CINXE.COM
Search results for: Computer fluid dynamic
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Computer fluid dynamic</title> <meta name="description" content="Search results for: Computer fluid dynamic"> <meta name="keywords" content="Computer fluid dynamic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Computer fluid dynamic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Computer fluid dynamic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3977</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Computer fluid dynamic</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3977</span> Fuel Reserve Tanks Dynamic Analysis Due to Earthquake Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.Saadi">F.Saadi</a>, <a href="https://publications.waset.org/search?q=A.Aboudi%20Asl"> A.Aboudi Asl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the dynamic analysis of fuel storage tanks has been studied and some equations are presented for the created fluid waves due to storage tank motions. Also, the equations for finite elements of fluid and structure interactions, and boundary conditions dominant on structure and fluid, were researched. In this paper, a numerical simulation is performed for the dynamic analysis of a storage tank contained a fluid. This simulation has carried out by ANSYS software, using FSI solver (Fluid and Structure Interaction solver), and by considering the simulated fluid dynamic motions due to earthquake loading, based on velocities and movements of structure and fluid according to all boundary conditions dominant on structure and fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=fluid%20and%20structure%20interactions" title="fluid and structure interactions">fluid and structure interactions</a>, <a href="https://publications.waset.org/search?q=finite%20elementmethod" title=" finite elementmethod"> finite elementmethod</a>, <a href="https://publications.waset.org/search?q=ANSYS%20%E2%80%93%20FSI" title=" ANSYS – FSI"> ANSYS – FSI</a> </p> <a href="https://publications.waset.org/954/fuel-reserve-tanks-dynamic-analysis-due-to-earthquake-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/954/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/954/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/954/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/954/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/954/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/954/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/954/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/954/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/954/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/954/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2139</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3976</span> Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Chetti">B. Chetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Four-lobe%20bearings" title="Four-lobe bearings">Four-lobe bearings</a>, <a href="https://publications.waset.org/search?q=dynamic%20characteristics" title=" dynamic characteristics"> dynamic characteristics</a>, <a href="https://publications.waset.org/search?q=stabilityanalysis" title=" stabilityanalysis"> stabilityanalysis</a>, <a href="https://publications.waset.org/search?q=micropolar%20fluid" title=" micropolar fluid"> micropolar fluid</a> </p> <a href="https://publications.waset.org/244/micropolar-fluids-effects-on-the-dynamic-characteristics-of-four-lobe-journal-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/244/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/244/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/244/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/244/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/244/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/244/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/244/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/244/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/244/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/244/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2123</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3975</span> Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Boualem%20Chetti">Boualem Chetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, the dynamic characteristics of a threelobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory .The finite difference technique has been used to determine the solution of the modified Reynolds equation. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show that the three-lobe bearing lubricated with micropolar fluid exhibits better stability compared with that lubricated with Newtonian fluid. According to the results obtained, the effect of the parameter micropolar fluid is remarkable on the dynamic characteristics and stability of the three-lobe bearing.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Three-lobe%20bearings" title="Three-lobe bearings">Three-lobe bearings</a>, <a href="https://publications.waset.org/search?q=Micropolar%20fluid" title=" Micropolar fluid"> Micropolar fluid</a>, <a href="https://publications.waset.org/search?q=Dynamic%0D%0Acharacteristics" title=" Dynamic characteristics"> Dynamic characteristics</a>, <a href="https://publications.waset.org/search?q=Stability%20analysis." title=" Stability analysis."> Stability analysis.</a> </p> <a href="https://publications.waset.org/10000183/stability-analysis-of-three-lobe-journal-bearing-lubricated-with-a-micropolar-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000183/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000183/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000183/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000183/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000183/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000183/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000183/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000183/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000183/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000183/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2715</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3974</span> Fluid Structure Interaction Induced by Liquid Slosh in Partly Filled Road Tankers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Guorong%20Yan">Guorong Yan</a>, <a href="https://publications.waset.org/search?q=Subhash%20Rakheja"> Subhash Rakheja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquid cargo contained in a partly-filled road tank vehicle is prone to dynamic slosh movement when subjected to external disturbances. The slosh behavior has been identified as a significant factor impairing the safety of liquid cargo transportation. The laboratory experiments have been conducted for analyzing fluid slosh in partly filled tanks. The experiment results measured under forced harmonic excitations reveal the three-dimensional nature of the fluid motion and coupling between the lateral and longitudinal fluid slosh at resonance. Several spectral components are observed for the transient slosh forces, which can be associated with the excitation, resonance, and beat frequencies. The peak slosh forces and moments in the vicinity of resonance are significantly larger than those of the equivalent rigid mass. Due to the nature of coupling between sloshing fluid and vehicle body, the issue of the dynamic fluid-structure interaction is essential in the analysis of tank-vehicle dynamics. A dynamic pitch plane model of a Tridem truck incorporated the fluid slosh dynamics is developed to analyze the fluid-vehicle interaction under the straight-line braking maneuvers. The results show that the vehicle responses are highly associated with the characteristics of fluid slosh force and moment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Braking%20performance" title="Braking performance">Braking performance</a>, <a href="https://publications.waset.org/search?q=fluid%20induced%20vibration" title=" fluid induced vibration"> fluid induced vibration</a>, <a href="https://publications.waset.org/search?q=fluidslosh" title=" fluidslosh"> fluidslosh</a>, <a href="https://publications.waset.org/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/search?q=tank%20trucks" title=" tank trucks"> tank trucks</a>, <a href="https://publications.waset.org/search?q=vehicle%20dynamics." title=" vehicle dynamics."> vehicle dynamics.</a> </p> <a href="https://publications.waset.org/5911/fluid-structure-interaction-induced-by-liquid-slosh-in-partly-filled-road-tankers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5911/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5911/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5911/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5911/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5911/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5911/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5911/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5911/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5911/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5911/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3029</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3973</span> Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sahba%20Sadir">Sahba Sadir</a>, <a href="https://publications.waset.org/search?q=M.%20R.%20A.%20Kadir"> M. R. A. Kadir</a>, <a href="https://publications.waset.org/search?q=A.%20%C3%96chsner"> A. Öchsner</a>, <a href="https://publications.waset.org/search?q=M.%20N.%20Harun"> M. N. Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Scaffold%20engineering" title="Scaffold engineering">Scaffold engineering</a>, <a href="https://publications.waset.org/search?q=Tissue%20engineering" title=" Tissue engineering"> Tissue engineering</a>, <a href="https://publications.waset.org/search?q=Cellularstructure" title=" Cellularstructure"> Cellularstructure</a>, <a href="https://publications.waset.org/search?q=Biomaterial" title=" Biomaterial"> Biomaterial</a>, <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics." title=" Computational fluid dynamics."> Computational fluid dynamics.</a> </p> <a href="https://publications.waset.org/11844/modeling-of-bio-scaffolds-structural-and-fluid-transport-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11844/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11844/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11844/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11844/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11844/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11844/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11844/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11844/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11844/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11844/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2039</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3972</span> Dynamic Analysis of Porous Media Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Pasbani%20Khiavi">M. Pasbani Khiavi</a>, <a href="https://publications.waset.org/search?q=A.%20R.%20M.%20Gharabaghi"> A. R. M. Gharabaghi</a>, <a href="https://publications.waset.org/search?q=K.%20Abedi"> K. Abedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The mechanical behavior of porous media is governed by the interaction between its solid skeleton and the fluid existing inside its pores. The interaction occurs through the interface of gains and fluid. The traditional analysis methods of porous media, based on the effective stress and Darcy's law, are unable to account for these interactions. For an accurate analysis, the porous media is represented in a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media. In Biot formulation, the equations of motion of the soil mixture are coupled with the global mass balance equations to describe the realistic behavior of porous media. Because of irregular geometry, the domain is generally treated as an assemblage of fmite elements. In this investigation, the numerical formulation for the field equations governing the dynamic response of fluid-saturated porous media is analyzed and employed for the study of transient wave motion. A finite element model is developed and implemented into a computer code called DYNAPM for dynamic analysis of porous media. The weighted residual method with 8-node elements is used for developing of a finite element model and the analysis is carried out in the time domain considering the dynamic excitation and gravity loading. Newmark time integration scheme is developed to solve the time-discretized equations which are an unconditionally stable implicit method Finally, some numerical examples are presented to show the accuracy and capability of developed model for a wide variety of behaviors of porous media.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20analysis" title="Dynamic analysis">Dynamic analysis</a>, <a href="https://publications.waset.org/search?q=Interaction" title=" Interaction"> Interaction</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=time%20domain" title=" time domain"> time domain</a> </p> <a href="https://publications.waset.org/6468/dynamic-analysis-of-porous-media-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6468/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6468/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6468/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6468/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6468/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6468/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6468/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6468/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6468/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6468/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1876</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3971</span> Numerical Simulation of Fluid Structure Interaction Using Two-Way Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Samira%20Laidaoui">Samira Laidaoui</a>, <a href="https://publications.waset.org/search?q=Mohammed%20Djermane"> Mohammed Djermane</a>, <a href="https://publications.waset.org/search?q=Nazihe%20Terfaya"> Nazihe Terfaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ALE" title="ALE">ALE</a>, <a href="https://publications.waset.org/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=one-way%20method" title=" one-way method"> one-way method</a>, <a href="https://publications.waset.org/search?q=two-way%20method." title=" two-way method."> two-way method.</a> </p> <a href="https://publications.waset.org/10003956/numerical-simulation-of-fluid-structure-interaction-using-two-way-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003956/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003956/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003956/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003956/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003956/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003956/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003956/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003956/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003956/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003956/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1512</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3970</span> Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tai%20Yuan%20Yu">Tai Yuan Yu</a>, <a href="https://publications.waset.org/search?q=Pei-Jen%20Wang"> Pei-Jen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed. The scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=fluid%20structure%20interaction%20multi-physics%20simulations" title=" fluid structure interaction multi-physics simulations"> fluid structure interaction multi-physics simulations</a>, <a href="https://publications.waset.org/search?q=gas%20foil%20bearing" title=" gas foil bearing"> gas foil bearing</a>, <a href="https://publications.waset.org/search?q=load%20capacity." title=" load capacity."> load capacity.</a> </p> <a href="https://publications.waset.org/10012649/predictions-of-dynamic-behaviors-for-gas-foil-bearings-operating-at-steady-state-based-on-multi-physics-coupling-computer-aided-engineering-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012649/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012649/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012649/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012649/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012649/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012649/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012649/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012649/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012649/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012649/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3969</span> Reasoning with Dynamic Domains and Computer Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yun%20Bai">Yun Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Representing objects in a dynamic domain is essential in commonsense reasoning under some circumstances. Classical logics and their nonmonotonic consequences, however, are usually not able to deal with reasoning with dynamic domains due to the fact that every constant in the logical language denotes some existing object in the static domain. In this paper, we explore a logical formalization which allows us to represent nonexisting objects in commonsense reasoning. A formal system named N-theory is proposed for this purpose and its possible application in computer security is briefly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=knowledge%20representation%20and%20reasoning" title="knowledge representation and reasoning">knowledge representation and reasoning</a>, <a href="https://publications.waset.org/search?q=commonsensereasoning" title=" commonsensereasoning"> commonsensereasoning</a>, <a href="https://publications.waset.org/search?q=computer%20security" title=" computer security"> computer security</a> </p> <a href="https://publications.waset.org/737/reasoning-with-dynamic-domains-and-computer-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/737/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/737/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/737/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/737/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/737/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/737/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/737/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/737/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/737/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/737/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1443</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3968</span> A Computational Fluid Dynamic Model of Human Sniffing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.V.%20Shyla">M.V. Shyla</a>, <a href="https://publications.waset.org/search?q=K.B.%20Naidu"> K.B. Naidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The objective of this paper is to develop a computational model of human nasal cavity from computed tomography (CT) scans using MIMICS software. Computational fluid dynamic techniques were employed to understand nasal airflow. Gambit and Fluent software was used to perform CFD simulation. Velocity profiles, iteration plots, pressure distribution, streamline and pathline patterns for steady, laminar airflow inside the human nasal cavity of healthy and also infected persons are presented in detail. The implications for olfaction are visualized. Results are validated with the available numerical and experimental data. The graphs reveal that airflow varies with different anatomical nasal structures and only fraction of the inspired air reaches the olfactory region. The Deviations in the results suggest that the treatment of infected volunteers will improve the olfactory function.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD%20techniques" title="CFD techniques">CFD techniques</a>, <a href="https://publications.waset.org/search?q=Finite%20Volume%20Method" title=" Finite Volume Method"> Finite Volume Method</a>, <a href="https://publications.waset.org/search?q=Fluid%20dynamic%20sniffing" title=" Fluid dynamic sniffing"> Fluid dynamic sniffing</a>, <a href="https://publications.waset.org/search?q=Human%20nasal%20cavity." title=" Human nasal cavity. "> Human nasal cavity. </a> </p> <a href="https://publications.waset.org/17287/a-computational-fluid-dynamic-model-of-human-sniffing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17287/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17287/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17287/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17287/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17287/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17287/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17287/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17287/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17287/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17287/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2061</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3967</span> Application of Multi-objective Optimization Packages in Design of an Evaporator Coil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.Mosavi">A.Mosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel methodology has been used to design an evaporator coil of a refrigerant. The methodology used is through a complete Computer Aided Design /Computer Aided Engineering approach, by means of a Computational Fluid Dynamic/Finite Element Analysis model which is executed many times for the thermal-fluid exploration of several designs' configuration by an commercial optimizer. Hence the design is carried out automatically by parallel computations, with an optimization package taking the decisions rather than the design engineer. The engineer instead takes decision regarding the physical settings and initializing of the computational models to employ, the number and the extension of the geometrical parameters of the coil fins and the optimization tools to be employed. The final design of the coil geometry found to be better than the initial design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multi-objective%20shape%20optimization" title="Multi-objective shape optimization">Multi-objective shape optimization</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/search?q=multi-physics%20structures" title="multi-physics structures">multi-physics structures</a>, <a href="https://publications.waset.org/search?q=modeFRONTIER" title=" modeFRONTIER"> modeFRONTIER</a> </p> <a href="https://publications.waset.org/5924/application-of-multi-objective-optimization-packages-in-design-of-an-evaporator-coil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5924/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5924/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5924/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5924/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5924/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5924/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5924/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5924/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5924/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5924/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2050</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3966</span> EHD Effect on the Dynamic Characteristics of a Journal Bearing Lubricated with Couple Stress Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Chetti">B. Chetti</a>, <a href="https://publications.waset.org/search?q=W.%20A.%20Crosby"> W. A. Crosby </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a numerical analysis for the dynamic performance of a finite journal bearing lubricated with couple stress fluid taking into account the effect of the deformation of the bearing liner. The modified Reynolds equation has been solved by using finite difference technique. The dynamic characteristics in terms of stiffness coefficients, damping coefficients, critical mass and whirl ratio are evaluated for different values of eccentricity ratio and elastic coefficient for a journal bearing lubricated with a couple stress fluids and a Newtonian fluid. The results show that the dynamic characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Circular%20bearing" title="Circular bearing">Circular bearing</a>, <a href="https://publications.waset.org/search?q=elastohydrodynamic" title=" elastohydrodynamic"> elastohydrodynamic</a>, <a href="https://publications.waset.org/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/search?q=couple%20stress." title=" couple stress."> couple stress.</a> </p> <a href="https://publications.waset.org/10005222/ehd-effect-on-the-dynamic-characteristics-of-a-journal-bearing-lubricated-with-couple-stress-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005222/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005222/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005222/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005222/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005222/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005222/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005222/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005222/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005222/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005222/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1271</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3965</span> Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Mahdi%20S.%20Kolbadi">S. Mahdi S. Kolbadi</a>, <a href="https://publications.waset.org/search?q=Ramezan%20Ali%20Alvand"> Ramezan Ali Alvand</a>, <a href="https://publications.waset.org/search?q=Afrasiab%20Mirzaei"> Afrasiab Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20behavior" title="Dynamic behavior">Dynamic behavior</a>, <a href="https://publications.waset.org/search?q=water%20storage%20tank" title=" water storage tank"> water storage tank</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=flexible%20wall." title=" flexible wall. "> flexible wall. </a> </p> <a href="https://publications.waset.org/10009126/three-dimensional-dynamic-analysis-of-water-storage-tanks-considering-fsi-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009126/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009126/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009126/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009126/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009126/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009126/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009126/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009126/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009126/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009126/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">982</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3964</span> Computational Fluid Dynamics Expert System using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gonzalo%20Rubio">Gonzalo Rubio</a>, <a href="https://publications.waset.org/search?q=Eusebio%20Valero"> Eusebio Valero</a>, <a href="https://publications.waset.org/search?q=Sven%20Lanzan"> Sven Lanzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/search?q=Computational%20Fluid%20Dynamics" title=" Computational Fluid Dynamics"> Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/search?q=Optimization" title=" Optimization"> Optimization</a> </p> <a href="https://publications.waset.org/5734/computational-fluid-dynamics-expert-system-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5734/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5734/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5734/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5734/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5734/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5734/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5734/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5734/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5734/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5734/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2958</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3963</span> Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20%C5%A0ediv%C3%BD">D. Šedivý</a>, <a href="https://publications.waset.org/search?q=S.%20Fialov%C3%A1"> S. Fialová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20modeling" title="Computational modeling">Computational modeling</a>, <a href="https://publications.waset.org/search?q=dynamic%20mesh" title=" dynamic mesh"> dynamic mesh</a>, <a href="https://publications.waset.org/search?q=mechanical%20heart%20valve" title=" mechanical heart valve"> mechanical heart valve</a>, <a href="https://publications.waset.org/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a>, <a href="https://publications.waset.org/search?q=SDOF." title=" SDOF."> SDOF.</a> </p> <a href="https://publications.waset.org/10007804/computational-fluid-dynamics-simulation-and-comparison-of-flow-through-mechanical-heart-valve-using-newtonian-and-non-newtonian-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007804/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007804/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007804/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007804/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007804/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007804/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007804/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007804/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007804/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007804/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1622</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3962</span> Application of Agile Project Methodology in Computational Fluid Dynamics Engineering Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammed%20Bilal">Mohammed Bilal</a>, <a href="https://publications.waset.org/search?q=Noor%20Hyder"> Noor Hyder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Agile methodology is a popular project management methodology and is widely used in many engineering projects. In the recent years agile methodology is successful in countering the inherent problems seen in traditional methodology. The application of the Agile methodology in the computational fluid dynamic project had improved the project delivery performance. Computational Fluid Dynamics (CFD) is the method to solve and analyze the fluid flow problems by the application of the numerical analysis. In this paper, study is conducted using agile methodology and results are compared with waterfall methodology. The result shows that the agile methodology is improves the final delivery of the project.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Agile%20methodology" title="Agile methodology">Agile methodology</a>, <a href="https://publications.waset.org/search?q=traditional%20methodology" title=" traditional methodology"> traditional methodology</a>, <a href="https://publications.waset.org/search?q=engineering%20management" title=" engineering management"> engineering management</a>, <a href="https://publications.waset.org/search?q=engineering%20technology" title=" engineering technology"> engineering technology</a>, <a href="https://publications.waset.org/search?q=Computational%20Fluid%20Dynamics" title=" Computational Fluid Dynamics"> Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/search?q=project%20management." title=" project management."> project management.</a> </p> <a href="https://publications.waset.org/10013109/application-of-agile-project-methodology-in-computational-fluid-dynamics-engineering-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013109/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013109/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013109/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013109/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013109/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013109/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013109/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013109/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013109/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013109/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3961</span> High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20Henninger">D. Henninger</a>, <a href="https://publications.waset.org/search?q=A.%20Zopey"> A. Zopey</a>, <a href="https://publications.waset.org/search?q=T.%20Ihde"> T. Ihde</a>, <a href="https://publications.waset.org/search?q=C.%20Mehring"> C. Mehring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20performance%20model" title="Dynamic performance model">Dynamic performance model</a>, <a href="https://publications.waset.org/search?q=high-fidelity%20model" title=" high-fidelity model"> high-fidelity model</a>, <a href="https://publications.waset.org/search?q=1D-3D%20decoupled%20analysis" title=" 1D-3D decoupled analysis"> 1D-3D decoupled analysis</a>, <a href="https://publications.waset.org/search?q=solenoid-operated%20hydraulic%20servo%20valve" title=" solenoid-operated hydraulic servo valve"> solenoid-operated hydraulic servo valve</a>, <a href="https://publications.waset.org/search?q=CFD%20and%20electromagnetic%20FEA." title=" CFD and electromagnetic FEA."> CFD and electromagnetic FEA.</a> </p> <a href="https://publications.waset.org/10007816/high-fidelity-1d-dynamic-model-of-a-hydraulic-servo-valve-using-3d-computational-fluid-dynamics-and-electromagnetic-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007816/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007816/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007816/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007816/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007816/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007816/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007816/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007816/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007816/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007816/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1153</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3960</span> Dynamic Traffic Simulation for Traffic Congestion Problem Using an Enhanced Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wong%20Poh%20Lee">Wong Poh Lee</a>, <a href="https://publications.waset.org/search?q=Mohd.%20Azam%20Osman"> Mohd. Azam Osman</a>, <a href="https://publications.waset.org/search?q=Abdullah%20Zawawi%20Talib"> Abdullah Zawawi Talib</a>, <a href="https://publications.waset.org/search?q=Ahmad%20Izani%20Md.%20Ismail"> Ahmad Izani Md. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic congestion has become a major problem in many countries. One of the main causes of traffic congestion is due to road merges. Vehicles tend to move slower when they reach the merging point. In this paper, an enhanced algorithm for traffic simulation based on the fluid-dynamic algorithm and kinematic wave theory is proposed. The enhanced algorithm is used to study traffic congestion at a road merge. This paper also describes the development of a dynamic traffic simulation tool which is used as a scenario planning and to forecast traffic congestion level in a certain time based on defined parameter values. The tool incorporates the enhanced algorithm as well as the two original algorithms. Output from the three above mentioned algorithms are measured in terms of traffic queue length, travel time and the total number of vehicles passing through the merging point. This paper also suggests an efficient way of reducing traffic congestion at a road merge by analyzing the traffic queue length and travel time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic" title="Dynamic">Dynamic</a>, <a href="https://publications.waset.org/search?q=fluid-dynamic" title=" fluid-dynamic"> fluid-dynamic</a>, <a href="https://publications.waset.org/search?q=kinematic%20wave%20theory" title=" kinematic wave theory"> kinematic wave theory</a>, <a href="https://publications.waset.org/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/search?q=traffic%20congestion." title=" traffic congestion."> traffic congestion.</a> </p> <a href="https://publications.waset.org/9845/dynamic-traffic-simulation-for-traffic-congestion-problem-using-an-enhanced-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9845/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9845/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9845/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9845/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9845/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9845/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9845/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9845/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9845/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9845/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3143</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3959</span> Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Afshin%20Ahmadi%20Nadooshan">Afshin Ahmadi Nadooshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Interfacial%20flow" title="Interfacial flow">Interfacial flow</a>, <a href="https://publications.waset.org/search?q=Incompressible%20flow" title=" Incompressible flow"> Incompressible flow</a>, <a href="https://publications.waset.org/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/search?q=Volume-Of-Fluid" title=" Volume-Of-Fluid"> Volume-Of-Fluid</a>, <a href="https://publications.waset.org/search?q=Kelvin-Helmholtz." title=" Kelvin-Helmholtz."> Kelvin-Helmholtz.</a> </p> <a href="https://publications.waset.org/13375/numerical-simulation-of-interfacial-flow-with-volume-of-fluid-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13375/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13375/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13375/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13375/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13375/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13375/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13375/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13375/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13375/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13375/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2562</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3958</span> Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Marco%20Actis%20Grande">Marco Actis Grande</a>, <a href="https://publications.waset.org/search?q=Somlak%20Wannarumon"> Somlak Wannarumon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic" title="Computer fluid dynamic">Computer fluid dynamic</a>, <a href="https://publications.waset.org/search?q=Investment%20casting" title=" Investment casting"> Investment casting</a>, <a href="https://publications.waset.org/search?q=Jewelry" title=" Jewelry"> Jewelry</a>, <a href="https://publications.waset.org/search?q=Mould%20filling" title=" Mould filling"> Mould filling</a>, <a href="https://publications.waset.org/search?q=Simulation." title=" Simulation."> Simulation.</a> </p> <a href="https://publications.waset.org/262/numerical-simulation-of-investment-casting-of-gold-jewelry-experiments-and-validations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/262/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/262/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/262/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/262/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/262/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/262/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/262/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/262/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/262/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/262/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2737</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3957</span> The Analysis of Duct Model Through Structural and Dynamic Schemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20H.%20Yahaya">S. H. Yahaya</a>, <a href="https://publications.waset.org/search?q=J.%20M.%20Ali"> J. M. Ali</a>, <a href="https://publications.waset.org/search?q=M.%20R.%20Arham"> M. R. Arham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the analysis of duct design using static and dynamic approaches. The static approach is used to find out applicability between the design and material applied. The material used in this paper is Thermoplastic Olefins (TPO). For the dynamic approach, the focusing is only on the CFD simulations. The fatigue life in this design and material applied also covered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/search?q=fluid%20analysis" title=" fluid analysis"> fluid analysis</a>, <a href="https://publications.waset.org/search?q=duct%20design" title=" duct design"> duct design</a>, <a href="https://publications.waset.org/search?q=fatigue%20life" title="fatigue life">fatigue life</a> </p> <a href="https://publications.waset.org/9999/the-analysis-of-duct-model-through-structural-and-dynamic-schemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2299</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3956</span> Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tai%20Yuan%20Yu">Tai Yuan Yu</a>, <a href="https://publications.waset.org/search?q=Pei-Jen%20Wang"> Pei-Jen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fluid%20structure%20interaction%20multi-physics%20simulations" title="Fluid structure interaction multi-physics simulations">Fluid structure interaction multi-physics simulations</a>, <a href="https://publications.waset.org/search?q=gas%20foil%20bearing" title=" gas foil bearing"> gas foil bearing</a>, <a href="https://publications.waset.org/search?q=oil-free" title=" oil-free"> oil-free</a>, <a href="https://publications.waset.org/search?q=transient%20thermohydrodynamic." title=" transient thermohydrodynamic."> transient thermohydrodynamic.</a> </p> <a href="https://publications.waset.org/10012664/predictions-and-comparisons-of-thermohydrodynamic-state-for-single-and-three-pads-gas-foil-bearings-operating-at-steady-state-based-on-multi-physics-coupling-computer-aided-engineering-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012664/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012664/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012664/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012664/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012664/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012664/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012664/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012664/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012664/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012664/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3955</span> A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.Kumar">P.Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluids are used for heat transfer in many engineering equipments. Water, ethylene glycol and propylene glycol are some of the common heat transfer fluids. Over the years, in an attempt to reduce the size of the equipment and/or efficiency of the process, various techniques have been employed to improve the heat transfer rate of these fluids. Surface modification, use of inserts and increased fluid velocity are some examples of heat transfer enhancement techniques. Addition of milli or micro sized particles to the heat transfer fluid is another way of improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. In this work, the heat transfer enhancement using aluminium oxide nanofluid has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer%20intensification" title="Heat transfer intensification">Heat transfer intensification</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=friction%20factor" title="friction factor">friction factor</a> </p> <a href="https://publications.waset.org/7518/a-cfd-study-of-heat-transfer-enhancement-in-pipe-flow-with-al2o3-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7518/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7518/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7518/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7518/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7518/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7518/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7518/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7518/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7518/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7518/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3796</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3954</span> Extractable Heavy Metal Concentrations in Bottom Ash from Incineration of Wood-Based Residues in a BFB Boiler Using Artificial Sweat and Gastric Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Risto%20P%C3%B6yki%C3%B6">Risto Pöykiö</a>, <a href="https://publications.waset.org/search?q=Olli%20Dahl"> Olli Dahl</a>, <a href="https://publications.waset.org/search?q=Hannu%20Nurmesniemi"> Hannu Nurmesniemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The highest extractable concentration in the artificial sweat fluid was observed for Ba (120mg/kg; d.w.). The highest extractable concentration in the artificial gastric fluid was observed for Al (9030mg/kg; d.w.). Furthermore, the extractable concentrations of Ba (550mg/kg; d.w.) and Zn (400mg/kg: d.w.) in the bottom ash using artificial gastric fluid were elevated. The extractable concentrations of all heavy metals in the artificial gastric fluid were higher than those in the artificial sweat fluid. These results are reasonable in the light of the fact that the pH of the artificial gastric fluid was extremely acidic both before (pH 1.54) and after (pH 1.94) extraction, whereas the pH of the artificial sweat fluid was slightly alkaline before (pH 6.50) and after extraction (pH 8.51).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ash" title="Ash">Ash</a>, <a href="https://publications.waset.org/search?q=artificial%20fluid" title=" artificial fluid"> artificial fluid</a>, <a href="https://publications.waset.org/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/search?q=waste." title=" waste."> waste.</a> </p> <a href="https://publications.waset.org/16913/extractable-heavy-metal-concentrations-in-bottom-ash-from-incineration-of-wood-based-residues-in-a-bfb-boiler-using-artificial-sweat-and-gastric-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16913/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16913/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16913/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16913/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16913/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16913/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16913/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16913/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16913/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16913/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2929</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3953</span> A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Navayineya">B. Navayineya</a>, <a href="https://publications.waset.org/search?q=J.%20Vaseghi%20Amiri"> J. Vaseghi Amiri</a>, <a href="https://publications.waset.org/search?q=M.%20Alijani%20Ardeshir"> M. Alijani Ardeshir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Closed%20form%20solution" title="Closed form solution">Closed form solution</a>, <a href="https://publications.waset.org/search?q=concrete%20dams%20reservoir" title=" concrete dams reservoir"> concrete dams reservoir</a>, <a href="https://publications.waset.org/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/search?q=dynamic%20loads" title=" dynamic loads"> dynamic loads</a>, <a href="https://publications.waset.org/search?q=hydrodynamic%20pressure." title=" hydrodynamic pressure."> hydrodynamic pressure.</a> </p> <a href="https://publications.waset.org/13291/a-closed-form-solution-for-hydrodynamic-pressure-of-gravity-dams-reservoir-with-effect-of-viscosity-under-dynamic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13291/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13291/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13291/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13291/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13291/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13291/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13291/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13291/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13291/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13291/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2249</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3952</span> CFD Simulation of Hydrodynamic Behaviors and Gas-Liquid Mass Transfer in a Stirred Airlift Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S%C3%A9rgio%20S.%20de%20Jesus">Sérgio S. de Jesus</a>, <a href="https://publications.waset.org/search?q=Edgar%20Leonardo%20Mart%C3%ADnez"> Edgar Leonardo Martínez</a>, <a href="https://publications.waset.org/search?q=Aulus%20R.R.%20Binelli"> Aulus R.R. Binelli</a>, <a href="https://publications.waset.org/search?q=Aline%20Santana"> Aline Santana</a>, <a href="https://publications.waset.org/search?q=Rubens%20Maciel%20Filho"> Rubens Maciel Filho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The speed profiles, gas holdup (e<em><sub>G</sub></em>) and global oxygen transfer coefficient (<em>k</em><em><sub>L</sub></em><em>a</em>) from a stirred airlift bioreactor using water as the fluid model, was investigated by computational fluid dynamics modeling. The parameters predicted by the computer model were validated with the experimental dates. The CFD results were very close to those obtained experimentally. During the simulation it was verified a prevalent impeller effect at low speeds, propelling a large volume of fluid against the walls of the vessel, which without recirculation, results in low values of e<em><sub>G</sub></em> and <em>k</em><em><sub>L</sub></em><em>a</em>; however, by increasing air velocity, the impeller effect is smaller with the air flow being greater, in the region of the riser, causing fluid recirculation, which explains the increase in e<em><sub>G</sub></em> and <em>k</em><em><sub>L</sub></em><em>a</em>.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=Hydrodynamics" title=" Hydrodynamics"> Hydrodynamics</a>, <a href="https://publications.waset.org/search?q=Mass%20transfer" title=" Mass transfer"> Mass transfer</a>, <a href="https://publications.waset.org/search?q=Stirred%20airlift%20bioreactor." title=" Stirred airlift bioreactor. "> Stirred airlift bioreactor. </a> </p> <a href="https://publications.waset.org/9997220/cfd-simulation-of-hydrodynamic-behaviors-and-gas-liquid-mass-transfer-in-a-stirred-airlift-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997220/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997220/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997220/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997220/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997220/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997220/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997220/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997220/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997220/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997220/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3752</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3951</span> Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Bensouilah">H. Bensouilah</a>, <a href="https://publications.waset.org/search?q=H.%20Boucherit"> H. Boucherit</a>, <a href="https://publications.waset.org/search?q=M.%20Lahmar"> M. Lahmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elasto-aerodynamic%20lubrication" title="Elasto-aerodynamic lubrication">Elasto-aerodynamic lubrication</a>, <a href="https://publications.waset.org/search?q=Air%20foil%20bearing" title=" Air foil bearing"> Air foil bearing</a>, <a href="https://publications.waset.org/search?q=Steady-state%20deformation" title=" Steady-state deformation"> Steady-state deformation</a>, <a href="https://publications.waset.org/search?q=Dynamic%20deformation" title=" Dynamic deformation"> Dynamic deformation</a>, <a href="https://publications.waset.org/search?q=Stiffness%20and%0D%0Adamping%20coefficients" title=" Stiffness and damping coefficients"> Stiffness and damping coefficients</a>, <a href="https://publications.waset.org/search?q=Perturbation%20method" title=" Perturbation method"> Perturbation method</a>, <a href="https://publications.waset.org/search?q=Fluid-structure%0D%0Ainteraction" title=" Fluid-structure interaction"> Fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=Galerk%20infinite%20element%20method" title=" Galerk infinite element method"> Galerk infinite element method</a>, <a href="https://publications.waset.org/search?q=Finite%20difference%20method." title=" Finite difference method."> Finite difference method.</a> </p> <a href="https://publications.waset.org/9999606/analysis-of-a-self-acting-air-journal-bearing-effect-of-dynamic-deformation-of-bump-foil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999606/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999606/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999606/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999606/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999606/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999606/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999606/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999606/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999606/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999606/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2757</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3950</span> Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Venkateswaran">S. Venkateswaran</a>, <a href="https://publications.waset.org/search?q=C.%20Mallika%20Parveen"> C. Mallika Parveen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluid flow and the properties of the hydraulic fluid inside a torque converter are the main topics of interest in this research. The primary goal is to investigate the applicability of various viscous fluids inside the torque converter. The Taguchi optimization method is adopted to analyse the fluid flow in a torque converter from a design perspective. Calculations are conducted in maximizing the pressure since greater the pressure, greater the torque developed. Using the values of the S/N ratios obtained, graphs are plotted. Computational Fluid Dynamics (CFD) analysis is also conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hydraulic%20fluid" title="Hydraulic fluid">Hydraulic fluid</a>, <a href="https://publications.waset.org/search?q=Taguchi%27s%20method" title=" Taguchi's method"> Taguchi's method</a>, <a href="https://publications.waset.org/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/search?q=torque." title=" torque."> torque.</a> </p> <a href="https://publications.waset.org/15418/optimization-of-hydraulic-fluid-parameters-in-automotive-torque-converters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15418/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15418/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15418/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15418/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15418/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15418/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15418/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15418/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15418/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15418/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3079</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3949</span> On the Flow of a Third Grade Viscoelastic Fluid in an Orthogonal Rheometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Carmen%20D.%20Pricin%C3%A2">Carmen D. Pricinâ</a>, <a href="https://publications.waset.org/search?q=E.%20Corina%20Cipu"> E. Corina Cipu</a>, <a href="https://publications.waset.org/search?q=Victor%20%C5%A2igoiu"> Victor Ţigoiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Non%20newtonian%20fluid%20flow" title="Non newtonian fluid flow">Non newtonian fluid flow</a>, <a href="https://publications.waset.org/search?q=orthogonal%20rheometer" title=" orthogonal rheometer"> orthogonal rheometer</a>, <a href="https://publications.waset.org/search?q=third%20grade%20fluid." title=" third grade fluid."> third grade fluid.</a> </p> <a href="https://publications.waset.org/384/on-the-flow-of-a-third-grade-viscoelastic-fluid-in-an-orthogonal-rheometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/384/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/384/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/384/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/384/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/384/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/384/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/384/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/384/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/384/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/384/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1469</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3948</span> Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Benzarti">S. Benzarti</a>, <a href="https://publications.waset.org/search?q=H.%20Mhiri"> H. Mhiri</a>, <a href="https://publications.waset.org/search?q=H.%20Bournot"> H. Bournot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current work, a numerical parametric study was performed in order to model the fluid mechanics in the riser of a bubbling fluidized bed (BFB). The gas-solid flow was simulated by mean of a multi-fluid Eulerian model incorporating the kinetic theory for solid particles. The bubbling fluidized bed was simulated two dimensionally by mean of a Computational Fluid Dynamic (CFD) commercial software package, Fluent. The effects of using different inter-phase drag function (the drag model of Gidaspow, Syamlal and O-Brien and the EMMS drag model) on the model predictions were evaluated and compared. The results showed that the drag models of Gidaspow and Syamlal and O-Brien overestimated the drag force for the FCC particles and predicted a greater bed expansion in comparison to the EMMS drag model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubbling%20fluidized%20bed" title="Bubbling fluidized bed">Bubbling fluidized bed</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=drag%20model" title=" drag model"> drag model</a>, <a href="https://publications.waset.org/search?q=EMMS" title=" EMMS"> EMMS</a> </p> <a href="https://publications.waset.org/12716/drag-models-for-simulation-gas-solid-flow-in-the-bubbling-fluidized-bed-of-fcc-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12716/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12716/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12716/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12716/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12716/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12716/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12716/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12716/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12716/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12716/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6740</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Computer%20fluid%20dynamic&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>