CINXE.COM

Search results for: filler elastomer

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: filler elastomer</title> <meta name="description" content="Search results for: filler elastomer"> <meta name="keywords" content="filler elastomer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="filler elastomer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="filler elastomer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 291</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: filler elastomer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghvendra%20Singh%20Yadav">Raghvendra Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Kuritka"> Ivo Kuritka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarmila%20Vilcakova"> Jarmila Vilcakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Urbanek"> Pavel Urbanek</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Machovsky"> Michal Machovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Skoda"> David Skoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Masar"> Milan Masar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer-matrix%20composites" title="polymer-matrix composites">polymer-matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles%20as%20filler" title=" nanoparticles as filler"> nanoparticles as filler</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20property" title=" dielectric property"> dielectric property</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20property" title=" magnetic property"> magnetic property</a> </p> <a href="https://publications.waset.org/abstracts/99277/dielectric-electrical-and-magnetic-properties-of-elastomer-filled-with-in-situ-thermally-reduced-graphene-oxide-and-spinel-ferrite-nife2o4-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Filler Elastomers Abrasion at Steady State: Optimal Use Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djeridi%20Rachid">Djeridi Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ould%20Ouali%20Mohand"> Ould Ouali Mohand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search of a mechanism for the elastomer abrasive wear study is an open issue. The practice difficulties are complex due to the complexity of deformation mechanism, to the complex mechanism of the material tearing and to the marked interactions between the tribological parameters. In this work, we present an experimental technique to study the elastomers abrasive wear. The interaction 'elastomer/indenter' implicate dependant ant temporary of different tribological parameters. Consequently, the phenomenon that governs this interaction is not easy to explain. An optimal elastomers compounding and an adequate utilization conditions of these materials that define its resistance at the abrasion is discussed. The results are confronted to theoretical models: the weight loss variation in function of blade angle or in function of cycle number is in agreement with rupture models and with the mechanism of fissures propagation during the material tearing in abrasive wear of filler elastomers. The weight loss in function of the sliding velocity shows the existence of a critical velocity that corresponds to the maximal wear. The adding of silica or black carbon influences in a different manner on wear abrasive behavior of filler elastomers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasion%20wear" title="abrasion wear">abrasion wear</a>, <a href="https://publications.waset.org/abstracts/search?q=filler%20elastomer" title=" filler elastomer"> filler elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a> </p> <a href="https://publications.waset.org/abstracts/25969/filler-elastomers-abrasion-at-steady-state-optimal-use-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Hybrid Conductive Polymer Composites: Effect of Mixed Fillers and Polymer Blends on Pyroresistive Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Asare">Eric Asare</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Evans"> Jamie Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Newton"> Mark Newton</a>, <a href="https://publications.waset.org/abstracts/search?q=Emiliano%20Bilotti"> Emiliano Bilotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-density polyethylene (HDPE) filled with silver coated glass flakes (5µm) was investigated and the effect on PTC by addition of a second filler (100µm silver coated glass flake) or matrix (polypropylene elastomer) to the composite were examined. The addition of the secondary filler promoted the electrical properties of the composite. The bigger flakes acted like a bridge between the small flakes and this helped to enhance the electrical properties. The PTC behaviour of the composite was also improved by the addition of the bigger flakes due to the increase in separation distance between particles caused by the bigger flakes. Addition of small amount of polypropylene elastomer enhanced not only PTC effect but also improved substantially the flexibility of the composite as well as reduces the overall filler content. SEM images showed that the fillers were dispersed in the HDPE phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positive%20temperature%20coefficient" title="positive temperature coefficient">positive temperature coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer%20composite" title=" conductive polymer composite"> conductive polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a> </p> <a href="https://publications.waset.org/abstracts/19229/hybrid-conductive-polymer-composites-effect-of-mixed-fillers-and-polymer-blends-on-pyroresistive-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Lo">S. W. Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-H.%20Lu"> S.-H. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Guo"> Y. H. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Hsu"> L. C. Hsu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore, the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerostatic" title="aerostatic">aerostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=elastomer" title=" elastomer"> elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20stiffness" title=" static stiffness"> static stiffness</a> </p> <a href="https://publications.waset.org/abstracts/7954/numerical-study-on-the-static-characteristics-of-novel-aerostatic-thrust-bearings-possessing-elastomer-capillary-restrictor-and-bearing-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Anas">K. Anas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selvakumar"> M. Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20David"> Samson David</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Babu"> R. R. Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chattopadhyay"> S. Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title="damping ratio">damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking%20density" title=" crosslinking density"> crosslinking density</a>, <a href="https://publications.waset.org/abstracts/search?q=segmental%20motion" title=" segmental motion"> segmental motion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20activity" title=" surface activity"> surface activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative" title=" dissipative"> dissipative</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20chain%20friction" title=" polymeric chain friction"> polymeric chain friction</a> </p> <a href="https://publications.waset.org/abstracts/38171/energy-dissipation-characteristics-of-an-elastomer-under-dynamic-condition-a-comprehensive-assessment-using-high-and-low-frequency-analyser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> The Electrical Properties of Polyester Materials as Outdoor Insulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20EL-Sharkawy">R. M. EL-Sharkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Nasrat"> L. S. Nasrat</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Ewiss"> K. B. Ewiss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a study of flashover voltage for outdoor polyester and composite insulators under dry, ultra-violet and contaminated conditions. Cylindrical of polyester composite samples (with different lengths) have been prepared after incorporated with different concentration of inorganic filler e.g. Magnesium Hydroxide [Mg(OH)2] to improve the electrical and thermal properties in addition to maximize surface flashover voltage and decrease tracking phenomena. Results showed that flashover voltage reaches to 46 kV for samples without filler and 52.6 kV for samples containing 40% of [Mg(OH)2] filler in dry condition. A comparison between different concentrations of filler under various environmental conditions (dry and contaminated conditions) showed higher flashover voltage values for samples containing filler with ratio 40% [Mg(OH)2] and length 3cm than that of samples containing filler [Mg(OH)2] with ratios 20%, 30% and lengths 0.5cm, 1cm, 2cm and 2.5cm. Flashover voltage decreases by adding [Mg(OH)2] filler for polyester samples under ultra-violet condition; as the ratio of filler increases, the value of flashover voltage decreases Also, in this study, the effect of thermal performance with respect to surface of the sample under test have been investigated in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flashover%20voltage" title="flashover voltage">flashover voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-violet%20radiation" title=" ultra-violet radiation"> ultra-violet radiation</a> </p> <a href="https://publications.waset.org/abstracts/40599/the-electrical-properties-of-polyester-materials-as-outdoor-insulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Study of Ladle Furnace Slag as Mineral Filler in Asphalt Concrete with Electric Arc Furnace Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Wang">W. J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20F.%20Lin"> D. F. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Y.%20Chen"> L. Y. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Liu"> K. Y. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the ladle furnace slag was used as a mineral filler in asphalt concrete with electric arc furnace slag (EAF asphalt concrete) to investigate the effect on the engineering and thermal properties of asphalt cement mastics and EAF asphalt concrete, the lime was used as a comparison for mineral filler, and the usage percentage of mineral filler was set at 2%, 4%, 6%, and 8%. First of all, the engineering properties of the ladle furnace slag and lime were compared, and then the mineral filler was mixed with bitumen to form the asphalt cement mastics in order to analyze the influence of the ladle furnace slag on the properties of asphalt cement mastics, and lastly, the mineral filler was used in the EAF asphalt concrete to analyze its feasibility of using ladle furnace slag as a mineral filler. The study result shows that the ladle furnace slag and the lime have no obvious difference in their physical properties, and from the energy dispersive spectrometer (EDS) test results, we know that the lime and the ladle furnace slag have similar elemental composition, but the Ca found in the ladle furnace slag belongs to CaO, and the lime belongs to CaCO3, therefore the ladle furnace slag has the property of expansion. According to the test results, the viscosity of asphalt cement mastics will increase with the increase in the use of mineral filler. Since the ladle furnace slag has more CaO content, the viscosity of the asphalt cement mastics with ladle furnace slag will increase more than using lime as mineral filler in the asphalt cement mastics, and the use of ladle furnace slag only needs to be 2% in order to achieve the effect of anti-peeling which is 6% for lime. From the related test results of EAF asphalt concrete, it is known that the maximum stability value can be obtained when the use of mineral filler is about 5%. When the ladle furnace slag is used as the mineral filler, it can improve the stiffness, indirect tension strength, spalling resistance, and thermal insulation of EAF asphalt concrete, which also indicates that using the ladle furnace slag as the mineral filler of bitumen can help to improve the durability of the asphalt pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ladle%20furnace%20slag" title="ladle furnace slag">ladle furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20filler" title=" mineral filler"> mineral filler</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20cement%20mastics" title=" asphalt cement mastics"> asphalt cement mastics</a>, <a href="https://publications.waset.org/abstracts/search?q=EAF%20asphalt%20concrete" title=" EAF asphalt concrete"> EAF asphalt concrete</a> </p> <a href="https://publications.waset.org/abstracts/170204/study-of-ladle-furnace-slag-as-mineral-filler-in-asphalt-concrete-with-electric-arc-furnace-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Synthesis and Characterization of Amino-Functionalized Polystyrene Nanoparticles as Reactive Filler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaseen%20Elhebshi">Yaseen Elhebshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkareem%20Hamid"> Abdulkareem Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nureddin%20Bin%20Issa"> Nureddin Bin Issa</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaonong%20Chen"> Xiaonong Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A convenient method of preparing ultrafine polystyrene latex nano-particles with amino groups on the surface is developed. Polystyrene latexes in the size range 50–400 nm were prepared via emulsion polymerization, using sodium dodecyl sulfate (SDS) as surfactant. Polystyrene with amino groups on the surface will be fine to use as organic filler to modify rubber. Transmission electron microscopy (TEM) was used to observe the morphology of silicon dioxide and functionalized polystyrene nano-particles. The nature of bonding between the polymer and the reactive groups on the filler surfaces was analyzed using Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was employed to examine the filler surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20filler" title="reactive filler">reactive filler</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20polymerization" title=" emulsion polymerization"> emulsion polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20nanoparticles" title=" polystyrene nanoparticles"> polystyrene nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/9665/synthesis-and-characterization-of-amino-functionalized-polystyrene-nanoparticles-as-reactive-filler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Soft Exoskeleton Elastomer Pre-Tension Drive Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Yatsun">Andrey Yatsun</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Malchikov"> Andrei Malchikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20exoskeleton" title="soft exoskeleton">soft exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-tension%20elastomer" title=" pre-tension elastomer"> pre-tension elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interaction" title=" human-machine interaction"> human-machine interaction</a> </p> <a href="https://publications.waset.org/abstracts/183948/soft-exoskeleton-elastomer-pre-tension-drive-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Aguib">Salah Aguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Chikh"> Noureddine Chikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Khabli"> Abdelmalek Khabli</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Nour"> Abdelkader Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Djedid"> Toufik Djedid</a>, <a href="https://publications.waset.org/abstracts/search?q=Lallia%20Kobzili"> Lallia Kobzili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20smart%20sandwich%20plate" title="hybrid smart sandwich plate">hybrid smart sandwich plate</a>, <a href="https://publications.waset.org/abstracts/search?q=vibratory%20behavior" title=" vibratory behavior"> vibratory behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritz%20approach" title=" Ritz approach"> Ritz approach</a>, <a href="https://publications.waset.org/abstracts/search?q=MRE" title=" MRE"> MRE</a> </p> <a href="https://publications.waset.org/abstracts/177269/modeling-and-simulation-of-vibratory-behavior-of-hybrid-smart-composite-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mas%C5%82owski">M. Masłowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zaborski"> M. Zaborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20elastomers" title="magnetorheological elastomers">magnetorheological elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxides" title=" iron oxides"> iron oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a> </p> <a href="https://publications.waset.org/abstracts/9033/magnetorheological-silicone-composites-filled-with-micro-and-nano-sized-magnetites-with-the-addition-of-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Exploring the Efficacy of Nitroglycerin in Filler-Induced Facial Skin Ischemia: A Narrative ‎Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Feily">Amir Feily</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazhir%20Shahmoradi%20Akram"> Hazhir Shahmoradi Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ghaedi"> Mojtaba Ghaedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Javdani"> Farshid Javdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Naser%20Hatami"> Naser Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Kalani"> Navid Kalani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zarenezhad"> Mohammad Zarenezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Filler-induced facial skin ischemia is a potential complication of dermal filler injections that can result in tissue damage and necrosis. Nitroglycerin has been suggested as a treatment option due to its vasodilatory effects, but its efficacy in this context is unclear. Methods: A narrative review was conducted to examine the available evidence on the efficacy of nitroglycerin in filler-induced facial skin ischemia. Relevant studies were identified through a search of electronic databases and manual searching of reference lists. Results: The review found limited evidence supporting the efficacy of nitroglycerin in this context. While there were case reports where the combination of nitroglycerin and hyaluronidase was successful in treating filler-induced facial skin ischemia, there was only one case report where nitroglycerin alone was successful. Furthermore, a rat model did not demonstrate any benefits of nitroglycerin and showed harmful results. Conclusion: The evidence regarding the efficacy of nitroglycerin in filler-induced facial skin ischemia is inconclusive and seems to be against its application. Further research is needed to determine the effectiveness of nitroglycerin alone and in combination with other treatments for this condition. Clinicians should consider limited evidence bases when deciding on treatment options for patients with filler-induced facial skin ischemia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitroglycerin" title="nitroglycerin">nitroglycerin</a>, <a href="https://publications.waset.org/abstracts/search?q=facial" title=" facial"> facial</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20ischemia" title=" skin ischemia"> skin ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=fillers" title=" fillers"> fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=narrative%20review" title=" narrative review"> narrative review</a> </p> <a href="https://publications.waset.org/abstracts/171621/exploring-the-efficacy-of-nitroglycerin-in-filler-induced-facial-skin-ischemia-a-narrative-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Effect of Filler Size and Shape on Positive Temperature Coefficient Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Asare">Eric Asare</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Evans"> Jamie Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Newton"> Mark Newton</a>, <a href="https://publications.waset.org/abstracts/search?q=Emiliano%20Bilotti"> Emiliano Bilotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positive%20temperature%20coefficient%20%28PTC%29%20effect" title="positive temperature coefficient (PTC) effect">positive temperature coefficient (PTC) effect</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer%20composite%20%28CPC%29" title=" conductive polymer composite (CPC)"> conductive polymer composite (CPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/19230/effect-of-filler-size-and-shape-on-positive-temperature-coefficient-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Mathematical Analysis of Matrix and Filler Formulation in Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20A.%20Afolabi">Olusegun A. Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndivhuwo%20Ndou"> Ndivhuwo Ndou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=percentage%20weight" title=" percentage weight"> percentage weight</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20fraction" title=" volume fraction"> volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/182436/mathematical-analysis-of-matrix-and-filler-formulation-in-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Comparison of Mechanical Property of UNS C12200Joints Brazed by (Cu&amp;Ag) Based Filler Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Elhatmi">Ali Elhatmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Elshbo"> Mustafa Elshbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussin%20Alosta"> Hussin Alosta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the coper tube witch used in medical applications was brazed by Copper, Zink and Silver alloys, using BCuP2, RBCuZnAl and BAg2 filler metals. The sample of the medical tubes was chemically analyzed and the result matches the British standard. Tensile and hardness tests were carried out for brazed joints, and the tensile test results show that the BCuP2 has the hardest and the filler metal RBCuZnAl has the highest tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazing" title=" Brazing"> Brazing</a>, <a href="https://publications.waset.org/abstracts/search?q=Copper%20tubes" title=" Copper tubes"> Copper tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joints" title=" Joints"> Joints</a> </p> <a href="https://publications.waset.org/abstracts/92026/comparison-of-mechanical-property-of-uns-c12200joints-brazed-by-cuag-based-filler-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Thermal Property Improvement of Silica Reinforced Epoxy Composite Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyu%20Sang%20Jo">Hyu Sang Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical and thermal properties of epoxy composites that are reinforced with micrometer-sized silica particles were investigated by using the specimen experiments. For all specimens used in this study (from the baseline to specimen containing 70 wt% silica filler), the tensile strengths were gradually increased by 8-10%, but the ductility of the specimen was decreased by 34%, compared with those of the baseline samples. Similarly, for the samples containing 70 wt% silica filler, the coefficient of thermal expansion was reduced by 25%, but the thermal conductivity was increased by 100%, compared with those of the baseline samples. The improvement of thermal stability of the silica-reinforced specimen was confirmed to be within the experimented range, and the smaller silica particle was found to be more effective in delaying the thermal expansion of the specimens. When the smaller particle was used as filler, due to the increased specific interface area between filler and matrix, the thermal conductivities of the composite specimens were measured to be slightly lower than those of the specimens reinforced with the larger particle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20filler" title="carbon nanotube filler">carbon nanotube filler</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20composite" title=" epoxy composite"> epoxy composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a> </p> <a href="https://publications.waset.org/abstracts/44711/thermal-property-improvement-of-silica-reinforced-epoxy-composite-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhende%20Hou">Zhende Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang"> Fan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoli%20Zhang"> Guoli Zhang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomers" title="elastomers">elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20stretch" title=" uniaxial stretch"> uniaxial stretch</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20area" title=" electrode area"> electrode area</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/93758/study-on-the-voltage-induced-wrinkling-of-elastomer-with-different-electrode-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nait%20Salah">A. Nait Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaddami"> M. Kaddami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (&Oslash; = 2.4 mm and &Oslash; = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASME" title="ASME">ASME</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20metal" title=" base metal"> base metal</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-hardness%20test" title=" micro-hardness test"> micro-hardness test</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding" title=" submerged arc welding"> submerged arc welding</a> </p> <a href="https://publications.waset.org/abstracts/96792/effect-of-filler-metal-diameter-on-weld-joint-of-carbon-steel-sa516-gr-70-and-filler-metal-sfa-517-in-submerged-arc-welding-saw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Elastomer Composites Containing Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Maciejewska">M. Maciejewska</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Walkiewicz"> F. Walkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to study the activity of several novel benzalkonium and alkylammonium and alkylimidazolium ionic liquids with 2-mercaptobenzothiazolate for use as accelerators in the sulphur vulcanisation of butadiene-styrene elastomer (SBR). The application of novel ionic liquids allowed for the elimination of N-cyclohexyl-2-benzothiazolesulfenamide from SBR compounds and for the considerable reduction of the amount of 2-mercaptobenzothiazole present in rubber products, which is favourable because, it is an allergenic agent. Synthesised salts could be used alternatively to standard accelerators in the vulcanisation of SBR, without any detrimental effects on the vulcanisation process, the physical properties or the thermal stability of the obtained vulcanisates. Ionic liquids increased the crosslink density of the vulcanisates and improved their thermal stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=styrene-butadiene%20rubber" title=" styrene-butadiene rubber"> styrene-butadiene rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=vulcanisation" title=" vulcanisation"> vulcanisation</a> </p> <a href="https://publications.waset.org/abstracts/16799/elastomer-composites-containing-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zielinska">M. Zielinska</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Daniels"> B. Daniels</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gabel"> J. Gabel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Paletko"> A. Paletko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20brazing" title="diffusion brazing">diffusion brazing</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=superalloy" title=" superalloy"> superalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/6452/influence-of-brazing-process-parameters-on-the-mechanical-properties-of-nickel-based-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Ye%20Koo">Min Ye Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20filler" title="carbon nanotube filler">carbon nanotube filler</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20composite" title=" epoxy composite"> epoxy composite</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-sonication" title=" ultra-sonication"> ultra-sonication</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20mixer" title=" shear mixer"> shear mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a> </p> <a href="https://publications.waset.org/abstracts/19913/thermal-property-of-multi-walled-carbon-nanotube-reinforced-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Evaluation of Vine Stem Waste as a Filler Material for High Density Polyethylene </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Seki">Y. Seki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20%C3%87.%20K%C4%B1l%C4%B1%C3%A7"> A. Ç. Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Atag%C3%BCr"> M. Atagür</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20%C3%96zdemir"> O. Özdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20%C5%9Een"> İ. Şen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sever"> K. Sever</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96.%20Seydibeyo%C4%9Flu"> Ö. Seydibeyoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sarikanat"> M. Sarikanat</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K%C3%BC%C3%A7%C3%BCkdo%C4%9Fan"> N. Küçükdoğan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cheap and abundant waste materials have been investigated as filler materials in thermoplastic polymers instead of wood- based materials because of deforestation. Vine stem, as an agricultural waste, was used as a filler material for a thermoplastic polymer, high-density polyethylene (HDPE) in this study. Agricultural waste of vine stem was collected from Manisa region, Turkey. Vine stem at different rations was used to reinforce HDPE. The effect of vine stem loading on tensile strength and Young’s modulus of composites were obtained. It was clearly observed that tensile strength and Young’s modulus of HDPE was increased by vine stem loading. Thermal stabilities of composites were obtained by using thermogravimetric analysis. Water absorption behavior of HDPE was improved by loading vine stem into HDPE. The crystallinity index values of neat HDPE and vine stem loaded HDPE composites were investigated byX-ray diffraction analysis. From this study, it was inferred that vine stem, as an agricultural waste, can be used as a filler material for HDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20filler" title="waste filler">waste filler</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/25185/evaluation-of-vine-stem-waste-as-a-filler-material-for-high-density-polyethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shahril">K. Shahril</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nizam"> A. Nizam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sabri"> M. Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siti%20Rohana"> A. Siti Rohana</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Salmah"> H. Salmah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20acrylic" title=" acid acrylic"> acid acrylic</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20modifier" title=" chemical modifier"> chemical modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/14842/effect-of-chemical-modifier-on-the-properties-of-polypropylene-pp-coconut-fiber-cf-in-automotive-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Tensile and Flexural Behavior of Particulate Filled/Polymer Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alsaadi">M. Alsaadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erkli%C4%9F"> A. Erkliğ</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bulut"> M. Bulut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper experimentally investigates the flexural and tensile properties of the industrial wastes sewage sludge ash (SSA) and fly ash (FA), and conventional ceramic powder silicon carbide (SiC) filled polyester composites. Four weight fractions (5, 10, 15 and 20 wt%) for each micro filler were used for production of composites. Then, test samples were produced according to ASTM. The resulting degree of particle dispersion in the polymer matrix was visualized by using scanning electron microscope (SEM). Results from this study showed that the tensile strength increased up to its maximum value at filler content 5 wt% of SSA, FA and SiC. Flexural strength increased with addition of particulate filler up to its maximum value at filler content 5 wt% of SSA and FA while for SiC decreased for all weight fractions gradually. The addition of SSA, FA and SiC fillers resulted in increase of tensile and flexural modulus for all the particulate composites. Industrial waste SSA can be used as an additive with polymer to produce composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle-reinforcement" title="particle-reinforcement">particle-reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge%20ash" title=" sewage sludge ash"> sewage sludge ash</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix%20composites" title=" polymer matrix composites"> polymer matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/47026/tensile-and-flexural-behavior-of-particulate-filledpolymer-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Effect of Clay Brick Filler on Properties of Self-Compacting Lightweight Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Juradin">Sandra Juradin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidia%20Karla%20Vranjes"> Lidia Karla Vranjes </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impact of the components of concrete is considerable. The paper presents the influence of ground clay brick filler on the properties of self-compacting lightweight concrete (SCLC). In the manufacture and transport of clay bricks, product damage may occur. The filler was obtained by milling the damaged clay brick and sieved under the 0.04 mm size. The composition of each of SCLC mixture was determined according to the CBI method and compared with EFNARC (European Association) criteria. Self-compacting lightweight concrete has been tested in a fresh (slump flow method, visual assessment of stability, T50 time, V-funnel method, L-box method and J-ring) and hardened state (compressive strengths and dynamic modulus of elasticity). Mixtures with this filler had good results of compressive strength, but in fresh state the mixtures were sticky. All results were analyzed and compared with previous studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBI%20methods" title="CBI methods">CBI methods</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20clay%20brick" title=" ground clay brick"> ground clay brick</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20lightweight%20concrete" title=" self-compacting lightweight concrete"> self-compacting lightweight concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a> </p> <a href="https://publications.waset.org/abstracts/85392/effect-of-clay-brick-filler-on-properties-of-self-compacting-lightweight-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Investigation of Fusion Zone Microstructures in Plasma Arc Welding of Austenitic Stainless Steel (SS-304L) with Low Carbon Steel (A-36) with or without Filler Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan-e-Fatima">Shan-e-Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Khan"> Mushtaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Imran%20Hussian"> Syed Imran Hussian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma arc welding technology is used for welding SS-304L with A-36. Two different optimize butt welded joints were produced by using austenitic filler alloy E-309L and with direct fusion at 45 A, 2mm/sec by keeping plasma gas flow rate at 0.5LPM. Microstructure analysis of the weld bead was carried out. The results reveal complex heterogeneous microstructure in austenitic base filler alloy sample where as full martensite was found in directly fused sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusion%20zone%20microstructure" title="fusion zone microstructure">fusion zone microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20steel" title=" low carbon steel"> low carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20arc%20welding" title=" plasma arc welding"> plasma arc welding</a> </p> <a href="https://publications.waset.org/abstracts/14603/investigation-of-fusion-zone-microstructures-in-plasma-arc-welding-of-austenitic-stainless-steel-ss-304l-with-low-carbon-steel-a-36-with-or-without-filler-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kamarudzaman">R. Kamarudzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kalam"> A. Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Mohd%20Fadzil"> N. A. Mohd Fadzil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunch" title="oil palm empty fruit bunch">oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite" title=" polymer nanocomposite"> polymer nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a> </p> <a href="https://publications.waset.org/abstracts/9134/the-role-of-secondary-filler-on-the-fracture-toughness-of-hdpeclay-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Permanent Deformation Resistance of Asphalt Mixtures with Red Mud as a Filler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liseane%20Padilha%20Thives">Liseane Padilha Thives</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayara%20S.%20S.%20Lima"> Mayara S. S. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Victor%20Staub%20De%20Melo"> João Victor Staub De Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=Glic%C3%A9rio%20Trich%C3%AAs"> Glicério Trichês</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red mud is a waste resulting from the processing of bauxite to alumina, the raw material of the production of aluminum. The large quantity of red mud generated and inadequately disposed in the environment has motivated researchers to develop methods for reinsertion of this waste into the productive cycle. This work aims to evaluate the resistance to permanent deformation of dense asphalt mixtures with red mud filler. The red mud was characterized by tests of X-ray diffraction, fluorescence, specific mass, laser granulometry, pH and scanning electron microscopy. For the analysis of the influence of the quantity of red mud in the mechanical performance of asphalt mixtures, a total filler content of 7% was established. Asphalt mixtures with 3%, 5% and 7% red mud were produced. A conventional mixture with 7% stone powder filler was used as reference. The asphalt mixtures were evaluated for performance to permanent deformation in the French Rutting Tester (FRT) traffic simulator. The mixture with 5% red mud presented greater resistance to permanent deformation with rutting depth at 30,000 cycles of 3.50%. The asphalt mixtures with red mud presented better performance, with reduction of the rutting of 12.63 to 42.62% in relation to the reference mixture. This study confirmed the viability of reinserting the red mud in the production chain and possible usage in the construction industry. The red mud as filler in asphalt mixtures is a reuse option of this waste and mitigation of the disposal problems, as well as being an environmentally friendly alternative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20mixtures" title="asphalt mixtures">asphalt mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=pavements" title=" pavements"> pavements</a> </p> <a href="https://publications.waset.org/abstracts/72325/permanent-deformation-resistance-of-asphalt-mixtures-with-red-mud-as-a-filler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Investigation on Corrosion Behavior of Copper Brazed Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Aminazad">A. M. Aminazad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Hadian"> A. M. Hadian</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ghasimakbari"> F. Ghasimakbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DHP (Deoxidized High Phosphorus )copper is widely used in various heat transfer units such as, air conditioners refrigerators, evaporators and condensers. Copper sheets and tubes (ISODHP) were brazed with four different brazing alloys. Corrosion resistances of the joints were examined by polarization and salt spray tests. The selected fillers consisted of three silver-based brazing alloys (hard solder); AWS-BCu5 BAg8, DINLAg30, and a copper-based filler AWS BCuP2. All the joints were brazed utilizing four different brazing processes including furnace brazing under argon, vacuum, air atmosphere and torch brazing. All of the fillers were used with and without flux. The microstructure of the brazed sheets was examined using both optical and scanning electron microscope (SEM). Hardness and leak tests were carried out on all the brazed tubes. In all three silver brazing alloys selective and galvanic corrosion were observed in filler metals, but in copper phosphor alloys the copper adjacent to the joints were noticeably corroded by pitting method. Microstructure of damaged area showed selective attack of copper lamellae as well. Interfacial attack was observed along boundaries as well as copper attack within the filler metal itself. It was found that the samples brazed with BAg5 filler metal using vacuum furnace show a higher resistance to corrosion. They also have a good ductility in the brazed zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=brazing" title=" brazing"> brazing</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=filler%20metal" title=" filler metal"> filler metal</a> </p> <a href="https://publications.waset.org/abstracts/24596/investigation-on-corrosion-behavior-of-copper-brazed-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Effects of Flame Retardant Nano Bio-Filler on the Fire Behaviour of Thin Film Intumescent Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Chian%20Yew">Ming Chian Yew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Kun%20Yew"> Ming Kun Yew</a>, <a href="https://publications.waset.org/abstracts/search?q=Lip%20Huat%20Saw"> Lip Huat Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Ching%20Ng"> Tan Ching Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Durairaj"> Rajkumar Durairaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Han%20Beh"> Jing Han Beh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the fire protection performance, char formation and heat release characteristics of the thin film intumescent coatings that incorporate waste eggshell (ES) as a nano bio-filler. In this study, the Bunsen burner and the fire propagation (BS 476: Part 6) tests of coatings were measured. Experiments on the samples were also tested to evaluate their fire behavior using a cone calorimeter according to ISO 5660-1 specifications. On exposure, the samples B, C and D had been certified to be Class 0 due to the fire propagation indexes of the samples were less than 12. Samples B and D showed a significant reduction in total heat rate (B=11.6 MJ/m² and D=12.0 MJ/m²) and uniform char structures with the addition of 3.30 wt.% and 2.75 wt.% ES nano bio-filler, respectively. As a result, ES nano bio-filler composition good to slow down the fire expanding and demonstrate better fire protection due to its positive synergistic effect with flame retardant ingredients on physical and chemical reactions in fire protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title="cone calorimeter">cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell" title=" eggshell"> eggshell</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20protection" title=" fire protection"> fire protection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20release%20rate" title=" heat release rate"> heat release rate</a>, <a href="https://publications.waset.org/abstracts/search?q=intumescent%20coating" title=" intumescent coating"> intumescent coating</a> </p> <a href="https://publications.waset.org/abstracts/86229/effects-of-flame-retardant-nano-bio-filler-on-the-fire-behaviour-of-thin-film-intumescent-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=filler%20elastomer&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10