CINXE.COM
Search results for: tungsten alloy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tungsten alloy</title> <meta name="description" content="Search results for: tungsten alloy"> <meta name="keywords" content="tungsten alloy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tungsten alloy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tungsten alloy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 793</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tungsten alloy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">793</span> Gas Tungsten Arc Welded Joints of Cast Al-Mg-Sc Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Subbaiah">K. Subbaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Jeyakumar"> C. V. Jeyakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Koteswara%20Rao"> S. R. Koteswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cast Aluminum-Magnesium-Scandium alloy was Gas Tungsten Arc (GTA) welded, and the microstructure and mechanical properties of the joint and its component parts were examined and analyzed. The global joint fractured in the base metal, and thus possessed slightly greater tensile strength than the base metal. These results clearly show that Gas Tungsten Arc welding is an optimum / suitable welding process for cast Aluminum-Magnesium-Scandium alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast%20Al-Mg-Sc%20alloy" title="cast Al-Mg-Sc alloy">cast Al-Mg-Sc alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=GTAW" title=" GTAW"> GTAW</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/18496/gas-tungsten-arc-welded-joints-of-cast-al-mg-sc-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">792</span> Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yukinori%20Taniguchi">Yukinori Taniguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuyoshi%20Kurita"> Kazuyoshi Kurita</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Mizuta"> Kohei Mizuta</a>, <a href="https://publications.waset.org/abstracts/search?q=Keigo%20Nishitani"> Keigo Nishitani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryuichi%20Fukuda"> Ryuichi Fukuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tungsten%20carbide" title="tungsten carbide">tungsten carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle%20process" title=" recycle process"> recycle process</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title=" compression test"> compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-wear%20ability" title=" anti-wear ability"> anti-wear ability</a> </p> <a href="https://publications.waset.org/abstracts/51013/application-of-recycled-tungsten-carbide-powder-for-fabrication-of-iron-based-powder-metallurgy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">791</span> Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Miroud">D. Miroud</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mokaddem"> H. Mokaddem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tata"> M. Tata</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Foucha"> N. Foucha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dilution" title="dilution">dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=hardfacing" title=" hardfacing"> hardfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltrated%20matrix" title=" infiltrated matrix"> infiltrated matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC%20drill%20bits" title=" PDC drill bits"> PDC drill bits</a> </p> <a href="https://publications.waset.org/abstracts/49707/ni-based-hardfacing-alloy-reinforced-with-fused-eutectic-tungsten-carbide-deposited-on-infiltrated-wc-w-ni-substrate-by-oxyacetylene-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">790</span> Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Sharma">Chaitanya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Upadhyay"> Vikas Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tripathi"> A. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20locations" title=" fracture locations"> fracture locations</a> </p> <a href="https://publications.waset.org/abstracts/40159/effect-of-welding-processes-on-tensile-behavior-of-aluminum-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">789</span> Characteristic of Ta Alloy Coating Films on Near-Net Shape with Different Current Densities Using MARC Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Jun%20Lee">Young Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Hyuk%20Lee"> Tae Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Tae%20Park"> Kyoung Tae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Hyeon%20Lee"> Jong Hyeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The harsh atmosphere of the sulfur-iodine process used for producing hydrogen requires better corrosion resistance and mechanical properties that is possible to obtain with pure tantalum. Ta-W alloy is superior to pure tantalum but is difficult to alloy due to its high melting temperature. In this study, substrates of near-net shape (Swagelok® tube ISSG8UT4) were coated with Ta-W using the multi-anode reactive alloy coating (MARC) process in molten salt (LiF-NaF-K2TaF7) at different current densities (1, 2 and 4mA/cm2). Ta-4W coating films of uniform coating thicknesses, without any entrapped salt, were successfully deposited on Swagelok tube by electrodeposition at 1 mA/cm2. The resulting coated film with a corrosion rate of less than 0.011 mm/year was attained in hydriodic acid at 160°C, and hardness up to 12.9 % stronger than pure tantalum coated film. The alloy coating films also contributed to significant enhancement of corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tantalum" title="tantalum">tantalum</a>, <a href="https://publications.waset.org/abstracts/search?q=tantalum%20alloy" title=" tantalum alloy"> tantalum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy" title=" tungsten alloy"> tungsten alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a> </p> <a href="https://publications.waset.org/abstracts/32956/characteristic-of-ta-alloy-coating-films-on-near-net-shape-with-different-current-densities-using-marc-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">788</span> Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinjoo%20Jung">Jinjoo Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayeon%20Won"> Hayeon Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Doyeong%20Jeong"> Doyeong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Hyung%20Kim"> Do Hyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title=" electrochromic"> electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20oxide" title=" tungsten oxide"> tungsten oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten-molybdenum%20oxide" title=" tungsten-molybdenum oxide"> tungsten-molybdenum oxide</a> </p> <a href="https://publications.waset.org/abstracts/21623/effects-of-phase-and-morphology-on-the-electrochemical-and-electrochromic-performances-of-tungsten-oxide-and-tungsten-molybdenum-oxide-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">787</span> The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilge%20Demir">Bilge Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Durgutlu"> Ahmet Durgutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Acarer"> Mustafa Acarer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZ31%20magnesium%20alloy" title="AZ31 magnesium alloy">AZ31 magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20hardness%20TIG%20welding" title=" micro hardness TIG welding"> micro hardness TIG welding</a> </p> <a href="https://publications.waset.org/abstracts/37068/the-effect-of-the-weld-current-types-on-microstructure-and-hardness-in-tungsten-inert-gas-welding-of-the-az31-magnesium-alloy-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saliha%20Gachi">Saliha Gachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouloud%20Aissani"> Mouloud Aissani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Boubenider"> Fouad Boubenider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20inert%20gaz" title=" tungsten inert gaz"> tungsten inert gaz</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/92048/temperature-evolution-microstructure-and-mechanical-properties-of-heat-treatable-aluminum-alloy-welded-by-friction-stir-welding-comparison-with-tungsten-inert-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Ghosh">S. K. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Srivastava"> C. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Limaye"> P. K. Limaye</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kain"> V. Kain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohardness" title=" nanohardness"> nanohardness</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-W-P%20alloy%20coating" title=" Ni-W-P alloy coating"> Ni-W-P alloy coating</a> </p> <a href="https://publications.waset.org/abstracts/64776/ni-w-p-alloy-coating-as-an-alternate-to-electroplated-hard-cr-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> Effect of N2 Pretreatment on the Properties of Tungsten Based Catalysts in Metathesis of Ethylene and 2-Butene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriangkrai%20Aranyarat">Kriangkrai Aranyarat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of N2 pretreatment on the catalytic activity of tungsten-based catalysts was investigated in the metathesis of ethylene and trans-2-butene at 450oC and atmospheric pressure. The presence of tungsten active species was confirmed by UV-Vis and Raman spectroscopy. Compared to the WO3-based catalysts treated in air, higher amount of WO42- tetrahedral species and lower amount of WO3 crystalline species were observed on the N2-treated ones. These contribute to the higher conversion of 2-butene and propylene selectivity during 10 h time-on-stream. Moreover, N2 treatment led to lower amount of coke formation as revealed by TPO of the spent catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metathesis" title="metathesis">metathesis</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene" title=" propylene"> propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten" title=" tungsten"> tungsten</a> </p> <a href="https://publications.waset.org/abstracts/25492/effect-of-n2-pretreatment-on-the-properties-of-tungsten-based-catalysts-in-metathesis-of-ethylene-and-2-butene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> Preparation and Characterization of Nickel-Tungsten Nanoparticles Using Microemulsion Mediated Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Pal">S. Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Singh"> R. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sivakumar"> S. Sivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kunzru"> D. Kunzru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AOT stabilized reverse micelles of deionized water, dispersed in isooctane have been used to synthesize bimetallic nickel tungsten nanoparticles. Prepared nanoparticles were supported on γ-Al2O3 followed by calcination at 500oC. Characterizations of the nanoparticles were done by TEM, XRD, FTIR, XRF, TGA and BET. XRF results showed that this method gave good composition control with W/Ni weight ratio equal to 3.2. TEM images showed particle size of 5-10 nm. Removal of surfactant after calcination was confirmed by TGA and FTIR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20micelles" title=" reverse micelles"> reverse micelles</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten" title=" tungsten "> tungsten </a> </p> <a href="https://publications.waset.org/abstracts/19384/preparation-and-characterization-of-nickel-tungsten-nanoparticles-using-microemulsion-mediated-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Study on the Relationship between the Emission Property of Barium-Tungsten Cathode and Micro-Area Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Qin">Zhen Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yufei%20Peng"> Yufei Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbei%20Li"> Jianbei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jidong%20Long"> Jidong Long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the activity of the coated aluminate barium-tungsten cathodes during activation, aging, poisoning and long-term use. Through a set of hot-cathode micro-area emission uniformity study device, we tested the micro-area emission performance of the cathode under different conditions. The change of activity of cathode micro-area was obtained. The influence of micro-area activity on the performance of the cathode was explained by the ageing model of barium-tungsten cathode. This helps to improve the design and process of the cathode and can point the way in finding the factors that affect life in the cathode operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barium-tungsten%20cathode" title="barium-tungsten cathode">barium-tungsten cathode</a>, <a href="https://publications.waset.org/abstracts/search?q=ageing%20model" title=" ageing model"> ageing model</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-area%20emission" title=" micro-area emission"> micro-area emission</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20uniformity" title=" emission uniformity"> emission uniformity</a> </p> <a href="https://publications.waset.org/abstracts/64095/study-on-the-relationship-between-the-emission-property-of-barium-tungsten-cathode-and-micro-area-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Singh">G. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.Schuster"> H.Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20F%C3%BCssel"> U. Füssel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare-earth%20emitter%20particles" title="rare-earth emitter particles">rare-earth emitter particles</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature-dependent%20diffusion" title=" temperature-dependent diffusion"> temperature-dependent diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=Tungsten%20electrode" title=" Tungsten electrode"> Tungsten electrode</a> </p> <a href="https://publications.waset.org/abstracts/89406/the-chemical-transport-mechanism-of-emitter-micro-particles-in-tungsten-electrode-a-metallurgical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ching%20Lin">Yuan-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin-Yu%20Chen"> Sin-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Yu%20Wu"> Pei-Yu Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GTAW%E3%80%81A6061%20aluminum%20alloy" title="GTAW、A6061 aluminum alloy">GTAW、A6061 aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=%E3%80%81surface%20modification" title="、surface modification">、surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20study" title=" tribological study"> tribological study</a>, <a href="https://publications.waset.org/abstracts/search?q=TiC%20powder%20cladding" title=" TiC powder cladding"> TiC powder cladding</a> </p> <a href="https://publications.waset.org/abstracts/25409/tribological-study-of-tic-powder-cladding-on-6061-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> Synthesis, Structure and Functional Characteristics of Solid Electrolytes Based on Lanthanum Niobates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20V.%20Emelyanova"> Yulia V. Emelyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20A.%20Levina"> Anastasia A. Levina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solid solutions of lanthanum niobates substituted by yttrium, bismuth and tungsten were synthesized. The structure of the solid solutions is either LaNbO4-based monoclinic or BiNbO4-based triclinic. The series where niobium is substituted by tungsten on B site reveals phase-modulated structure. The values of cell parameters decrease with increasing the dopant concentration for all samples except the tungsten series although the latter show higher total conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title="impedance spectroscopy">impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=LaNbO4" title=" LaNbO4"> LaNbO4</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20ortho-niobates" title=" lanthanum ortho-niobates"> lanthanum ortho-niobates</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolyte" title=" solid electrolyte"> solid electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/38426/synthesis-structure-and-functional-characteristics-of-solid-electrolytes-based-on-lanthanum-niobates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Advancing Microstructure Evolution in Tungsten Through Rolling in Laser Powder Bed Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narges%20Shayesteh%20Moghaddam">Narges Shayesteh Moghaddam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tungsten (W), a refractory metal known for its remarkably high melting temperature, offers tremendous potential for use in challenging environments prevalent in sectors such as space exploration, defense, and nuclear industries. Additive manufacturing, especially the Laser Powder-Bed Fusion (LPBF) technique, emerges as a beneficial method for fabricating tungsten parts. This technique enables the production of intricate components while simultaneously reducing production lead times and associated costs. However, the inherent brittleness of tungsten and its tendency to crack under high-temperature conditions pose significant challenges to the manufacturing process. Our research primarily focuses on the process of rolling tungsten parts in a layer-by-layer manner in LPBF and the subsequent changes in microstructure. Our objective is not only to identify the alterations in the microstructure but also to assess their implications on the physical properties and performance of the fabricated tungsten parts. To examine these aspects, we conducted an extensive series of experiments that included the fabrication of tungsten samples through LPBF and subsequent characterization using advanced materials analysis techniques. These investigations allowed us to scrutinize shifts in various microstructural features, including, but not limited to, grain size and grain boundaries occurring during the rolling process. The results of our study provide crucial insights into how specific factors, such as plastic deformation occurring during the rolling process, influence the microstructural characteristics of the fabricated parts. This information is vital as it provides a foundation for understanding how the parameters of the layer-by-layer rolling process affect the final tungsten parts. Our research significantly broadens the current understanding of microstructural evolution in tungsten parts produced via the layer-by-layer rolling process in LPBF. The insights obtained will play a pivotal role in refining and optimizing manufacturing parameters, thus improving the mechanical properties of tungsten parts and, therefore, enhancing their performance. Furthermore, these findings will contribute to the advancement of manufacturing techniques, facilitating the wider application of tungsten parts in various high-demand sectors. Through these advancements, this research represents a significant step towards harnessing the full potential of tungsten in high-temperature and high-stress applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling" title=" rolling"> rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten" title=" tungsten"> tungsten</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20materials" title=" refractory materials"> refractory materials</a> </p> <a href="https://publications.waset.org/abstracts/169378/advancing-microstructure-evolution-in-tungsten-through-rolling-in-laser-powder-bed-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Improvement in Tool Life Through Optimizing Cutting Parameters Using Cryogenic Media in Machining of Aerospace Alloy Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Tahir">Waseem Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Hussain%20Imran%20Jaffery"> Syed Hussain Imran Jaffery</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azam"> Mohammad Azam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research work, liquid nitrogen gas (LN2) is used as a cryogenic media to optimize the cutting parameters for evaluation of tool flank wear width of Tungsten Carbide Insert (CNMG 120404-WF 4215) while turning a high strength alloy steel. Robust design concept of Taguchi L9 (34) method is applied to determine the optimum conditions. The analysis is revealed that cryogenic impact is more significant in reduction of the tool flank wear. However, High Speed Machining is shown most significant as compare to cooling media on work piece surface roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turning" title="turning">turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20cooling" title=" cryogenic cooling"> cryogenic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title=" flank wear"> flank wear</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finish" title=" surface finish"> surface finish</a> </p> <a href="https://publications.waset.org/abstracts/11529/improvement-in-tool-life-through-optimizing-cutting-parameters-using-cryogenic-media-in-machining-of-aerospace-alloy-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Interaction of Tungsten Tips with Laguerre-Gaussian Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhisek%20Sinha">Abhisek Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Debobrata%20Rajak"> Debobrata Rajak</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Rani"> Shilpa Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Gopal"> Ram Gopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Sharma"> Vandana Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of femtosecond laser pulses with metallic tips has been studied extensively, and they have proved to be a very good source of ultrashort electron pulses. A study of the interaction of femtosecond Laguerre-Gaussian (LG) laser modes with Tungsten tips is presented here. Laser pulses of 35 fs pulse durations were incident on Tungsten tips, and their electron emission rates were studied for LG (l=1, p=0) and Gaussian modes. A change in the order of the interaction for LG beams is reported, and the difference in the order of interaction is attributed to ponderomotive shifts in the energy levels corresponding to the enhanced near-field intensity supported by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=femtosecond" title="femtosecond">femtosecond</a>, <a href="https://publications.waset.org/abstracts/search?q=Laguerre-Gaussian" title=" Laguerre-Gaussian"> Laguerre-Gaussian</a>, <a href="https://publications.waset.org/abstracts/search?q=OAM" title=" OAM"> OAM</a>, <a href="https://publications.waset.org/abstracts/search?q=tip" title=" tip"> tip</a> </p> <a href="https://publications.waset.org/abstracts/139164/interaction-of-tungsten-tips-with-laguerre-gaussian-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju%20Hyun%20Won">Ju Hyun Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg%20alloy" title="Mg alloy">Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ91D" title=" AZ91D"> AZ91D</a>, <a href="https://publications.waset.org/abstracts/search?q=nonflammable%20alloy" title=" nonflammable alloy"> nonflammable alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibrium" title=" phase equilibrium"> phase equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20aging" title=" peak aging"> peak aging</a> </p> <a href="https://publications.waset.org/abstracts/34978/effect-of-aging-treatment-on-tensile-properties-of-az91d-mg-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Tungsten-Based Powders Produced in Plasma Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Samokhin">Andrey V. Samokhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20V.%20Alekseev"> Nikolay V. Alekseev</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20A.%20Sinaiskii"> Mikhail A. Sinaiskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=powders" title=" powders"> powders</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten-based" title=" tungsten-based"> tungsten-based</a> </p> <a href="https://publications.waset.org/abstracts/147220/tungsten-based-powders-produced-in-plasma-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Wisutmethangoon">S. Wisutmethangoon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pannaray"> S. Pannaray</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Plookphol"> T. Plookphol</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wannasin"> J. Wannasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2024 Aluminium alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175 °C for 36 h. Upon investigation the microstructure by using Transmission Electron Microscopy (TEM), the phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2024%20aluminium%20alloy" title="2024 aluminium alloy">2024 aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20induced%20semi%20solid" title=" gas induced semi solid"> gas induced semi solid</a>, <a href="https://publications.waset.org/abstracts/search?q=T6%20heat%20treatment" title=" T6 heat treatment"> T6 heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=aged%20hardening" title=" aged hardening"> aged hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/4350/effect-of-aging-condition-on-semisolid-cast-2024-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Li">Jing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Jin"> Li Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fulin%20Wang"> Fulin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Dong"> Jie Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjiang%20Ding"> Wenjiang Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic <a> slip in the former one, while basal slip, prismatic <a> slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg-Li-Gd%20dual-phase%20alloy" title="Mg-Li-Gd dual-phase alloy">Mg-Li-Gd dual-phase alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20boundary" title=" phase boundary"> phase boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=HDI%20stress" title=" HDI stress"> HDI stress</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation%20slip%20activity" title=" dislocation slip activity"> dislocation slip activity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/145933/microscopic-and-mesoscopic-deformation-behaviors-of-mg-2gd-alloy-with-or-without-li-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Wear Resistance and Thermal Stability of Tungsten Boride Layers Deposited by Magnetron Sputtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Chrzanowska">Justyna Chrzanowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Hoffman"> Jacek Hoffman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Garbiec"> Dariusz Garbiec</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Kurpaska"> Łukasz Kurpaska</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Denis"> Piotr Denis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Moscicki"> Tomasz Moscicki</a>, <a href="https://publications.waset.org/abstracts/search?q=Zygmunt%20Szymanski"> Zygmunt Szymanski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tungsten and boron compounds belong to the group of superhard materials and its hardness could exceed 40 GPa. In this study, the properties of the tungsten boride (WB) layers deposited in magnetron sputtering process are investigated. The sputtering process occurred from specially prepared targets that were composed of boron and tungsten mixed in molar ratio of 2.5 or 4.5 and sintered in spark plasma sintering process. WB layers were deposited on silicon (100) and stainless steel 304 substrates at room temperature (RT) or in 570 °C. Layers deposited in RT and in elevated temperature varied considerably. Layers deposited in RT are amorphous and have low adhesion. In contrast, the layers deposited in 570 °C are crystalline and have good adhesion. All deposited layers have a hardness about 40 GPa. Moreover, the friction coefficient of crystalline layers is 0.22 and wear rate is about 0.67•10-6 mm3N-1m-1. After material characterization the WB layers were annealed in argon atmosphere in 1000 °C for 1 hour. On the basis of X-Ray Diffraction analysis, it has been noted that the crystalline layers are thermally stable and do not change their phase composition, whereas the amorphous layers change their phase composition. Moreover, after annealing, on the surface of WB layers some cracks were observed. It is probably connected with the differences of the thermal expansion between the layer and the substrate. Despite of the presence of cracks, the wear resistance of annealed layers is still higher than the wear resistance of uncoated substrate. The analysis of the structure and properties of tungsten boride layers lead to the discussion about the application area of this material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20coatings" title="hard coatings">hard coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20materials" title=" hard materials"> hard materials</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20boride" title=" tungsten boride"> tungsten boride</a> </p> <a href="https://publications.waset.org/abstracts/63347/wear-resistance-and-thermal-stability-of-tungsten-boride-layers-deposited-by-magnetron-sputtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Structure-Phase States of Al-Si Alloy After Electron-Beam Treatment and Multicycle Fatigue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krestina%20V.%20Alsaraeva">Krestina V. Alsaraeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20E.%20Gromov"> Victor E. Gromov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20V.%20Konovalov"> Sergey V. Konovalov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20A.%20Atroshkina"> Anna A. Atroshkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increase in fatigue life of the material has been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-19.4Si%20alloy" title="Al-19.4Si alloy">Al-19.4Si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20intensive%20electron%20beam" title=" high intensive electron beam"> high intensive electron beam</a>, <a href="https://publications.waset.org/abstracts/search?q=multicycle%20fatigue" title=" multicycle fatigue"> multicycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/18754/structure-phase-states-of-al-si-alloy-after-electron-beam-treatment-and-multicycle-fatigue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajveer">Rajveer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Saxena"> Abhinav Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das"> Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%206082" title="aluminum alloy 6082">aluminum alloy 6082</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20hardening" title=" age hardening"> age hardening</a> </p> <a href="https://publications.waset.org/abstracts/82119/an-investigation-of-the-strength-deterioration-of-forged-aluminum-6082-t6-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Micro-Electrical Discharge Machining (µEDM): Effect of the Electrochemical Etching Parameters on the Fabrication of Cylindrical Tungsten Micro-Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Tafraouti">Asmae Tafraouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Layouni"> Yasmina Layouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fabrication of cylindrical Tungsten micro-tools with a high aspect ratio is a real challenge because of several constraints that come into during their manufacture. In this paper, we will describe the process used to fabricate these micro-tools. It consists of using electrochemical etching. We will also present the optimal protocol that makes it possible to fabricate micro-tools with a high aspect ratio in a reproducible way. Next, we will show the limit of the experimental parameters chosen to manufacture micro-tools from a wire with an initial diameter of Φ_0=250µm. The protocol used allows obtaining an average diameter of Φ=88µm ±1 µm over a length of L=3.5mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop-off%20effect" title="drop-off effect">drop-off effect</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20etching" title=" electrochemical etching"> electrochemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electrical%20discharge%20machining" title=" micro-electrical discharge machining"> micro-electrical discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20micro-tools" title=" tungsten micro-tools"> tungsten micro-tools</a> </p> <a href="https://publications.waset.org/abstracts/140730/micro-electrical-discharge-machining-edm-effect-of-the-electrochemical-etching-parameters-on-the-fabrication-of-cylindrical-tungsten-micro-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> Tool Wear of Aluminum/Chromium/Tungsten Based Coated Cemented Carbide Tools in Cutting Sintered Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadahiro%20Wada">Tadahiro Wada</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Hanyu"> Hiroyuki Hanyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting" title="cutting">cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20vapor%20deposition%20coating%20method" title=" physical vapor deposition coating method"> physical vapor deposition coating method</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20mechanism" title=" tool wear mechanism"> tool wear mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Al" title=" (Al"> (Al</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr" title="Cr">Cr</a>, <a href="https://publications.waset.org/abstracts/search?q=W%29N-coating%20film" title="W)N-coating film">W)N-coating film</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Al" title=" (Al"> (Al</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr" title="Cr">Cr</a>, <a href="https://publications.waset.org/abstracts/search?q=W%29%28C" title="W)(C">W)(C</a>, <a href="https://publications.waset.org/abstracts/search?q=N%29-coating%20film" title="N)-coating film">N)-coating film</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered%20steel" title=" sintered steel"> sintered steel</a> </p> <a href="https://publications.waset.org/abstracts/30858/tool-wear-of-aluminumchromiumtungsten-based-coated-cemented-carbide-tools-in-cutting-sintered-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> Texturing of Tool Insert Using Femtosecond Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashfaq%20Khan">Ashfaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aftab%20Khan"> Aftab Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Khan"> Mushtaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarem%20Sattar"> Sarem Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A%20Sheikh"> Mohammad A Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Li"> Lin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=texturing" title=" texturing"> texturing</a>, <a href="https://publications.waset.org/abstracts/search?q=femtosecond" title=" femtosecond"> femtosecond</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20carbide" title=" tungsten carbide"> tungsten carbide</a> </p> <a href="https://publications.waset.org/abstracts/34276/texturing-of-tool-insert-using-femtosecond-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Khethier%20Abbass">Muna Khethier Abbass</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairia%20Salman%20Hussan"> Khairia Salman Hussan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Mohummed%20AbdudAlaziz"> Huda Mohummed AbdudAlaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title=" shot peening"> shot peening</a> </p> <a href="https://publications.waset.org/abstracts/14890/effect-of-shot-peening-on-the-mechanical-properties-for-welded-joints-of-aluminium-alloy-6061-t6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sn-Zn%20eutectic%20alloy" title="Sn-Zn eutectic alloy">Sn-Zn eutectic alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=yttrium" title=" yttrium"> yttrium</a>, <a href="https://publications.waset.org/abstracts/search?q=FactSage%C2%AE" title=" FactSage®"> FactSage®</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/7127/effect-of-y-addition-on-the-microstructure-and-mechanical-properties-of-sn-zn-eutectic-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tungsten%20alloy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>