C9%99" title="Məsafə – Aserbaidschanisch" lang="az" hreflang="az" data-title="Məsafə" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaidschanisch" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%85%D8%B3%D8%A7%D9%81%D8%AA" title="مسافت – Südaserbaidschanisch" lang="azb" hreflang="azb" data-title="مسافت" data-language-autonym="تۆرکجه" data-language-local-name="Südaserbaidschanisch" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%90%D0%BB%D1%8B%D2%AB%D0%BB%D1%8B%D2%A1" title="Алыҫлыҡ – Baschkirisch" lang="ba" hreflang="ba" data-title="Алыҫлыҡ" data-language-autonym="Башҡортса" data-language-local-name="Baschkirisch" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Distansya" title="Distansya – Zentralbikolano" lang="bcl" hreflang="bcl" data-title="Distansya" data-language-autonym="Bikol Central" data-language-local-name="Zentralbikolano" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%90%D0%B4%D0%BB%D0%B5%D0%B3%D0%BB%D0%B0%D1%81%D1%86%D1%8C" title="Адлегласць – Belarussisch" lang="be" hreflang="be" data-title="Адлегласць" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%90%D0%B4%D0%BB%D0%B5%D0%B3%D0%BB%D0%B0%D1%81%D1%8C%D1%86%D1%8C" title="Адлегласьць – Weißrussisch (Taraschkewiza)" lang="be-tarask" hreflang="be-tarask" data-title="Адлегласьць" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Weißrussisch (Taraschkewiza)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5" title="Разстояние – Bulgarisch" lang="bg" hreflang="bg" data-title="Разстояние" data-language-autonym="Български" data-language-local-name="Bulgarisch" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%A6%E0%A5%81%E0%A4%B0%E0%A4%A4%E0%A5%8D%E0%A4%B5" title="दुरत्व – Bhojpuri" lang="bh" hreflang="bh" data-title="दुरत्व" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A6%E0%A7%82%E0%A6%B0%E0%A6%A4%E0%A7%8D%E0%A6%AC" title="দূরত্ব – Bengalisch" lang="bn" hreflang="bn" data-title="দূরত্ব" data-language-autonym="বাংলা" data-language-local-name="Bengalisch" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%97%D0%B0%D0%B9" title="Зай – Russisches Burjatisch" lang="bxr" hreflang="bxr" data-title="Зай" data-language-autonym="Буряад" data-language-local-name="Russisches Burjatisch" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Dist%C3%A0ncia" title="Distància – Katalanisch" lang="ca" hreflang="ca" data-title="Distància" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AF%D9%88%D9%88%D8%B1%DB%8C" title="دووری – Zentralkurdisch" lang="ckb" hreflang="ckb" data-title="دووری" data-language-autonym="کوردی" data-language-local-name="Zentralkurdisch" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vzd%C3%A1lenost" title="Vzdálenost – Tschechisch" lang="cs" hreflang="cs" data-title="Vzdálenost" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%98%D0%BD%C3%A7%C4%95%D1%88" title="Инçĕш – Tschuwaschisch" lang="cv" hreflang="cv" data-title="Инçĕш" data-language-autonym="Чӑвашла" data-language-local-name="Tschuwaschisch" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Afstandsformlen" title="Afstandsformlen – Dänisch" lang="da" hreflang="da" data-title="Afstandsformlen" data-language-autonym="Dansk" data-language-local-name="Dänisch" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CF%80%CF%8C%CF%83%CF%84%CE%B1%CF%83%CE%B7_(%CE%B3%CE%B5%CF%89%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1)" title="Απόσταση (γεωμετρία) – Griechisch" lang="el" hreflang="el" data-title="Απόσταση (γεωμετρία)" data-language-autonym="Ελληνικά" data-language-local-name="Griechisch" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Distance" title="Distance – Englisch" lang="en" hreflang="en" data-title="Distance" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Distanco" title="Distanco – Esperanto" lang="eo" hreflang="eo" data-title="Distanco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distancia" title="Distancia – Spanisch" lang="es" hreflang="es" data-title="Distancia" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kaugus" title="Kaugus – Estnisch" lang="et" hreflang="et" data-title="Kaugus" data-language-autonym="Eesti" data-language-local-name="Estnisch" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Distantzia" title="Distantzia – Baskisch" lang="eu" hreflang="eu" data-title="Distantzia" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%A7%D8%B5%D9%84%D9%87" title="فاصله – Persisch" lang="fa" hreflang="fa" data-title="فاصله" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/V%C3%A4limatka" title="Välimatka – Finnisch" lang="fi" hreflang="fi" data-title="Välimatka" data-language-autonym="Suomi" data-language-local-name="Finnisch" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Distance_(math%C3%A9matiques)" title="Distance (mathématiques) – Französisch" lang="fr" hreflang="fr" data-title="Distance (mathématiques)" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distancia" title="Distancia – Galicisch" lang="gl" hreflang="gl" data-title="Distancia" data-language-autonym="Galego" data-language-local-name="Galicisch" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%A7" title="מרחק – Hebräisch" lang="he" hreflang="he" data-title="מרחק" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A6%E0%A5%82%E0%A4%B0%E0%A5%80" title="दूरी – Hindi" lang="hi" hreflang="hi" data-title="दूरी" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Daljina" title="Daljina – Kroatisch" lang="hr" hreflang="hr" data-title="Daljina" data-language-autonym="Hrvatski" data-language-local-name="Kroatisch" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Distans" title="Distans – Haiti-Kreolisch" lang="ht" hreflang="ht" data-title="Distans" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haiti-Kreolisch" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/T%C3%A1vols%C3%A1g" title="Távolság – Ungarisch" lang="hu" hreflang="hu" data-title="Távolság" data-language-autonym="Magyar" data-language-local-name="Ungarisch" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%A5%D5%BC%D5%A1%D5%BE%D5%B8%D6%80%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6_(%D5%A5%D6%80%D5%AF%D6%80%D5%A1%D5%B9%D5%A1%D6%83%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6)" title="Հեռավորություն (երկրաչափություն) – Armenisch" lang="hy" hreflang="hy" data-title="Հեռավորություն (երկրաչափություն)" data-language-autonym="Հայերեն" data-language-local-name="Armenisch" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Distantia" title="Distantia – Interlingua" lang="ia" hreflang="ia" data-title="Distantia" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Penyauh" title="Penyauh – Iban" lang="iba" hreflang="iba" data-title="Penyauh" data-language-autonym="Jaku Iban" data-language-local-name="Iban" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Jarak" title="Jarak – Indonesisch" lang="id" hreflang="id" data-title="Jarak" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Disto" title="Disto – Ido" lang="io" hreflang="io" data-title="Disto" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fjarl%C3%A6g%C3%B0" title="Fjarlægð – Isländisch" lang="is" hreflang="is" data-title="Fjarlægð" data-language-autonym="Íslenska" data-language-local-name="Isländisch" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distanza_(matematica)" title="Distanza (matematica) – Italienisch" lang="it" hreflang="it" data-title="Distanza (matematica)" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%B7%9D%E9%9B%A2" title="距離 – Japanisch" lang="ja" hreflang="ja" data-title="距離" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%9C%E1%83%AB%E1%83%98%E1%83%9A%E1%83%98" title="მანძილი – Georgisch" lang="ka" hreflang="ka" data-title="მანძილი" data-language-autonym="ქართული" data-language-local-name="Georgisch" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Ameccaq" title="Ameccaq – Kabylisch" lang="kab" hreflang="kab" data-title="Ameccaq" data-language-autonym="Taqbaylit" data-language-local-name="Kabylisch" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%90%D1%80%D0%B0%D2%9B%D0%B0%D1%88%D1%8B%D2%9B%D1%82%D1%8B%D2%9B" title="Арақашықтық – Kasachisch" lang="kk" hreflang="kk" data-title="Арақашықтық" data-language-autonym="Қазақша" data-language-local-name="Kasachisch" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%A6%E0%B3%82%E0%B2%B0" title="ದೂರ – Kannada" lang="kn" hreflang="kn" data-title="ದೂರ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B1%B0%EB%A6%AC" title="거리 – Koreanisch" lang="ko" hreflang="ko" data-title="거리" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-krc mw-list-item"><a href="https://krc.wikipedia.org/wiki/%D0%A3%D0%B7%D0%B0%D0%BA%D1%8A%D0%BB%D1%8B%D0%BA%D1%8A" title="Узакълыкъ – Karatschaiisch-Balkarisch" lang="krc" hreflang="krc" data-title="Узакълыкъ" data-language-autonym="Къарачай-малкъар" data-language-local-name="Karatschaiisch-Balkarisch" class="interlanguage-link-target"><span>Къарачай-малкъар</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/D%C3%BBrah%C3%AE" title="Dûrahî – Kurdisch" lang="ku" hreflang="ku" data-title="Dûrahî" data-language-autonym="Kurdî" data-language-local-name="Kurdisch" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D1%80%D0%B0%D0%BB%D1%8B%D0%BA" title="Аралык – Kirgisisch" lang="ky" hreflang="ky" data-title="Аралык" data-language-autonym="Кыргызча" data-language-local-name="Kirgisisch" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Ofstand" title="Ofstand – Luxemburgisch" lang="lb" hreflang="lb" data-title="Ofstand" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxemburgisch" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Aafstandj" title="Aafstandj – Limburgisch" lang="li" hreflang="li" data-title="Aafstandj" data-language-autonym="Limburgs" data-language-local-name="Limburgisch" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Atstumas" title="Atstumas – Litauisch" lang="lt" hreflang="lt" data-title="Atstumas" data-language-autonym="Lietuvių" data-language-local-name="Litauisch" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Att%C4%81lums" title="Attālums – Lettisch" lang="lv" hreflang="lv" data-title="Attālums" data-language-autonym="Latviešu" data-language-local-name="Lettisch" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%82%D0%BE%D1%98%D0%B0%D0%BD%D0%B8%D0%B5" title="Растојание – Mazedonisch" lang="mk" hreflang="mk" data-title="Растојание" data-language-autonym="Македонски" data-language-local-name="Mazedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%85%E0%A4%82%E0%A4%A4%E0%A4%B0" title="अंतर – Marathi" lang="mr" hreflang="mr" data-title="अंतर" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Jarak" title="Jarak – Malaiisch" lang="ms" hreflang="ms" data-title="Jarak" data-language-autonym="Bahasa Melayu" data-language-local-name="Malaiisch" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%80%E1%80%BD%E1%80%AC%E1%80%A1%E1%80%9D%E1%80%B1%E1%80%B8" title="အကွာအဝေး – Birmanisch" lang="my" hreflang="my" data-title="အကွာအဝေး" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Birmanisch" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Afstand" title="Afstand – Niederländisch" lang="nl" hreflang="nl" data-title="Afstand" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Avstand" title="Avstand – Norwegisch (Nynorsk)" lang="nn" hreflang="nn" data-title="Avstand" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegisch (Nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Avstand" title="Avstand – Norwegisch (Bokmål)" lang="nb" hreflang="nb" data-title="Avstand" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegisch (Bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AA%E0%A9%88%E0%A8%82%E0%A8%A1%E0%A8%BE" title="ਪੈਂਡਾ – Punjabi" lang="pa" hreflang="pa" data-title="ਪੈਂਡਾ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Odleg%C5%82o%C5%9B%C4%87" title="Odległość – Polnisch" lang="pl" hreflang="pl" data-title="Odległość" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D9%88%D8%A7%D9%BC%D9%86" title="واټن – Paschtu" lang="ps" hreflang="ps" data-title="واټن" data-language-autonym="پښتو" data-language-local-name="Paschtu" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Dist%C3%A2ncia" title="Distância – Portugiesisch" lang="pt" hreflang="pt" data-title="Distância" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5" title="Расстояние – Russisch" lang="ru" hreflang="ru" data-title="Расстояние" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Distance" title="Distance – Schottisch" lang="sco" hreflang="sco" data-title="Distance" data-language-autonym="Scots" data-language-local-name="Schottisch" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Rastojanje" title="Rastojanje – Serbokroatisch" lang="sh" hreflang="sh" data-title="Rastojanje" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbokroatisch" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Distance" title="Distance – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Distance" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Vzdialenos%C5%A5" title="Vzdialenosť – Slowakisch" lang="sk" hreflang="sk" data-title="Vzdialenosť" data-language-autonym="Slovenčina" data-language-local-name="Slowakisch" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Razdalja" title="Razdalja – Slowenisch" lang="sl" hreflang="sl" data-title="Razdalja" data-language-autonym="Slovenščina" data-language-local-name="Slowenisch" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Nhambwe" title="Nhambwe – Shona" lang="sn" hreflang="sn" data-title="Nhambwe" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Distanca" title="Distanca – Albanisch" lang="sq" hreflang="sq" data-title="Distanca" data-language-autonym="Shqip" data-language-local-name="Albanisch" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%82%D0%BE%D1%98%D0%B0%D1%9A%D0%B5" title="Растојање – Serbisch" lang="sr" hreflang="sr" data-title="Растојање" data-language-autonym="Српски / srpski" data-language-local-name="Serbisch" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Avst%C3%A5nd" title="Avstånd – Schwedisch" lang="sv" hreflang="sv" data-title="Avstånd" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Umbali" title="Umbali – Suaheli" lang="sw" hreflang="sw" data-title="Umbali" data-language-autonym="Kiswahili" data-language-local-name="Suaheli" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AF%82%E0%AE%B0%E0%AE%AE%E0%AF%8D" title="தூரம் – Tamil" lang="ta" hreflang="ta" data-title="தூரம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%A6%E0%B1%82%E0%B0%B0%E0%B0%82" title="దూరం – Telugu" lang="te" hreflang="te" data-title="దూరం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%9C%D0%B0%D1%81%D0%BE%D1%84%D0%B0" title="Масофа – Tadschikisch" lang="tg" hreflang="tg" data-title="Масофа" data-language-autonym="Тоҷикӣ" data-language-local-name="Tadschikisch" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B0%E0%B8%A2%E0%B8%B0%E0%B8%97%E0%B8%B2%E0%B8%87" title="ระยะทาง – Thailändisch" lang="th" hreflang="th" data-title="ระยะทาง" data-language-autonym="ไทย" data-language-local-name="Thailändisch" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Distansiya" title="Distansiya – Tagalog" lang="tl" hreflang="tl" data-title="Distansiya" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Mesafe" title="Mesafe – Türkisch" lang="tr" hreflang="tr" data-title="Mesafe" data-language-autonym="Türkçe" data-language-local-name="Türkisch" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-ts mw-list-item"><a href="https://ts.wikipedia.org/wiki/Mpfhuka" title="Mpfhuka – Tsonga" lang="ts" hreflang="ts" data-title="Mpfhuka" data-language-autonym="Xitsonga" data-language-local-name="Tsonga" class="interlanguage-link-target"><span>Xitsonga</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D1%96%D0%B4%D1%81%D1%82%D0%B0%D0%BD%D1%8C" title="Відстань – Ukrainisch" lang="uk" hreflang="uk" data-title="Відстань" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%81%D8%A7%D8%B5%D9%84%DB%81" title="فاصلہ – Urdu" lang="ur" hreflang="ur" data-title="فاصلہ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Masofa" title="Masofa – Usbekisch" lang="uz" hreflang="uz" data-title="Masofa" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Usbekisch" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Distansa" title="Distansa – Venetisch" lang="vec" hreflang="vec" data-title="Distansa" data-language-autonym="Vèneto" data-language-local-name="Venetisch" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kho%E1%BA%A3ng_c%C3%A1ch" title="Khoảng cách – Vietnamesisch" lang="vi" hreflang="vi" data-title="Khoảng cách" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Distansiya" title="Distansiya – Waray" lang="war" hreflang="war" data-title="Distansiya" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%B7%9D%E7%A6%BB" title="距离 – Wu" lang="wuu" hreflang="wuu" data-title="距离" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xh mw-list-item"><a href="https://xh.wikipedia.org/wiki/Umgama" title="Umgama – Xhosa" lang="xh" hreflang="xh" data-title="Umgama" data-language-autonym="IsiXhosa" data-language-local-name="Xhosa" class="interlanguage-link-target"><span>IsiXhosa</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%95%D7%95%D7%99%D7%99%D7%98%D7%A7%D7%99%D7%99%D7%98" title="ווייטקייט – Jiddisch" lang="yi" hreflang="yi" data-title="ווייטקייט" data-language-autonym="ייִדיש" data-language-local-name="Jiddisch" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B7%9D%E7%A6%BB" title="距离 – Chinesisch" lang="zh" hreflang="zh" data-title="距离" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%B7%9D" title="距 – Klassisches Chinesisch" lang="lzh" hreflang="lzh" data-title="距" data-language-autonym="文言" data-language-local-name="Klassisches Chinesisch" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/K%C5%AB-l%C4%AB" title="Kū-lī – Min Nan" lang="nan" hreflang="nan" data-title="Kū-lī" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Min Nan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%B7%9D%E9%9B%A2" title="距離 – Kantonesisch" lang="yue" hreflang="yue" data-title="距離" data-language-autonym="粵語" data-language-local-name="Kantonesisch" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q126017#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 5. April 2024 um 08:11 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Abstand&project=de.wikipedia.org">Abrufstatistik</a> · <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Abstand?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Abstand&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-llpj7","wgBackendResponseTime":159,"wgPageParseReport":{"limitreport":{"cputime":"0.250","walltime":"0.461","ppvisitednodes":{"value":2362,"limit":1000000},"postexpandincludesize":{"value":19157,"limit":2097152},"templateargumentsize":{"value":5193,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":12945,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 175.513 1 -total"," 40.62% 71.285 3 Vorlage:Internetquelle"," 30.93% 54.284 1 Vorlage:Commonscat"," 18.09% 31.745 2 Vorlage:Wikidata-Registrierung"," 4.64% 8.138 1 Vorlage:Wiktionary"," 4.58% 8.046 4 Vorlage:Hauptartikel"," 4.39% 7.711 1 Vorlage:Normdaten"," 3.90% 6.853 1 Vorlage:Begriffsklärungshinweis"," 3.25% 5.700 1 Vorlage:Str_left"," 3.13% 5.496 2 Vorlage:Hinweisbaustein"]},"scribunto":{"limitreport-timeusage":{"value":"0.049","limit":"10.000"},"limitreport-memusage":{"value":3083872,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-lzkns","timestamp":"20241122015932","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Abstand","url":"https:\/\/de.wikipedia.org\/wiki\/Abstand","sameAs":"http:\/\/www.wikidata.org\/entity\/Q126017","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q126017","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-05-07T15:01:09Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3d\/01_Abstand_zweier_Punkte.svg","headline":"L\u00e4nge einer gradlinigen Strecke, die zwei Punkte verbindet"}</script> </body> </html>