CINXE.COM
Search results for: Theodoros E. Karakasidis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Theodoros E. Karakasidis</title> <meta name="description" content="Search results for: Theodoros E. Karakasidis"> <meta name="keywords" content="Theodoros E. Karakasidis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Theodoros E. Karakasidis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Theodoros E. Karakasidis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Theodoros E. Karakasidis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Investigation of Riders' Path on Horizontal Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lemonakis%20Panagiotis">Lemonakis Panagiotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliou%20Nikos"> Eliou Nikos</a>, <a href="https://publications.waset.org/abstracts/search?q=Karakasidis%20Theodoros"> Karakasidis Theodoros</a>, <a href="https://publications.waset.org/abstracts/search?q=Botzoris%20George"> Botzoris George</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that trajectory along with speed are two of the most important contributing factors in road accidents. Trajectory is meant as the "line“, usually different from the center-line that a driver traverses through horizontal curves which depends on the characteristics of the road environment (especially the curvature), the vehicle and the driver himself. Drivers and especially riders, tend to broaden their paths in order to succeed greater path radiuses and hence, reduce the applied centrifugal force enhancing safety. The objective of the present research is to investigate riders’ path on horizontal curves. Within the context of the research, field measurements were conducted on a rural two lane highway, with the participation of eight riders and the use of an instrumented motorcycle. The research has shown that the trajectory of the riders is correlated to the radius and the length of the horizontal curve as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trajectory" title="trajectory">trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=path" title=" path"> path</a>, <a href="https://publications.waset.org/abstracts/search?q=riders" title=" riders"> riders</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20curves" title=" horizontal curves"> horizontal curves</a> </p> <a href="https://publications.waset.org/abstracts/5089/investigation-of-riders-path-on-horizontal-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evangelos%20G.%20Karvelas">Evangelos G. Karvelas</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Liosis"> Christos Liosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Theodorakakos"> Andreas Theodorakakos</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20E.%20Karakasidis"> Theodoros E. Karakasidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20matrix%20adaptation%20evolution%20strategy" title=" covariance matrix adaptation evolution strategy"> covariance matrix adaptation evolution strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation" title=" magnetic navigation"> magnetic navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20particles" title=" spherical particles"> spherical particles</a> </p> <a href="https://publications.waset.org/abstracts/131811/an-optimized-method-for-3d-magnetic-navigation-of-nanoparticles-inside-human-arteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> A Universal Troupe, “Athens Dramatic Company”: Tours and Performances (1887-1935)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Papazafeiropoulou%20Olga">Papazafeiropoulou Olga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The “Athens Dramatic Company” was one of the longest-running and most widely traveled troupes in the history of modern Greek theatre. The theatre company had been established since 1887, and the following: Euthychios Vonaseras, Eleni Kotopoulis, etc., like the founder of the troupe Theodoros Pofantis, referred to the distribution of the works presented in Patras: The price of a crime, The niece of her uncle, Agathopoulos, Amphitryon, The Two Sergeants, Lawyer and Actors, The Crusaders, The Daughter of Pantopolos, He Will Kill Himself, Macbeth, The Two Orphans, The Auction, Pistis Hope and Mercy, Love Attempt, The Crusaders, The lady is in Loutra, Markos Votsaris. In 1921, after peregrinations in Cyprus, Constantinople, Romania, Crete, Thessaloniki, Volos, Smyrna, the “Athens Dramatic Company” toured in Africa, where the Greek communities flourished. In 1923, the collaborations of troupe’s members and the repertoire varied several times, such as in Johannesburg, from where they traveled via Cape Town to Australia, where they presented the works: Dikaioma o Eros, Enochos, Psychokori, Kolokotronis. Atimoi, Voskopoula, Golfo, etc., while they impressed with the tragedy Oedipus Tyrannus, which was watched by Australians. Alongside the “Athens Dramatic Company” was also touring “Vrysoula’s Pantopoulos Troupe” and most of the members of the two troupes went to America, uniting their formation. In 1927, the old leader of “Athens Dramatic Company” (Theodoros Pofantis) decided to re-establish his troupe, but after unpleasant adventures, he passed away. In the year 1934, the Greek Dramatic Troupe of Athens revived with works including: The Man of the Day, A Dying Heart, A Dream Was and Gone, An Inspection, The Two Sergeants, The Mother, the Father-in-Law and the Non-existent Son-in-law, before finally expiring in 1935, after nearly 40 years of historical passage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=athens" title="athens">athens</a>, <a href="https://publications.waset.org/abstracts/search?q=dramatic" title=" dramatic"> dramatic</a>, <a href="https://publications.waset.org/abstracts/search?q=company" title=" company"> company</a>, <a href="https://publications.waset.org/abstracts/search?q=universal" title=" universal"> universal</a>, <a href="https://publications.waset.org/abstracts/search?q=troupe" title=" troupe"> troupe</a> </p> <a href="https://publications.waset.org/abstracts/176757/a-universal-troupe-athens-dramatic-company-tours-and-performances-1887-1935" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Tourism Satellite Account: Approach and Information System Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pappas%20Theodoros">Pappas Theodoros</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20Diakomihalis"> Mihail Diakomihalis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring the economic impact of tourism in a benchmark economy is a global concern, with previous measurements being partial and not fully integrated. Tourism is a phenomenon that requires individual consumption of visitors and which should be observed and measured to reveal, thus, the overall contribution of tourism to an economy. The Tourism Satellite Account (TSA) is a critical tool for assessing the annual growth of tourism, providing reliable measurements. This article introduces a system of TSA information that encompasses all the works of the TSA, including input, storage, management, and analysis of data, as well as additional future functions and enhances the efficiency of tourism data management and TSA collection utility. The methodology and results presented offer insights into the development and implementation of TSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tourism%20satellite%20account" title="tourism satellite account">tourism satellite account</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20system" title=" information system"> information system</a>, <a href="https://publications.waset.org/abstracts/search?q=data-based%20tourist%20account" title=" data-based tourist account"> data-based tourist account</a>, <a href="https://publications.waset.org/abstracts/search?q=relation%20database" title=" relation database"> relation database</a> </p> <a href="https://publications.waset.org/abstracts/174616/tourism-satellite-account-approach-and-information-system-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamellia%20Reshadi">Kamellia Reshadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranav%20Ragji"> Pranav Ragji</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Soldatos"> Theodoros Soldatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20applications" title=" real-time applications"> real-time applications</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20studies" title=" case studies"> case studies</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20and%20development" title=" research and development"> research and development</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20labeling" title=" text labeling"> text labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20annotation" title=" video annotation"> video annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20analysis" title=" urban traffic analysis"> urban traffic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20safety" title=" public safety"> public safety</a>, <a href="https://publications.waset.org/abstracts/search?q=prototyping" title=" prototyping"> prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=Google%20Cloud%20Platform" title=" Google Cloud Platform"> Google Cloud Platform</a> </p> <a href="https://publications.waset.org/abstracts/194679/brief-guide-to-cloud-based-ai-prototyping-key-insights-from-selected-case-studies-using-google-cloud-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Automated Soil Erosion Monitoring System (ASEMS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20N.%20Zaimes">George N. Zaimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Valasia%20Iakovoglou"> Valasia Iakovoglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Paschalis%20Koutalakis"> Paschalis Koutalakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Ioannou"> Konstantinos Ioannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Kosmadakis"> Ioannis Kosmadakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Tsardaklis"> Panagiotis Tsardaklis</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Laopoulos"> Theodoros Laopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20management" title="soil management">soil management</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technologies" title=" new technologies"> new technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20practices" title=" conservation practices"> conservation practices</a> </p> <a href="https://publications.waset.org/abstracts/38394/the-automated-soil-erosion-monitoring-system-asems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Vitrification and Devitrification of Chromium Containing Tannery Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savvas%20Varitis">Savvas Varitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kavouras"> Panagiotis Kavouras</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kaimakamis"> George Kaimakamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Pavlidou"> Eleni Pavlidou</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Vourlias"> George Vourlias</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Chrysafis"> Konstantinos Chrysafis</a>, <a href="https://publications.waset.org/abstracts/search?q=Philomela%20Komninou"> Philomela Komninou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Karakostas"> Theodoros Karakostas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20containing%20tannery%20ash" title="chromium containing tannery ash">chromium containing tannery ash</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20ceramic%20materials" title=" glass ceramic materials"> glass ceramic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20processing" title=" thermal processing"> thermal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=vitrification" title=" vitrification"> vitrification</a> </p> <a href="https://publications.waset.org/abstracts/25645/vitrification-and-devitrification-of-chromium-containing-tannery-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Liver Histopathological Findings after Treatment with Anastrazole and Letrozole in Ovariectomized Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Boutas">Ioannis Boutas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilios%20Pergialiotis"> Vasilios Pergialiotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolaos%20Salakos"> Nicolaos Salakos</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Agrogiannis"> George Agrogiannis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Konstantopoulos"> Panagiotis Konstantopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Laskarina-Maria%20Korou"> Laskarina-Maria Korou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Kalampokas"> Theodoros Kalampokas</a>, <a href="https://publications.waset.org/abstracts/search?q=Odysseas%20Gregoriou"> Odysseas Gregoriou</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Creatsas"> George Creatsas</a>, <a href="https://publications.waset.org/abstracts/search?q=Despina%20Perrea"> Despina Perrea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The effect of third generation aromatase inhibitors in the lipid profile among women with breast cancer, present diversities. It has been also shown that low levels of estrogens affect liver metabolism in mice in numerous ways, such as lipid accumulation and hepatic steatosis. Materials and Methods: Forty-five female Wistar rats underwent surgical ovariectomy. The animals were anesthetized with a combination of ketamine (75 mg/kg) and xylazine (10 mg/kg) which were administered intraperitoneally. After the ovariectomy, the operated animals were randomized in three groups. The first group did not receive any drug regimen (ovariectomized control group). The second group received Anastrazole and the third group received Letrozole. Four months after the initiation of the study, the animals were euthanized and livers were dissected immediately for further histopathological analysis. The histological features were grouped into 4 broad categories: steatosis, ballooning, portal inflammation and lobular activity. A score from 0 (absence) to 3 (severe) was assigned to each parameter. Results: The liver pathology analysis revealed significant differences among groups with favored mild steatosis and ballooning among animals that received Anastrazole or Letrozole. Conclusion: The effect of Anastrazole and Letrozole on liver function have not yet been clarified. In our study mild histological liver alterations seem also to occur and these alterations should be taken in mind in future clinical studies <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anastrazole" title="anastrazole">anastrazole</a>, <a href="https://publications.waset.org/abstracts/search?q=letrozole" title=" letrozole"> letrozole</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/38653/liver-histopathological-findings-after-treatment-with-anastrazole-and-letrozole-in-ovariectomized-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savvas%20Varitis">Savvas Varitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kavouras"> Panagiotis Kavouras</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Vourlias"> George Vourlias</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Pavlidou"> Eleni Pavlidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Karakostas"> Theodoros Karakostas</a>, <a href="https://publications.waset.org/abstracts/search?q=Philomela%20Komninou"> Philomela Komninou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium-rich%20tannery%20residues" title="chromium-rich tannery residues">chromium-rich tannery residues</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic%20materials" title=" glass-ceramic materials"> glass-ceramic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/25649/production-of-composite-materials-by-mixing-chromium-rich-ash-and-soda-lime-glass-powder-mechanical-properties-and-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Magnetic Navigation of Nanoparticles inside a 3D Carotid Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Karvelas">E. G. Karvelas</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Liosis"> C. Liosis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Theodorakakos"> A. Theodorakakos</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20E.%20Karakasidis"> T. E. Karakasidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artery" title="artery">artery</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a> </p> <a href="https://publications.waset.org/abstracts/130307/magnetic-navigation-of-nanoparticles-inside-a-3d-carotid-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Iglezakis">Ioannis Iglezakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20D.%20Trokanas"> Theodoros D. Trokanas</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiota%20Kiortsi"> Panagiota Kiortsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20health%20data" title="big health data">big health data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20subject%20rights" title=" data subject rights"> data subject rights</a>, <a href="https://publications.waset.org/abstracts/search?q=GDPR" title=" GDPR"> GDPR</a>, <a href="https://publications.waset.org/abstracts/search?q=pandemic" title=" pandemic"> pandemic</a> </p> <a href="https://publications.waset.org/abstracts/133310/legal-issues-of-collecting-and-processing-big-health-data-in-the-light-of-european-regulation-6792016" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Environmental Related Mortality Rates through Artificial Intelligence Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stamatis%20Zoras">Stamatis Zoras</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilis%20Evagelopoulos"> Vasilis Evagelopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Staurakas"> Theodoros Staurakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20inteligence" title=" artificial inteligence"> artificial inteligence</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20conditions" title=" climatic conditions"> climatic conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/122422/environmental-related-mortality-rates-through-artificial-intelligence-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Lemonakis">Panagiotis Lemonakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20%CE%91limonakis"> Theodoros Αlimonakis</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kaliabetsos"> George Kaliabetsos</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikos%20Eliou"> Nikos Eliou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drainage" title="drainage">drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=motorcycle%20safety" title=" motorcycle safety"> motorcycle safety</a>, <a href="https://publications.waset.org/abstracts/search?q=superelevation" title=" superelevation"> superelevation</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20curves" title=" transition curves"> transition curves</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20grade" title=" vertical grade"> vertical grade</a> </p> <a href="https://publications.waset.org/abstracts/110256/identifying-areas-on-the-pavement-where-rain-water-runoff-affects-motorcycle-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Thermo-Economic Evaluation of Sustainable Biogas Upgrading via Solid-Oxide Electrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ligang%20Wang">Ligang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Damartzis"> Theodoros Damartzis</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Diethelm"> Stefan Diethelm</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Van%20Herle"> Jan Van Herle</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7ois%20Marechal"> François Marechal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biogas production from anaerobic digestion of organic sludge from wastewater treatment as well as various urban and agricultural organic wastes is of great significance to achieve a sustainable society. Two upgrading approaches for cleaned biogas can be considered: (1) direct H₂ injection for catalytic CO₂ methanation and (2) CO₂ separation from biogas. The first approach usually employs electrolysis technologies to generate hydrogen and increases the biogas production rate; while the second one usually applies commercially-available highly-selective membrane technologies to efficiently extract CO₂ from the biogas with the latter being then sent afterward for compression and storage for further use. A straightforward way of utilizing the captured CO₂ is on-site catalytic CO₂ methanation. From the perspective of system complexity, the second approach may be questioned, since it introduces an additional expensive membrane component for producing the same amount of methane. However, given the circumstance that the sustainability of the produced biogas should be retained after biogas upgrading, renewable electricity should be supplied to drive the electrolyzer. Therefore, considering the intermittent nature and seasonal variation of renewable electricity supply, the second approach offers high operational flexibility. This indicates that these two approaches should be compared based on the availability and scale of the local renewable power supply and not only the technical systems themselves. Solid-oxide electrolysis generally offers high overall system efficiency, and more importantly, it can achieve simultaneous electrolysis of CO₂ and H₂O (namely, co-electrolysis), which may bring significant benefits for the case of CO₂ separation from the produced biogas. When taking co-electrolysis into account, two additional upgrading approaches can be proposed: (1) direct steam injection into the biogas with the mixture going through the SOE, and (2) CO₂ separation from biogas which can be used later for co-electrolysis. The case study of integrating SOE to a wastewater treatment plant is investigated with wind power as the renewable power. The dynamic production of biogas is provided on an hourly basis with the corresponding oxygen and heating requirements. All four approaches mentioned above are investigated and compared thermo-economically: (a) steam-electrolysis with grid power, as the base case for steam electrolysis, (b) CO₂ separation and co-electrolysis with grid power, as the base case for co-electrolysis, (c) steam-electrolysis and CO₂ separation (and storage) with wind power, and (d) co-electrolysis and CO₂ separation (and storage) with wind power. The influence of the scale of wind power supply is investigated by a sensitivity analysis. The results derived provide general understanding on the economic competitiveness of SOE for sustainable biogas upgrading, thus assisting the decision making for biogas production sites. The research leading to the presented work is funded by European Union’s Horizon 2020 under grant agreements n° 699892 (ECo, topic H2020-JTI-FCH-2015-1) and SCCER BIOSWEET. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20upgrading" title="biogas upgrading">biogas upgrading</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-oxide%20electrolyzer" title=" solid-oxide electrolyzer"> solid-oxide electrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=co-electrolysis" title=" co-electrolysis"> co-electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20utilization" title=" CO₂ utilization"> CO₂ utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a> </p> <a href="https://publications.waset.org/abstracts/81477/thermo-economic-evaluation-of-sustainable-biogas-upgrading-via-solid-oxide-electrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Pregnancy Outcomes in Patients With Inflammatory Bowel Disease: Retrospective Data From a Greek National Registry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgenia%20Papathanasiou">Evgenia Papathanasiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Kokkotis"> Georgios Kokkotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Axiaris"> Georgios Axiaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Argyropoulos"> Theodoros Argyropoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikos%20Viazis"> Nikos Viazis</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Giouleme"> Olga Giouleme</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Gkoumas"> Konstantinos Gkoumas</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%91nthia%20Gatopoulou"> Αnthia Gatopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%91ggelos%20Theodoulou"> Αggelos Theodoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Theocharis"> Georgios Theocharis</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%91ngeliki%20Theodoropoulou"> Αngeliki Theodoropoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Caria%20%CE%9Aalogirou"> Μaria Κalogirou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pantelis%20Karatzas"> Pantelis Karatzas</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Aonstantinos%20%CE%9Aatsanos"> Κonstantinos Κatsanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodora%20Kafetzi"> Theodora Kafetzi</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Aonstantinos%20%CE%9Aarmiris"> Κonstantinos Κarmiris</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%91nastasia%20%CE%9Aourikou"> Αnastasia Κourikou</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%99oannis%20E%20%CE%9Aoutroubakis"> Ιoannis E Κoutroubakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Liatsos"> Christos Liatsos</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerassimos%20J.%20Mantzaris"> Gerassimos J. Mantzaris</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Dicoletta%20%CE%9Cathou"> Νicoletta Μathou</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia%20Bellou"> Georgia Bellou</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Michalopoulos%20%CE%91ikaterini%20%CE%9Cantaka"> George Michalopoulos Αikaterini Μantaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Penelope%20Nikolaou"> Penelope Nikolaou</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Cichael%20Oikonomou"> Μichael Oikonomou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Polymeros"> Dimitrios Polymeros</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Papatheodoridis"> George Papatheodoridis</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%95vdoxia%20Stergiou"> Εvdoxia Stergiou</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Aonstantinos%20Soufleris"> Κonstantinos Soufleris</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%95pameinondas%20Skouloudis"> Εpameinondas Skouloudis</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Caria%20Tzouvala"> Μaria Tzouvala</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia%20Tsiolakidou"> Georgia Tsiolakidou</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%95ftychia%20Tsironi"> Εftychia Tsironi</a>, <a href="https://publications.waset.org/abstracts/search?q=Styliani%20Tsafaraki"> Styliani Tsafaraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalliopi%20Foteinogiannopoulou"> Kalliopi Foteinogiannopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantina%20Chalakatevaki"> Konstantina Chalakatevaki</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%91ngeliki%20Christidou"> Αngeliki Christidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20K.%20Christodoulou"> Dimitrios K. Christodoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgos%20Bamias"> Giorgos Bamias</a>, <a href="https://publications.waset.org/abstracts/search?q=Spyridon%20Michopoulos"> Spyridon Michopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%95vanthia%20Zampeli"> Εvanthia Zampeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Inflammatory bowel disease (IBD) commonly affects female patients of reproductive age, making the interaction between fertility, pregnancy and IBD an important issue in disease management. The effect of disease activity on the outcome of pregnancy and its impact on neonatal growth is a field of intense research. Close follow-up of pregnant IBD patients by a multidisciplinary team improves maternal and neonatal outcomes. Aim – Methods: Α national retrospective study of pregnancies in women with IBD between 2010-2020 was carried out in 22 IBD reference centers in Greece. Patient characteristics such as disease profile, type of treatment, and disease activity during gestation were analyzed in correlation to the method of delivery, pregnancy outcomes, as well as breastfeeding and offspring health. Results: Two-hundred and twenty-three pregnancies in 175 IBD patients were registered in the study. 122 with Crohn’s disease (CD). Median age during diagnosis was 25.6 years (12-44), with median disease duration of 7.4 years (0-23). One-hundred and twenty-nine patients (58%) were recorded during their first pregnancy. Early pregnancy termination was reported by 48 patients (22%). Pregnancy as a result of in vitro fertilization (IVF) occurred in 15 cases (6.7%). At the beginning of gestation, 165 patients (74%) were under treatment: 48 with anti-TNF agents (29%), 43 with azathioprine (26%), 101 with 5-aminosalicylic acid formulations (61%) and 12 with steroids (7%). We recorded 49 cases of IBD flares (22%) during pregnancy. Two-thirds of them (n=30) were in remission at the onset of the pregnancy. Almost half of them (n=22) required corticosteroid treatment. Patients with ulcerative colitis (UC) were in greater risk of disease flare during pregnancy (p<0.001). All but 3 pregnancies (99.1%) resulted in uncomplicated delivery. In 147 cases (67.1%), cesarean delivery was performed. Two late fetal deaths (0.9%) were reported, both in patients with continuously active disease since the beginning of pregnancy. After delivery, 75 patients (34%) presented with a disease flare, which was associated with active disease at the beginning of pregnancy (p <0.001). Conclusion: The majority of female, Greek IBD patients, had a favorable pregnancy outcome. Active inflammation during gestation and UC diagnosis were associated with a negative impact on pregnancy outcomes. The results of this study are in favor of the continuation of IBD treatment during pregnancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title="pregnancy">pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=ulcerative%20colitis" title=" ulcerative colitis"> ulcerative colitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Crohn%20disease" title=" Crohn disease"> Crohn disease</a>, <a href="https://publications.waset.org/abstracts/search?q=flare" title=" flare"> flare</a> </p> <a href="https://publications.waset.org/abstracts/166205/pregnancy-outcomes-in-patients-with-inflammatory-bowel-disease-retrospective-data-from-a-greek-national-registry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>