CINXE.COM

Search results for: biodiesel

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biodiesel</title> <meta name="description" content="Search results for: biodiesel"> <meta name="keywords" content="biodiesel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biodiesel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biodiesel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 195</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biodiesel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Glycerol-Free Biodiesel Synthesis from Crude Mahua (Madhuca indica) Oil under Supercritical Methyl Acetate Using CO2 as a Co-Solvent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antaram%20Sarve">Antaram Sarve</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Varma"> Mahesh Varma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriram%20Sonawane"> Shriram Sonawane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional route of producing biodiesel with alcohol produces glycerol as side product which leads to oversupply and devaluation in the world market. Supercritical methyl acetate (SCMA) has been proven to convert triglycerides into fatty acid methyl esters (FAMEs) and triacetin, which is a valuable biodiesel additive as side product rather than glycerol. However, due to the low reactivity of supercritical methyl acetate on triglycerides, high reaction conditions are required to obtained maximum yields. The present study describes the renewable approach for the production of biodiesel from low-cost, high acid value mahua oil under supercritical methyl acetate condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease high reaction conditions required for supercritical methyl acetate transesterification. The influence of process parameters such as temperature, oil to methyl acetate molar ratio, reaction time, and the CO2 pressure was evaluated. The properties of biodiesel produced were found to be superior compared to conventional biodiesel method. Furthermore, SCMA has a high tolerance towards free fatty acids (FFAs) which is crucial to allow the utilization of inexpensive waste oils as a biodiesel feedstock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercritical%20methyl%20acetate" title="supercritical methyl acetate">supercritical methyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a> </p> <a href="https://publications.waset.org/abstracts/34550/glycerol-free-biodiesel-synthesis-from-crude-mahua-madhuca-indica-oil-under-supercritical-methyl-acetate-using-co2-as-a-co-solvent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Aydogan">Hasan Aydogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a> </p> <a href="https://publications.waset.org/abstracts/6129/combustion-characteristics-of-bioethanol-biodiesel-diesel-fuel-blends-used-in-a-common-rail-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Production of Biodiesel Using Brine Waste as a Heterogeneous Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Sibali"> Linda Sibali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In these modern times, we constantly search for new and innovative technologies to lift the burden of our extreme energy demand. The overall purpose of biofuel production research is to source an alternative energy source to replace the normal use of fossil fuel as liquid petroleum products. This experiment looks at the basis of biodiesel production with regards to alternative catalysts that can be used to produce biodiesel. The key factors that will be addressed during the experiments will focus on temperature variation, catalyst additions to the overall reaction, methanol to oil ratio, and the impact of agitation on the reaction. Brine samples sources from nearby plants will be evaluated and tested thoroughly and the key characteristics of these brine samples analysed for the verification of its use as a possible catalyst in biodiesel production. The one factor at a time experimental approach was used in this experiment, and the recycle and reuse characteristics of the heterogeneous catalyst was evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brine%20sludge" title="brine sludge">brine sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogenous%20catalyst" title=" heterogenous catalyst"> heterogenous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20factor" title=" one factor "> one factor </a> </p> <a href="https://publications.waset.org/abstracts/130829/production-of-biodiesel-using-brine-waste-as-a-heterogeneous-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Biodiesel Production from Yellow Oleander Seed Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rashmi">S. Rashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Devashish%20Das"> Devashish Das</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Spoorthi"> N. Spoorthi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20Manasa"> H. V. Manasa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy is essential and plays an important role for overall development of a nation. The global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment, renewable and carbon neutral biodiesel are necessary for environment and economic sustainability. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. Fossil fuels remain the dominant source of primary energy, accounting for 84% of the overall increase in demand. Today biodiesel has come to mean a very specific chemical modification of natural oils. Objectives: To produce biodiesel from yellow oleander seed oil, to test the yield of biodiesel using different types of catalyst (KOH & NaOH). Methodology: Oil is extracted from dried yellow oleander seeds using Soxhlet extractor and oil expeller (bulk). The FFA content of the oil is checked and depending on the FFA value either two steps or single step process is followed to produce biodiesel. Two step processes includes esterfication and transesterification, single step includes only transesterification. The properties of biodiesel are checked. Engine test is done for biodiesel produced. Result: It is concluded that biodiesel quality parameters such as yield(85% & 90%), flash point(1710C & 1760C),fire point(1950C & 1980C), viscosity(4.9991 and 5.21 mm2/s) for the biodiesel from seed oil of Thevetiaperuviana produced by using KOH & NaOH respectively. Thus the seed oil of Thevetiaperuviana is a viable feedstock for good quality fuel.The outcomes of our project are a substitute for conventional fuel, to reduce petro diesel requirement,improved performance in terms of emissions. Future prospects: Optimization of biodiesel production using response surface method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yellow%20oleander%20seeds" title="yellow oleander seeds">yellow oleander seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20parameters" title=" quality parameters"> quality parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20sources" title=" renewable sources"> renewable sources</a> </p> <a href="https://publications.waset.org/abstracts/25861/biodiesel-production-from-yellow-oleander-seed-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Performance and Emissions Analysis of Diesel Engine with Bio-Diesel of Waste Cooking Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Kumar">Mukesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Onkar%20Singh"> Onkar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Kumar"> Naveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Deep"> Amar Deep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The waste cooking oil is taken as feedstock for biodiesel production. For this research, waste cooking oil is collected from many hotels and restaurants, and then biodiesel is prepared for experimentation purpose. The prepared biodiesel is mixed with mineral diesel in the proportion of 10%, 20%, and 30% to perform tests on a diesel engine. The experimental analysis is carried out at different load conditions to analyze the impact of the blending ratio on the performance and emission parameters. When the blending proportion of biodiesel is increased, then the highest pressure reduces due to the fall in the calorific value of the blended mixture. Experimental analysis shows a promising decrease in nitrogen oxides (NOx). A mixture of 20% biodiesel and mineral diesel is the best negotiation, mixing ratio, and beyond that, a remarkable reduction in the outcome of the performance has been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20sources" title="alternative sources">alternative sources</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/113446/performance-and-emissions-analysis-of-diesel-engine-with-bio-diesel-of-waste-cooking-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Thermal Cracking Approach Investigation to Improve Biodiesel Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghaieh%20Parvizsedghy">Roghaieh Parvizsedghy</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mojtaba%20Sadrameli"> Seyyed Mojtaba Sadrameli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking" title=" thermal cracking"> thermal cracking</a> </p> <a href="https://publications.waset.org/abstracts/32353/thermal-cracking-approach-investigation-to-improve-biodiesel-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Production of Biodiesel from Melon Seed Oil Using Sodium Hydroxide as a Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ene%20Rosemary%20Ndidiamaka">Ene Rosemary Ndidiamaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nwangwu%20Florence%20Chinyere"> Nwangwu Florence Chinyere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physiochemical properties of the melon seed oil was studied to determine its potentials as viable feed stock for biodisel production. The melon seed was extracted by solvent extraction using n-hexane as the extracting solvent. In this research, methanol was the alcohol used in the production of biodiesel, although alcohols like ethanol, propanol may also be used. Sodium hydroxide was employed for the catalysis. The melon seed oil was characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid value, flash point, viscosity, and refractive index using standard methods. The melon seed oil had very high oil content. Specific gravity and flash point of the oil is satisfactory. However, moisture content of the oil exceeded the stipulated ASRTM standard for biodiesel production. The overall results indicates that the melon seed oil is suitable for single-stage transesterification process to biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=melon%20seed" title=" melon seed"> melon seed</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/31589/production-of-biodiesel-from-melon-seed-oil-using-sodium-hydroxide-as-a-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Masera">K. Masera</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Hossain"> A. K. Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 &amp; A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 <sup>o</sup>C) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 &deg;C and 20<strong> &deg;</strong>C), densities (at 15 &deg;C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=blending" title=" blending"> blending</a>, <a href="https://publications.waset.org/abstracts/search?q=characterisation" title=" characterisation"> characterisation</a>, <a href="https://publications.waset.org/abstracts/search?q=CI%20engine" title=" CI engine"> CI engine</a> </p> <a href="https://publications.waset.org/abstracts/81726/production-characterisation-and-assessment-of-biomixture-fuels-for-compression-ignition-engine-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Correlation and Prediction of Biodiesel Density </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nieves%20M.%20C.%20Talavera-Prieto">Nieves M. C. Talavera-Prieto</a>, <a href="https://publications.waset.org/abstracts/search?q=Abel%20G.%20M.%20Ferreira"> Abel G. M. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20T.%20G.%20Portugal"> António T. G. Portugal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20J.%20Moreira"> Rui J. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20B.%20Santos"> Jaime B. Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20density" title="biodiesel density">biodiesel density</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=equation%20of%20state" title=" equation of state"> equation of state</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/17127/correlation-and-prediction-of-biodiesel-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Characterization of Biodiesel Produced from Cow-Tallow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nwadike%20Emmanuel%20Chinagoron">Nwadike Emmanuel Chinagoron</a>, <a href="https://publications.waset.org/abstracts/search?q=Achebe%20Chukwunonso"> Achebe Chukwunonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezeliora%20Chukwuemeka%20Daniel"> Ezeliora Chukwuemeka Daniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Azaka%20Onyemazuwa%20Andrew"> Azaka Onyemazuwa Andrew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research work, the process of biodiesel production in a pilot plant was studied using cow tallow as raw material, methanol as the solvent and potassium hydroxide as catalysts. The biodiesel quality was determined by characterization. The tallow used in the production had a molecular weight of 860g. Its oil had a density value of 0.8g/ml, iodine value of 63.45, viscosity at 300C was 9.83pas, acid value was 1.96, free fatty acid (FFA) of 0.98%, saponification value of 82.75mleq/kg, specific gravity of 0.898, flash point of 1100C, cloud point of 950C and Calorific value also called Higher Heating Value (HHV) of 38.365MJ/Kg. The produced biodiesel had a density of 0.82g/ml, iodine value of 126.9, viscosity of 4.32pas at 300C, acid value of 0.561, FFA of 0.2805%, saponification value of 137.45 mleq/kg.Flash point, cloud point and centane number of the biodiesel produced are 1390C, 980C and 57.5 respectively, with fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 10%, 2.8%, 5%, 5%, 20%, and 37.2% respectively. The biodiesel higher heating values (calorific values) when estimated from viscosity, density and flash points were 41.4MJ/Kg, 63.8MJ/Kg, and 34.6MJ/Kg respectively. The biodiesel was blended with conventional diesel. The blend B-10 had values of 1320C and 960C for flash and cloud points, with Calorific value (or HHV) of 34.6 MJ/Kg (when estimated from its Flash point) and fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 5%, 2.1%,10%, 5%, 15%, and 62.9% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cow-tallow" title=" cow-tallow"> cow-tallow</a>, <a href="https://publications.waset.org/abstracts/search?q=cetane%20rating" title=" cetane rating"> cetane rating</a> </p> <a href="https://publications.waset.org/abstracts/20149/characterization-of-biodiesel-produced-from-cow-tallow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Efficiency of Pre-Treatment Methods for Biodiesel Production from Mixed Culture of Microalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malith%20Premarathne">Malith Premarathne</a>, <a href="https://publications.waset.org/abstracts/search?q=Shehan%20Bandara"> Shehan Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushalya%20G.%20Batawala"> Kaushalya G. Batawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Thilini%20U.%20Ariyadasa"> Thilini U. Ariyadasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid depletion of fossil fuel supplies and the emission of carbon dioxide by their continued combustion have paved the way for increased production of carbon-neutral biodiesel from naturally occurring oil sources. The high biomass growth rate and lipid production of microalgae make it a viable source for biodiesel production compared to conventional feedstock. In Sri Lanka, the production of biodiesel by employing indigenous microalgae species is at its emerging stage. This work was an attempt to compare the various pre-treatment methods before extracting lipids such as autoclaving, microwaving and sonication. A mixed culture of microalgae predominantly consisting of Chlorella sp. was obtained from Beire Lake which is an algae rich, organically polluted water body located in Colombo, Sri Lanka. After each pre-treatment method, a standard solvent extraction using Bligh and Dyer’s method was used to compare the total lipid content in percentage dry weight (% dwt). The fatty acid profiles of the oils extracted with each pretreatment method were analyzed using gas chromatography-mass spectrometry (GC-MS). The properties of the biodiesels were predicted by Biodiesel Analyzer© Version 1.1, in order to compare with ASTM 6751-08 biodiesel standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20extraction" title=" lipid extraction"> lipid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-treatment" title=" pre-treatment"> pre-treatment</a> </p> <a href="https://publications.waset.org/abstracts/76198/efficiency-of-pre-treatment-methods-for-biodiesel-production-from-mixed-culture-of-microalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Evaluation of the Operating Parameters for Biodiesel Production Using a Membrane Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20L.%20Andrade">S. S. L. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Souza"> E. A. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20L.%20Santos"> L. C. L. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Moraes"> C. Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20C.%20L.%20Lobato"> A. K. C. L. Lobato </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel production using membrane reactor has become increasingly studied, because this process minimizes some of the main problems encountered in the biodiesel purification. The membrane reactor tries to minimize post-treatment steps, resulting in cost savings and enabling the competitiveness of biodiesel produced by homogeneous alkaline catalysis. This is due to the reaction and product separation may occur simultaneously. In order to evaluate the production of biodiesel from soybean oils using a tubular membrane reactor, a factorial experimental design was conducted (2³) to evaluate the influence of following variables: temperature (45 to 60 °C), catalyst concentration (0.5 to 1% by weight) and molar ratio of oil/methanol (1/6 to 1/9). In addition, the parametric sensitivity was evaluated by the analysis of variance and model through the response surface. The results showed a tendency of influence of the variables in the reaction conversion. The significance effect was higher for the catalyst concentration followed by the molar ratio of oil/methanol and finally the temperature. The best result was obtained under the conditions of 1% catalyst (KOH), molar ratio oil/methanol of 1/9 and temperature of 60 °C, resulting in an ester content of 99.07%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20production" title="biodiesel production">biodiesel production</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20reactor" title=" membrane reactor"> membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/39575/evaluation-of-the-operating-parameters-for-biodiesel-production-using-a-membrane-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> The Effect of Oxidation Stability Improvement in Calophyllum Inophyllum Palm Oil Methyl Ester Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalina">Natalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwai%20Chyuan%20Onga"> Hwai Chyuan Onga</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20T.%20Chonga"> W. T. Chonga </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidation stability of biodiesel is very important in fuel handling especially for remote location of biodiesel application. Variety of feedstocks and biodiesel production process resulted many variation of biodiesel oxidation stability. The current study relates to investigation of the impact of fatty acid composition that caused by natural and production process of calophyllum inophyllum palm oil methyl ester that correlated with improvement of biodiesel oxidation stability. Firstly, biodiesel was produced from crude oil of palm oil, calophyllum inophyllum and mixing of calophyllum inophyllum and palm oil. The production process of calophyllum inophyllum palm oil methyl ester (CIPOME) was divided by including washing process and without washing. Secondly, the oxidation stability was measured from the palm oil methyl ester (POME), calophyllum inophyllum methyl ester (CIME), CIPOME with washing process and CIPOME without washing process. Then, in order to find the differences of fatty acid compositions all of the biodiesels were measured by gas chromatography analysis. It was found that mixing calophyllum inophyllum into palm oil increased the oxidation stability. Washing process influenced the CIPOME fatty acid composition, and reduction of washing process during the production process gave significant oxidation stability number of CIPOME (38 h to 114 h). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20stability" title=" oxidation stability"> oxidation stability</a>, <a href="https://publications.waset.org/abstracts/search?q=calophyllum%20inophyllum" title=" calophyllum inophyllum"> calophyllum inophyllum</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a> </p> <a href="https://publications.waset.org/abstracts/39777/the-effect-of-oxidation-stability-improvement-in-calophyllum-inophyllum-palm-oil-methyl-ester-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Study of Engine Performance and Exhaust Emissions on Multi-Cylinder Turbo-Charged Diesel Engine Operated with B5 Biodiesel Blend </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradip%20Lingfa">Pradip Lingfa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Das"> L. M. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Naik"> S. N. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last three decades the world has been confronting an energy crisis caused by the decreased of fossil resources, and increased of environmental problems. This situation resulted in a search for an alternative fuel. Non-edible vegetable oils are promising sources for producing liquid fuels. In the present experimental investigation, the engine tests were carried out for performance and exhaust emissions on 2.5 L Turbo-charged diesel engine fuelled with 5% biodiesel blend obtained from non-edible vegetable oils such as Jatropha, Karanja, and Castor Seeds. The engine tests were carried out at full throttle position with various engine speeds of 1500, 1750, 2000, 2250, 2750 and 3000 rpm respectively. After test, it was observed that 5% Jatropha biodiesel blend have highest brake power of 46.65 kW and less brake specific fuel consumptions of 225.8 kg/kW-hr compared to other two biodiesel blends of brake power of 45.99 kW, 45.81 kW and brake specific fuel consumption of 234.34, 236.55 kg/kW-hr respectively. The brake specific fuel consumption of biodiesel blends increase at increasing speeds for all biodiesel blends. NOx emissions for biodiesel blends were observed to be higher compared to diesel fuel during the entire range of engine operations. The emission characteristics like CO, HC and smoke were lowered at all engine speed conditions compared to diesel fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20blend" title="biodiesel blend">biodiesel blend</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20power" title=" brake power"> brake power</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20specific%20fuel%20consumption" title=" brake specific fuel consumption"> brake specific fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/94014/study-of-engine-performance-and-exhaust-emissions-on-multi-cylinder-turbo-charged-diesel-engine-operated-with-b5-biodiesel-blend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Velid%20Demir">Velid Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesut%20Akg%C3%BCn"> Mesut Akgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20oil" title=" jatropha oil"> jatropha oil</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20methanol" title=" supercritical methanol"> supercritical methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/162036/supercritical-methanol-for-biodiesel-production-from-jatropha-oil-in-the-presence-of-heterogeneous-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Bhushan">G. Bhushan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dhingra"> S. Dhingra</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Dubey"> K. K. Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the evaluation of performance (BSFC and BTE), combustion (P<sub>max</sub>) and emission (CO, NO<sub>x</sub>, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=rsm" title=" rsm"> rsm</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=karanja" title=" karanja"> karanja</a> </p> <a href="https://publications.waset.org/abstracts/51865/performance-evaluation-of-karanja-oil-based-biodiesel-engine-using-modified-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketsada%20Sutthiumporn">Ketsada Sutthiumporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittichot%20Thongkaw"> Sittichot Thongkaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Malee%20Santikunaporn"> Malee Santikunaporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20methyl%20ester" title="fatty acid methyl ester">fatty acid methyl ester</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20price%20structure" title=" fuel price structure"> fuel price structure</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20in%20Thailand" title=" palm oil in Thailand"> palm oil in Thailand</a> </p> <a href="https://publications.waset.org/abstracts/152224/the-optimum-biodiesel-blend-in-low-sulfur-diesel-and-its-physico-chemical-properties-and-economic-aspect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Biodiesel Production from Animal Fat Using Trans-Esterification Process with Zeolite as a Solid Catalyst to Improve the Efficiency of Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinda%20A.%20Utami">Dinda A. Utami</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20N.%20Alfarizi"> Muhammad N. Alfarizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to determine the ability of zeolite catalyst for the trans- esterification reaction in biodiesel production from animal fat. The ability of the zeolite as a catalyst is determined by the structure and composition of the zeolite. An important factor that determines the properties of zeolites in catalysis includes adsorption capability to the compound of the reactants. Zeolites with a pore size of specific properties selectively adsorbing molecules. A molecule can be adsorbed by either the zeolite cavities if the size and shape of the molecule in accordance with the size and shape of the cavity in the zeolite. At this time, it is common to use homogeneous catalysts for biodiesel. We know these catalysts have some disadvantages in its use. Such as the difficulty of separation of the product with the catalyst, the generation of waste that is harmful to the environment due to residual catalysts can’t be reused, and the difficulty of handling and storage. But nowadays, solid catalyst developed technically to improve the efficiency of biodiesel production. In this case of study, we used trans-esterification process wherein the triglyceride is reacted with an alcohol with zeolite as a solid catalyst and it will produce biodiesel and glycerol as a byproduct. Development of solid catalyst seems to be the perfect solution to address the problems associated with homogeneous catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20fat" title=" animal fat"> animal fat</a>, <a href="https://publications.waset.org/abstracts/search?q=trans%20esterification" title=" trans esterification"> trans esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20catalyst" title=" zeolite catalyst"> zeolite catalyst</a> </p> <a href="https://publications.waset.org/abstracts/59341/biodiesel-production-from-animal-fat-using-trans-esterification-process-with-zeolite-as-a-solid-catalyst-to-improve-the-efficiency-of-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Effect of Storage Time on the Properties of Seeds, Oil and Biodiesel from Reutealis trisperma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yusuf%20Abduh">Muhammad Yusuf Abduh</a>, <a href="https://publications.waset.org/abstracts/search?q=Syaripudin"> Syaripudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Laksmitha%20%20Dyanie"> Laksmitha Dyanie</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Manurung"> Robert Manurung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The time profile of moisture content for different fractions (PT-3, PT-7, PT-14, NPT-21) of trisperma seeds (Reutealis trisperma) was determined at a relative humidity of 67% and 27°C for a four months period. The diffusion coefficient of water in the trisperma seeds was determined using an analytical solution of instationary diffusion equation and used to model the moisture content in the seeds. The total oil content of the seeds and the acid value of the extracted oil from the stored seeds were periodically measured for four months. The acid value of the extracted oil from the stored seeds increased for all conditions (1.1 to 2.8 mg KOH/g for PT-3, 1.9 to 9.9 mg KOH/g for PT-7, 3.4 to 11.6 mg KOH/g for PT-14 and 4.7 to 25.4 mg KOH/g for NPT-21). The acid value of trisperma oil and biodiesel that has been stored for four months (27°C, closed container) was also determined. Upon storage, the acid value of trisperma oil and biodiesel only slightly increased from 1.1 to 1.3 mg KOH/g and 0.4 to 0.43 mg KOH/g, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20value" title="acid value">acid value</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=Reutealis%20trisperma" title=" Reutealis trisperma"> Reutealis trisperma</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/85372/effect-of-storage-time-on-the-properties-of-seeds-oil-and-biodiesel-from-reutealis-trisperma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Determinants of Smallholder Farmers&#039; Intention to Adopt Jatropha as Raw Material for Biodiesel Production: A Proposed Model for Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulsalam%20Mas%E2%80%99ud">Abdulsalam Mas’ud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Though Nigerian Biofuel Policy and Incentive was introduced in 2007, however, little if any is known about the impact of such policy for biodiesel development in Nigeria. It can be argued that lack of raw materials is one of the important factors that hinder the proper implementation of the policy. In line with this argument, this study aims to explore the determinants of smallholder farmers’ intention to adopt Jatropha as raw materials for biodiesel development in northern Nigeria, with Jigawa State as area of study. The determinants proposed for investigation covers personal factors, physical factors, institutional factors, economic factors, risk and uncertainty factors as well as social factors. The validation of the proposed model will have the implication of guiding policymakers towards enhancement of farmers’ participation in the Jatropha project for biodiesel raw materials production. The eventual byproducts of the proposed model validation and implementation will be employment generation, poverty reduction, combating dessert encroachment, economic diversification to renewable energy sources and electricity generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adoption" title="adoption">adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha" title=" jatropha"> jatropha</a> </p> <a href="https://publications.waset.org/abstracts/43442/determinants-of-smallholder-farmers-intention-to-adopt-jatropha-as-raw-material-for-biodiesel-production-a-proposed-model-for-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanchal%20Mewar">Chanchal Mewar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Gangil"> Shikha Gangil</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashwant%20%20Parihar"> Yashwant Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Virendra%20Dhakar"> Virendra Dhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Modhera"> Bharat Modhera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20step%20method" title=" three step method"> three step method</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sources" title=" silica sources"> silica sources</a> </p> <a href="https://publications.waset.org/abstracts/35335/preparation-of-biodiesel-by-three-step-method-followed-purification-by-various-silica-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Tribological Behavior of Pongamia Oil Based Biodiesel Blended Lubricant at Different Load </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashvir%20Singh">Yashvir Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amneesh%20Singla"> Amneesh Singla</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Bhurat"> Swapnil Bhurat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non toxic, and environmentally-friendly. This paper outlines the friction and wear characteristics of ponagamia biodiesel contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, Ponagamia oil based biodiesel were blended in the ratios 5, 10, and 20% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 2.5 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms was the adhesive wear. During testing, the lowest wear was found with the addition of 5 and 10% Ponagamia oil based biodiesel, and above this contamination, the wear rate was increased considerably. The addition of 5 and 10% Ponagamia oil based biodiesel with the base lubricant acted as a very good lubricant additive which reduced the friction and wear rate during the test. It has been concluded that the PBO 5 and PBO 10 can act as an alternative lubricant to increase the mechanical efficiency at 2.5 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=load" title=" load"> load</a>, <a href="https://publications.waset.org/abstracts/search?q=pongamia%20oil%20blend" title=" pongamia oil blend"> pongamia oil blend</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20velocity" title=" sliding velocity"> sliding velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/41363/tribological-behavior-of-pongamia-oil-based-biodiesel-blended-lubricant-at-different-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Simultaneous Esterification and Transesterification of High FFA Jatropha Oil Using Reactive Distillation for Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi%20Kusumaningtyas">Ratna Dewi Kusumaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Prima%20Astuti%20Handayani"> Prima Astuti Handayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Arief%20Budiman"> Arief Budiman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive Distillation (RD) is a multifunctional reactor which integrates chemical reaction with in situ separation to shift the equilibrium towards the product formation. Thus, it is suitable for equilibrium limited reaction such as esterification and transesterification to enhance the reaction conversion. In this work, the application of RD for high FFA oil esterification-transterification for biodiesel production using sulphuric acid catalyst has been studied. Crude Jatropha Oil with FFA content of 30.57% was utilized as the feedstock. Effects of the catalyst concentration and molar ratio of the alcohol to oils were also investigated. It was revealed that best result was obtained with sulphuric acid catalyst (reaction conversion of 94.71% and FFA content of 1.62%) at 60C, molar ratio of methanol to FFA of 30:1, and catalyst loading of 3%. After undergoing esterification reaction, jatropha oil was then transesterified to produce biodiesel. Transesterification reaction was performed in the presence of NaOH catalyst in RD column at 60C, molar ratio of methanol to oil of 6:1, and catalyst concentration of 1%. It demonstrated that biodiesel produced in this work agreed with the Indonesian National and ASTM standard of fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20distillation" title="reactive distillation">reactive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/9418/simultaneous-esterification-and-transesterification-of-high-ffa-jatropha-oil-using-reactive-distillation-for-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> A Glycerol-Free Process of Biodiesel Production through Chemical Interesterification of Jatropha Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi%20Kusumaningtyas">Ratna Dewi Kusumaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Riris%20Pristiyani"> Riris Pristiyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Heny%20Dewajani"> Heny Dewajani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel is commonly produced via the two main routes, i.e. the transesterification of triglycerides and the esterification of free fatty acid (FFA) using short-chain alcohols. Both the two routes have drawback in term of the side product yielded during the reaction. Transesterification reaction of triglyceride results in glycerol as side product. On the other hand, FFA esterification brings in water as side product. Both glycerol and water in the biodiesel production are managed as waste. Hence, a separation process is necessary to obtain a high purity biodiesel. Meanwhile, separation processes is generally the most capital and energy intensive part in industrial process. Therefore, to reduce the separation process, it is essential to produce biodiesel via an alternative route eliminating glycerol or water side-products. In this work, biodiesel synthesis was performed using a glycerol-free process through chemical interesterification of jatropha oil with ethyl acetate in the presence on sodium acetate catalyst. By using this method, triacetine, which is known as fuel bio-additive, is yielded instead of glycerol. This research studied the effects of catalyst concentration on the jatropha oil interesterification process in the range of 0.5 – 1.25% w/w oil. The reaction temperature and molar ratio of oil to ethyl acetate were varied at 50, 60, and 70°C, and 1:6, 1:9, 1:15, 1:30, and 1:60, respectively. The reaction time was evaluated from 0 to 8 hours. It was revealed that the best yield was obtained with the catalyst concentration of 0.5%, reaction temperature of 70 °C, molar ratio of oil to ethyl acetate at 1:60, at 6 hours reaction time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=interesterification" title=" interesterification"> interesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol-free" title=" glycerol-free"> glycerol-free</a>, <a href="https://publications.waset.org/abstracts/search?q=triacetine" title=" triacetine"> triacetine</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20oil" title=" jatropha oil"> jatropha oil</a> </p> <a href="https://publications.waset.org/abstracts/31236/a-glycerol-free-process-of-biodiesel-production-through-chemical-interesterification-of-jatropha-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ayoub">Muhammad Ayoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Abrar%20Inayat"> Abrar Inayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhajan%20Lal"> Bhajan Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sintayehu%20Mekuria%20Hailegiorgis"> Sintayehu Mekuria Hailegiorgis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transestrefication" title=" transestrefication"> transestrefication</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20clay" title=" mesoporous clay"> mesoporous clay</a>, <a href="https://publications.waset.org/abstracts/search?q=K-10" title=" K-10 "> K-10 </a> </p> <a href="https://publications.waset.org/abstracts/19354/optimization-of-biodiesel-production-from-palm-oil-over-mg-al-modified-k-10-clay-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Optimization of Bio-Diesel Production from Rubber Seed Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawit%20Tangviroon">Pawit Tangviroon</a>, <a href="https://publications.waset.org/abstracts/search?q=Apichit%20Svang-Ariyaskul"> Apichit Svang-Ariyaskul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rubber seed oil is an attractive alternative feedstock for biodiesel production because it is not related to food-chain plant. Rubber seed oil contains large amount of free fatty acids, which causes problem in biodiesel production. Free fatty acids can react with alkaline catalyst in biodiesel production. Acid esterification is used as pre-treatment to convert unwanted compound to desirable biodiesel. Phase separation of oil and methanol occurs at low ratio of methanol to oil and causes low reaction rate and conversion. Acid esterification requires large excess of methanol in order to increase the miscibility of methanol in oil and accordingly, it is a more expensive separation process. In this work, the kinetics of esterification of rubber seed oil with methanol is developed from available experimental results. Reactive distillation process was designed by using Aspen Plus program. The effects of operating parameters such as feed ratio, molar reflux ratio, feed temperature, and feed stage are investigated in order to find the optimum conditions. Results show that the reactive distillation process is proved to be better than conventional process. It consumes less feed methanol and less energy while yielding higher product purity than the conventional process. This work can be used as a guideline for further development to industrial scale of biodiesel production using reactive distillation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20distillation" title=" reactive distillation"> reactive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20seed%20oil" title=" rubber seed oil"> rubber seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/8267/optimization-of-bio-diesel-production-from-rubber-seed-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> The Reducing Agent of Glycerol for the Reduction of Metal Oxides under Microwave Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kianoosh%20Shojae">Kianoosh Shojae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the environmental challenges due to the excessive use of fossil fuels have led to heightened greenhouse gas production. In response, biodiesel has emerged as a cleaner alternative, offering reduced pollutant emissions compared to traditional fuels. The large-scale production of biodiesel, involving ester exchange of animal fats or vegetable oils, results in a surplus of crude glycerin. With environmental regulations on the rise and an increasing demand for biodiesel, glycerin production has seen a significant upswing. This paper focuses on the economic significance of glycerin through its pyrolysis as a raw material, particularly in the synthesis of metals. As industries pivoted towards cleaner fuels, glycerin, as a byproduct of biodiesel production, is poised to remain a cost-effective and surplus product. In this work, for evaluating the possible performance of using the gaseous products from the pyrolysis reaction of glycerol, we concerned the glycerin pyrolysis reactions, emphasizing the catalytic role of activated carbon, various reaction pathways and the impact of carrier gas flow rate on hydrogen production, providing valuable insights into the evolving landscape of sustainable fuel alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerin%20pyrolysis" title=" glycerin pyrolysis"> glycerin pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20catalysis" title=" activated carbon catalysis"> activated carbon catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/181958/the-reducing-agent-of-glycerol-for-the-reduction-of-metal-oxides-under-microwave-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weerinda%20%20Appamana">Weerinda Appamana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirapong%20Keawkoon"> Jirapong Keawkoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamonporn%20Pacthong"> Yamonporn Pacthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirathiti%20Chitsanguansuk"> Jirathiti Chitsanguansuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyong%20Sookklay"> Yanyong Sookklay </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spinning%20disc%20reactor" title="spinning disc reactor">spinning disc reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20intensification" title=" process intensification"> process intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20efficiency" title=" yield efficiency"> yield efficiency</a> </p> <a href="https://publications.waset.org/abstracts/92625/transesterification-of-refined-palm-oil-to-biodiesel-in-a-continuous-spinning-disc-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Haddad">Ahmed M. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadeel%20S.%20El-Shaal"> Hadeel S. El-Shaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gadallah%20M.%20Abu-Elreesh"> Gadallah M. Abu-Elreesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=oleaginous" title=" oleaginous"> oleaginous</a> </p> <a href="https://publications.waset.org/abstracts/73658/biodiesel-production-and-heavy-metal-removal-by-aspergillus-fumigatus-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanifa%20Taher">Hanifa Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Al-Zuhair"> Sulaiman Al-Zuhair</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Al-Marzouqi"> Ali H. Al-Marzouqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Haik"> Yousef Haik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Farid"> Mohammed Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae is a promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. The effect of extraction variables (temperature, pressure and solvent flow rate) and reaction variables (enzyme loading, incubation time, methanol to lipids molar ratio and temperature) were considered. Process parameters and their effects were studied using a full factorial analysis of both. Response Surface Methodology (RSM) and was used to determine the optimum conditions for the extraction and reaction steps. For extraction, the optimum conditions were 53 °C and 500 bar, whereas for the reaction the optimum conditions were 35% enzyme loading, 4 h reaction, 9:1 molar ratio and 50 oC. At these optimum conditions, the highest biodiesel production yield was found to be 82 %. The fuel properties of the produced biodiesel, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipase" title=" lipase"> lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title=" supercritical CO2"> supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a> </p> <a href="https://publications.waset.org/abstracts/30707/properties-of-biodiesel-produced-by-enzymatic-transesterification-of-lipids-extracted-from-microalgae-in-supercritical-carbon-dioxide-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodiesel&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10