CINXE.COM
Search results for: bullet penetration
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bullet penetration</title> <meta name="description" content="Search results for: bullet penetration"> <meta name="keywords" content="bullet penetration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bullet penetration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bullet penetration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 579</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bullet penetration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Soni">Abhishek Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kumaraswamy"> A. Kumaraswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mahesh"> M. S. Mahesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%204340%20steel" title="AISI 4340 steel">AISI 4340 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impact%20simulation" title=" ballistic impact simulation"> ballistic impact simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bullet%20penetration" title=" bullet penetration"> bullet penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20FEM" title=" non-linear FEM"> non-linear FEM</a> </p> <a href="https://publications.waset.org/abstracts/82589/three-dimensional-non-linear-finite-element-analysis-of-bullet-penetration-through-thin-aisi-4340-steel-target-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eunsu%20Jang">Eunsu Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Park"> Kang Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20parameters" title=" input parameters"> input parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20depth" title=" penetration depth"> penetration depth</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/37020/accurate-calculation-of-the-penetration-depth-of-a-bullet-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> The Magic Bullet in Africa: Exploring an Alternative Theoretical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Nkrumah">Daniel Nkrumah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Magic Bullet theory was a popular media effect theory that defined the power of the mass media in altering beliefs and perceptions of its audiences. However, following the People's Choice study, the theory was said to have been disproved and was supplanted by the Two-Step Flow Theory. This paper examines the relevance of the Magic Bullet theory in Africa and establishes whether it is still relevant in Africa's media spaces and societies. Using selected cases on the continent, it adopts a grounded theory approach and explores a new theoretical model that attempts to enforce an argument that the Two-Step Flow theory though important and valid, was ill-conceived as a direct replacement to the Magic Bullet theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magic%20bullet%20theory" title="magic bullet theory">magic bullet theory</a>, <a href="https://publications.waset.org/abstracts/search?q=two-step%20flow%20theory" title=" two-step flow theory"> two-step flow theory</a>, <a href="https://publications.waset.org/abstracts/search?q=media%20effects" title=" media effects"> media effects</a>, <a href="https://publications.waset.org/abstracts/search?q=african%20media" title=" african media"> african media</a> </p> <a href="https://publications.waset.org/abstracts/168592/the-magic-bullet-in-africa-exploring-an-alternative-theoretical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabinder%20Singh%20Bharj">Rabinder Singh Bharj</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20energy" title="absorbed energy">absorbed energy</a>, <a href="https://publications.waset.org/abstracts/search?q=bullet%20proof%20glass" title=" bullet proof glass"> bullet proof glass</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20glass" title=" laminated glass"> laminated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20glass" title=" safety glass"> safety glass</a> </p> <a href="https://publications.waset.org/abstracts/6184/the-effect-of-size-thickness-and-type-of-the-bonding-interlayer-on-bullet-proof-glass-as-per-en-1063" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> On the Resilience of Operational Technology Devices in Penetration Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marko%20Schuba">Marko Schuba</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Kessels"> Florian Kessels</a>, <a href="https://publications.waset.org/abstracts/search?q=Niklas%20Reitz"> Niklas Reitz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operational technology (OT) controls physical processes in critical infrastructures and economically important industries. With the convergence of OT with classical information technology (IT), rising cybercrime worldwide and the increasingly difficult geopolitical situation, the risks of OT infrastructures being attacked are growing. Classical penetration testing, in which testers take on the role of an attacker, has so far found little acceptance in the OT sector - the risk that a penetration test could do more harm than good seems too great. This paper examines the resilience of various OT systems using typical penetration test tools. It is shown that such a test certainly involves risks, but is also feasible in OT if a cautious approach is taken. Therefore, OT penetration testing should be considered as a tool to improve the cyber security of critical infrastructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=penetration%20testing" title="penetration testing">penetration testing</a>, <a href="https://publications.waset.org/abstracts/search?q=OT" title=" OT"> OT</a>, <a href="https://publications.waset.org/abstracts/search?q=ICS" title=" ICS"> ICS</a>, <a href="https://publications.waset.org/abstracts/search?q=OT%20security" title=" OT security"> OT security</a> </p> <a href="https://publications.waset.org/abstracts/193449/on-the-resilience-of-operational-technology-devices-in-penetration-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwak">Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Gyung"> Hyo-Gyung</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang"> Gang</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Gul"> Han Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strain%20rate%20concrete" title="high strain rate concrete">high strain rate concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20simulation" title=" penetration simulation"> penetration simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20strain" title=" failure strain"> failure strain</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh-dependency" title=" mesh-dependency"> mesh-dependency</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20energy" title=" fracture energy"> fracture energy</a> </p> <a href="https://publications.waset.org/abstracts/18943/an-criterion-to-minimize-fe-mesh-dependency-in-concrete-plate-subjected-to-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> Numerical Study on the Effect of Spudcan Penetration on the Jacket Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangming%20Ge">Xiangming Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Pan"> Bing Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Chen"> Hao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Zhou"> Yong Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiayao%20Wu"> Jiayao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Weijiang%20Chu"> Weijiang Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> How the extraction and penetration of spudcan affect the performance of the adjacent pile foundation supporting the jacket platform was studied in the program FLAC3D depending on a wind farm project in Bohai sea. The simulations were conducted at the end of the spudcan penetration, which induced a pockmark in the seabed. The effects of the distance between the pile foundation and the pockmark were studied. The displacement at the mudline arose when the pockmark was closer. The bearing capacity of this jacket platform with deep pile foundations has been less influenced by the process of spudcan penetration, which can induce severe stresses on the pile foundation. The induced rotation was also satisfied with the rotation-controlling criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20foundation" title="offshore foundation">offshore foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=pile-soil%20interaction" title=" pile-soil interaction"> pile-soil interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=spudcan%20penetration" title="spudcan penetration">spudcan penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a> </p> <a href="https://publications.waset.org/abstracts/138911/numerical-study-on-the-effect-of-spudcan-penetration-on-the-jacket-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Svarnas">Panagiotis Svarnas</a>, <a href="https://publications.waset.org/abstracts/search?q=Polykarpos%20Papadopoulos"> Polykarpos Papadopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric-pressure%20plasmas" title="atmospheric-pressure plasmas">atmospheric-pressure plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric-barrier%20discharges" title=" dielectric-barrier discharges"> dielectric-barrier discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=schlieren%20photography" title=" schlieren photography"> schlieren photography</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-hydrodynamic%20force" title=" electro-hydrodynamic force"> electro-hydrodynamic force</a> </p> <a href="https://publications.waset.org/abstracts/98556/electro-hydrodynamic-effects-due-to-plasma-bullet-propagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Penetration Depth Study of Linear Siloxanes through Human Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Szymkowska">K. Szymkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mojsiewicz-%20Pie%C5%84kowska"> K. Mojsiewicz- Pieńkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20siloxanes" title="linear siloxanes">linear siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes" title=" methyl siloxanes"> methyl siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20permeation" title=" skin permeation"> skin permeation</a> </p> <a href="https://publications.waset.org/abstracts/47996/penetration-depth-study-of-linear-siloxanes-through-human-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Lubricating Grease from Waste Cooking Oil and Waste Motor Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aseem%20Rajvanshi">Aseem Rajvanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar%20Pandey"> Pankaj Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase in population has increased the demand of energy to fulfill all its needs. This will result in burden on fossil fuels especially crude oil. Waste oil due to its disposal problem creates environmental degradation. In this context, this paper studies utilization of waste cooking oil and waste motor sludge for making lubricating grease. Experimental studies have been performed by variation in time and concentration of mixture of waste cooking oil and waste motor sludge. The samples were analyzed using penetration test (ASTM D-217), dropping point (ASTM D-566), work penetration (ASTM D-217) and copper strip test (ASTM D-408). Among 6 samples, sample 6 gives the best results with a good drop point and a fine penetration value. The dropping point and penetration test values were found to be 205 °C and 315, respectively. The penetration value falls under the category of NLGI (National Lubricating Grease Institute) consistency number 1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20strip%20corrosion%20test" title=" copper strip corrosion test"> copper strip corrosion test</a>, <a href="https://publications.waset.org/abstracts/search?q=dropping%20point" title=" dropping point"> dropping point</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20test" title=" penetration test"> penetration test</a> </p> <a href="https://publications.waset.org/abstracts/55642/lubricating-grease-from-waste-cooking-oil-and-waste-motor-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nghizaderokni">M. Nghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Janalizadechobbasty"> A. Janalizadechobbasty</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azizi"> M. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naghizaderokni"> M. Naghizaderokni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20resistance" title=" standard penetration resistance "> standard penetration resistance </a> </p> <a href="https://publications.waset.org/abstracts/28944/the-evaluation-of-soil-liquefaction-potential-using-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kianoosh%20Samimi">Kianoosh Samimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Kamali-Bernard"> Siham Kamali-Bernard</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Maghsoudi"> Ali Akbar Maghsoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chloride%20penetration" title="Chloride penetration">Chloride penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=immersion" title=" immersion"> immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=pumice" title=" pumice"> pumice</a>, <a href="https://publications.waset.org/abstracts/search?q=HSSCC" title=" HSSCC"> HSSCC</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal" title=" tidal"> tidal</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/76212/resistance-to-chloride-penetration-of-high-strength-self-compacting-concretes-pumice-and-zeolite-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bullet%20train" title="bullet train">bullet train</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20wheels" title=" cylindrical wheels"> cylindrical wheels</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20hunting" title=" dynamical hunting"> dynamical hunting</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/96999/damping-and-stability-evaluation-for-the-dynamical-hunting-motion-of-the-bullet-train-wheel-axle-equipped-with-cylindrical-wheel-treads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wook%20Lee">Dong Wook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering" title="computer aided engineering">computer aided engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20analysis" title=" impact analysis"> impact analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20analysis" title=" penetration analysis"> penetration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a> </p> <a href="https://publications.waset.org/abstracts/133472/penetration-analysis-for-composites-applicable-to-military-vehicle-armors-aircraft-engines-and-nuclear-power-plant-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Investigating the Impact of the Laundry and Sterilization Process on the Performance of Reusable Surgical Gowns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Khomarloo">N. Khomarloo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mousazadegan"> F. Mousazadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Latifi"> M. Latifi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hemmatinejad"> N. Hemmatinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the utilization of reusable surgical gowns in order to decrease costs, environmental protection and enhance surgeon’s comfort is considered. One of the concerns in applying this kind of medical protective clothing is reduction of their resistance to bacterial penetration especially in wet state, after repeated laundering and sterilizing process. The purpose of this study is to investigate the effect of the laundering and sterilizing process on the reusable surgical gown’s resistance against bacterial wet penetration. To this end, penetration of Staphylococcus aureus bacteria in wet state after 70 washing and sterilizing cycles was evaluated on the two single-layer and three-layer reusable gowns. The outcomes reveal that up to 20 laundering and sterilizing cycles, protective property of samples improves due to fabric shrinkage, after that because of the fabric’s construction opening, the bacterial penetration increase. However, the three-layer gown presents higher protective performance comparing to the single-layer one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laundry" title="laundry">laundry</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20surgical%20gown" title=" reusable surgical gown"> reusable surgical gown</a>, <a href="https://publications.waset.org/abstracts/search?q=sterilization" title=" sterilization"> sterilization</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20bacterial%20penetration" title=" wet bacterial penetration"> wet bacterial penetration</a> </p> <a href="https://publications.waset.org/abstracts/87644/investigating-the-impact-of-the-laundry-and-sterilization-process-on-the-performance-of-reusable-surgical-gowns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Effects of Turbulence Penetration on Valve Leakage in Nuclear Reactor Coolant System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gupta%20Rajesh">Gupta Rajesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Paudel%20Sagar"> Paudel Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%20Utkarsh"> Sharma Utkarsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Singh%20Amit%20Kumar"> Singh Amit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal stratification has drawn much attention because of the malfunctions at various nuclear plants in U.S.A that raised significant safety concerns. The concerns due to this phenomenon relate to thermal stresses in branch pipes connected to the reactor coolant system piping. This stress limits the lifetime of the piping system, and even leading to penetrating cracks. To assess origin of valve damage in the pipeline, it is essential to determine the effect of turbulence penetration on valve leakage; since stratified flow is generally generated by turbulent penetration or valve leakage. As a result, we concluded with the help of coupled fluent-structural analysis that the pipe with less turbulence has less chance of failure there by requiring less maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20reactor%20coolant%20system" title="nuclear reactor coolant system">nuclear reactor coolant system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stratification" title=" thermal stratification"> thermal stratification</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20penetration" title=" turbulent penetration"> turbulent penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20fluent-structural%20analysis" title=" coupled fluent-structural analysis"> coupled fluent-structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Von-Misses%20stress" title=" Von-Misses stress"> Von-Misses stress</a> </p> <a href="https://publications.waset.org/abstracts/47753/effects-of-turbulence-penetration-on-valve-leakage-in-nuclear-reactor-coolant-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Effect of Welding Parameters on Penetration and Bead Width for Variable Plate Thickness in Submerged Arc Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20K.%20Arya">Harish K. Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulwant%20Singh"> Kulwant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Saxena"> R. K. Saxena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on penetration and bead width. The penetration reduces with increase in plate thickness due to heat loss in thickness direction for same heat input, while bead width increases for thicker plate due to faster cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding" title="submerged arc welding">submerged arc welding</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20thickness" title=" plate thickness"> plate thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a> </p> <a href="https://publications.waset.org/abstracts/33595/effect-of-welding-parameters-on-penetration-and-bead-width-for-variable-plate-thickness-in-submerged-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghaem%20Zamani">Ghaem Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Farveh%20Aghaye%20Nezhad"> Farveh Aghaye Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Barari"> Amin Barari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suction%20caisson" title="suction caisson">suction caisson</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20geotechnics" title=" offshore geotechnics"> offshore geotechnics</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20penetration%20test" title=" cone penetration test"> cone penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20foundation" title=" wind turbine foundation"> wind turbine foundation</a> </p> <a href="https://publications.waset.org/abstracts/165566/the-effect-of-increased-tip-area-of-suction-caissons-on-the-penetration-resistance-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekow%20A.%20Kwofie">Ekow A. Kwofie</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20K.%20Anto"> Emmanuel K. Anto</a>, <a href="https://publications.waset.org/abstracts/search?q=Godfred%20Mensah"> Godfred Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation%20photovoltaic%20%28DG%20PV%29" title="distributed generation photovoltaic (DG PV)">distributed generation photovoltaic (DG PV)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20location" title=" optimal location"> optimal location</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20level" title=" penetration level"> penetration level</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%E2%80%93transmission%20network" title=" sub–transmission network"> sub–transmission network</a> </p> <a href="https://publications.waset.org/abstracts/57038/determination-of-the-optimal-dg-pv-interconnection-location-using-losses-and-voltage-regulation-as-assessment-indicators-case-study-ecg-33-kv-sub-transmission-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> The Spherical Geometric Model of Absorbed Particles: Application to the Electron Transport Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bentabet">A. Bentabet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aydin"> A. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Fenineche"> N. Fenineche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mean penetration depth has a most important in the absorption transport phenomena. Analytical model of light ion backscattering coefficients from solid targets have been made by Vicanek and Urbassek. In the present work, we showed a mathematical expression (deterministic model) for Z1/2. In advantage, in the best of our knowledge, relatively only one analytical model exit for electron or positron mean penetration depth in solid targets. In this work, we have presented a simple geometric spherical model of absorbed particles based on CSDA scheme. In advantage, we have showed an analytical expression of the mean penetration depth by combination between our model and the Vicanek and Urbassek theory. For this, we have used the Relativistic Partial Wave Expansion Method (RPWEM) and the optical dielectric model to calculate the elastic cross sections and the ranges respectively. Good agreement was found with the experimental and theoretical data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentabet%20spherical%20geometric%20model" title="Bentabet spherical geometric model">Bentabet spherical geometric model</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20slowing%20down%20approximation" title=" continuous slowing down approximation"> continuous slowing down approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=stopping%20powers" title=" stopping powers"> stopping powers</a>, <a href="https://publications.waset.org/abstracts/search?q=ranges" title=" ranges"> ranges</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20penetration%20depth" title=" mean penetration depth"> mean penetration depth</a> </p> <a href="https://publications.waset.org/abstracts/21045/the-spherical-geometric-model-of-absorbed-particles-application-to-the-electron-transport-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">559</span> Navigating Cyber Attacks with Quantum Computing: Leveraging Vulnerabilities and Forensics for Advanced Penetration Testing in Cybersecurity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayor%20Ajfar%20Aaron">Sayor Ajfar Aaron</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashif%20Newaz"> Ashif Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjat%20Hossain%20Abir"> Sajjat Hossain Abir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushfiqur%20Rahman"> Mushfiqur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the transformative potential of quantum computing in the field of cybersecurity, with a focus on advanced penetration testing and forensics. It explores how quantum technologies can be leveraged to identify and exploit vulnerabilities more efficiently than traditional methods and how they can enhance the forensic analysis of cyber-attacks. Through theoretical analysis and practical simulations, this study highlights the enhanced capabilities of quantum algorithms in detecting and responding to sophisticated cyber threats, providing a pathway for developing more resilient cybersecurity infrastructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title="cybersecurity">cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20forensics" title=" cyber forensics"> cyber forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20testing" title=" penetration testing"> penetration testing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a> </p> <a href="https://publications.waset.org/abstracts/185867/navigating-cyber-attacks-with-quantum-computing-leveraging-vulnerabilities-and-forensics-for-advanced-penetration-testing-in-cybersecurity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">558</span> Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20W.%20Oda">Ahmed W. Oda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Desouky"> Ahmed El-Desouky</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mahdy"> Hassan Mahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Moussa"> Osama M. Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index(PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5%NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20bitumen" title=" modified bitumen"> modified bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=aged" title=" aged"> aged</a>, <a href="https://publications.waset.org/abstracts/search?q=stored" title="stored">stored</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/146856/effects-of-asphalt-modification-with-nanomaterials-on-fresh-and-stored-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> Impact of Wind Energy on Cost and Balancing Reserves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Khanal">Anil Khanal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osareh"> Ali Osareh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Lebby"> Gary Lebby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper, the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here, we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study shows how the increases in wind generation will affect power system economics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20generation" title="wind power generation">wind power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20penetration" title=" wind power penetration"> wind power penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20dispatch%20%28ED%29%20model" title=" economic dispatch (ED) model"> economic dispatch (ED) model</a> </p> <a href="https://publications.waset.org/abstracts/17694/impact-of-wind-energy-on-cost-and-balancing-reserves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Garrad">Phillip Garrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saritha%20Unnikrishnan"> Saritha Unnikrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent popularity of connected and autonomous vehicles (CAV) corresponds with an increase in the risk of cyber-attacks. These cyber-attacks have been instigated by both researchers or white-coat hackers and cyber-criminals. As Connected Vehicles move towards full autonomy, the impact of these cyber-attacks also grows. The current research details challenges faced in cybersecurity testing of CAV, including access and cost of the representative test setup. Other challenges faced are lack of experts in the field. Possible solutions to how these challenges can be overcome are reviewed and discussed. From these findings, a software simulated CAV network is established as a cost-effective representative testbed. Penetration tests are then performed on this simulation, demonstrating a cyber-attack in CAV. Studies have shown Artificial Intelligence (AI) to improve runtime, increase efficiency and comprehensively cover all the typical test aspects in penetration testing in other industries. There is an attempt to introduce similar AI models to the software simulation. The expectation from this implementation is to see similar improvements in runtime and efficiency for the CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title="cybersecurity">cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=connected%20vehicles" title=" connected vehicles"> connected vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20simulation" title=" software simulation"> software simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20testing" title=" penetration testing"> penetration testing</a> </p> <a href="https://publications.waset.org/abstracts/144766/artificial-intelligence-in-penetration-testing-of-a-connected-and-autonomous-vehicle-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> The Depth Penetration of Beryllium-7, ⁷BE as a Tracer in the Sembrong Catchment Area Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharib">J. Sharib</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20A.%20Tugi"> D. N. A. Tugi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Ishak"> M. T. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20A.%20Adziz"> M. I. A. Adziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this research paper conducted was to study the penetration of ⁷Be onto the soil surface for two different seasons in different areas of agricultural activity. The study was conducted during the dry and wet seasons from January to May 2019 in the Sembrong catchment area. The Sembrong Catchment Area is located in the district of Kluang, Johor in the South of Peninsular Malaysia and was selected based on the small size of the catchment and surrounded by various agricultural activities. A total of twenty (20) core soil samples to a depth of 10 cm each were taken using a metal corer made of metal. All these samples were brought to the Radiochemistry and Environment Group (RAS), Nuclear Malaysia, Block 23, Bangi, Malaysia, to enable the preparation, drying and analysis work to be carried out. Furthermore, all samples were oven dried at 45 – 60 ºC so that the dry weight became constant and gently disaggregated. Lastly, dried samples were milled and sieved at 2 mm before being packed into a well-type container and ready for ⁷Be analysis. The result of the analysis shows that the penetration of ⁷Be into the soil surface decreases by an exponential decay. The distribution of profiles to the interior of the soil surface or ho values ranged from 1.56 to 3.62 kg m⁻² and from 2.59 to 4.17 kg m⁻² for both dry and wet seasons. Consequently, the dry season has given a lower ho value when compared to the wet season. In conclusion, ⁷Be is a very suitable tracer to be used in determining the penetration onto the soil surface or ho values for the two different seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20penetration" title="depth penetration">depth penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20season" title=" dry season"> dry season</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20season" title=" wet season"> wet season</a>, <a href="https://publications.waset.org/abstracts/search?q=sembrong%20catchment" title=" sembrong catchment"> sembrong catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20type%20container" title=" well type container"> well type container</a> </p> <a href="https://publications.waset.org/abstracts/153606/the-depth-penetration-of-beryllium-7-7be-as-a-tracer-in-the-sembrong-catchment-area-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wook%20Lee">Dong Wook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Mistreanu"> Adrian Mistreanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering" title="computer aided engineering">computer aided engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=containment%20analysis" title=" containment analysis"> containment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20analysis" title=" impact analysis"> impact analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20analysis" title=" penetration analysis"> penetration analysis</a> </p> <a href="https://publications.waset.org/abstracts/133421/containmentpenetration-analysis-for-the-protection-of-aircraft-engine-external-configuration-and-nuclear-power-plant-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> The Dynamic Cone Penetration Test: A Review of Its Correlations and Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Hamid">Abdulrahman M. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic Cone Penetration Test (DCPT) is widely used for field quality assessment of soils. Its application to predict the engineering properties of soil is globally promoted by the fact that it is difficult to obtain undisturbed soil samples, especially when loose or submerged sandy soil is encountered. Detailed discussion will be presented on the current development of DCPT correlations with resilient modulus, relative density, California Bearing Ratio (CBR), unconfined compressive strength and shear strength that have been developed for different materials in both the laboratory and field, as well as on the usage of DCPT in quality control of compaction of earth fills and performance evaluation of pavement layers. In addition, the relationship of the DCPT with other instruments such as falling weight deflectometer, nuclear gauge, soil stiffens gauge, and plate load test will be reported. Lastely, the application of DCPT in Saudi Arabia in recent years will be addressed in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20cone%20penetration%20test" title="dynamic cone penetration test">dynamic cone penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=falling%20weight%20deflectometer" title=" falling weight deflectometer"> falling weight deflectometer</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20gauge" title=" nuclear gauge"> nuclear gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stiffens%20gauge" title=" soil stiffens gauge"> soil stiffens gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20dynamic%20cone%20penetration" title=" automated dynamic cone penetration"> automated dynamic cone penetration</a> </p> <a href="https://publications.waset.org/abstracts/30274/the-dynamic-cone-penetration-test-a-review-of-its-correlations-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumia%20Merat">Soumia Merat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Djerbal"> Lynda Djerbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdane%20Bahar"> Ramdane Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Amin%20Benbouras"> Mohammed Amin Benbouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title="empirical models">empirical models</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title=" standard penetration test"> standard penetration test</a> </p> <a href="https://publications.waset.org/abstracts/77386/use-of-statistical-correlations-for-the-estimation-of-shear-wave-velocity-from-standard-penetration-test-n-values-case-study-of-algiers-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> Enhancing of Paraffin Wax Properties by Adding of Low Density Polyethylene (LDPE)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siham%20Mezher%20Yousif">Siham Mezher Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Intisar%20Yahiya%20Mohammed"> Intisar Yahiya Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Nagem%20Mouhy"> Salma Nagem Mouhy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low Density Polyethylene is a thermoplastic resin extracted from petroleum based, whereas the wax is an oily organic component that is contains of alkanes, ester, polyester, and hydroxyl ester. The purpose of this research is to find out the optimum conditions of the wax produced by inducing with LDPE. The experiments were carried out by mixing different percentages of wax and LDPE to produce different polymer/wax compositions, in which lower values of the penetration, thickness, and electrical conductivity are obtained with increasing of mixing ratio of LDPE/wax which showed results of 19 mm penetration, 692 micron thickness and 5.9 mA electrical conductivity for 90 wt % of LDPE/wax) maximum mixing ratio (. It’s found that the optimum results regarding penetration, enamel thickness, and electrical conductivity “according to the enamel hardness, insulation properties, and economic aspects” are 20 mm, 276 micron, and 6.2 mA respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraffin%20wax" title="paraffin wax">paraffin wax</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20density%20polyethylene" title=" low density polyethylene"> low density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=blending" title=" blending"> blending</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20ratio" title=" mixing ratio"> mixing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=bleaching" title=" bleaching"> bleaching</a> </p> <a href="https://publications.waset.org/abstracts/143462/enhancing-of-paraffin-wax-properties-by-adding-of-low-density-polyethylene-ldpe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">550</span> Application of Model Tree in the Prediction of TBM Rate of Penetration with Synthetic Minority Oversampling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Mehryaar">Ehsan Mehryaar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rate of penetration is (RoP) one of the vital factors in the cost and time of tunnel boring projects; therefore, predicting it can lead to a substantial increase in the efficiency of the project. RoP is heavily dependent geological properties of the project site and TBM properties. In this study, 151-point data from Queen’s water tunnel is collected, which includes unconfined compression strength, peak slope index, angle with weak planes, and distance between planes of weaknesses. Since the size of the data is small, it was observed that it is imbalanced. To solve that problem synthetic minority oversampling technique is utilized. The model based on the model tree is proposed, where each leaf consists of a support vector machine model. Proposed model performance is then compared to existing empirical equations in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Model%20tree" title="Model tree">Model tree</a>, <a href="https://publications.waset.org/abstracts/search?q=SMOTE" title=" SMOTE"> SMOTE</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20penetration" title=" rate of penetration"> rate of penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=TBM%28tunnel%20boring%20machine%29" title=" TBM(tunnel boring machine)"> TBM(tunnel boring machine)</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/141473/application-of-model-tree-in-the-prediction-of-tbm-rate-of-penetration-with-synthetic-minority-oversampling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bullet%20penetration&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>