CINXE.COM

Search results for: embodied energy

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: embodied energy</title> <meta name="description" content="Search results for: embodied energy"> <meta name="keywords" content="embodied energy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="embodied energy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="embodied energy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8499</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: embodied energy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8499</span> Impact of Design Choices on the Life Cycle Energy of Modern Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Karimpour">Mahsa Karimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Belusko"> Martin Belusko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Xing"> Ke Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Bruno"> Frank Bruno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20life%20cycle%20energy" title="building life cycle energy">building life cycle energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title=" embodied energy"> embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20design%20measures" title=" energy design measures"> energy design measures</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20buildings" title=" low energy buildings"> low energy buildings</a> </p> <a href="https://publications.waset.org/abstracts/28025/impact-of-design-choices-on-the-life-cycle-energy-of-modern-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">771</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8498</span> The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Scalisi">Francesca Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesare%20Sposito"> Cesare Sposito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title="embodied energy">embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20construction" title=" material construction"> material construction</a> </p> <a href="https://publications.waset.org/abstracts/77543/the-eco-efficient-construction-a-review-of-embodied-energy-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8497</span> An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambalika%20Ekka">Ambalika Ekka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today&rsquo;s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m<sup>2</sup> yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43&nbsp; MJ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient" title="energy efficient">energy efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title=" embodied energy"> embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=EPI" title=" EPI"> EPI</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/100991/an-approach-towards-designing-an-energy-efficient-building-through-embodied-energy-assessment-a-case-of-apartment-building-in-composite-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8496</span> Embodied Energy in Concrete and Structural Masonry on Typical Brazilian Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20S.%20Gonz%C3%A1lez">Marco A. S. González</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlova%20P.%20Kulakowski"> Marlova P. Kulakowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20G.%20Breitenbach"> Luciano G. Breitenbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Kirch"> Felipe Kirch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The AEC sector has an expressive environmental responsibility. Actually, most building materials have severe environmental impacts along their production cycle. Professionals enrolled in building design may choice the materials and techniques with less impact among the viable options. This work presents a study about embodied energy in materials of two typical Brazilian constructive alternatives. The construction options considered are reinforced concrete structure and structural masonry. The study was developed for the region of São Leopoldo, southern Brazil. Results indicated that the energy embodied in these two constructive systems is approximately 1.72 GJ•m-2 and 1.26 GJ•m-2, respectively. It may be concluded that the embodied energy is lower in the structural masonry system, with a reduction around to 1/4 in relation to the traditional option. The results can be used to help design decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=civil%20construction" title="civil construction">civil construction</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title=" embodied energy"> embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazil" title=" Brazil"> Brazil</a> </p> <a href="https://publications.waset.org/abstracts/3983/embodied-energy-in-concrete-and-structural-masonry-on-typical-brazilian-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8495</span> Automation of Embodied Energy Calculations for Buildings through Building Information Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Odeh">Ahmad Odeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20energy%20assessment" title=" lifecycle energy assessment"> lifecycle energy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20automation" title=" building automation"> building automation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation "> energy conservation </a> </p> <a href="https://publications.waset.org/abstracts/85547/automation-of-embodied-energy-calculations-for-buildings-through-building-information-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8494</span> Scientometrics Review of Embodied Carbon Benchmarks for Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rana">A. Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Badri"> M. Badri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lopez%20Behar"> D. Lopez Behar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Yee"> O. Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Al%20Bqaei"> H. Al Bqaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building sector is one of the largest emitters of greenhouse gases. However, as operation energy demands of this sector decrease with more effective energy policies and strategies, there is an urgent need to parallel focus on the growing proportion of embodied carbons. In this regard, benchmarks on embodied carbon of buildings can provide a point of reference to compare and improve the environmental performance of buildings for the stakeholders. Therefore, embodied carbon benchmarks can serve as a useful tool to address climate change challenges. This research utilizes the method to provide a knowledge roadmap of embodied carbon benchmarks development and implementation trends. Two main databases, Web of Science and Engineering Village, are considered for the study. The mapping was conducted with the help of VosViewer tool to provide information regarding: the critical research areas; most cited authors and publications; and countries with the highest publications. It is revealed that the role of benchmarks in energy policies is an emerging trend. In addition, the research highlighted that in policies, embodied carbon benchmarks are gaining importance at the material, whole building, and building portfolio levels. This research reveals direction for improvement and future research and of relevance to building industry professionals, policymakers, and researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings%20embodied%20carbon%20benchmark" title="buildings embodied carbon benchmark">buildings embodied carbon benchmark</a>, <a href="https://publications.waset.org/abstracts/search?q=methods" title=" methods"> methods</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a> </p> <a href="https://publications.waset.org/abstracts/144251/scientometrics-review-of-embodied-carbon-benchmarks-for-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8493</span> Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorena%20Polovina">Lorena Polovina</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddy%20%20Kennedy-Parrott"> Maddy Kennedy-Parrott</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fakoor"> Mohammad Fakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title="embodied carbon">embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modeling" title=" energy modeling"> energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20step%20code" title=" energy step code"> energy step code</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a> </p> <a href="https://publications.waset.org/abstracts/130565/comparing-the-embodied-carbon-impacts-of-a-passive-house-with-the-bc-energy-step-code-using-life-cycle-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8492</span> Life Cycle Assessment of Residential Buildings: A Case Study in Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkatesh%20Kumar">Venkatesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasun%20Hewage"> Kasun Hewage</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Sadiq"> Rehan Sadiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title="building simulation">building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20energy%20analysis" title=" life cycle energy analysis"> life cycle energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a> </p> <a href="https://publications.waset.org/abstracts/35021/life-cycle-assessment-of-residential-buildings-a-case-study-in-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8491</span> Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Odeh">Ahmad Odeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Jrade"> Ahmad Jrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modelling" title="building information modelling">building information modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainablity" title=" sustainablity"> sustainablity</a> </p> <a href="https://publications.waset.org/abstracts/56515/measuring-the-embodied-energy-of-construction-materials-and-their-associated-cost-through-building-information-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8490</span> Climate Change Impact Due to Timber Product Imports in the UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20A.%20Ferriz-Papi">Juan A. Ferriz-Papi</a>, <a href="https://publications.waset.org/abstracts/search?q=Allan%20L.%20Nantel"> Allan L. Nantel</a>, <a href="https://publications.waset.org/abstracts/search?q=Talib%20E.%20Butt"> Talib E. Butt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Buildings are thought to consume about 50% of the total energy in the UK. The use stage in a building life cycle has the largest energy consumption, although different assessments are showing that the construction can equal several years of maintenance and operations. The selection of materials with lower embodied energy is very important to reduce this consumption. For this reason, timber is one adequate material due to its low embodied energy and the capacity to be used as carbon storage. The use of timber in the construction industry is very significant. Sawn wood, for example, is one of the top 5 construction materials consumed in the UK according to National Statistics. Embodied energy for building products considers the energy consumed in extraction and production stages. However, it is not the same consideration if this product is produced locally as when considering the resource produced further afield. Transport is a very relevant matter that profoundly influences in the results of embodied energy. The case of timber use in the UK is important because the balance between imports and exports is far negative, industry consuming more imported timber than produced. Nearly 80% of sawn softwood used in construction is imported. The imports-exports deficit for sawn wood accounted for more than 180 million pounds during the first four-month period of 2016. More than 85% of these imports come from Europe (83% from the EU). The aim of this study is to analyze climate change impact due to transport for timber products consumed in the UK. An approximate estimation of energy consumed and carbon emissions are calculated considering the timber product’s import origin. The results are compared to the total consumption of each product, estimating the impact of transport on the final embodied energy and carbon emissions. The analysis of these results can help deduce that one big challenge for climate change is the reduction of external dependency, with the associated improvement of internal production of timber products. A study of different types of timber products produced in the UK and abroad is developed to understand the possibilities for this country to improve sustainability and self-management. Reuse and recycle possibilities are also considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title="embodied energy">embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title=" CO2 emissions"> CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=timber" title=" timber"> timber</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a> </p> <a href="https://publications.waset.org/abstracts/55322/climate-change-impact-due-to-timber-product-imports-in-the-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8489</span> Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berfin%20Yildiz">Berfin Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title="embodied energy">embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20discrete%20optimization" title=" multi-objective discrete optimization"> multi-objective discrete optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performative%20design" title=" performative design"> performative design</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a> </p> <a href="https://publications.waset.org/abstracts/122118/multi-objective-discrete-optimization-of-external-thermal-insulation-composite-systems-in-terms-of-thermal-and-embodied-energy-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8488</span> Valorization of Industrial Wastes on Hybrid Low Embodied Carbon Cement Based Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mastali"> M. Mastali</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pacheco-Torgal"> F. Pacheco-Torgal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste reuse is crucial in a context of circular economy and zero waste sustainable needs. Some wastes deserve further studies by the scientific community not only because they are generated in high amount but also because they have a low reuse rate. This paper reports results of 32 hybrid cement mortars based on fly ash and waste glass. They allow to explore the influence of mix design on the cost and on the embodied carbon of the hybrid cement mortars. The embodied carbon data for all constituents were taken from the database Ecoinvent. This study led to the development of a mixture with just 70 kg CO2e. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20reuse" title="waste reuse">waste reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cements" title=" hybrid cements"> hybrid cements</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a> </p> <a href="https://publications.waset.org/abstracts/65028/valorization-of-industrial-wastes-on-hybrid-low-embodied-carbon-cement-based-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8487</span> Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ali%20MiladKrem%20Salem">Mohamed Ali MiladKrem Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20F.Bre%C3%B1a"> Sergio F.Breña</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20R.%20Arwade"> Sanjay R. Arwade</a>, <a href="https://publications.waset.org/abstracts/search?q=Simi%20T.%20Hoque"> Simi T. Hoque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied" title=" embodied"> embodied</a>, <a href="https://publications.waset.org/abstracts/search?q=Outrigger" title=" Outrigger"> Outrigger</a>, <a href="https://publications.waset.org/abstracts/search?q=skyscraper" title=" skyscraper"> skyscraper</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/19676/concepts-in-the-design-of-lateral-load-systems-in-high-rise-buildings-to-reduce-operational-energy-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8486</span> Embodied Carbon Footprint of Existing Malaysian Green Homes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahanim%20Abdul%20Rashid">Fahanim Abdul Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azzam%20Ismail"> Muhammad Azzam Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon%20footprint" title="embodied carbon footprint">embodied carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysian%20green%20homes" title=" Malaysian green homes"> Malaysian green homes</a> </p> <a href="https://publications.waset.org/abstracts/1539/embodied-carbon-footprint-of-existing-malaysian-green-homes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8485</span> Embodied Spiritualities and Emerging Search for Social Transformation: An Embodied Ethnographic Study of Yoga Practices in Medellin, Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20M.%20Vidal">Lina M. Vidal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses yoga practices involvement in both self-transformation and social transformations by means of an embodied ethnographic approach to different initiatives for social change in Medellín. In the context of gradual popularization of embodied spiritualities, yoga practices have opened their way in calls for social change in a performative perspective which involves collective experiences, reflections and production of embodied knowledge. Through the reflection on bodily dimension and corporal experience, this ethnographic approach acknowledges inter-corporality and somatic modes of attention during observations and personal experiences. In social change initiatives that include yoga practices were identified transformations of common understanding on social issues such as it is produced by institutionalized education, health system and other fields of knowledge. This is clearly visible in yoga projects for children in vulnerable conditions, homeless people, prisoners, and young people recovering from drug addiction. These projects are often promoted by organizations and networks, which incorporate individual life stories into collective experiences. Dissemination of yoga is heading to a broad institutional and cultural legitimation of yoga and of spirituality that impact different fields of social work and everyday life in general. This way, yoga is becoming an embodied activist way of life and a legitimate field for social work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20ethnography" title="embodied ethnography">embodied ethnography</a>, <a href="https://publications.waset.org/abstracts/search?q=Medellin" title=" Medellin"> Medellin</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20transformation" title=" social transformation"> social transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20spiritualities" title=" embodied spiritualities"> embodied spiritualities</a>, <a href="https://publications.waset.org/abstracts/search?q=yoga%20practices" title=" yoga practices"> yoga practices</a> </p> <a href="https://publications.waset.org/abstracts/88281/embodied-spiritualities-and-emerging-search-for-social-transformation-an-embodied-ethnographic-study-of-yoga-practices-in-medellin-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8484</span> The Application of Conceptual Metaphor Theory to the Treatment of Depression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uma%20Kanth">Uma Kanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Amy%20Cook"> Amy Cook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conceptual Metaphor Theory (CMT) proposes that metaphor is fundamental to human thought. CMT utilizes embodied cognition, in that emotions are conceptualized as effects on the body because of a coupling of one’s bodily experiences and one’s somatosensory system. Time perception is a function of embodied cognition and conceptual metaphor in that one’s experience of time is inextricably dependent on one’s perception of the world around them. A hallmark of depressive disorders is the distortion in one’s perception of time, such as neurological dysfunction and psychomotor retardation, and yet, to the author’s best knowledge, previous studies have not before linked CMT, embodied cognition, and depressive disorders. Therefore, the focus of this paper is the investigation of how the applications of CMT and embodied cognition (especially regarding time perception) have promise in improving current techniques to treat depressive disorders. This paper aimed to extend, through a thorough review of literature, the theoretical basis required to further research into CMT and embodied cognition’s application in treating time distortion related symptoms of depressive disorders. Future research could include the development of brain training technologies that capitalize on the principles of CMT, with the aim of promoting cognitive remediation and cognitive activation to mitigate symptoms of depressive disorder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depression" title="depression">depression</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20metaphor%20theory" title=" conceptual metaphor theory"> conceptual metaphor theory</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20cognition" title=" embodied cognition"> embodied cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/121588/the-application-of-conceptual-metaphor-theory-to-the-treatment-of-depression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8483</span> Furniture Embodied Carbon Calculator for Interior Design Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javkhlan%20Nyamjav">Javkhlan Nyamjav</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Fischer"> Simona Fischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%20Garner"> Lauren Garner</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronica%20McCracken"> Veronica McCracken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current whole building life cycle assessments (LCA) primarily focus on structural and major architectural elements to measure building embodied carbon. Most of the interior finishes and fixtures are available on digital tools (such as Tally); however, furniture is still left unaccounted for. Due to its repeated refreshments and its complexity, furniture embodied carbon can accumulate over time, becoming comparable to structure and envelope numbers. This paper presents a method to calculate the Global Warming Potential (GWP) of furniture elements in commercial buildings. The calculator uses the quantity takeoff method with GWP averages gathered from environmental product declarations (EPD). The data was collected from EPD databases and furniture manufacturers from North America to Europe. A total of 48 GWP numbers were collected, with 16 GWP coming from alternative EPD. The finalized calculator shows the average GWP of typical commercial furniture and helps the decision-making process to reduce embodied carbon. The calculator was tested on MSR Design projects and showed furniture can account for more than half of the interior embodied carbon. The calculator highlights the importance of adding furniture to the overall conversation. However, the data collection process showed a) acquiring furniture EPD is not straightforward as other building materials; b) there are very limited furniture EPD, which can be explained from many perspectives, including the EPD price; c) the EPD themselves vary in terms of units, LCA scopes, and timeframes, which makes it hard to compare the products. Even though there are current limitations, the emerging focus on interior embodied carbon will create more demand for furniture EPD. It will allow manufacturers to represent all their efforts on reducing embodied carbon. In addition, the study concludes with recommendations on how designers can reduce furniture-embodied carbon through reuse and closed-loop systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furniture" title="furniture">furniture</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=calculator" title=" calculator"> calculator</a>, <a href="https://publications.waset.org/abstracts/search?q=tenant%20improvement" title=" tenant improvement"> tenant improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20design" title=" interior design"> interior design</a> </p> <a href="https://publications.waset.org/abstracts/144033/furniture-embodied-carbon-calculator-for-interior-design-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8482</span> Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rivindu%20Nethmin%20Bandara%20Menik%20Hitihamy%20Mudiyanselage">Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Hank%20Haeusler"> Matthias Hank Haeusler</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Doherty"> Ben Doherty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title="embodied carbon">embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=visualisation" title=" visualisation"> visualisation</a>, <a href="https://publications.waset.org/abstracts/search?q=summarisation" title=" summarisation"> summarisation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20filtering" title=" data filtering"> data filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=early-stage%20decision-making" title=" early-stage decision-making"> early-stage decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=materiality" title=" materiality"> materiality</a> </p> <a href="https://publications.waset.org/abstracts/161905/carbon-skimming-towards-an-application-to-summarise-and-compare-embodied-carbon-to-aid-early-stage-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8481</span> Study of Methods to Reduce Carbon Emissions in Structural Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Krijnen">Richard Krijnen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Wang"> Alan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20structural%20design" title="efficient structural design">efficient structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20material" title=" low-carbon material"> low-carbon material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20structural%20design" title=" sustainable structural design"> sustainable structural design</a> </p> <a href="https://publications.waset.org/abstracts/186101/study-of-methods-to-reduce-carbon-emissions-in-structural-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8480</span> Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amalka%20Nawarathna">Amalka Nawarathna</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirodha%20Fernando"> Nirodha Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Alwan"> Zaid Alwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon%20emissions" title="embodied carbon emissions">embodied carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon%20estimation" title=" embodied carbon estimation"> embodied carbon estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20carbon%20reduction" title=" global carbon reduction"> global carbon reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lankan%20building%20sector" title=" Sri Lankan building sector"> Sri Lankan building sector</a> </p> <a href="https://publications.waset.org/abstracts/82999/reasons-for-the-slow-uptake-of-embodied-carbon-estimation-in-the-sri-lankan-building-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8479</span> Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Kinnane">Oliver Kinnane</a>, <a href="https://publications.waset.org/abstracts/search?q=Aidan%20Reilly"> Aidan Reilly</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Grimes"> John Grimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Pavia"> Sara Pavia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosanne%20Walker"> Rosanne Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemp" title="hemp">hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=hempcrete" title=" hempcrete"> hempcrete</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20absorption" title=" acoustic absorption"> acoustic absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a> </p> <a href="https://publications.waset.org/abstracts/49146/acoustic-absorption-of-hemp-walls-with-ground-granulated-blast-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8478</span> A Comparative Life Cycle Assessment: The Design of a High Performance Building Envelope and the Impact on Operational and Embodied Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Wall">Stephanie Wall</a>, <a href="https://publications.waset.org/abstracts/search?q=Guido%20Wimmers"> Guido Wimmers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction and operation of buildings greatly contribute to environmental degradation through resource and energy consumption and greenhouse gas emissions. The design of the envelope system affects the environmental impact of a building in two major ways; 1) high thermal performance and air tightness can significantly reduce the operational energy of the building and 2) the material selection for the envelope largely impacts the embodied energy of the building. Life cycle assessment (LCA) is a scientific methodology that is used to systematically analyze the environmental load of processes or products, such as buildings, over their life. The paper will discuss the results of a comparative LCA of different envelope designs and the long-term monitoring of the Wood Innovation Research Lab (WIRL); a Passive House (PH), industrial building under construction in Prince George, Canada. The WIRL has a footprint of 30m x 30m on a concrete raft slab foundation and consists of shop space as well as a portion of the building that includes a two-story office/classroom space. The lab building goes beyond what was previously thought possible in regards to energy efficiency of industrial buildings in cold climates due to their large volume to surface ratio, small floor area, and high air change rate, and will be the first PH certified industrial building in Canada. These challenges were mitigated through the envelope design which utilizes solar gains while minimizing overheating, reduces thermal bridges with thick (570mm) prefabricated truss walls filled with blown in mineral wool insulation and a concrete slab and roof insulated with EPS rigid insulation. The envelope design results in lower operational and embodied energy when compared to buildings built to local codes or with steel. The LCA conducted using Athena Impact Estimator for Buildings identifies project specific hot spots as well illustrates that for high-efficiency buildings where the operational energy is relatively low; the embodied energy of the material selection becomes a significant design decision as it greatly impacts the overall environmental footprint of the building. The results of the LCA will be reinforced by long-term monitoring of the buildings envelope performance through the installation of temperature and humidity sensors throughout the floor slab, wall and roof panels and through detailed metering of the energy consumption. The data collected from the sensors will also be used to reinforce the results of hygrothermal analysis using WUFI®, a program used to verify the durability of the wall and roof panels. The WIRL provides an opportunity to showcase the use of wood in a high performance envelope of an industrial building and to emphasize the importance of considering the embodied energy of a material in the early stages of design. The results of the LCA will be of interest to leading researchers and scientists committed to finding sustainable solutions for new construction and high-performance buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20envelope" title="high performance envelope">high performance envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20term%20monitoring" title=" long term monitoring"> long term monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20house" title=" passive house"> passive house</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20panels" title=" prefabricated panels"> prefabricated panels</a> </p> <a href="https://publications.waset.org/abstracts/80247/a-comparative-life-cycle-assessment-the-design-of-a-high-performance-building-envelope-and-the-impact-on-operational-and-embodied-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8477</span> Embodied Cognition and Its Implications in Education: An Overview of Recent Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kosmas">Panagiotis Kosmas</a>, <a href="https://publications.waset.org/abstracts/search?q=Panayiotis%20Zaphiris"> Panayiotis Zaphiris </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Embodied Cognition (EC) as a learning paradigm is based on the idea of an inseparable link between body, mind, and environment. In recent years, the advent of theoretical learning approaches around EC theory has resulted in a number of empirical studies exploring the implementation of the theory in education. This systematic literature overview identifies the mainstream of EC research and emphasizes on the implementation of the theory across learning environments. Based on a corpus of 43 manuscripts, published between 2013 and 2017, it sets out to describe the range of topics covered under the umbrella of EC and provides a holistic view of the field. The aim of the present review is to investigate the main issues in EC research related to the various learning contexts. Particularly, the study addresses the research methods and technologies that are utilized, and it also explores the integration of body into the learning context. An important finding from the overview is the potential of the theory in different educational environments and disciplines. However, there is a lack of an explicit pedagogical framework from an educational perspective for a successful implementation in various learning contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20cognition" title="embodied cognition">embodied cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20learning" title=" embodied learning"> embodied learning</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=schools" title=" schools"> schools</a> </p> <a href="https://publications.waset.org/abstracts/93170/embodied-cognition-and-its-implications-in-education-an-overview-of-recent-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8476</span> Ranking of Optimal Materials for Building Walls from the Perspective of Cost and Waste of Electricity and Gas Energy Using AHP-TOPSIS 1 Technique: Study Example: Sari City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedomid%20Fatemi">Seyedomid Fatemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The walls of the building, as the main intermediary between the outside and the inside of the building, play an important role in controlling the environmental conditions and ensuring the comfort of the residents, thus reducing the heating and cooling loads. Therefore, the use of suitable materials is considered one of the simplest and most effective ways to reduce the heating and cooling loads of the building, which will also save energy. Therefore, in order to achieve the goal of the research "Ranking of optimal materials for building walls," optimal materials for building walls in a temperate and humid climate (case example: Sari city) from the perspective of embodied energy, waste of electricity and gas energy, cost and reuse been investigated to achieve sustainable architecture. In this regard, using information obtained from Sari Municipality, design components have been presented by experts using the Delphi method. Considering the criteria of experts' opinions (cost and reuse), the amount of embodied energy of the materials, as well as the amount of waste of electricity and gas of different materials of the walls, with the help of the AHP weighting technique and finally with the TOPSIS technique, the best type of materials in the order of 1- 3-D Panel 2-ICF-, 3-Cement block with pumice, 4-Wallcrete block, 5-Clay block, 6-Autoclaved Aerated Concrete (AAC), 7-Foam cement block, 8-Aquapanel and 9-Reinforced concrete wall for use in The walls of the buildings were proposed in Sari city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20materials" title="optimum materials">optimum materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20walls" title=" building walls"> building walls</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20and%20humid%20climate" title=" moderate and humid climate"> moderate and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP-TOPSIS%20technique" title=" AHP-TOPSIS technique"> AHP-TOPSIS technique</a> </p> <a href="https://publications.waset.org/abstracts/165462/ranking-of-optimal-materials-for-building-walls-from-the-perspective-of-cost-and-waste-of-electricity-and-gas-energy-using-ahp-topsis-1-technique-study-example-sari-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8475</span> Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prudvi%20Paresi">Prudvi Paresi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Javidan"> Fatemeh Javidan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20accounting" title="carbon accounting">carbon accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20construction" title=" small-scale construction"> small-scale construction</a>, <a href="https://publications.waset.org/abstracts/search?q=signage%20industry" title=" signage industry"> signage industry</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title=" construction materials"> construction materials</a> </p> <a href="https://publications.waset.org/abstracts/155355/carbon-accounting-for-sustainable-design-and-manufacturing-in-the-signage-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8474</span> Exploring Women&#039;s Embodied Experiences of &#039;the Gaze&#039; in Fitness Cultures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amy%20Clark">Amy Clark</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To date, the focus of feminist research surrounding men looking at women, with the analysis of how women make sense of looks between women remains limited and scattered. Drawing upon ethnographic data obtained from an on-going research project, this presentation delves into the embodied experiences of female exercisers within a UK ‘working-class’ gym. By exploring the women’s own accounts of their living, breathing and sensing bodies as they exercise, the researcher attempts to understand how they make sense of the gym space, their embodied selves as well as broader constructions of the gendered body. Utilising a feminist phenomenological approach, this research examines the social-structural position of women in a patriarchal system of gender relations, whilst simultaneously acknowledging and analysing the structural, cultural, and historical forces and location, upon individual lived body experiences and gendered embodiment. The discussion is provided on how the gym can be identified as a sexually objectifying environment, and how women make sense and interpret specific ‘gazes’ encountered within the gym. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodiment" title="embodiment">embodiment</a>, <a href="https://publications.waset.org/abstracts/search?q=feminism" title=" feminism"> feminism</a>, <a href="https://publications.waset.org/abstracts/search?q=gazes" title=" gazes"> gazes</a>, <a href="https://publications.waset.org/abstracts/search?q=sociology" title=" sociology"> sociology</a> </p> <a href="https://publications.waset.org/abstracts/63670/exploring-womens-embodied-experiences-of-the-gaze-in-fitness-cultures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8473</span> Comparative Life Cycle Assessment of Roofing System for Abu Dhabi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyasu%20Eibedingil">Iyasu Eibedingil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20roof%20tile" title="clay roof tile">clay roof tile</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20roof%20tile" title=" concrete roof tile"> concrete roof tile</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/47746/comparative-life-cycle-assessment-of-roofing-system-for-abu-dhabi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8472</span> Embodied Cognition as a Concept of Educational Neuroscience and Phenomenology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Shirvani-Ghadikolaei">Elham Shirvani-Ghadikolaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we examine the connection between the human mind and body within the framework of Merleau-Ponty&#39;s phenomenology. We study the role of this connection in designing more efficient learning environments, alongside the findings in physical recognition and educational neuroscience. Our research shows the interplay between the mind and the body in the external world and discusses its implications. Based on these observations, we make suggestions as to how the educational system can benefit from taking into account the interaction between the mind and the body in educational affairs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20neurosciences" title="educational neurosciences">educational neurosciences</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20cognition" title=" embodied cognition"> embodied cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogical%20neurosciences" title=" pedagogical neurosciences"> pedagogical neurosciences</a>, <a href="https://publications.waset.org/abstracts/search?q=phenomenology" title=" phenomenology"> phenomenology</a> </p> <a href="https://publications.waset.org/abstracts/73163/embodied-cognition-as-a-concept-of-educational-neuroscience-and-phenomenology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8471</span> Music as Source Domain: A Cross-Linguistic Exploration of Conceptual Metaphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleanor%20Sweeney">Eleanor Sweeney</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyuan%20Di"> Chunyuan Di</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metaphors people use in everyday discourse do not arise randomly; rather, they develop from our physical experiences in our social and cultural environments. Conceptual Metaphor Theory (CMT) explains that through metaphor, we apply our embodied understanding of the physical world to non-material concepts to understand and express abstract concepts. Our most productive source domains derive from our embodied understanding and allow us to develop primary metaphors, and from primary metaphors, an elaborate, creative world of culturally constructed complex metaphors. Cognitive Linguistics researchers draw upon individual embodied experience for primary metaphors. Socioculturally embodied experience through music has long furnished linguistic expressions in diverse languages, as conceptual metaphors or everyday expressions.  Can a socially embodied experience function in the same way as an individually embodied experience in the creation of conceptual metaphors? The authors argue that since music is inherently social and embodied, musical experiences function as a richly motivated source domain. The focus of this study is socially embodied musical experience which is then reflected and expressed through metaphors. This cross-linguistic study explores music as a source domain for metaphors of social alignment in English, French, and Chinese. The authors explored two public discourse sites, Facebook and Linguée, in order to collect linguistic metaphors from three different languages. By conducting this cross-linguistic study, cross-cultural similarities and differences in metaphors for which music is the source domain can be examined. Different musical elements, such as melody, speed, rhythm and harmony, are analyzed for their possible metaphoric meanings of social alignment. Our findings suggest that the general metaphor cooperation is music is a productive metaphor with some subcases, and that correlated social behaviors can be metaphorically expressed with certain elements in music. For example, since performance is a subset of the category behavior, there is a natural mapping from performance in music to behavior in social settings: social alignment is musical performance. Musical performance entails a collective social expectation that exerts control over individual behavior.  When individual behavior does not align with the collective social expectation, music-related expressions are often used to express how the individual is violating social norms. Moreover, when individuals do align their behavior with social norms, similar musical expressions are used. Cooperation is a crucial social value in all cultures, indeed it is a key element of survival, and music provides a coherent, consistent, and rich source domain—one based upon a universal and definitive cultural practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese" title="Chinese">Chinese</a>, <a href="https://publications.waset.org/abstracts/search?q=Conceptual%20Metaphor%20Theory" title=" Conceptual Metaphor Theory"> Conceptual Metaphor Theory</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linguistic" title=" cross-linguistic"> cross-linguistic</a>, <a href="https://publications.waset.org/abstracts/search?q=culturally%20embodied%20experience" title=" culturally embodied experience"> culturally embodied experience</a>, <a href="https://publications.waset.org/abstracts/search?q=English" title=" English"> English</a>, <a href="https://publications.waset.org/abstracts/search?q=French" title=" French"> French</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphor" title=" metaphor"> metaphor</a>, <a href="https://publications.waset.org/abstracts/search?q=music" title=" music"> music</a> </p> <a href="https://publications.waset.org/abstracts/87453/music-as-source-domain-a-cross-linguistic-exploration-of-conceptual-metaphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8470</span> Factors in a Sustainability Assessment of New Types of Closed Cavity Facades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Ver%C5%A1i%C4%87">Zoran Veršić</a>, <a href="https://publications.waset.org/abstracts/search?q=Josip%20Gali%C4%87"> Josip Galić</a>, <a href="https://publications.waset.org/abstracts/search?q=Marin%20Bini%C4%8Dki"> Marin Binički</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucija%20Stepinac"> Lucija Stepinac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20cavity%20fa%C3%A7ade" title=" closed cavity façade"> closed cavity façade</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle" title=" life cycle"> life cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/141946/factors-in-a-sustainability-assessment-of-new-types-of-closed-cavity-facades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=283">283</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=284">284</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=embodied%20energy&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10