CINXE.COM

Search results for: groundwater flow modeling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: groundwater flow modeling</title> <meta name="description" content="Search results for: groundwater flow modeling"> <meta name="keywords" content="groundwater flow modeling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="groundwater flow modeling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="groundwater flow modeling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8655</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: groundwater flow modeling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8655</span> Using Groundwater Modeling System to Create a 3-D Groundwater Flow and Solute Transport Model for a Semiarid Region: A Case Study of the Nadhour Saouaf Sisseb El Alem Aquifer, Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emna%20Bahri%20Hammami">Emna Bahri Hammami</a>, <a href="https://publications.waset.org/abstracts/search?q=Zammouri%20Mounira"> Zammouri Mounira</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarhouni%20Jamila"> Tarhouni Jamila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nadhour Saouaf Sisseb El Alem (NSSA) system comprises some of the most intensively exploited aquifers in central Tunisia. Since the 1970s, the growth in economic productivity linked to intensive agriculture in this semiarid region has been sustained by increasing pumping rates of the system’s groundwater. Exploitation of these aquifers has increased rapidly, ultimately causing their depletion. With the aim to better understand the behavior of the aquifer system and to predict its evolution, the paper presents a finite difference model of the groundwater flow and solute transport. The model is based on the Groundwater Modeling System (GMS) and was calibrated using data from 1970 to 2010. Groundwater levels observed in 1970 were used for the steady-state calibration. Groundwater levels observed from 1971 to 2010 served to calibrate the transient state. The impact of pumping discharge on the evolution of groundwater levels was studied through three hypothetical pumping scenarios. The first two scenarios replicated the approximate drawdown in the aquifer heads (about 17 m in scenario 1 and 23 m in scenario 2 in the center of NSSA) following an increase in pumping rates by 30% and 50% from their current values, respectively. In addition, pumping was stopped in the third scenario, which could increase groundwater reserves by about 7 Mm3/year. NSSA groundwater reserves could be improved considerably if the pumping rules were taken seriously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pumping" title="pumping">pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=depletion" title=" depletion"> depletion</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20modeling%20system%20GMS" title=" groundwater modeling system GMS"> groundwater modeling system GMS</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadhour%20Saouaf" title=" Nadhour Saouaf"> Nadhour Saouaf</a> </p> <a href="https://publications.waset.org/abstracts/67922/using-groundwater-modeling-system-to-create-a-3-d-groundwater-flow-and-solute-transport-model-for-a-semiarid-region-a-case-study-of-the-nadhour-saouaf-sisseb-el-alem-aquifer-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8654</span> Application of Numerical Modeling and Field Investigations for Groundwater Recharge Characterization at Abydos Archeological Site, Sohag, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20A.%20Abu%20El-Magd">Sherif A. Abu El-Magd</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Sefelnasr"> Ahmed M. Sefelnasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Masoud"> Ahmed M. Masoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater modeling is the way and tool for assessing and managing groundwater resources efficiently. The present work was carried out in the ancient Egyptian archeological site (Abydos) fromDynastyIandII.Theareaislocated about 13km west of the River Nilecourse, Upper Egypt. The main problem in this context is that the ground water level rise threatens and damages fragile carvings and paintings of the ancient buildings. The main objective of the present work is to identify the sources of the groundwater recharge in the site, further more, equally important there is to control the ground water level rise. Numerical modeling combined with field water level measurements was implemented to understand the ground water recharge sources. However, building a conceptual model was an important step in the groundwater modeling to phase to satisfy the modeling objectives. Therefore, boreholes, crosssections, and a high-resolution digital elevation model were used to construct the conceptual model. To understand the hydrological system in the site, the model was run under both steady state and transient conditions. Then, the model was calibrated agains the observation of the water level measurements. Finally, the results based on the modeling indicated that the groundwater recharge is originating from an indirect flow path mainly from the southeast. Besides, there is a hydraulic connection between the surface water and groundwater in the study site. The decision-makers and archeologyists could consider the present work to understand the behavior of groundwater recharge and water table level rise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=archeological%20site" title=" archeological site"> archeological site</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20recharge" title=" groundwater recharge"> groundwater recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=egypt" title=" egypt"> egypt</a> </p> <a href="https://publications.waset.org/abstracts/153884/application-of-numerical-modeling-and-field-investigations-for-groundwater-recharge-characterization-at-abydos-archeological-site-sohag-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8653</span> Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buruk%20Kitachew%20Wossenyeleh">Buruk Kitachew Wossenyeleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ter%20Kamerenbos" title="Ter Kamerenbos">Ter Kamerenbos</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20modelling" title=" groundwater modelling"> groundwater modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=WetSpass" title=" WetSpass"> WetSpass</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20operation" title=" well operation"> well operation</a> </p> <a href="https://publications.waset.org/abstracts/118081/characterization-and-modelling-of-groundwater-flow-towards-a-public-drinking-water-well-field-a-case-study-of-ter-kamerenbos-well-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8652</span> A Plan of Smart Management for Groundwater Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Chen">Jennifer Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei%20Y.%20Hsu"> Pei Y. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20W.%20Chen"> Yu W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater resources play a vital role in regional water supply because over 1/3 of total demand is satisfied by groundwater resources. Because over-pumpage might cause environmental impact such as land subsidence, a sustainable management of groundwater resource is required. In this study, a blueprint of smart management for groundwater resource is proposed and planned. The framework of the smart management can be divided into two major parts, hardware and software parts. First, an internet of groundwater (IoG) which is inspired by the internet of thing (IoT) is proposed to observe the migration of groundwater usage and the associated response, groundwater levels. Second, algorithms based on data mining and signal analysis are proposed to achieve the goal of providing highly efficient management of groundwater. The entire blueprint is a 4-year plan and this year is the first year. We have finished the installation of 50 flow meters and 17 observation wells. An underground hydrological model is proposed to determine the associated drawdown caused by the measured pumpages. Besides, an alternative to the flow meter is also proposed to decrease the installation cost of IoG. An accelerometer and 3G remote transmission are proposed to detect the on and off of groundwater pumpage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20management" title="groundwater management">groundwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20groundwater" title=" internet of groundwater"> internet of groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20hydrological%20model" title=" underground hydrological model"> underground hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20of%20flow%20meter" title=" alternative of flow meter"> alternative of flow meter</a> </p> <a href="https://publications.waset.org/abstracts/84970/a-plan-of-smart-management-for-groundwater-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8651</span> Impact of Lined/Unlined Canal on Groundwater Recharge in the Lower Bhavani Basin, Tamilnadu, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Mirudhula">K. Mirudhula</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Saravanan"> R. Saravanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bhavani basin is the fourth largest Sub Basin in the Cauvery basin. The entire command area of all three major canals that takes off from the Bhavani river falls within the Erode District i.e. Lower Bhavani Project (LBP), Kodiveri and Kalingarayan canals. The LBP canal is a major source of irrigation in Erode District. Many of these canals are unlined and leakage takes place from them. Thus the seepage from the canal helps in recharging the wells in the area, enabling to get adequate water supply for the crops when water was not released from Bhavanisagar Dam. In this study, the groundwater recharge is determined by groundwater flow modeling using Visual MODFLOW model. For this purpose, three major natural sources of groundwater recharge are taken into consideration such as rainfall infiltration, canal seepage and return flow of irrigation. The model was run and ZONEBUDGET gives an idea about the amount of recharge from lined/unlined canal to the field. Unlined canal helps to recharge the groundwater about 20% more than the lined canal. The analysis reveals that the annual rainfall also has rapidly changed in this region. In the LBP canal Head reach meets their requirement with available quantity of water from the canal system. Tail end reach does not receive the required quantity of water because of seepage loss and conveyance loss. Hence the lined canal can be provided for full length of the main canal. Branch canals and minor distributaries are suggested to maintain the canals with unlined canal system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lower%20Bhavani%20basin" title="lower Bhavani basin">lower Bhavani basin</a>, <a href="https://publications.waset.org/abstracts/search?q=erode" title=" erode"> erode</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling" title=" groundwater flow modeling"> groundwater flow modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20practice" title=" irrigation practice"> irrigation practice</a>, <a href="https://publications.waset.org/abstracts/search?q=lined%20canal%20system" title=" lined canal system"> lined canal system</a> </p> <a href="https://publications.waset.org/abstracts/23156/impact-of-linedunlined-canal-on-groundwater-recharge-in-the-lower-bhavani-basin-tamilnadu-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8650</span> Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Credoz">Anthony Credoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Nief"> Nathalie Nief</a>, <a href="https://publications.waset.org/abstracts/search?q=Remy%20Hedacq"> Remy Hedacq</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Jordana"> Salvador Jordana</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20%20Cazes"> Laurent Cazes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characterization" title="dynamic characterization">dynamic characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flow" title=" groundwater flow"> groundwater flow</a>, <a href="https://publications.waset.org/abstracts/search?q=lab-scale" title=" lab-scale"> lab-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flux" title=" mass flux"> mass flux</a> </p> <a href="https://publications.waset.org/abstracts/85174/dynamic-characterization-of-shallow-aquifer-groundwater-a-lab-scale-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8649</span> Modeling of Sand Boil near the Danube River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edina%20Koch">Edina Koch</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C3%A1roly%20Gomb%C3%A1s"> Károly Gombás</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1rton%20Maller"> Márton Maller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Little Plain is located along the Danube river, and this area is a “hotbed” of sand boil formation. This is due to the combination of a 100-250 m thick gravel layer beneath the Little Plain with a relatively thin blanket of poor soil spreading the gravel with variable thickness. Sand boils have a tradition and history in this area. It was possible to know which sand boil started and stopped working at what water level, and some of them even have names. The authors present a 2D finite element model of groundwater flow through a selected cross-section of the Danube river, which observed activation of piping phenomena during the 2013 flood event. Soil parametrization is based on a complex site investigation program conducted along the Danube River in the Little Plain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=site%20characterization" title="site characterization">site characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flow" title=" groundwater flow"> groundwater flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20boil" title=" sand boil"> sand boil</a> </p> <a href="https://publications.waset.org/abstracts/145545/modeling-of-sand-boil-near-the-danube-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8648</span> Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emery%20A.%20Coppola%20Jr.">Emery A. Coppola Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Suna%20Cinar"> Suna Cinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferenc%20Szidarovszky"> Ferenc Szidarovszky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20groundwater%20flow%20modeling" title="numerical groundwater flow modeling">numerical groundwater flow modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management%20optimization" title=" water management optimization"> water management optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20overdraft" title=" groundwater overdraft"> groundwater overdraft</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow%20depletion" title=" streamflow depletion"> streamflow depletion</a> </p> <a href="https://publications.waset.org/abstracts/58470/optimizing-groundwater-pumping-for-a-complex-groundwatersurface-water-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8647</span> Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dua%20K.%20S.%20Y.%20Klaas">Dua K. S. Y. Klaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monzur%20A.%20Imteaz"> Monzur A. Imteaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ika%20Sudiayem"> Ika Sudiayem</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkan%20M.%20E.%20Klaas"> Elkan M. E. Klaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Eldav%20C.%20M.%20Klaas"> Eldav C. M. Klaas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonate%20aquifer" title="carbonate aquifer">carbonate aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=karst" title=" karst"> karst</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-surface%20flow" title=" sub-surface flow"> sub-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20model" title=" groundwater model"> groundwater model</a> </p> <a href="https://publications.waset.org/abstracts/98218/study-of-sub-surface-flow-in-an-unconfined-carbonate-aquifer-in-a-tropical-karst-area-in-indonesia-a-modeling-approach-using-finite-difference-groundwater-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8646</span> Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emery%20Coppola%20Jr.">Emery Coppola Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Sadat"> Marwan Sadat</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Kim"> Il Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Diane%20Trube"> Diane Trube</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kurisko"> Richard Kurisko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20and%20contaminant%20transport%20modeling" title="groundwater flow and contaminant transport modeling">groundwater flow and contaminant transport modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%2Fsurface%20water%20interaction" title=" groundwater/surface water interaction"> groundwater/surface water interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20quality%20modeling" title=" surface water quality modeling"> surface water quality modeling</a> </p> <a href="https://publications.waset.org/abstracts/58502/modeling-the-effects-of-leachate-impacted-groundwater-on-the-water-quality-of-a-large-tidal-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8645</span> Hydrogeochemistry Preliminary Study of Groundwater Conservation in Buton Island, Southeast Sulawesi, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20M.%20Prahastomi">M. S. M. Prahastomi</a>, <a href="https://publications.waset.org/abstracts/search?q=Riki%20Sunaryo"> Riki Sunaryo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorasa%20Ximanes"> Lorasa Ximanes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research takes place in EP Area, in the Northern part of Buton, Southeast Sulawesi Province, Indonesia. It is one example of karst areas that have good water resources potential. The landscape is in the form of valleys and hills which is good enough for recharge zone and discharge zones of groundwater. However, the geological characteristics of karst dissolution and a complex geological structure are quite influential to the groundwater flow system in the region. The Discharge of groundwater to the surface can be caused by a fracture in the rock, Underground River due to dissolution, and the contact between permeable rocks with impermeable rocks. In the concept of hydrogeology, groundwater is one of the components of the hydrological cycle which is closely linked to the availability of water under the surface, precipitation, infiltration, percolation, evapotranspiration, and surface runoff. Conceptually, the condition of recharge and discharge areas can be identified through a research distribution springs in a region. The understanding of the condition and the nature of the potential catchment area of groundwater flow, mainly from the catchment area to the discharge area, is urgently needed. This research aimed to assess the general geological conditions of the study area, which is expected to provide an overview of groundwater flow events that used by the public as well as industry. Behavioral characteristics of groundwater become an integral part in the search for potential groundwater in the study area. As for the research methods used hydrogeology mapping and laboratory works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buton%20Island" title="Buton Island">Buton Island</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20conservation" title=" groundwater conservation"> groundwater conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeochemistry%20preliminary" title=" hydrogeochemistry preliminary"> hydrogeochemistry preliminary</a>, <a href="https://publications.waset.org/abstracts/search?q=karst" title=" karst "> karst </a> </p> <a href="https://publications.waset.org/abstracts/1412/hydrogeochemistry-preliminary-study-of-groundwater-conservation-in-buton-island-southeast-sulawesi-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8644</span> On the Application and Comparison of Two Geostatistics Methods in the Parameterisation Step to Calibrate Groundwater Model: Grid-Based Pilot Point and Head-Zonation Based Pilot Point Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dua%20K.%20S.%20Y.%20Klaas">Dua K. S. Y. Klaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monzur%20A.%20Imteaz"> Monzur A. Imteaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ika%20Sudiayem"> Ika Sudiayem</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkan%20M.%20E.%20Klaas"> Elkan M. E. Klaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Eldav%20C.%20M.%20Klaas"> Eldav C. M. Klaas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Properly selecting the most suitable and effective geostatistics method in the parameterization step of groundwater modeling is critical to attain a satisfactory model. In this paper, two geostatistics methods, i.e., Grid-Based Pilot Point (GB-PP) and Head-Zonation Based Pilot Point (HZB-PP) methods, were applied in an eogenetic karst catchment and compared using as model performances and computation time the criteria. Overall, the results show that appropriate selection of method is substantial in the parameterization of physically-based groundwater models, as it influences both the accuracy and simulation times. It was found that GB-PP method performed comparably superior to HZB-PP method. However, reflecting its model performances, HZB-PP method is promising for further application in groundwater modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20model" title="groundwater model">groundwater model</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistics" title=" geostatistics"> geostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot%20point" title=" pilot point"> pilot point</a>, <a href="https://publications.waset.org/abstracts/search?q=parameterization%20step" title=" parameterization step"> parameterization step</a> </p> <a href="https://publications.waset.org/abstracts/98227/on-the-application-and-comparison-of-two-geostatistics-methods-in-the-parameterisation-step-to-calibrate-groundwater-model-grid-based-pilot-point-and-head-zonation-based-pilot-point-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8643</span> Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Balla%20Elkrail">Adil Balla Elkrail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquifers" title="aquifers">aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20simulation" title=" model simulation"> model simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=calibrations" title=" calibrations"> calibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=trail-and-%20error" title=" trail-and- error"> trail-and- error</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/45571/groundwater-flow-assessment-based-on-numerical-simulation-at-omdurman-area-khartoum-state-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8642</span> Groundwater Level Modelling by ARMA and PARMA Models (Case Study: Qorveh Aquifer)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motalleb%20Byzedi">Motalleb Byzedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Chaman%20Naderi%20Korvandan"> Seyedeh Chaman Naderi Korvandan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regarding annual statistics of groundwater level resources about current piezometers at Qorveh plains, both ARMA & PARMA modeling methods were applied in this study by the using of SAMS software. Upon performing required tests, a model was used with minimum amount of Akaike information criteria and suitable model was selected for piezometers. Then it was possible to make necessary estimations by using these models for future fluctuations in each piezometer. According to the results, ARMA model had more facilities for modeling of aquifer. Also it was cleared that eastern parts of aquifer had more failures than other parts. Therefore it is necessary to prohibit critical parts along with more supervision on taking rates of wells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=qorveh%20plain" title="qorveh plain">qorveh plain</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20level" title=" groundwater level"> groundwater level</a>, <a href="https://publications.waset.org/abstracts/search?q=ARMA" title=" ARMA"> ARMA</a>, <a href="https://publications.waset.org/abstracts/search?q=PARMA" title=" PARMA "> PARMA </a> </p> <a href="https://publications.waset.org/abstracts/33848/groundwater-level-modelling-by-arma-and-parma-models-case-study-qorveh-aquifer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8641</span> Quantitative Analysis of Nutrient Inflow from River and Groundwater to Imazu Bay in Fukuoka, Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keisuke%20Konishi">Keisuke Konishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshinari%20Hiroshiro"> Yoshinari Hiroshiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kento%20Terashima"> Kento Terashima</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Tsutsumi"> Atsushi Tsutsumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imazu Bay plays an important role for endangered species such as horseshoe crabs and black-faced spoonbills that stay in the bay for spawning or the passing of winter. However, this bay is semi-enclosed with slow water exchange, which could lead to eutrophication under the condition of excess nutrient inflow to the bay. Therefore, quantification of nutrient inflow is of great importance. Generally, analysis of nutrient inflow to the bays takes into consideration nutrient inflow from only the river, but that from groundwater should not be ignored for more accurate results. The main objective of this study is to estimate the amounts of nutrient inflow from river and groundwater to Imazu Bay by analyzing water budget in Zuibaiji River Basin and loads of T-N, T-P, NO3-N and NH4-N. The water budget computation in the basin is performed using groundwater recharge model and quasi three-dimensional two-phase groundwater flow model, and the multiplication of the measured amount of nutrient inflow with the computed discharge gives the total amount of nutrient inflow to the bay. In addition, in order to evaluate nutrient inflow to the bay, the result is compared with nutrient inflow from geologically similar river basins. The result shows that the discharge is 3.50&times;107 m3/year from the river and 1.04&times;107 m3/year from groundwater. The submarine groundwater discharge accounts for approximately 23 % of the total discharge, which is large compared to the other river basins. It is also revealed that the total nutrient inflow is not particularly large. The sum of NO3-N and NH4-N loadings from groundwater is less than 10 % of that from the river because of denitrification in groundwater. The Shin Seibu Sewage Treatment Plant located below the observation points discharges treated water of 15,400 m3/day and plans to increase it. However, the loads of T-N and T-P from the treatment plant are 3.9 mg/L and 0.19 mg/L, so that it does not contribute a lot to eutrophication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eutrophication" title="Eutrophication">Eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20recharge%20model" title=" groundwater recharge model"> groundwater recharge model</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20inflow" title=" nutrient inflow"> nutrient inflow</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi%20three-dimensional%20two-phase%20groundwater%20flow%20model" title=" quasi three-dimensional two-phase groundwater flow model"> quasi three-dimensional two-phase groundwater flow model</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20groundwater%20discharge" title=" submarine groundwater discharge "> submarine groundwater discharge </a> </p> <a href="https://publications.waset.org/abstracts/48578/quantitative-analysis-of-nutrient-inflow-from-river-and-groundwater-to-imazu-bay-in-fukuoka-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8640</span> Mapping of Potential Areas for Groundwater Storage in the Sais Plateau and Its Middle Atlas Borders, Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Qadem">Abdelghani Qadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohair%20Qadem"> Zohair Qadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Lasri"> Mohamed Lasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the level of the Moroccan Sais Plateau, groundwater constitutes strategic natural resources for agricultural, industrial, and domestic use. Today, due to climate change and population growth, the pressure on groundwater has increased considerably. This contribution aims to delineate and map potential areas for groundwater storage in the area in question using GIS and remote sensing. The methodology adopted is based on the identification of the thematic layers used to assess the potential recharge of the aquifer. The mapping of potential areas for groundwater storage is developed through the method of modeling and weighted overlay using the spatial analysis tool on the Geographic Information System. The results obtained can be used for the planning of future artificial recharge projects in the study area in order to ensure the good sustainable use of this underground gift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morocco" title="Morocco">Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge" title=" recharge"> recharge</a> </p> <a href="https://publications.waset.org/abstracts/165794/mapping-of-potential-areas-for-groundwater-storage-in-the-sais-plateau-and-its-middle-atlas-borders-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8639</span> Hydrodynamic Modeling of the Hydraulic Threshold El Haouareb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebai%20Amal">Sebai Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Massuel%20Sylvain"> Massuel Sylvain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is the key element of the development of most of the semi-arid areas where water resources are increasingly scarce due to an irregularity of precipitation, on the one hand, and an increasing demand on the other hand. This is the case of the watershed of the Central Tunisia Merguellil, object of the present study, which focuses on an implementation of an underground flows hydrodynamic model to understand the recharge processes of the Kairouan’s plain groundwater by aquifers boundary through the hydraulic threshold of El Haouareb. The construction of a conceptual geological 3D model by the Hydro GeoBuilder software has led to a definition of the aquifers geometry in the studied area thanks to the data acquired by the analysis of geologic sections of drilling and piezometers crossed shells partially or in full. Overall analyses of the piezometric Chronicles of different piezometers located at the level of the dam indicate that the influence of the dam is felt especially in the aquifer carbonate which confirms that the dynamics of this aquifer are highly correlated to the dam’s dynamic. Groundwater maps, high and low-water dam, show a flow that moves towards the threshold of El Haouareb to the discharge of the waters of Ain El Beidha discharge towards the plain of Kairouan. Software FEFLOW 5.2 steady hydrodynamic modeling to simulate the hydraulic threshold at the level of the dam El Haouareb in a satisfactory manner. However, the sensitivity study to the different parameters shows equivalence problems and a fix to calibrate the limestones’ permeability. This work could be improved by refining the timing steady and amending the representation of limestones in the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hydrodynamic%20modeling" title="Hydrodynamic modeling">Hydrodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=lithological%20modeling" title=" lithological modeling"> lithological modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic" title=" hydraulic"> hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-arid" title=" semi-arid"> semi-arid</a>, <a href="https://publications.waset.org/abstracts/search?q=merguellil" title=" merguellil"> merguellil</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20Tunisia" title=" central Tunisia"> central Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/27992/hydrodynamic-modeling-of-the-hydraulic-threshold-el-haouareb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">764</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8638</span> Characterization of Aquifer Systems and Identification of Potential Groundwater Recharge Zones Using Geospatial Data and Arc GIS in Kagandi Water Supply System Well Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aijuka%20Nicholas">Aijuka Nicholas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A research study was undertaken to characterize the aquifers and identify the potential groundwater recharge zones in the Kagandi district. Quantitative characterization of hydraulic conductivities of aquifers is of fundamental importance to the study of groundwater flow and contaminant transport in aquifers. A conditional approach is used to represent the spatial variability of hydraulic conductivity. Briefly, it involves using qualitative and quantitative geologic borehole-log data to generate a three-dimensional (3D) hydraulic conductivity distribution, which is then adjusted through calibration of a 3D groundwater flow model using pumping-test data and historic hydraulic data. The approach consists of several steps. The study area was divided into five sub-watersheds on the basis of artificial drainage divides. A digital terrain model (DTM) was developed using Arc GIS to determine the general drainage pattern of Kagandi watershed. Hydrologic characterization involved the determination of the various hydraulic properties of the aquifers. Potential groundwater recharge zones were identified by integrating various thematic maps pertaining to the digital elevation model, land use, and drainage pattern in Arc GIS and Sufer golden software. The study demonstrates the potential of GIS in delineating groundwater recharge zones and that the developed methodology will be applicable to other watersheds in Uganda. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquifers" title="aquifers">aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=Arc%20GIS" title=" Arc GIS"> Arc GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20recharge" title=" groundwater recharge"> groundwater recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge%20zones" title=" recharge zones"> recharge zones</a> </p> <a href="https://publications.waset.org/abstracts/118338/characterization-of-aquifer-systems-and-identification-of-potential-groundwater-recharge-zones-using-geospatial-data-and-arc-gis-in-kagandi-water-supply-system-well-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8637</span> Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wondmyibza%20Tsegaye%20Bayou">Wondmyibza Tsegaye Bayou</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20C.%20Nonner"> Johannes C. Nonner</a>, <a href="https://publications.waset.org/abstracts/search?q=Joost%20Heijkers"> Joost Heijkers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20seepage" title="groundwater seepage">groundwater seepage</a>, <a href="https://publications.waset.org/abstracts/search?q=phreatic%20water%20table" title=" phreatic water table"> phreatic water table</a>, <a href="https://publications.waset.org/abstracts/search?q=piezometric%20water%20level" title=" piezometric water level"> piezometric water level</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20reserve" title=" nature reserve"> nature reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=Zegveld" title=" Zegveld"> Zegveld</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Netherlands" title=" The Netherlands"> The Netherlands</a> </p> <a href="https://publications.waset.org/abstracts/171496/estimating-groundwater-seepage-rates-case-study-at-zegveld-netherlands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8636</span> Statistical and Analytical Comparison of GIS Overlay Modelings: An Appraisal on Groundwater Prospecting in Precambrian Metamorphics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Acharya">Tapas Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Mitra"> Monalisa Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overlay modeling is the most widely used conventional analysis for spatial decision support system. Overlay modeling requires a set of themes with different weightage computed in varied manners, which gives a resultant input for further integrated analysis. In spite of the popularity and most widely used technique; it gives inconsistent and erroneous results for similar inputs while processed in various GIS overlay techniques. This study is an attempt to compare and analyse the differences in the outputs of different overlay methods using GIS platform with same set of themes of the Precambrian metamorphic to obtain groundwater prospecting in Precambrian metamorphic rocks. The objective of the study is to emphasize the most suitable overlay method for groundwater prospecting in older Precambrian metamorphics. Seven input thematic layers like slope, Digital Elevation Model (DEM), soil thickness, lineament intersection density, average groundwater table fluctuation, stream density and lithology have been used in the spatial overlay models of fuzzy overlay, weighted overlay and weighted sum overlay methods to yield the suitable groundwater prospective zones. Spatial concurrence analysis with high yielding wells of the study area and the statistical comparative studies among the outputs of various overlay models using RStudio reveal that the Weighted Overlay model is the most efficient GIS overlay model to delineate the groundwater prospecting zones in the Precambrian metamorphic rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20overlay" title="fuzzy overlay">fuzzy overlay</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20overlay%20model" title=" GIS overlay model"> GIS overlay model</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20prospecting" title=" groundwater prospecting"> groundwater prospecting</a>, <a href="https://publications.waset.org/abstracts/search?q=Precambrian%20metamorphics" title=" Precambrian metamorphics"> Precambrian metamorphics</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20overlay" title=" weighted overlay"> weighted overlay</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20sum%20overlay" title=" weighted sum overlay "> weighted sum overlay </a> </p> <a href="https://publications.waset.org/abstracts/119978/statistical-and-analytical-comparison-of-gis-overlay-modelings-an-appraisal-on-groundwater-prospecting-in-precambrian-metamorphics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8635</span> Groundwater Flow Dynamics in Shallow Coastal Plain Sands Aquifer, Abesan Area, Eastern Dahomey Basin, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Joseph">Anne Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinusa%20Asiwaju-Bello"> Yinusa Asiwaju-Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwaseun%20Olabode"> Oluwaseun Olabode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable administration of groundwater resources tapped in Coastal Plain Sands aquifer in Abesan area, Eastern Dahomey Basin, Southwestern Nigeria necessitates the knowledge of the pattern of groundwater flow in meeting a suitable environmental need for habitation. Thirty hand-dug wells were identified and evaluated to study the groundwater flow dynamics and anionic species distribution in the study area. Topography and water table levels method with the aid of Surfer were adopted in the identification of recharge and discharge zones where six recharge and discharge zones were delineated correspondingly. Dissolved anionic species of HCO3-, Cl-, SO42-and NO3- were determined using titrimetric and spectrophotometric method. The trend of significant anionic concentrations of groundwater samples are in the order Cl- > HCO3-> SO42- > NO3-. The prominent anions in the discharge and recharge area are Cl- and HCO3- ranging from 0.22ppm to 3.67ppm and 2.59ppm to 0.72ppm respectively. Analysis of groundwater head distribution and the groundwater flow vector in Abesan area confirmed that Cl- concentration is higher than HCO3- concentration in recharge zones. Conversely, there is a high concentration of HCO3- than Cl- inland towards the continent; therefore, HCO3-concentration in the discharge zones is higher than the Cl- concentration. The anions were to be closely related to the recharge and discharge areas which were confirmed by comparison of activities such as rainfall regime and anthropogenic activities in Abesan area. A large percentage of the samples showed that HCO3-, Cl-, SO42-and NO3- falls within the permissible limit of the W.H.O standard. Most of the samples revealed Cl- / (CO3- + HCO3-) ratio higher than 0.5 indicating that there is saltwater intrusion imprints in the groundwater of the study area. Gibbs plot shown that most of the samples is from rock dominance, some from evaporation dominance and few from precipitation dominance. Potential salinity and SO42/ Cl- ratios signifies that most of the groundwater in Abesan is saline and falls in a water class found to be insuitable for irrigation. Continuous dissolution of these anionic species may pose a significant threat to the inhabitants of Abesan area in the nearest future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abessan" title="Abessan">Abessan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anionic%20species" title=" Anionic species"> Anionic species</a>, <a href="https://publications.waset.org/abstracts/search?q=Discharge" title=" Discharge"> Discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=Groundwater%20flow" title=" Groundwater flow"> Groundwater flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Recharge" title=" Recharge"> Recharge</a> </p> <a href="https://publications.waset.org/abstracts/123036/groundwater-flow-dynamics-in-shallow-coastal-plain-sands-aquifer-abesan-area-eastern-dahomey-basin-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8634</span> Groundwater Monitoring Using a Community: Science Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shobha%20Kumari%20Yadav">Shobha Kumari Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Yubaraj%20Satyal"> Yubaraj Satyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajaya%20Dixit"> Ajaya Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citizen%20science" title="citizen science">citizen science</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title=" water resource management"> water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a> </p> <a href="https://publications.waset.org/abstracts/45352/groundwater-monitoring-using-a-community-science-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8633</span> Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esubalew%20Yehualaw%20Melaku">Esubalew Yehualaw Melaku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20electrical%20sounding" title="vertical electrical sounding">vertical electrical sounding</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20survey" title=" magnetic survey"> magnetic survey</a>, <a href="https://publications.waset.org/abstracts/search?q=aquifer" title=" aquifer"> aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20potential" title=" groundwater potential"> groundwater potential</a> </p> <a href="https://publications.waset.org/abstracts/158684/geophysical-mapping-of-the-groundwater-aquifer-system-in-gode-area-northeastern-hosanna-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8632</span> Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%C3%AFssa%20Rezzoug">Aïssa Rezzoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20rise" title=" groundwater rise"> groundwater rise</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeddah" title=" Jeddah"> Jeddah</a>, <a href="https://publications.waset.org/abstracts/search?q=tide" title=" tide"> tide</a> </p> <a href="https://publications.waset.org/abstracts/127467/tide-contribution-in-the-flood-event-of-jeddah-city-mathematical-modelling-and-different-field-measurements-of-the-groundwater-rise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8631</span> Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victorita%20Radulescu">Victorita Radulescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title="environmental protection">environmental protection</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltrations" title=" infiltrations"> infiltrations</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20transport%20through%20soils" title=" pollutant transport through soils"> pollutant transport through soils</a> </p> <a href="https://publications.waset.org/abstracts/89215/method-for-controlling-the-groundwater-polluted-by-the-surface-waters-through-injection-wells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8630</span> Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nejmeddine%20Ouhichi">Nejmeddine Ouhichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Lachaal"> Fethi Lachaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhouane%20Hamdi"> Radhouane Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Grunberger"> Olivier Grunberger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leakage" title="leakage">leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=MODFLOW" title=" MODFLOW"> MODFLOW</a>, <a href="https://publications.waset.org/abstracts/search?q=saltwater%20intrusion" title=" saltwater intrusion"> saltwater intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water-groundwater%20interaction" title=" surface water-groundwater interaction"> surface water-groundwater interaction</a> </p> <a href="https://publications.waset.org/abstracts/134538/localized-recharge-modeling-of-a-coastal-aquifer-from-a-dam-reservoir-korba-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8629</span> Development of Groundwater Management Model Using Groundwater Sustainability Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Rwanga">S. S. Rwanga</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ndambuki"> J. M. Ndambuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Woyessa"> Y. Woyessa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20sustainability%20index" title=" groundwater sustainability index"> groundwater sustainability index</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a> </p> <a href="https://publications.waset.org/abstracts/94516/development-of-groundwater-management-model-using-groundwater-sustainability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8628</span> Geophysical Methods of Mapping Groundwater Aquifer System: Perspectives and Inferences From Lisana Area, Western Margin of the Central Main Ethiopian Rift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esubalew%20Yehualaw%20Melaku">Esubalew Yehualaw Melaku</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigistu%20Haile%20Eritro"> Tigistu Haile Eritro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Lisana area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20electrical%20sounding" title="vertical electrical sounding">vertical electrical sounding</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20survey" title=" magnetic survey"> magnetic survey</a>, <a href="https://publications.waset.org/abstracts/search?q=aquifer" title=" aquifer"> aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20potential" title=" groundwater potential"> groundwater potential</a> </p> <a href="https://publications.waset.org/abstracts/165500/geophysical-methods-of-mapping-groundwater-aquifer-system-perspectives-and-inferences-from-lisana-area-western-margin-of-the-central-main-ethiopian-rift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8627</span> Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modreck%20Gomo">Modreck Gomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO<sub>3</sub> hydrochemical facie while fractured-rock aquifer has a Ca-HCO<sub>3</sub> facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca<sup>2+</sup> in the Ca-HCO<sub>3 </sub>hydrochemical type to result in the Na-HCO<sub>3</sub> hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alluvial%20aquifer" title="alluvial aquifer">alluvial aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=fractured-rock%20aquifer" title=" fractured-rock aquifer"> fractured-rock aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title=" groundwater quality"> groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeochemical%20processes" title=" hydrogeochemical processes"> hydrogeochemical processes</a> </p> <a href="https://publications.waset.org/abstracts/80304/assessment-of-groundwater-chemistry-and-quality-characteristics-in-an-alluvial-aquifer-and-a-single-plane-fractured-rock-aquifer-in-bloemfontein-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8626</span> CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Mohammadi">Faezeh Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Ebrahimi"> Ebrahim Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Azimi"> Neda Azimi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/102598/cfd-modeling-of-mixing-enhancement-in-a-pitted-micromixer-by-high-frequency-ultrasound-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=288">288</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=289">289</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20flow%20modeling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10