CINXE.COM
Search results for: heart failure
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: heart failure</title> <meta name="description" content="Search results for: heart failure"> <meta name="keywords" content="heart failure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="heart failure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="heart failure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3371</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: heart failure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3251</span> Calpains; Insights Into the Pathogenesis of Heart Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Sotoudeheian">Mohammadjavad Sotoudeheian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calpain" title="calpain">calpain</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiomyocyte" title=" cardiomyocyte"> cardiomyocyte</a> </p> <a href="https://publications.waset.org/abstracts/163013/calpains-insights-into-the-pathogenesis-of-heart-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3250</span> Overcoming 4-to-1 Decryption Failure of the Rabin Cryptosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rezal%20Kamel%20Ariffin">Muhammad Rezal Kamel Ariffin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asyraf%20Asbullah"> Muhammad Asyraf Asbullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The square root modulo problem is a known primitive in designing an asymmetric cryptosystem. It was first attempted by Rabin. Decryption failure of the Rabin cryptosystem caused by the 4-to-1 decryption output is overcome efficiently in this work. The proposed scheme to overcome the decryption failure issue (known as the AAβ-cryptosystem) is constructed using a simple mathematical structure, it has low computational requirements and would enable communication devices with low computing power to deploy secure communication procedures efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabin%20cryptosystem" title="Rabin cryptosystem">Rabin cryptosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=4-to-1%20decryption%20failure" title=" 4-to-1 decryption failure"> 4-to-1 decryption failure</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20root%20modulo%20problem" title=" square root modulo problem"> square root modulo problem</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20factorization%20problem" title=" integer factorization problem"> integer factorization problem</a> </p> <a href="https://publications.waset.org/abstracts/21804/overcoming-4-to-1-decryption-failure-of-the-rabin-cryptosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3249</span> Nonlinear Analysis with Failure Using the Boundary Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Pineda%20Leon">Ernesto Pineda Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dante%20Tolentino%20Lopez"> Dante Tolentino Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Janis%20Zapata%20Lopez"> Janis Zapata Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title="boundary element method">boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a> </p> <a href="https://publications.waset.org/abstracts/89969/nonlinear-analysis-with-failure-using-the-boundary-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3248</span> Nonmedical Determinants of Congenital Heart Diseases in Children from the Perspective of Mothers: A Qualitative Study in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Borjali">Maryam Borjali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction. Mortality due to noncommunicable diseases has increased in the world today with the advent of demographic shifts, growing age, and lifestyle patterns in the world, which have been affected by economic and social crises. Congenital heart defects are one of the forms of diseases that have raised infant mortality worldwide. e objective of present study was to identify nonmedical determinants related to this abnormality from the mother’s perspectives. Methods. is research was a qualitative study and the data collection method was a semistructured interview with mothers who had children with congenital heart diseases referring to the Shahid Rajaei Heart Hospital in Tehran, Iran. A thematic analysis approach was employed to analyze transcribed documents assisted by MAXQDA Plus version 12. Results. Four general themes and ten subthemes including social contexts (social harms, social interactions, and social necessities), psychological contexts (mood disorders and mental well-being), cultural contexts (unhealthy lifestyle, family culture, and poor parental health behaviors), and environmental contexts (living area and polluted air) were extracted from interviews with mothers of children with congenital heart diseases. Conclusions. Results suggest that factors such as childhood poverty, lack of parental awareness of congenital diseases, lack of proper nutrition and health facilities, education, and lack of medical supervision during pregnancy were most related with the birth of children with congenital heart disease from mothers’ prospective. In this regard, targeted and intersectorial collaborations are proposed to address nonmedical determinants related to the incidence of congenital heart diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congenital_cou" title="congenital_cou">congenital_cou</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural" title=" cultural"> cultural</a>, <a href="https://publications.waset.org/abstracts/search?q=social" title=" social"> social</a>, <a href="https://publications.waset.org/abstracts/search?q=platform" title=" platform"> platform</a> </p> <a href="https://publications.waset.org/abstracts/156379/nonmedical-determinants-of-congenital-heart-diseases-in-children-from-the-perspective-of-mothers-a-qualitative-study-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3247</span> A Novel Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Sabih">Amar Sabih</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Nemes"> James Nemes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20shear%20band" title="adiabatic shear band">adiabatic shear band</a>, <a href="https://publications.waset.org/abstracts/search?q=workability%20criterion" title=" workability criterion"> workability criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20failure" title=" ductile failure"> ductile failure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20instability" title=" stress instability"> stress instability</a> </p> <a href="https://publications.waset.org/abstracts/165077/a-novel-stress-instability-workability-criteria-for-internal-ductile-failure-in-steel-cold-heading-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3246</span> Analysis of Cardiovascular Diseases Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyotismita%20Talukdar">Jyotismita Talukdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronary%20heart%20disease" title="coronary heart disease">coronary heart disease</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20stable%20angina" title=" chronic stable angina"> chronic stable angina</a>, <a href="https://publications.waset.org/abstracts/search?q=sick%20sinus%20syndrome" title=" sick sinus syndrome"> sick sinus syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20disease" title=" cardiovascular disease"> cardiovascular disease</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=Thalach" title=" Thalach"> Thalach</a> </p> <a href="https://publications.waset.org/abstracts/97263/analysis-of-cardiovascular-diseases-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3245</span> Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mecheri%20Zeid%20Belmecheri">Mecheri Zeid Belmecheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Maamar%20Ahfir"> Maamar Ahfir</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzet%20Kale"> Izzet Kale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20sounds" title="heart sounds">heart sounds</a>, <a href="https://publications.waset.org/abstracts/search?q=PCG%20segmentation" title=" PCG segmentation"> PCG segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20detection" title=" event detection"> event detection</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=PCG%20curve%20length" title=" PCG curve length"> PCG curve length</a> </p> <a href="https://publications.waset.org/abstracts/157289/robust-heart-sounds-segmentation-based-on-the-variation-of-the-phonocardiogram-curve-length" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3244</span> Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranajay%20Bhowmick">Ranajay Bhowmick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubic%20equation" title="cubic equation">cubic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20invariant" title=" stress invariant"> stress invariant</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric" title=" trigonometric"> trigonometric</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20solution" title=" explicit solution"> explicit solution</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20stress" title=" principal stress"> principal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20criterion" title=" failure criterion"> failure criterion</a> </p> <a href="https://publications.waset.org/abstracts/128515/solution-of-s3-problem-of-deformation-mechanics-for-a-definite-condition-and-resulting-modifications-of-important-failure-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3243</span> Artificial Intelligence Based Online Monitoring System for Cardiac Patient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Qasim%20Gilani">Syed Qasim Gilani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair"> Muhammad Umair</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Noman"> Muhammad Noman</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Bilawal%20Shah"> Syed Bilawal Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqib%20Abbasi"> Aqib Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waheed"> Muhammad Waheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular Diseases(CVD's) are the major cause of death in the world. The main reason for these deaths is the unavailability of first aid for heart failure. In many cases, patients die before reaching the hospital. We in this paper are presenting innovative online health service for Cardiac Patients. The proposed online health system has two ends. Users through device developed by us can communicate with their doctor through a mobile application. This interface provides them with first aid.Also by using this service, they have an easy interface with their doctors for attaining medical advice. According to the proposed system, we developed a device called Cardiac Care. Cardiac Care is a portable device which a patient can use at their home for monitoring heart condition. When a patient checks his/her heart condition, Electrocardiogram (ECG), Blood Pressure(BP), Temperature are sent to the central database. The severity of patients condition is checked using Artificial Intelligence Algorithm at the database. If the patient is suffering from the minor problem, our algorithm will suggest a prescription for patients. But if patient's condition is severe, patients record is sent to doctor through the mobile Android application. Doctor after reviewing patients condition suggests next step. If a doctor identifies the patient condition as critical, then the message is sent to the central database for sending an ambulance for the patient. Ambulance starts moving towards patient for bringing him/her to hospital. We have implemented this model at prototype level. This model will be life-saving for millions of people around the globe. According to this proposed model patients will be in contact with their doctors all the time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20disease" title="cardiovascular disease">cardiovascular disease</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a> </p> <a href="https://publications.waset.org/abstracts/94753/artificial-intelligence-based-online-monitoring-system-for-cardiac-patient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3242</span> Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rimmy%20Yadav">Rimmy Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Avtar%20Singh"> Avtar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> —Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization" title="ant colony optimization">ant colony optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20failure" title=" link failure"> link failure</a>, <a href="https://publications.waset.org/abstracts/search?q=prim%E2%80%99s%20algorithm" title=" prim’s algorithm"> prim’s algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=shortest%20path" title=" shortest path"> shortest path</a> </p> <a href="https://publications.waset.org/abstracts/31818/performance-comparison-of-prims-and-ant-colony-optimization-algorithm-to-select-shortest-path-in-case-of-link-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3241</span> Analyzing Defects with Failure Assessment Diagrams of Gas Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Hasanaj">Alfred Hasanaj </a>, <a href="https://publications.waset.org/abstracts/search?q=Ardit%20Gjeta"> Ardit Gjeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Miranda%20Kullolli"> Miranda Kullolli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approach in analyzing defects on different pipe lines is conducted through Failure Assessment Diagram (FAD). These methods of analyses have further extended in recent years. This approach is used to identify and stress out a solution for the defects which randomly occur with gas pipes such are corrosion defects, gauge defects, and combination of defects where gauge and dents are included. Few of the defects are to be analyzed in this paper where our main focus will be the fracture of cast Iron pipes, elastic-plastic failure and plastic collapse of X52 steel pipes for gas transport. We need to conduct a calculation of probability of the defects in order to predict and avoid such costly defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defects" title="defects">defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20assessment%20diagrams" title=" failure assessment diagrams"> failure assessment diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20pipes" title=" steel pipes"> steel pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor "> safety factor </a> </p> <a href="https://publications.waset.org/abstracts/9044/analyzing-defects-with-failure-assessment-diagrams-of-gas-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3240</span> Failure Analysis of a Medium Duty Vehicle Leaf Spring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%20%C3%87evik">Gül Çevik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20spring" title="leaf spring">leaf spring</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=fractography" title=" fractography"> fractography</a> </p> <a href="https://publications.waset.org/abstracts/107640/failure-analysis-of-a-medium-duty-vehicle-leaf-spring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3239</span> Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Khamedi">Ramin Khamedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isa%20Ahmadi"> Isa Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20phase%20steels" title=" dual phase steels"> dual phase steels</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/10129/effect-of-carbon-amount-of-dual-phase-steels-on-deformation-behavior-using-acoustic-emission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3238</span> The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wang">W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shuai"> J. Shuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Lv"> Z. Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20defects" title=" adjacent defects"> adjacent defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20between%20defects" title=" interaction between defects"> interaction between defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20pressure" title=" failure pressure"> failure pressure</a> </p> <a href="https://publications.waset.org/abstracts/155026/the-interaction-of-adjacent-defects-and-the-effect-on-the-failure-pressure-of-the-corroded-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3237</span> Strain Based Failure Criterion for Composite Notched Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20Elsayed">Ibrahim A. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Elalfy"> Mohamed H. Elalfy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20M.%20Abdalla"> Mostafa M. Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy%20ratio" title="anisotropy ratio">anisotropy ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20criteria" title=" failure criteria"> failure criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=notched%20laminates" title=" notched laminates"> notched laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=Omni-strain%20envelope" title=" Omni-strain envelope"> Omni-strain envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=savin%E2%80%99s%20solution" title=" savin’s solution"> savin’s solution</a> </p> <a href="https://publications.waset.org/abstracts/145259/strain-based-failure-criterion-for-composite-notched-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3236</span> Calculation the Left Ventricle Wall Radial Strain and Radial SR Using Tagged Magnetic Resonance Imaging Data (tMRI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alenezy">Mohammed Alenezy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The function of cardiac motion can be used as an indicator of the heart abnormality by evaluating longitudinal, circumferential, and Radial Strain of the left ventricle. In this paper, the Radial Strain and SR is studied using tagged MRI (tMRI) data during the cardiac cycle on the mid-ventricle level of the left ventricle. Materials and methods: The short-axis view of the left ventricle of five healthy human (three males and two females) and four healthy male rats were imaged using tagged magnetic resonance imaging (tMRI) technique covering the whole cardiac cycle on the mid-ventricle level. Images were processed using Image J software to calculate the left ventricle wall Radial Strain and radial SR. The left ventricle Radial Strain and radial SR were calculated at the mid-ventricular level during the cardiac cycle. The peak Radial Strain for the human and rat heart was 40.7±1.44, and 46.8±0.68 respectively, and it occurs at 40% of the cardiac cycle for both human and rat heart. The peak diastolic and systolic radial SR for human heart was -1.78 s-1 ± 0.02 s-1 and 1.10±0.08 s-1 respectively, while for rat heart it was -5.16± 0.23s-1 and 4.25±0.02 s-1 respectively. Conclusion: This results show the ability of the tMRI data to characterize the cardiac motion during the cardiac cycle including diastolic and systolic phases which can be used as an indicator of the cardiac dysfunction by estimating the left ventricle Radial Strain and radial SR at different locations of the cardiac tissue. This study approves the validity of the tagged MRI data to describe accurately the cardiac radial motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=left%20ventricle" title="left ventricle">left ventricle</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20strain" title=" radial strain"> radial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=tagged%20MRI" title=" tagged MRI"> tagged MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20cycle" title=" cardiac cycle"> cardiac cycle</a> </p> <a href="https://publications.waset.org/abstracts/21036/calculation-the-left-ventricle-wall-radial-strain-and-radial-sr-using-tagged-magnetic-resonance-imaging-data-tmri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3235</span> A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Dabirmanesh">Hooman Dabirmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20M.%20Zsaki"> Attila M. Zsaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20toppling%20failure" title="block toppling failure">block toppling failure</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20interaction" title=" contact interaction"> contact interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element" title=" discrete element"> discrete element</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20generation" title=" random generation"> random generation</a> </p> <a href="https://publications.waset.org/abstracts/92612/a-discrete-element-method-based-simulation-of-toppling-failure-considering-block-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3234</span> Early Detection of Kidney Failure by Using a Distinct Technique for Sweat Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba.%20T.%20Suliman">Saba. T. Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa.%20H.%20Osman"> Alaa. H. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara.%20T.%20Ahmed"> Sara. T. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeinab.%20A.%20Mustafa"> Zeinab. A. Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram.%20I.%20Omara"> Akram. I. Omara</a>, <a href="https://publications.waset.org/abstracts/search?q=Banazier.%20A.%20Ibraheem"> Banazier. A. Ibraheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagnosis by sweat is one of the emerging methods whereby sweat can identify many diseases in the human body. Sweat contains many elements that help in the diagnostic process. In this research, we analyzed sweat samples by using a Colorimeter device to identify the disease of kidney failure in its various stages. This analysis is a non-invasive method where the sample is collected from outside the body, and then this sample is analyzed. Urea refers to the disease of kidney failure when its quantity is high in the blood and then in the sweat, and by experience, we found that the amount of urea for males differs from its quantity for females, where there is a noticeable increase for males in normal and pathological cases. In this research, we took many samples from a normal group that does not suffer from renal failure and another who suffers from the disease to compare the percentage of urea, and after analysis, we found that the urea percentage is high in people with kidney failure disease. with an accuracy of results of 85%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sweat%20analysis" title="sweat analysis">sweat analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney%20failure" title=" kidney failure"> kidney failure</a>, <a href="https://publications.waset.org/abstracts/search?q=urea" title=" urea"> urea</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title=" non-invasive"> non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=eccrine%20glands" title=" eccrine glands"> eccrine glands</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=sweat%20test" title=" sweat test"> sweat test</a> </p> <a href="https://publications.waset.org/abstracts/187068/early-detection-of-kidney-failure-by-using-a-distinct-technique-for-sweat-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3233</span> Swahili Codification of Emotions: A Cognitive Linguistic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosanna%20Tramutoli">Rosanna Tramutoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on several languages have demonstrated how different emotions are categorized in various linguistic constructions. It exists in several writings on the codification of emotions in Western African languages. A recent study on the semantic description of Swahili body terminology has demonstrated that body part terms, such as moyo (heart), uso (face) and jicho (eye) are involved in several metaphorical expressions describing emotions. However, so far hardly anything has been written on the linguistic description of emotions in Swahili. Thus, this study describes how emotional concepts, such as ‘love’ and ‘anger’ are codified in Swahili, in order to highlight common semantic and syntactic patterns, etymological sources and metaphorical expressions. The research seeks to answer a number of questions, such as which are the Swahili terms for ‘emotions’? Is there a distinction between ‘emotions’ and ‘feelings’? Which emotional lexical items have Bantu origin and which come from Arabic? Which metaphorical expressions/cognitive schemas are used to codify emotions? (e.g. kumpanda mtu kichwani, lit. ‘to climb on somebody’s head’, to make somebody feel angry, kushuka moyo, lit. ‘to be down the heart’, to feel discouraged, kumpa mtu moyo lit. ‘to give someone heart’, to encourage someone). Which body terms are involved as ‘containers/locus of emotions’? For instance, it has been shown that moyo (‘heart’) occurs as container of ‘love’ (e.g. kumtia mtu moyoni, lit. ‘to put somebody in the heart’, to love somebody very much) and ‘kindness’ (moyo wake ulijaa hisani, ‘his heart was filled with kindness’). The study also takes into account the syntactic patterns used to code emotions. For instance, when does the experiencer occur in subject position? (e.g. nina furaha, nimefurahi, ‘I am happy’) and when in object position (e.g. Huruma iliniingia moyoni, lit. ‘Pity entered me inside my heart’, ‘I felt pity’)? Data have been collected mostly through the analysis of Swahili digital corpora, containing different kinds of Swahili texts (e.g. novels, drama, political essays). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotions" title="emotions">emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20linguistics" title=" cognitive linguistics"> cognitive linguistics</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphors" title=" metaphors"> metaphors</a>, <a href="https://publications.waset.org/abstracts/search?q=Swahili" title=" Swahili"> Swahili</a> </p> <a href="https://publications.waset.org/abstracts/29385/swahili-codification-of-emotions-a-cognitive-linguistic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3232</span> Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rashid%20Hussain">M. Rashid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Shady%20S.%20Refaat"> Shady S. Refaat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title="power transformer">power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20response" title=" dielectric response"> dielectric response</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title=" partial discharge"> partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a> </p> <a href="https://publications.waset.org/abstracts/113040/improvement-of-the-3d-finite-element-analysis-of-high-voltage-power-transformer-defects-in-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3231</span> Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mathieu">A. Mathieu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Aubry"> B. Aubry</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Chhim"> E. Chhim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jobe"> M. Jobe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Arnaud"> M. Arnaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvester" title="energy harvester">energy harvester</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a>, <a href="https://publications.waset.org/abstracts/search?q=leadless%20pacemaker" title=" leadless pacemaker"> leadless pacemaker</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20cells" title=" piezoelectric cells"> piezoelectric cells</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20variation" title=" pressure variation"> pressure variation</a> </p> <a href="https://publications.waset.org/abstracts/13944/powering-pacemakers-from-heart-pressure-variation-with-piezoelectric-energy-harvesters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3230</span> Fail Analysis of the Filter in a Land Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Cardoso-Landa">Guillermo Cardoso-Landa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Julita%20Cuenca-Castro"> Ana Julita Cuenca-Castro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper focuses to research the possible causes of curtain failure of dam "El Batan" in Querétaro, Mexico, including the design of the fineness of the employee filter during the construction of the curtain was verified since this depends greatly on the proper functioning of this filter. To carry out the required analysis, it was necessary to document elements provided understanding about the composition and behavior of the land curtain, and the main types of failure in these curtains. The general characteristics of the curtain dam "El Batan", the composition of the filter, as well as possible causes resulted in the failure were also analyzed. Once obtained data starting, the actual analysis was carried out by reviewing the following possible causes of failure: fails due to a poor constructive process of the curtain, failure due to hydraulic suppression, fails due to a structural design wrong, fails due to a geotechnical design wrong, fails due to a hydraulic design wrong, fails due to an inadequate design of the curtain filter. It is concluded that the type of the filter employed in the land dam curtain of "El Batan", located in the municipality of Querétaro, México, do not have adequate characteristics, outside of the ranges of design, using the curves: Terzaghi criteria, Sherard and Dunnigan criteria, UCSCS criteria, and Foster and Fell criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=dam" title=" dam"> dam</a>, <a href="https://publications.waset.org/abstracts/search?q=filter" title=" filter"> filter</a>, <a href="https://publications.waset.org/abstracts/search?q=curtain" title=" curtain"> curtain</a> </p> <a href="https://publications.waset.org/abstracts/21862/fail-analysis-of-the-filter-in-a-land-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3229</span> Serum Potassium Before, During and After Exercise at 70% Maximal Heart Rate: The Safe Exercise Dosage Across Different Parameters of Health and Fitness Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20bin%20Mihat">Omar bin Mihat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of sudden deaths is increasing over the past years. These deaths occur not during physical activities but upon cessation. Post-mortem confirms these deaths as cardiac arrest non-specifically. Congenital heart disease is a condition undiagnosed whereby only surface upon physical exertion leading to sudden death is unavoidable. Channelopathy, a condition that refers to any disease from the defect in iron-channel function, particularly the sodium-potassium pump, during the cessation of the exercise can be controlled. The derivation of heart rate return (HRrtn) is a procedure of a control cooling down process according to the heart rate (HR). Empirically, potassium rises linearly with intensity and falls sharply upon abrupt cessation of exertion, resulting in fatal arrhythmia due to hypokalaemia. It is vital that the flux of potassium should be maintained within the normal range during physical activities. To achieve this, the dosage of physical exertion (exercise) should be identified. Various percentages of the intensity of maximum heart rate (MHR) will precipitate different adaptations and remodeling of various organs. 70% of MHR will surface physiological adaptations, including enhancement of endurance, fitness level, and general health, and there was no significant rise of serum potassium (K+) during the entire phase of the treadmill brisk walk at a different rate of perceived exertion (RPE) from the subject of various fitness background. There was also no significant rise in blood pressure (BP) during the entire phase of the treadmill brisk walk, substantiating 70% MHR is the safe dosage across different parameters of health and fitness level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potassium" title="potassium">potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20heart%20rate" title=" maximal heart rate"> maximal heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise%20dosage" title=" exercise dosage"> exercise dosage</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness%20level" title=" fitness level"> fitness level</a> </p> <a href="https://publications.waset.org/abstracts/177512/serum-potassium-before-during-and-after-exercise-at-70-maximal-heart-rate-the-safe-exercise-dosage-across-different-parameters-of-health-and-fitness-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3228</span> Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khaleghei">Akram Khaleghei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghosheh%20Balagh"> Ghosheh Balagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partially%20observable%20system" title="partially observable system">partially observable system</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model" title=" hidden Markov model"> hidden Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=competing%20risks" title=" competing risks"> competing risks</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20life%20prediction" title=" residual life prediction"> residual life prediction</a> </p> <a href="https://publications.waset.org/abstracts/6352/residual-life-prediction-for-a-system-subject-to-condition-monitoring-and-two-failure-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3227</span> Copy Number Variants in Children with Non-Syndromic Congenital Heart Diseases from Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Lopez-Ibarra">Maria Lopez-Ibarra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Velazquez-Wong"> Ana Velazquez-Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucelli%20Ya%C3%B1ez-Gutierrez"> Lucelli Yañez-Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Araujo-Solis"> Maria Araujo-Solis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Salamanca-Gomez"> Fabio Salamanca-Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Mendez-Tenorio"> Alfonso Mendez-Tenorio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayde%C3%A9%20Rosas-Vargas"> Haydeé Rosas-Vargas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Congenital heart diseases (CHD) are the most common congenital abnormalities. These conditions can occur as both an element of distinct chromosomal malformation syndromes or as non-syndromic forms. Their etiology is not fully understood. Genetic variants such copy number variants have been associated with CHD. The aim of our study was to analyze these genomic variants in peripheral blood from Mexican children diagnosed with non-syndromic CHD. We included 16 children with atrial and ventricular septal defects and 5 healthy subjects without heart malformations as controls. To exclude the most common heart disease-associated syndrome alteration, we performed a fluorescence in situ hybridization test to identify the 22q11.2, responsible for congenital heart abnormalities associated with Di-George Syndrome. Then, a microarray based comparative genomic hybridization was used to identify global copy number variants. The identification of copy number variants resulted from the comparison and analysis between our results and data from main genetic variation databases. We identified copy number variants gain in three chromosomes regions from pediatric patients, 4q13.2 (31.25%), 9q34.3 (25%) and 20q13.33 (50%), where several genes associated with cellular, biosynthetic, and metabolic processes are located, UGT2B15, UGT2B17, SNAPC4, SDCCAG3, PMPCA, INPP6E, C9orf163, NOTCH1, C20orf166, and SLCO4A1. In addition, after a hierarchical cluster analysis based on the fluorescence intensity ratios from the comparative genomic hybridization, two congenital heart disease groups were generated corresponding to children with atrial or ventricular septal defects. Further analysis with a larger sample size is needed to corroborate these copy number variants as possible biomarkers to differentiate between heart abnormalities. Interestingly, the 20q13.33 gain was present in 50% of children with these CHD which could suggest that alterations in both coding and non-coding elements within this chromosomal region may play an important role in distinct heart conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aCGH" title="aCGH">aCGH</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=congenital%20heart%20diseases" title=" congenital heart diseases"> congenital heart diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=copy%20number%20variants" title=" copy number variants"> copy number variants</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20in%20situ%20hybridization" title=" fluorescence in situ hybridization"> fluorescence in situ hybridization</a> </p> <a href="https://publications.waset.org/abstracts/53721/copy-number-variants-in-children-with-non-syndromic-congenital-heart-diseases-from-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3226</span> Numerical Modeling of Structural Failure of a Ship During the Collision Event</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adjal%20Yassine">Adjal Yassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Semmani%20Amar"> Semmani Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decades, The risk of collision has been increased, especially in high maritime traffic. As the consequence, the demand is required for safety at sea and environmental protection. For this purpose, the consequences prediction of ship collisions is recommended in order to minimize structural failure. additionally, at the design stage of the ship, damage generated during the collision event must be taken into consideration. This structural failure, in some cases, can develop into the progressive collapse of other structural elements and generate catastrophic consequences. The present study investigates the progressive collapse of ships damaged by collisions using the Non -linear finite element method. The failure criteria are taken into account. The impacted area has a refined mesh in order to have more reliable results. Finally, a parametric study was conducted in this study to highlight the effect of the ship's speed, as well as the different impacted areas of double-bottom ships. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collsion" title="collsion">collsion</a>, <a href="https://publications.waset.org/abstracts/search?q=strucural%20failure" title=" strucural failure"> strucural failure</a>, <a href="https://publications.waset.org/abstracts/search?q=ship" title=" ship"> ship</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/158407/numerical-modeling-of-structural-failure-of-a-ship-during-the-collision-event" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3225</span> The Study on Life of Valves Evaluation Based on Tests Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binjuan%20Xu">Binjuan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhao"> Qian Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Jiang"> Ping Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Guo"> Bo Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Cheng"> Zhijun Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyue%20Wu"> Xiaoyue Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=censored%20data" title="censored data">censored data</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20tests" title=" temperature tests"> temperature tests</a>, <a href="https://publications.waset.org/abstracts/search?q=valves" title=" valves"> valves</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20tests" title=" vibration tests"> vibration tests</a> </p> <a href="https://publications.waset.org/abstracts/84900/the-study-on-life-of-valves-evaluation-based-on-tests-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3224</span> Numerical Study on the Cavity-Induced Piping Failure of Embankment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Kim">H. J. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Park"> G. C. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Kim"> K. C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Shin"> J. H. Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavities are frequently found beneath conduits on pile foundations in old embankments. Cavity reduces seepage length significantly and consequently causes piping failure of embankments. Case studies of embankment failures indicate that the relative settlement between ground and pile supported-concrete conduit was the main reason of the cavity. In this paper, an attempt to simulate the cavity-induced piping failure mechanism was made using finite element numerical method. Piping potential is examined by carrying out parametric study for influencing factors such as cavity length, water level, and flow conditions. The concentration of hydraulic gradient adjacent to cavity was found. It is found that the hydraulic gradient close to the cavity exceeds considerably the critical hydraulic gradient causing piping. Piping failure potential due to the existence of cavity is evaluated and contour map for the potential risk of an embankment for piping failure is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20gradient" title=" hydraulic gradient"> hydraulic gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=levee" title=" levee"> levee</a>, <a href="https://publications.waset.org/abstracts/search?q=piping" title=" piping"> piping</a> </p> <a href="https://publications.waset.org/abstracts/33770/numerical-study-on-the-cavity-induced-piping-failure-of-embankment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3223</span> The Intensity of Load Experienced by Female Basketball Players during Competitive Games</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Vencurik">Tomas Vencurik</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Nykodym"> Jiri Nykodym</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compares the intensity of game load among player positions and between the 1st and the 2nd half of the games. Two guards, three forwards, and three centers (female basketball players) participated in this study. The heart rate (HR) and its development were monitored during two competitive games. Statistically insignificant differences in the intensity of game load were recorded between guards, forwards, and centers below and above 85% of the maximal heart rate (HRmax) and in the mean HR as % of HRmax (87.81±3.79%, 87.02±4.37%, and 88.76±3.54%, respectively). Moreover, when the 1st and the 2nd half of the games were compared in the mean HR (87.89±4.18% vs. 88.14±3.63% of HRmax), no statistical significance was recorded. This information can be useful for coaching staff, to manage and to precisely plan the training process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20load" title="game load">game load</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=player%20positions" title=" player positions"> player positions</a>, <a href="https://publications.waset.org/abstracts/search?q=the%201st" title=" the 1st"> the 1st</a>, <a href="https://publications.waset.org/abstracts/search?q=the%202nd%20half%20of%20the%20games" title=" the 2nd half of the games"> the 2nd half of the games</a> </p> <a href="https://publications.waset.org/abstracts/27906/the-intensity-of-load-experienced-by-female-basketball-players-during-competitive-games" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3222</span> A Psychoanalytical Approach to Edgar A. Poe’s Short Story ‘The Tell-Tale Heart’</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Antonio%20N%C3%BA%C3%B1ez">José Antonio Núñez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sigmund Freud’s Theory of Psychoanalysis was a groundbreaking contribution to the province of the human psyche and behavior. Nowadays, psychoanalytic theory is applied to numerous fields. One of them is literature. Literary criticism has put into practice the basis of Freud’s idea to analyze literary works. This essay is about the analysis of Edgar A. Poe’s short story ‘The Tell-Tale Heart,’ under the lens of Freud’s psychoanalytical perspective. In 1919, it was published ‘Das Unheimliche’ (The Uncanny) by Freud. On this article, the famous Austrian psychoanalyst showed his explanations about what he called ‘the uncanny,’ and its relation to the human unconscious. In this paper, Freud’s famous article has been used to analyze Poe’s short story ‘The Tell-Tale Heart,’ and to find the analogies that exist between Poe’s macabre short story and Freud’s theory of ‘the uncanny.’ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychoanalysis" title="psychoanalysis">psychoanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20the%20unconscious" title=" theory of the unconscious"> theory of the unconscious</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20uncanny" title=" the uncanny"> the uncanny</a>, <a href="https://publications.waset.org/abstracts/search?q=unheimlich" title=" unheimlich"> unheimlich</a> </p> <a href="https://publications.waset.org/abstracts/71692/a-psychoanalytical-approach-to-edgar-a-poes-short-story-the-tell-tale-heart" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=4" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=112">112</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=113">113</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heart%20failure&page=6" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>