CINXE.COM

Search results for: energy system modelling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: energy system modelling</title> <meta name="description" content="Search results for: energy system modelling"> <meta name="keywords" content="energy system modelling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy system modelling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy system modelling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 24554</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy system modelling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24554</span> Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kisan%20Sarda">Kisan Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Shingote"> Bhavika Shingote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi%20parametric%20regression" title="semi parametric regression">semi parametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29%20system" title=" photovoltaic (PV) system"> photovoltaic (PV) system</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20modelling" title=" regression modelling"> regression modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a> </p> <a href="https://publications.waset.org/abstracts/65373/prediction-of-energy-storage-areas-for-static-photovoltaic-system-using-irradiation-and-regression-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24553</span> Simulation of Behaviour Dynamics and Optimization of the Energy System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iva%20Dvornik">Iva Dvornik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20Bo%C5%BEi%C4%87"> Sandro Božić</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%BDana%20Bo%C5%BEi%C4%87%20Brki%C4%87"> Žana Božić Brkić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> System-dynamic simulating modelling is one of the most appropriate and successful scientific methods of the complex, non-linear, natural, technical and organizational systems. In the recent practice its methodology proved to be efficient in solving the problems of control, behavior, sensitivity and flexibility of the system dynamics behavior having a high degree of complexity, all these by computing simulation i.e. “under laboratory conditions” what means without any danger for observed realities. This essay deals with the research of the gas turbine dynamic process as well as the operating pump units and transformation of gas energy into hydraulic energy has been simulated. In addition, system mathematical model has been also researched (gas turbine- centrifugal pumps – pipeline pressure system – storage vessel). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20dynamics" title="system dynamics">system dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump" title=" centrifugal pump"> centrifugal pump</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=gases" title=" gases"> gases</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20and%20discrete%20simulation" title=" continuous and discrete simulation"> continuous and discrete simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20optimisation" title=" heuristic optimisation"> heuristic optimisation</a> </p> <a href="https://publications.waset.org/abstracts/157816/simulation-of-behaviour-dynamics-and-optimization-of-the-energy-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24552</span> An Electromechanical Device to Use in Road Pavements to Convert Vehicles Mechanical Energy into Electrical Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Duarte">Francisco Duarte</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelino%20Ferreira"> Adelino Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Fael"> Paulo Fael</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing need for alternative energy sources, research into energy harvesting technologies has increased considerably in recent years. The particular case of energy harvesting on road pavements is a very recent area of research, with different technologies having been developed in recent years. However, none of them have presented high conversion efficiencies nor technical or economic viability. This paper deals with the development of a mechanical system to implement on a road pavement energy harvesting electromechanical device, to transmit energy from the device surface to an electrical generator. The main goal is to quantify the energy harvesting, transmission and conversion efficiency of the proposed system and compare it with existing systems. Conclusions about the system’s efficiency are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20pavement" title="road pavement">road pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title=" energy conversion"> energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20modelling" title=" system modelling"> system modelling</a> </p> <a href="https://publications.waset.org/abstracts/61200/an-electromechanical-device-to-use-in-road-pavements-to-convert-vehicles-mechanical-energy-into-electrical-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24551</span> Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andra%20Blumberga">Andra Blumberga</a>, <a href="https://publications.waset.org/abstracts/search?q=Armands%20Gravelsins"> Armands Gravelsins</a>, <a href="https://publications.waset.org/abstracts/search?q=Haralds%20Vigants"> Haralds Vigants</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagnija%20Blumberga"> Dagnija Blumberga </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title="bioenergy">bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechonomy" title=" biotechonomy"> biotechonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20dynamics%20modelling" title=" system dynamics modelling"> system dynamics modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20pellets" title=" wood pellets"> wood pellets</a> </p> <a href="https://publications.waset.org/abstracts/56293/biotechonomy-system-dynamics-modelling-sustainability-of-pellet-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24550</span> System-Wide Impact of Energy Efficiency in the Industry Sector: A Comparative Study between Canada and Denmark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Baldini">M. Baldini</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Jacobsen"> H. K. Jacobsen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jaccard"> M. Jaccard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In light of the international efforts to comply with the Paris agreement and emission targets for future energy systems, Denmark and Canada are among the front-runner countries dealing with climate change. The experiences in the energy sector have seen both countries coping with trade-offs between investments in renewable energy technologies and energy efficiency, thus tackling the climate issue from the supply and demand side respectively. On the demand side, the industrial sector is going through a remarkable transformation, with implementation of energy efficiency measures, change of input fuel for end-use processes and forecasted electrification as main features under the spotlight. By looking at Canada and Denmark's experiences as pathfinders on the demand and supply approach to climate change, it is possible to obtain valuable experience that may be applied to other countries aiming at the same goal. This paper presents a comparative study on industrial energy efficiency between Canada and Denmark. The study focuses on technologies and system options, policy design and implementation and modelling methodologies when implementing industrial energy savings in optimization models in comparison to simulation models. The study identifies gaps and junctures in the approach towards climate change actions and, learning from each other, lessen the differences to further foster the adoption of energy efficiency measurements in the industrial sector, aiming at reducing energy consumption and, consequently, CO₂ emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20energy%20efficiency" title="industrial energy efficiency">industrial energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20study" title=" comparative study"> comparative study</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20reduction" title=" CO₂ reduction"> CO₂ reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling" title=" energy system modelling"> energy system modelling</a> </p> <a href="https://publications.waset.org/abstracts/85124/system-wide-impact-of-energy-efficiency-in-the-industry-sector-a-comparative-study-between-canada-and-denmark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24549</span> Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Capocelli">M. Capocelli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Caputo"> A. Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Falco"> M. De Falco</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mazzei"> D. Mazzei</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Piemonte"> V. Piemonte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell &amp; tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSP%20plants" title="CSP plants">CSP plants</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocline" title=" thermocline"> thermocline</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20data" title=" experimental data"> experimental data</a> </p> <a href="https://publications.waset.org/abstracts/65882/two-channels-thermal-energy-storage-tank-experiments-and-short-cut-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24548</span> Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bla%C5%BE%20Likozar">Blaž Likozar</a>, <a href="https://publications.waset.org/abstracts/search?q=Andra%C5%BE%20Pavli%C5%A1i%C4%8D"> Andraž Pavlišič</a>, <a href="https://publications.waset.org/abstracts/search?q=Matic%20Pavlin"> Matic Pavlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Taja%20%C5%BDibert"> Taja Žibert</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Zamljen"> Aleksandra Zamljen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1o%20Gyergyek"> Sašo Gyergyek</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Hu%C5%A1"> Matej Huš</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/180946/ab-initio-multiscale-catalytic-synthesiscracking-reaction-modelling-of-ammonia-as-liquid-hydrogen-carrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24547</span> Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Tiwari">Sumit Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Tripathi"> Rohit Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristics%20curve" title="characteristics curve">characteristics curve</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modelling" title=" thermal modelling"> thermal modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/36866/thermal-analysis-of-photovoltaic-integrated-greenhouse-solar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24546</span> Operation Strategy of Multi-Energy Storage System Considering Power System Reliability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim">Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin"> Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20energy%20storage%20system%20%28MESS%29" title="multiple energy storage system (MESS)">multiple energy storage system (MESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20allocation%20method" title=" energy allocation method"> energy allocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=SOC%20schedule" title=" SOC schedule"> SOC schedule</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20constraints" title=" reliability constraints"> reliability constraints</a> </p> <a href="https://publications.waset.org/abstracts/48673/operation-strategy-of-multi-energy-storage-system-considering-power-system-reliability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24545</span> Optimising Urban Climate at Mesoscale: The Case of Floor-Area-Ratio Modelling and Energy Planning Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Cheshmehzangi">Ali Cheshmehzangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayotunde%20Dawodu"> Ayotunde Dawodu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In urban planning, Floor Area Ratio (FAR) of the site plays a major role in the multiplicity of performances, from humane living environments to energy performance. When one considers the astounding volume of new housing that is going to be constructed across the globe during the next few decades due to growing urbanisation (e.g. particularly in developing world), it is imperative that we have an empirically grounded grasp of which building configurations are more energy efficient. As a common planning metric, it would be helpful to know exactly how managing FAR connects with energy efficiency. Hence, this study puts together a set of modelling of various FARs for a typical residential compound and address the considerations of energy planning integration in the practice of building configuration and urban planning. Such decision makings at the planning and design stage enable us to provide pathways of optimising urban climate at mesoscale of the built environment, i.e. the neighbourhood or community level. In this study, a comparative study is conducted using Eco-Tect Software, using a case study in the City of Ningbo, China. Findings of the study contribute to identifying scenarios of various FAR use and energy planning at mesoscale. The final results contribute to studies in urban climate, from the perspectives of urban planning, energy planning, and urban modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=China" title="China">China</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title=" energy planning"> energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=FAR" title=" FAR"> FAR</a>, <a href="https://publications.waset.org/abstracts/search?q=floor-area-ratio" title=" floor-area-ratio"> floor-area-ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoscale" title=" mesoscale"> mesoscale</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20climate" title=" urban climate"> urban climate</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20modelling" title=" urban modelling"> urban modelling</a> </p> <a href="https://publications.waset.org/abstracts/107433/optimising-urban-climate-at-mesoscale-the-case-of-floor-area-ratio-modelling-and-energy-planning-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24544</span> Modelling Home Appliances for Energy Management System: Comparison of Simulation Results with Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aulon%20Shabani">Aulon Shabani</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Panxhi"> Denis Panxhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Orion%20Zavalani"> Orion Zavalani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the modelling and development of a simulator for residential electrical appliances. The simulator is developed on MATLAB providing the possibility to analyze and simulate energy consumption of frequently used home appliances in Albania. Modelling of devices considers the impact of different factors, mentioning occupant behavior and climacteric conditions. Most devices are modeled as an electric circuit, and the electric energy consumption is estimated by the solutions of the guiding differential equations. The provided models refer to devices like a dishwasher, oven, water heater, air conditioners, light bulbs, television, refrigerator water, and pump. The proposed model allows us to simulate beforehand the energetic behavior of the largest consumption home devices to estimate peak consumption and improving its reduction. Simulated home prototype results are compared to real measurement of a considered typical home. Obtained results from simulator framework compared to monitored typical household using EmonTxV3 show the effectiveness of the proposed simulation. This conclusion will help for future simulation of a large group of typical household for a better understanding of peak consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20appliances" title="electrical appliances">electrical appliances</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20estimation" title=" peak estimation"> peak estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20home" title=" smart home"> smart home</a> </p> <a href="https://publications.waset.org/abstracts/102950/modelling-home-appliances-for-energy-management-system-comparison-of-simulation-results-with-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24543</span> Infrared Thermography as an Informative Tool in Energy Audit and Software Modelling of Historic Buildings: A Case Study of the Sheffield Cathedral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ademuyiwa%20Agbonyin">Ademuyiwa Agbonyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Stamatis%20Zoras"> Stamatis Zoras</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zandi"> Mohammad Zandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the extent to which building energy modelling can be informed based on preliminary information provided by infrared thermography using a thermal imaging camera in a walkthrough audit. The case-study building is the Sheffield Cathedral, built in the early 1400s. Based on an informative qualitative report generated from the thermal images taken at the site, the regions showing significant heat loss are input into a computer model of the cathedral within the integrated environmental solution (IES) virtual environment software which performs an energy simulation to determine quantitative heat losses through the building envelope. Building data such as material thermal properties and building plans are provided by the architects, Thomas Ford and Partners Ltd. The results of the modelling revealed the portions of the building with the highest heat loss and these aligned with those suggested by the thermal camera. Retrofit options for the building are also considered, however, may not see implementation due to a desire to conserve the architectural heritage of the building. Results show that thermal imaging in a walk-through audit serves as a useful guide for the energy modelling process. Hand calculations were also performed to serve as a 'control' to estimate losses, providing a second set of data points of comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historic%20buildings" title="historic buildings">historic buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20retrofit" title=" energy retrofit"> energy retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modelling" title=" software modelling"> software modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modelling" title=" energy modelling"> energy modelling</a> </p> <a href="https://publications.waset.org/abstracts/103567/infrared-thermography-as-an-informative-tool-in-energy-audit-and-software-modelling-of-historic-buildings-a-case-study-of-the-sheffield-cathedral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24542</span> Modelling of Powered Roof Supports Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Michalak">Marcin Michalak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20modelling" title="machine modelling">machine modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mining" title=" underground mining"> underground mining</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mining" title=" coal mining"> coal mining</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/29127/modelling-of-powered-roof-supports-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24541</span> Explore and Reduce the Performance Gap between Building Modelling Simulations and the Real World: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Salehi">B. Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Andrews"> D. Andrews</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Chaer"> I. Chaer</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gillich"> A. Gillich</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chalk"> A. Chalk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bush"> D. Bush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid increase of energy consumption in buildings in recent years, especially with the rise in population and growing economies, the importance of energy savings in buildings becomes more critical. One of the key factors in ensuring energy consumption is controlled and kept at a minimum is to utilise building energy modelling at the very early stages of the design. So, building modelling and simulation is a growing discipline. During the design phase of construction, modelling software can be used to estimate a building’s projected energy consumption, as well as building performance. The growth in the use of building modelling software packages opens the door for improvements in the design and also in the modelling itself by introducing novel methods such as building information modelling-based software packages which promote conventional building energy modelling into the digital building design process. To understand the most effective implementation tools, research projects undertaken should include elements of real-world experiments and not just rely on theoretical and simulated approaches. Upon review of the related studies undertaken, it’s evident that they are mostly based on modelling and simulation, which can be due to various reasons such as the more expensive and time-consuming nature of real-time data-based studies. Taking in to account the recent rise of building energy software modelling packages and the increasing number of studies utilising these methods in their projects and research, the accuracy and reliability of these modelling software packages has become even more crucial and critical. This Energy Performance Gap refers to the discrepancy between the predicted energy savings and the realised actual savings, especially after buildings implement energy-efficient technologies. There are many different software packages available which are either free or have commercial versions. In this study, IES VE (Integrated Environmental Solutions Virtual Environment) is used as it is a common Building Energy Modeling and Simulation software in the UK. This paper describes a study that compares real time results with those in a virtual model to illustrate this gap. The subject of the study is a north west facing north-west (345°) facing, naturally ventilated, conservatory within a domestic building in London is monitored during summer to capture real-time data. Then these results are compared to the virtual results of IES VE, which is a commonly used building energy modelling and simulation software in the UK. In this project, the effect of the wrong position of blinds on overheating is studied as well as providing new evidence of Performance Gap. Furthermore, the challenges of drawing the input of solar shading products in IES VE will be considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20modelling%20and%20simulation" title="building energy modelling and simulation">building energy modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20environmental%20solutions%20virtual%20environment" title=" integrated environmental solutions virtual environment"> integrated environmental solutions virtual environment</a>, <a href="https://publications.waset.org/abstracts/search?q=IES%20VE" title=" IES VE"> IES VE</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20gap" title=" performance gap"> performance gap</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20data" title=" real time data"> real time data</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20shading%20products" title=" solar shading products"> solar shading products</a> </p> <a href="https://publications.waset.org/abstracts/112419/explore-and-reduce-the-performance-gap-between-building-modelling-simulations-and-the-real-world-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24540</span> Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Aboumahboub">T. Aboumahboub</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Brecha"> R. Brecha</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Shrestha"> H. B. Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20F.%20Hutfilter"> U. F. Hutfilter</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Geiges"> A. Geiges</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Hare"> W. Hare</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Schaeffer"> M. Schaeffer</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Welder"> L. Welder</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gidden"> M. Gidden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia&rsquo;s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decarbonization" title="decarbonization">decarbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling" title=" energy system modelling"> energy system modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sector%20coupling" title=" sector coupling"> sector coupling</a> </p> <a href="https://publications.waset.org/abstracts/124495/integrated-modeling-of-transformation-of-electricity-and-transportation-sectors-a-case-study-of-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24539</span> Energy Storage Modelling for Power System Reliability and Environmental Compliance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Karki">Rajesh Karki</a>, <a href="https://publications.waset.org/abstracts/search?q=Safal%20Bhattarai"> Safal Bhattarai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saket%20Adhikari"> Saket Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flywheel%20energy%20storage" title="flywheel energy storage">flywheel energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20air%20energy%20storage" title=" compressed air energy storage"> compressed air energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20reliability" title=" power system reliability"> power system reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20planning" title=" system planning"> system planning</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20operation" title=" system operation"> system operation</a> </p> <a href="https://publications.waset.org/abstracts/117479/energy-storage-modelling-for-power-system-reliability-and-environmental-compliance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24538</span> Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hamlehdar">Maryam Hamlehdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20A.%20Narsilio"> Guillermo A. Narsilio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20hydrogen%20production" title="clean hydrogen production">clean hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20solar-geothermal" title=" integrated solar-geothermal"> integrated solar-geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20geothermal%20energy" title=" low-temperature geothermal energy"> low-temperature geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a> </p> <a href="https://publications.waset.org/abstracts/182662/assessment-of-a-coupled-geothermal-solar-thermal-based-hydrogen-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24537</span> Hydrogen Storage Optimisation: Development of Advanced Tools for Improved Permeability Modelling in Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirine%20Sayed">Sirine Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahrez%20Ait%20Mohammed"> Mahrez Ait Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Nachtane"> Mourad Nachtane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwahed%20Barkaoui"> Abdelwahed Barkaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Bouziane"> Khalid Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study addresses a critical challenge in transitioning to a hydrogen-based economy by introducing and validating a one-dimensional (1D) tool for modelling hydrogen permeability through hybrid materials, focusing on tank applications. The model developed integrates rigorous experimental validation, published data, and advanced computational modelling using the PanDiffusion framework, significantly enhancing its validity and applicability. By elucidating complex interactions between material properties, storage system configurations, and operational parameters, the tool demonstrates its capability to optimize design and operational parameters in real-world scenarios, as illustrated through a case study of hydrogen leakage. This comprehensive approach to assessing hydrogen permeability contributes significantly to overcoming key barriers in hydrogen infrastructure development, potentially accelerating the widespread adoption of hydrogen technology across various industrial sectors and marking a crucial step towards a more sustainable energy future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20tank" title=" composite tank"> composite tank</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20modelling" title=" permeability modelling"> permeability modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=PanDiffusion" title=" PanDiffusion"> PanDiffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20carrier" title=" energy carrier"> energy carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20technology" title=" transportation technology"> transportation technology</a> </p> <a href="https://publications.waset.org/abstracts/193069/hydrogen-storage-optimisation-development-of-advanced-tools-for-improved-permeability-modelling-in-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24536</span> A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benga%20Ebouele">Benga Ebouele</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Tengen"> Thomas Tengen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modelling" title="dynamic modelling">dynamic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20used" title=" energy used"> energy used</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20inventory" title=" hybrid inventory"> hybrid inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/41799/a-dynamical-approach-for-relating-energy-consumption-to-hybrid-inventory-level-in-the-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24535</span> Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Gul">Waheed Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zeeshan"> Muhammad Zeeshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Raza%20Khan"> Ahmad Raza Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khurram"> Muhammad Khurram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=WSNs" title=" WSNs"> WSNs</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic" title=" electromagnetic"> electromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a> </p> <a href="https://publications.waset.org/abstracts/175720/development-and-characterization-of-acoustic-energy-harvesters-for-low-power-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24534</span> Investigation on The Feasibility of a Solar Desiccant Cooling System in Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Zgalei">A. S. Zgalei</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20T.%20Al-Mabrouk"> B. T. Al-Mabrouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a particularly significant growth rate observed in the Libyan commercial and residential buildings coupled with a growth in energy demand, solar desiccant evaporative cooling offers energy savings and promises a good sharing for sustainable buildings where the availability of solar radiation matches with the cooling load demand. The paper presents a short introduction for the desiccant systems. A mathematical model of a selected system has been developed and a simulation has been performed in order to investigate the system performance at different working conditions and an optimum design of the system structure is established. The results showed a technical feasibility of the system working under the Libyan climatic conditions with a reasonable COP at temperatures that can be obtained through the solar reactivation system. Discussion of the results and the recommendations for future work are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20program" title="computer program">computer program</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20desiccant%20wheel%20cooling" title=" solar desiccant wheel cooling"> solar desiccant wheel cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20modelling" title=" system modelling"> system modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20feasibility" title=" technical feasibility"> technical feasibility</a> </p> <a href="https://publications.waset.org/abstracts/18458/investigation-on-the-feasibility-of-a-solar-desiccant-cooling-system-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24533</span> Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Saba">Djamel Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Laallam"> Fatima Zohra Laallam</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Berbaoui"> Brahim Berbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communications%20protocols" title="communications protocols">communications protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20process" title=" control process"> control process</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20system" title=" hybrid energy system"> hybrid energy system</a>, <a href="https://publications.waset.org/abstracts/search?q=modelization" title=" modelization"> modelization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agents%20system" title=" multi-agents system"> multi-agents system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/51996/contribution-to-energy-management-in-hybrid-energy-systems-based-on-agents-coordination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24532</span> Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuhaina%20Zakaria">Zuhaina Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Noraliza%20Hamzah"> Noraliza Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Halijjah%20Shariff"> Siti Halijjah Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Aizah%20Abdul%20Karim"> Noor Aizah Abdul Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior%20theories" title="consumer behavior theories">consumer behavior theories</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20occupants" title=" household occupants"> household occupants</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20consumer" title=" residential consumer"> residential consumer</a> </p> <a href="https://publications.waset.org/abstracts/53418/challenges-and-opportunities-in-modelling-energy-behavior-of-household-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24531</span> University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Ascione">Fabrizio Ascione</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Borrelli"> Martina Borrelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Francesca%20De%20Masi"> Rosa Francesca De Masi</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Ruggiero"> Silvia Ruggiero</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Peter%20Vanoli"> Giuseppe Peter Vanoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20simulation" title="energy simulation">energy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20calibration" title=" modelling calibration"> modelling calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=occupant%20behavior" title=" occupant behavior"> occupant behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20building" title=" university building"> university building</a> </p> <a href="https://publications.waset.org/abstracts/89436/university-building-discussion-about-the-effect-of-numerical-modelling-assumptions-for-occupant-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24530</span> Modelling Residential Space Heating Energy for Romania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ion%20Smeureanu">Ion Smeureanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Reveiu"> Adriana Reveiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Dardala"> Marian Dardala</a>, <a href="https://publications.waset.org/abstracts/search?q=Titus%20Felix%20Furtuna"> Titus Felix Furtuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kanala"> Roman Kanala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title="consumer behavior">consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20source%20energy%20modeling%20system%20%28OSeMOSYS%29" title=" open source energy modeling system (OSeMOSYS)"> open source energy modeling system (OSeMOSYS)</a>, <a href="https://publications.waset.org/abstracts/search?q=MARKAL%2FTIMES%20Romanian%20energy%20model" title=" MARKAL/TIMES Romanian energy model"> MARKAL/TIMES Romanian energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20technologies" title=" virtual technologies"> virtual technologies</a> </p> <a href="https://publications.waset.org/abstracts/34196/modelling-residential-space-heating-energy-for-romania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24529</span> Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20S.%20Dambatta">Yusuf S. Dambatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20D.%20Sarhan"> Ahmed A. D. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title="surface roughness">surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling%20%28FDM%29" title=" fused deposition modelling (FDM)"> fused deposition modelling (FDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro%20fuzzy%20inference%20system%20%28ANFIS%29" title=" adaptive neuro fuzzy inference system (ANFIS)"> adaptive neuro fuzzy inference system (ANFIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a> </p> <a href="https://publications.waset.org/abstracts/55529/surface-roughness-analysis-modelling-and-prediction-in-fused-deposition-modelling-additive-manufacturing-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24528</span> Piezoelectric Approach on Harvesting Acoustic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khin%20Fai%20Chen">Khin Fai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jee-Hou%20Ho"> Jee-Hou Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Hwa%20Yap"> Eng Hwa Yap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title="piezoelectric">piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic" title=" acoustic"> acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvester" title=" energy harvester"> energy harvester</a> </p> <a href="https://publications.waset.org/abstracts/29247/piezoelectric-approach-on-harvesting-acoustic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24527</span> Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ludovic%20Favre">Ludovic Favre</a>, <a href="https://publications.waset.org/abstracts/search?q=Thibaut%20M.%20Schafer"> Thibaut M. Schafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Luc%20Robyr"> Jean-Luc Robyr</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena-Lavinia%20Niederh%C3%A4user"> Elena-Lavinia Niederhäuser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%27s%20energy" title="building&#039;s energy">building&#039;s energy</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20optimization%20algorithm" title=" genetic optimization algorithm"> genetic optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/85518/genetic-algorithm-optimization-of-the-economical-ecological-and-self-consumption-impact-of-the-energy-production-of-a-single-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24526</span> The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norshazmira%20Mat%20Azmi">Norshazmira Mat Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayidal%20El%20Fatimah%20Masnan"> Sayidal El Fatimah Masnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20current%20energy" title="marine current energy">marine current energy</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20turbines" title=" tidal turbines"> tidal turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20turbine" title=" wave turbine"> wave turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments" title=" hydraulic flume experiments"> hydraulic flume experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20wave%20phase" title=" instantaneous wave phase"> instantaneous wave phase</a> </p> <a href="https://publications.waset.org/abstracts/30722/the-effect-of-surface-wave-on-the-performance-characteristic-of-a-wave-tidal-integral-turbine-hybrid-generation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24525</span> Modelling and Control of Electrohydraulic System Using Fuzzy Logic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hajara%20Abdulkarim%20Aliyu">Hajara Abdulkarim Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulbasid%20Ismail%20Isa"> Abdulbasid Ismail Isa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper studies electrohydraulic system for its role in position and motion control system and develops as mathematical model describing the behaviour of the system. The research further proposes Fuzzy logic and conventional PID controllers in order to achieve both accurate positioning of the payload and overall improvement of the system performance. The simulation result shows Fuzzy logic controller has a superior tracking performance and high disturbance rejection efficiency for its shorter settling time, less overshoot, smaller values of integral of absolute and deviation errors over the conventional PID controller at all the testing conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrohydraulic" title="electrohydraulic">electrohydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=NZ-PID" title=" NZ-PID"> NZ-PID</a> </p> <a href="https://publications.waset.org/abstracts/46295/modelling-and-control-of-electrohydraulic-system-using-fuzzy-logic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=818">818</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=819">819</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20system%20modelling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10