CINXE.COM

Spiral - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Spiral - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"7ee3ec7d-7bee-49d0-b1a2-a7b349a704a2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Spiral","wgTitle":"Spiral","wgCurRevisionId":1258722324,"wgRevisionId":1258722324,"wgArticleId":61563,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Pages containing links to subscription-only content","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from November 2019","Articles with unsourced statements from November 2016","Articles needing the year an event occurred from November 2016","All articles with incomplete citations","Articles with incomplete citations from December 2018","All pages needing factual verification", "Wikipedia articles needing factual verification from December 2018","Webarchive template wayback links","Commons category link is on Wikidata","Spirals"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Spiral","wgRelevantArticleId":61563,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q189114","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init": "ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.gallery","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/1200px-NautilusCutawayLogarithmicSpiral.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="907"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/800px-NautilusCutawayLogarithmicSpiral.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="605"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/640px-NautilusCutawayLogarithmicSpiral.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="484"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Spiral - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Spiral"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Spiral&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Spiral"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Spiral rootpage-Spiral skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Spiral" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Spiral" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Spiral" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Spiral" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Helices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Helices"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Helices</span> </div> </a> <ul id="toc-Helices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Two-dimensional" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Two-dimensional"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Two-dimensional</span> </div> </a> <button aria-controls="toc-Two-dimensional-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Two-dimensional subsection</span> </button> <ul id="toc-Two-dimensional-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometric_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Geometric properties</span> </div> </a> <ul id="toc-Geometric_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bounded_spirals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bounded_spirals"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Bounded spirals</span> </div> </a> <ul id="toc-Bounded_spirals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Three-dimensional" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Three-dimensional"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Three-dimensional</span> </div> </a> <button aria-controls="toc-Three-dimensional-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Three-dimensional subsection</span> </button> <ul id="toc-Three-dimensional-sublist" class="vector-toc-list"> <li id="toc-Conical_spirals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conical_spirals"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Conical spirals</span> </div> </a> <ul id="toc-Conical_spirals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spherical_spirals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spherical_spirals"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Spherical spirals</span> </div> </a> <ul id="toc-Spherical_spirals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-In_nature" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_nature"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>In nature</span> </div> </a> <ul id="toc-In_nature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_a_symbol" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#As_a_symbol"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>As a symbol</span> </div> </a> <ul id="toc-As_a_symbol-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_art" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_art"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>In art</span> </div> </a> <ul id="toc-In_art-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_publications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_publications"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Related publications</span> </div> </a> <ul id="toc-Related_publications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Spiral</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 51 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-51" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">51 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Spiraal" title="Spiraal – Afrikaans" lang="af" hreflang="af" data-title="Spiraal" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%84%D8%B2%D9%88%D9%86_(%D9%87%D9%86%D8%AF%D8%B3%D8%A9)" title="حلزون (هندسة) – Arabic" lang="ar" hreflang="ar" data-title="حلزون (هندسة)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Spiral" title="Spiral – Azerbaijani" lang="az" hreflang="az" data-title="Spiral" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%B0%E0%A7%8D%E0%A6%AA%E0%A6%BF%E0%A6%B2" title="সর্পিল – Bangla" lang="bn" hreflang="bn" data-title="সর্পিল" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D0%BF%D1%96%D1%80%D0%B0%D0%BB%D1%8C" title="Спіраль – Belarusian" lang="be" hreflang="be" data-title="Спіраль" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%80%D0%B0%D0%BB%D0%B0" title="Спирала – Bulgarian" lang="bg" hreflang="bg" data-title="Спирала" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Spirala" title="Spirala – Bosnian" lang="bs" hreflang="bs" data-title="Spirala" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espiral" title="Espiral – Catalan" lang="ca" hreflang="ca" data-title="Espiral" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%80%D0%B0%D0%BB%D1%8C" title="Спираль – Chuvash" lang="cv" hreflang="cv" data-title="Спираль" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Spir%C3%A1la" title="Spirála – Czech" lang="cs" hreflang="cs" data-title="Spirála" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Sbiral" title="Sbiral – Welsh" lang="cy" hreflang="cy" data-title="Sbiral" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Spiral_(matematik)" title="Spiral (matematik) – Danish" lang="da" hreflang="da" data-title="Spiral (matematik)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Spirale" title="Spirale – German" lang="de" hreflang="de" data-title="Spirale" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Spiraal" title="Spiraal – Estonian" lang="et" hreflang="et" data-title="Spiraal" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espiral" title="Espiral – Spanish" lang="es" hreflang="es" data-title="Espiral" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Spiralo" title="Spiralo – Esperanto" lang="eo" hreflang="eo" data-title="Spiralo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Kiribil" title="Kiribil – Basque" lang="eu" hreflang="eu" data-title="Kiribil" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%B1%D9%BE%DB%8C%DA%86" title="مارپیچ – Persian" lang="fa" hreflang="fa" data-title="مارپیچ" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Spirale" title="Spirale – French" lang="fr" hreflang="fr" data-title="Spirale" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Spiraal_(wiskunde)" title="Spiraal (wiskunde) – Western Frisian" lang="fy" hreflang="fy" data-title="Spiraal (wiskunde)" data-language-autonym="Frysk" data-language-local-name="Western Frisian" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Espiral" title="Espiral – Galician" lang="gl" hreflang="gl" data-title="Espiral" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%99%80%EC%84%A0" title="와선 – Korean" lang="ko" hreflang="ko" data-title="와선" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%B0%E0%A5%8D%E0%A4%AA%E0%A4%BF%E0%A4%B2" title="सर्पिल – Hindi" lang="hi" hreflang="hi" data-title="सर्पिल" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Spiralo" title="Spiralo – Ido" lang="io" hreflang="io" data-title="Spiralo" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Pilin" title="Pilin – Indonesian" lang="id" hreflang="id" data-title="Pilin" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Ku%C3%B0ungsferill" title="Kuðungsferill – Icelandic" lang="is" hreflang="is" data-title="Kuðungsferill" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spirale" title="Spirale – Italian" lang="it" hreflang="it" data-title="Spirale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%A4%D7%99%D7%A8%D7%9C%D7%94" title="ספירלה – Hebrew" lang="he" hreflang="he" data-title="ספירלה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A8%D0%B8%D1%8B%D1%80%D1%88%D1%8B%D2%9B" title="Шиыршық – Kazakh" lang="kk" hreflang="kk" data-title="Шиыршық" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Spiralis" title="Spiralis – Latin" lang="la" hreflang="la" data-title="Spiralis" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Spir%C3%A1l" title="Spirál – Hungarian" lang="hu" hreflang="hu" data-title="Spirál" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Spiraal_(wiskunde)" title="Spiraal (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Spiraal (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%B8%A6%E5%B7%BB" title="渦巻 – Japanese" lang="ja" hreflang="ja" data-title="渦巻" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Spiral" title="Spiral – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Spiral" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Spiral" title="Spiral – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Spiral" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Spirallar" title="Spirallar – Uzbek" lang="uz" hreflang="uz" data-title="Spirallar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espiral" title="Espiral – Portuguese" lang="pt" hreflang="pt" data-title="Espiral" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%80%D0%B0%D0%BB%D1%8C" title="Спираль – Russian" lang="ru" hreflang="ru" data-title="Спираль" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Spiral" title="Spiral – Simple English" lang="en-simple" hreflang="en-simple" data-title="Spiral" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/%C5%A0pir%C3%A1la_(matematika)" title="Špirála (matematika) – Slovak" lang="sk" hreflang="sk" data-title="Špirála (matematika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Spirala" title="Spirala – Slovenian" lang="sl" hreflang="sl" data-title="Spirala" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%84%D9%88%D9%88%D9%84%D9%BE%DB%8E%DA%86_(%D9%85%D8%A7%D8%AA%D9%85%D8%A7%D8%AA%DB%8C%DA%A9)" title="لوولپێچ (ماتماتیک) – Central Kurdish" lang="ckb" hreflang="ckb" data-title="لوولپێچ (ماتماتیک)" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Spirala" title="Spirala – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Spirala" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Spiraali" title="Spiraali – Finnish" lang="fi" hreflang="fi" data-title="Spiraali" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Spiral" title="Spiral – Swedish" lang="sv" hreflang="sv" data-title="Spiral" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Sinuso_(hugis)" title="Sinuso (hugis) – Tagalog" lang="tl" hreflang="tl" data-title="Sinuso (hugis)" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Spiral" title="Spiral – Turkish" lang="tr" hreflang="tr" data-title="Spiral" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D1%96%D1%80%D0%B0%D0%BB%D1%8C" title="Спіраль – Ukrainian" lang="uk" hreflang="uk" data-title="Спіраль" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Xo%E1%BA%AFn_%E1%BB%91c" title="Xoắn ốc – Vietnamese" lang="vi" hreflang="vi" data-title="Xoắn ốc" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%9E%BA%E7%B7%9A" title="螺線 – Cantonese" lang="yue" hreflang="yue" data-title="螺線" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%9E%BA%E7%BA%BF" title="螺线 – Chinese" lang="zh" hreflang="zh" data-title="螺线" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q189114#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spiral" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Spiral" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spiral"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spiral&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spiral&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Spiral"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spiral&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spiral&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Spiral" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Spiral" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Spiral&amp;oldid=1258722324" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Spiral&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Spiral&amp;id=1258722324&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpiral"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpiral"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Spiral&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Spiral&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Spiral" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Spiral" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q189114" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Curve that winds around a central point</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For other uses, see <a href="/wiki/Spiral_(disambiguation)" class="mw-disambig" title="Spiral (disambiguation)">Spiral (disambiguation)</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:NautilusCutawayLogarithmicSpiral.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/220px-NautilusCutawayLogarithmicSpiral.jpg" decoding="async" width="220" height="166" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/330px-NautilusCutawayLogarithmicSpiral.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/NautilusCutawayLogarithmicSpiral.jpg/440px-NautilusCutawayLogarithmicSpiral.jpg 2x" data-file-width="2240" data-file-height="1693" /></a><figcaption>Cutaway of a <a href="/wiki/Nautilus" title="Nautilus">nautilus</a> shell showing the chambers arranged in an approximately <a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">logarithmic spiral</a></figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>spiral</b> is a <a href="/wiki/Curve" title="Curve">curve</a> which emanates from a point, moving further away as it revolves around the point.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> It is a subtype of <a href="/wiki/Whorl" title="Whorl">whorled</a> patterns, a broad group that also includes <a href="/wiki/Concentric_objects" title="Concentric objects">concentric objects</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Helices">Helices <span class="anchor" id="Spiral_or_helix"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=1" title="Edit section: Helices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Schraube_und_archimedische_Spirale.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/Schraube_und_archimedische_Spirale.png/220px-Schraube_und_archimedische_Spirale.png" decoding="async" width="220" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/72/Schraube_und_archimedische_Spirale.png 1.5x" data-file-width="254" data-file-height="178" /></a><figcaption>An Archimedean spiral (black), a helix (green), and a conical spiral (red)</figcaption></figure> <p>Two major definitions of "spiral" in the <a href="/wiki/American_Heritage_Dictionary" class="mw-redirect" title="American Heritage Dictionary">American Heritage Dictionary</a> are:<sup id="cite_ref-free_5-0" class="reference"><a href="#cite_note-free-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>a curve on a plane that winds around a fixed center point at a continuously increasing or decreasing distance from the point.</li> <li>a three-dimensional curve that turns around an axis at a constant or continuously varying distance while moving parallel to the axis; a <a href="/wiki/Helix" title="Helix">helix</a>.</li></ol> <p>The first definition describes a <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">planar</a> curve, that extends in both of the perpendicular directions within its plane; the groove on one side of a <a href="/wiki/Gramophone_record" class="mw-redirect" title="Gramophone record">gramophone record</a> closely approximates a plane spiral (and it is by the finite width and depth of the groove, but <i>not</i> by the wider spacing between than within tracks, that it falls short of being a perfect example); note that successive loops <i>differ</i> in diameter. In another example, the "center lines" of the arms of a <a href="/wiki/Spiral_galaxy" title="Spiral galaxy">spiral galaxy</a> trace <a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">logarithmic spirals</a>. </p><p>The second definition includes two kinds of 3-dimensional relatives of spirals: </p> <ul><li>A conical or <a href="/wiki/Volute_spring" title="Volute spring">volute spring</a> (including the spring used to hold and make contact with the negative terminals of AA or AAA batteries in a <a href="/wiki/Battery_(electricity)" class="mw-redirect" title="Battery (electricity)">battery box</a>), and the <a href="/wiki/Vortex" title="Vortex">vortex</a> that is created when water is draining in a sink is often described as a spiral, or as a <a href="/wiki/Conical_helix" class="mw-redirect" title="Conical helix">conical helix</a>.</li> <li>Quite explicitly, definition 2 also includes a cylindrical coil spring and a strand of <a href="/wiki/DNA" title="DNA">DNA</a>, both of which are fairly helical, so that "helix" is a more <i>useful</i> description than "spiral" for each of them. In general, "spiral" is seldom applied if successive "loops" of a curve have the same diameter.<sup id="cite_ref-free_5-1" class="reference"><a href="#cite_note-free-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>In the side picture, the black curve at the bottom is an <a href="/wiki/Archimedean_spiral" title="Archimedean spiral">Archimedean spiral</a>, while the green curve is a helix. The curve shown in red is a conical spiral. </p> <div class="mw-heading mw-heading2"><h2 id="Two-dimensional">Two-dimensional</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=2" title="Edit section: Two-dimensional"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_spirals" title="List of spirals">List of spirals</a></div> <p>A <a href="/wiki/Two-dimensional" class="mw-redirect" title="Two-dimensional">two-dimensional</a>, or plane, spiral may be easily described using <a href="/wiki/Polar_coordinates" class="mw-redirect" title="Polar coordinates">polar coordinates</a>, where the <a href="/wiki/Radius" title="Radius">radius</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> is a <a href="/wiki/Monotonic" class="mw-redirect" title="Monotonic">monotonic</a> <a href="/wiki/Continuous_function" title="Continuous function">continuous function</a> of angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r(\varphi )\;.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=r(\varphi )\;.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2337675d40502693aea9eb0fa44aaef43ae4153f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.817ex; height:2.843ex;" alt="{\displaystyle r=r(\varphi )\;.}"></span></li></ul> <p>The circle would be regarded as a <a href="/wiki/Degenerate_(mathematics)" class="mw-redirect" title="Degenerate (mathematics)">degenerate</a> case (the <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> not being strictly monotonic, but rather <a href="/wiki/Constant_(mathematics)" title="Constant (mathematics)">constant</a>). </p><p>In <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-coordinates</i> the curve has the parametric representation: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi \;.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thickmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi \;.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/990c66f4d0c9537cc5fbb4f75a601ba71e72ef4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.545ex; height:2.843ex;" alt="{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi \;.}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some of the most important sorts of two-dimensional spirals include: </p> <ul><li>The <a href="/wiki/Archimedean_spiral" title="Archimedean spiral">Archimedean spiral</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1da291348acd4ad9857d6d4f4c57e6ffc86ba547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.897ex; height:2.176ex;" alt="{\displaystyle r=a\varphi }"></span></li> <li>The <a href="/wiki/Hyperbolic_spiral" title="Hyperbolic spiral">hyperbolic spiral</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a/\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a/\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dee3f159394eef32e7c0d7fce6bd018d8db9d30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.06ex; height:2.843ex;" alt="{\displaystyle r=a/\varphi }"></span></li> <li><a href="/wiki/Fermat%27s_spiral" title="Fermat&#39;s spiral">Fermat's spiral</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a\varphi ^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a\varphi ^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bdeedda974df62016bf773b55d48c7e090b4342" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.595ex; height:3.343ex;" alt="{\displaystyle r=a\varphi ^{1/2}}"></span></li> <li>The <a href="/wiki/Lituus_(mathematics)" title="Lituus (mathematics)">lituus</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a\varphi ^{-1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a\varphi ^{-1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/316930981eae57d16515613e51f5cff4d4dc7a1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.874ex; height:3.343ex;" alt="{\displaystyle r=a\varphi ^{-1/2}}"></span></li> <li>The <a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">logarithmic spiral</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=ae^{k\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=ae^{k\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a1337d832eead5adda77daa3dc9c9dfb6fb30f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.624ex; height:2.676ex;" alt="{\displaystyle r=ae^{k\varphi }}"></span></li> <li>The <a href="/wiki/Cornu_spiral" class="mw-redirect" title="Cornu spiral">Cornu spiral</a> or <i>clothoid</i></li> <li>The <a href="/wiki/Fibonacci_spiral" class="mw-redirect" title="Fibonacci spiral">Fibonacci spiral</a> and <a href="/wiki/Golden_spiral" title="Golden spiral">golden spiral</a></li> <li>The <a href="/wiki/Spiral_of_Theodorus" title="Spiral of Theodorus">Spiral of Theodorus</a>: an approximation of the Archimedean spiral composed of contiguous right triangles</li> <li>The <a href="/wiki/Involute" title="Involute">involute</a> of a circle</li></ul> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Archimedean_spiral.svg" class="mw-file-description" title="Archimedean spiral"><img alt="Archimedean spiral" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Archimedean_spiral.svg/120px-Archimedean_spiral.svg.png" decoding="async" width="120" height="111" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Archimedean_spiral.svg/180px-Archimedean_spiral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Archimedean_spiral.svg/240px-Archimedean_spiral.svg.png 2x" data-file-width="650" data-file-height="600" /></a></span></div> <div class="gallerytext">Archimedean spiral</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Hyperspiral.svg" class="mw-file-description" title="hyperbolic spiral"><img alt="hyperbolic spiral" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Hyperspiral.svg/120px-Hyperspiral.svg.png" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Hyperspiral.svg/180px-Hyperspiral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/Hyperspiral.svg/240px-Hyperspiral.svg.png 2x" data-file-width="205" data-file-height="205" /></a></span></div> <div class="gallerytext">hyperbolic spiral</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Fermat%27s_spiral.svg" class="mw-file-description" title="Fermat&#39;s spiral"><img alt="Fermat&#39;s spiral" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Fermat%27s_spiral.svg/120px-Fermat%27s_spiral.svg.png" decoding="async" width="120" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Fermat%27s_spiral.svg/180px-Fermat%27s_spiral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Fermat%27s_spiral.svg/240px-Fermat%27s_spiral.svg.png 2x" data-file-width="328" data-file-height="310" /></a></span></div> <div class="gallerytext">Fermat's spiral</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Lituus.svg" class="mw-file-description" title="lituus"><img alt="lituus" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Lituus.svg/120px-Lituus.svg.png" decoding="async" width="120" height="69" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Lituus.svg/180px-Lituus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Lituus.svg/240px-Lituus.svg.png 2x" data-file-width="539" data-file-height="310" /></a></span></div> <div class="gallerytext">lituus</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Logarithmic_Spiral_Pylab.svg" class="mw-file-description" title="logarithmic spiral"><img alt="logarithmic spiral" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Logarithmic_Spiral_Pylab.svg/120px-Logarithmic_Spiral_Pylab.svg.png" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Logarithmic_Spiral_Pylab.svg/180px-Logarithmic_Spiral_Pylab.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/Logarithmic_Spiral_Pylab.svg/240px-Logarithmic_Spiral_Pylab.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div> <div class="gallerytext">logarithmic spiral</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Cornu_Spiral.svg" class="mw-file-description" title="Cornu spiral"><img alt="Cornu spiral" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Cornu_Spiral.svg/120px-Cornu_Spiral.svg.png" decoding="async" width="120" height="115" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Cornu_Spiral.svg/180px-Cornu_Spiral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/68/Cornu_Spiral.svg/240px-Cornu_Spiral.svg.png 2x" data-file-width="480" data-file-height="460" /></a></span></div> <div class="gallerytext">Cornu spiral</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Spiral_of_Theodorus.svg" class="mw-file-description" title="spiral of Theodorus"><img alt="spiral of Theodorus" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/120px-Spiral_of_Theodorus.svg.png" decoding="async" width="120" height="98" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/180px-Spiral_of_Theodorus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Spiral_of_Theodorus.svg/240px-Spiral_of_Theodorus.svg.png 2x" data-file-width="700" data-file-height="570" /></a></span></div> <div class="gallerytext">spiral of Theodorus</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Fibonacci_spiral.svg" class="mw-file-description" title="Fibonacci Spiral (golden spiral)"><img alt="Fibonacci Spiral (golden spiral)" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Fibonacci_spiral.svg/120px-Fibonacci_spiral.svg.png" decoding="async" width="120" height="76" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Fibonacci_spiral.svg/180px-Fibonacci_spiral.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/79/Fibonacci_spiral.svg/240px-Fibonacci_spiral.svg.png 2x" data-file-width="915" data-file-height="580" /></a></span></div> <div class="gallerytext">Fibonacci Spiral (golden spiral)</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:Archimedean-involute-circle-spirals-comparison.svg" class="mw-file-description" title="The involute of a circle (black) is not identical to the Archimedean spiral (red)."><img alt="The involute of a circle (black) is not identical to the Archimedean spiral (red)." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Archimedean-involute-circle-spirals-comparison.svg/120px-Archimedean-involute-circle-spirals-comparison.svg.png" decoding="async" width="120" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Archimedean-involute-circle-spirals-comparison.svg/180px-Archimedean-involute-circle-spirals-comparison.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/43/Archimedean-involute-circle-spirals-comparison.svg/240px-Archimedean-involute-circle-spirals-comparison.svg.png 2x" data-file-width="639" data-file-height="600" /></a></span></div> <div class="gallerytext">The involute of a circle (black) is not identical to the Archimedean spiral (red).</div> </li> </ul> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Schraublinie-hyp-spirale.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Schraublinie-hyp-spirale.svg/130px-Schraublinie-hyp-spirale.svg.png" decoding="async" width="130" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Schraublinie-hyp-spirale.svg/195px-Schraublinie-hyp-spirale.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Schraublinie-hyp-spirale.svg/260px-Schraublinie-hyp-spirale.svg.png 2x" data-file-width="228" data-file-height="393" /></a><figcaption>Hyperbolic spiral as central projection of a helix</figcaption></figure> <p>An <i>Archimedean spiral</i> is, for example, generated while coiling a carpet.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>A <i>hyperbolic spiral</i> appears as image of a helix with a special central projection (see diagram). A hyperbolic spiral is some times called <i>reciproke</i> spiral, because it is the image of an Archimedean spiral with a circle-inversion (see below).<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>The name <i>logarithmic spiral</i> is due to the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ={\tfrac {1}{k}}\cdot \ln {\tfrac {r}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mstyle> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>r</mi> <mi>a</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ={\tfrac {1}{k}}\cdot \ln {\tfrac {r}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29d8ebb0ac367610efc5ca04a7a8fce7442b4af4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.023ex; height:3.676ex;" alt="{\displaystyle \varphi ={\tfrac {1}{k}}\cdot \ln {\tfrac {r}{a}}}"></span>. Approximations of this are found in nature. </p><p>Spirals which do not fit into this scheme of the first 5 examples: </p><p>A <i>Cornu spiral</i> has two asymptotic points.<br /> The <i>spiral of Theodorus</i> is a polygon.<br /> The <i>Fibonacci Spiral</i> consists of a sequence of circle arcs.<br /> The <i>involute of a circle</i> looks like an Archimedean, but is not: see <a href="/wiki/Involute#Examples" title="Involute">Involute#Examples</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Geometric_properties">Geometric properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=4" title="Edit section: Geometric properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following considerations are dealing with spirals, which can be described by a polar equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=r(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/631f196b4d374c195c6f5bdfdd2ac0a33911150a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.525ex; height:2.843ex;" alt="{\displaystyle r=r(\varphi )}"></span>, especially for the cases <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(\varphi )=a\varphi ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r(\varphi )=a\varphi ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec85777b0b2223bd9bd1faa73e06847ae6a11dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.445ex; height:2.843ex;" alt="{\displaystyle r(\varphi )=a\varphi ^{n}}"></span> (Archimedean, hyperbolic, Fermat's, lituus spirals) and the logarithmic spiral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=ae^{k\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=ae^{k\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a1337d832eead5adda77daa3dc9c9dfb6fb30f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.624ex; height:2.676ex;" alt="{\displaystyle r=ae^{k\varphi }}"></span>. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sektor-steigung-pk-def.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Sektor-steigung-pk-def.svg/220px-Sektor-steigung-pk-def.svg.png" decoding="async" width="220" height="181" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Sektor-steigung-pk-def.svg/330px-Sektor-steigung-pk-def.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Sektor-steigung-pk-def.svg/440px-Sektor-steigung-pk-def.svg.png 2x" data-file-width="262" data-file-height="215" /></a><figcaption>Definition of sector (light blue) and polar slope angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span></figcaption></figure> <dl><dt>Polar slope angle</dt></dl> <p>The angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> between the spiral tangent and the corresponding polar circle (see diagram) is called <i>angle of the polar slope and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c622cda1e123d1a43bffbc0b8c1f57530cfc4e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.234ex; height:2.009ex;" alt="{\displaystyle \tan \alpha }"></span> the </i>polar slope<i>.</i> </p><p>From <a href="/wiki/Polar_coordinate_system#Vector_calculus" title="Polar coordinate system">vector calculus in polar coordinates</a> one gets the formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \alpha ={\frac {r'}{r}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> <mi>r</mi> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \alpha ={\frac {r'}{r}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bf908b04f8709898d279755d02b1896dcbb4f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.13ex; height:5.509ex;" alt="{\displaystyle \tan \alpha ={\frac {r&#039;}{r}}\ .}"></span></dd></dl> <p>Hence the slope of the spiral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=a\varphi ^{n}\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=a\varphi ^{n}\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e052f204af06b10f81ee684a6f8fd654d3938eb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.406ex; height:2.843ex;" alt="{\displaystyle \;r=a\varphi ^{n}\;}"></span> is </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \alpha ={\frac {n}{\varphi }}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>&#x03C6;<!-- φ --></mi> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \alpha ={\frac {n}{\varphi }}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f96ee4d54abadc7b13528751aff9dbe103b68337" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.917ex; height:5.176ex;" alt="{\displaystyle \tan \alpha ={\frac {n}{\varphi }}\ .}"></span></li></ul> <p>In case of an <i>Archimedean spiral</i> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span>) the polar slope is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;\tan \alpha ={\tfrac {1}{\varphi }}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>&#x03C6;<!-- φ --></mi> </mfrac> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;\tan \alpha ={\tfrac {1}{\varphi }}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a186e6b5e4e80854a3c2fb5895dd9e3e8d4516f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.116ex; height:3.676ex;" alt="{\displaystyle \;\tan \alpha ={\tfrac {1}{\varphi }}\ .}"></span> </p><p>In a <i>logarithmic spiral</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \tan \alpha =k\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>k</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \tan \alpha =k\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1686834ffc142a056f8b26e856247c9b3562167" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.092ex; height:2.176ex;" alt="{\displaystyle \ \tan \alpha =k\ }"></span> is constant. </p> <dl><dt>Curvature</dt></dl> <p>The curvature <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ddec2e922c5caea4e47d04feef86e782dc8e6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:1.676ex;" alt="{\displaystyle \kappa }"></span> of a curve with polar equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=r(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/631f196b4d374c195c6f5bdfdd2ac0a33911150a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.525ex; height:2.843ex;" alt="{\displaystyle r=r(\varphi )}"></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={\frac {r^{2}+2(r')^{2}-r\;r''}{(r^{2}+(r')^{2})^{3/2}}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mspace width="thickmathspace" /> <msup> <mi>r</mi> <mo>&#x2033;</mo> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={\frac {r^{2}+2(r')^{2}-r\;r''}{(r^{2}+(r')^{2})^{3/2}}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2004aef618f8c09e8f9b25e9fe3abb31bd08d9b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:23.924ex; height:6.843ex;" alt="{\displaystyle \kappa ={\frac {r^{2}+2(r&#039;)^{2}-r\;r&#039;&#039;}{(r^{2}+(r&#039;)^{2})^{3/2}}}\ .}"></span></dd></dl> <p>For a spiral with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a\varphi ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a\varphi ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38c276b0426396d0348f35e634ead2e822a79935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.116ex; height:2.843ex;" alt="{\displaystyle r=a\varphi ^{n}}"></span> one gets </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa =\dotsb ={\frac {1}{a\varphi ^{n-1}}}{\frac {\varphi ^{2}+n^{2}+n}{(\varphi ^{2}+n^{2})^{3/2}}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> <mo>=</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>n</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa =\dotsb ={\frac {1}{a\varphi ^{n-1}}}{\frac {\varphi ^{2}+n^{2}+n}{(\varphi ^{2}+n^{2})^{3/2}}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a9ee52164b3d60b7debaa745427b26d31890860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:31.599ex; height:6.676ex;" alt="{\displaystyle \kappa =\dotsb ={\frac {1}{a\varphi ^{n-1}}}{\frac {\varphi ^{2}+n^{2}+n}{(\varphi ^{2}+n^{2})^{3/2}}}\ .}"></span></li></ul> <p>In case of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span> <i>(Archimedean spiral)</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={\tfrac {\varphi ^{2}+2}{a(\varphi ^{2}+1)^{3/2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={\tfrac {\varphi ^{2}+2}{a(\varphi ^{2}+1)^{3/2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e895cb43074b50685ed1f4a5ace6a2cbdb9715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.596ex; height:5.509ex;" alt="{\displaystyle \kappa ={\tfrac {\varphi ^{2}+2}{a(\varphi ^{2}+1)^{3/2}}}}"></span>.<br /> Only for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1&lt;n&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&lt;</mo> <mi>n</mi> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1&lt;n&lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e428e4c653495407431f87c633cff49ae66b77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.725ex; height:2.343ex;" alt="{\displaystyle -1&lt;n&lt;0}"></span> the spiral has an <i>inflection point</i>. </p><p>The curvature of a <i>logarithmic spiral</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=ae^{k\varphi }\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=ae^{k\varphi }\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f0272e71ddf4183186c5d609971ec1fea787f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.914ex; height:2.676ex;" alt="{\displaystyle \;r=ae^{k\varphi }\;}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;\kappa ={\tfrac {1}{r{\sqrt {1+k^{2}}}}}\;.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>&#x03BA;<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mstyle> </mrow> <mspace width="thickmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;\kappa ={\tfrac {1}{r{\sqrt {1+k^{2}}}}}\;.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5d3e44833498bbad80cedbaaf79f6b1439e8fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:13.384ex; height:5.509ex;" alt="{\displaystyle \;\kappa ={\tfrac {1}{r{\sqrt {1+k^{2}}}}}\;.}"></span> </p> <dl><dt>Sector area</dt></dl> <p>The area of a sector of a curve (see diagram) with polar equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=r(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/631f196b4d374c195c6f5bdfdd2ac0a33911150a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.525ex; height:2.843ex;" alt="{\displaystyle r=r(\varphi )}"></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}r(\varphi )^{2}\;d\varphi \ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}r(\varphi )^{2}\;d\varphi \ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dae169a3082334737ebaaa58d206497af2a3aa49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.258ex; height:6.343ex;" alt="{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}r(\varphi )^{2}\;d\varphi \ .}"></span></dd></dl> <p>For a spiral with equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a\varphi ^{n}\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a\varphi ^{n}\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a1019858eeea0c8bfd801d410869906201b68b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.761ex; height:2.843ex;" alt="{\displaystyle r=a\varphi ^{n}\;}"></span> one gets </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}a^{2}\varphi ^{2n}\;d\varphi ={\frac {a^{2}}{2(2n+1)}}{\big (}\varphi _{2}^{2n+1}-\varphi _{1}^{2n+1}{\big )}\ ,\quad {\text{if}}\quad n\neq -{\frac {1}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mspace width="thickmathspace" /> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>&#x2260;<!-- ≠ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}a^{2}\varphi ^{2n}\;d\varphi ={\frac {a^{2}}{2(2n+1)}}{\big (}\varphi _{2}^{2n+1}-\varphi _{1}^{2n+1}{\big )}\ ,\quad {\text{if}}\quad n\neq -{\frac {1}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22edb4c1bcfc34fb9e37a6d5bfbff072e0176b36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:67.767ex; height:6.676ex;" alt="{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}a^{2}\varphi ^{2n}\;d\varphi ={\frac {a^{2}}{2(2n+1)}}{\big (}\varphi _{2}^{2n+1}-\varphi _{1}^{2n+1}{\big )}\ ,\quad {\text{if}}\quad n\neq -{\frac {1}{2}},}"></span></li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}{\frac {a^{2}}{\varphi }}\;d\varphi ={\frac {a^{2}}{2}}(\ln \varphi _{2}-\ln \varphi _{1})\ ,\quad {\text{if}}\quad n=-{\frac {1}{2}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03C6;<!-- φ --></mi> </mfrac> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}{\frac {a^{2}}{\varphi }}\;d\varphi ={\frac {a^{2}}{2}}(\ln \varphi _{2}-\ln \varphi _{1})\ ,\quad {\text{if}}\quad n=-{\frac {1}{2}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f391d61642234c719ee7912321b0aa53a86d861c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:56.534ex; height:6.676ex;" alt="{\displaystyle A={\frac {1}{2}}\int _{\varphi _{1}}^{\varphi _{2}}{\frac {a^{2}}{\varphi }}\;d\varphi ={\frac {a^{2}}{2}}(\ln \varphi _{2}-\ln \varphi _{1})\ ,\quad {\text{if}}\quad n=-{\frac {1}{2}}\ .}"></span></dd></dl> <p>The formula for a <i>logarithmic spiral</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=ae^{k\varphi }\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=ae^{k\varphi }\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f0272e71ddf4183186c5d609971ec1fea787f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.914ex; height:2.676ex;" alt="{\displaystyle \;r=ae^{k\varphi }\;}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ A={\tfrac {r(\varphi _{2})^{2}-r(\varphi _{1})^{2})}{4k}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>r</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <mi>k</mi> </mrow> </mfrac> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ A={\tfrac {r(\varphi _{2})^{2}-r(\varphi _{1})^{2})}{4k}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b858cced7a712b2fe4b768338a92a82a9a81635c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:18.922ex; height:4.676ex;" alt="{\displaystyle \ A={\tfrac {r(\varphi _{2})^{2}-r(\varphi _{1})^{2})}{4k}}\ .}"></span> </p> <dl><dt>Arc length</dt></dl> <p>The length of an arc of a curve with polar equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=r(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/631f196b4d374c195c6f5bdfdd2ac0a33911150a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.525ex; height:2.843ex;" alt="{\displaystyle r=r(\varphi )}"></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=\int \limits _{\varphi _{1}}^{\varphi _{2}}{\sqrt {\left(r^{\prime }(\varphi )\right)^{2}+r^{2}(\varphi )}}\,\mathrm {d} \varphi \ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <munderover> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=\int \limits _{\varphi _{1}}^{\varphi _{2}}{\sqrt {\left(r^{\prime }(\varphi )\right)^{2}+r^{2}(\varphi )}}\,\mathrm {d} \varphi \ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c700e397690c25848b0145ceb20606c851a9eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:30.654ex; height:9.343ex;" alt="{\displaystyle L=\int \limits _{\varphi _{1}}^{\varphi _{2}}{\sqrt {\left(r^{\prime }(\varphi )\right)^{2}+r^{2}(\varphi )}}\,\mathrm {d} \varphi \ .}"></span></dd></dl> <p>For the spiral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a\varphi ^{n}\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a\varphi ^{n}\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a1019858eeea0c8bfd801d410869906201b68b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.761ex; height:2.843ex;" alt="{\displaystyle r=a\varphi ^{n}\;}"></span> the length is </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=\int _{\varphi _{1}}^{\varphi _{2}}{\sqrt {{\frac {n^{2}r^{2}}{\varphi ^{2}}}+r^{2}}}\;d\varphi =a\int \limits _{\varphi _{1}}^{\varphi _{2}}\varphi ^{n-1}{\sqrt {n^{2}+\varphi ^{2}}}d\varphi \ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thickmathspace" /> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>a</mi> <munderover> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </munderover> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mi>d</mi> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=\int _{\varphi _{1}}^{\varphi _{2}}{\sqrt {{\frac {n^{2}r^{2}}{\varphi ^{2}}}+r^{2}}}\;d\varphi =a\int \limits _{\varphi _{1}}^{\varphi _{2}}\varphi ^{n-1}{\sqrt {n^{2}+\varphi ^{2}}}d\varphi \ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00e7de46597f811a2e437f67d14e8e596106e7fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:52.436ex; height:9.343ex;" alt="{\displaystyle L=\int _{\varphi _{1}}^{\varphi _{2}}{\sqrt {{\frac {n^{2}r^{2}}{\varphi ^{2}}}+r^{2}}}\;d\varphi =a\int \limits _{\varphi _{1}}^{\varphi _{2}}\varphi ^{n-1}{\sqrt {n^{2}+\varphi ^{2}}}d\varphi \ .}"></span></li></ul> <p>Not all these integrals can be solved by a suitable table. In case of a Fermat's spiral, the integral can be expressed by <a href="/wiki/Elliptic_integral" title="Elliptic integral">elliptic integrals</a> only. </p><p>The arc length of a <i>logarithmic spiral</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=ae^{k\varphi }\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=ae^{k\varphi }\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f0272e71ddf4183186c5d609971ec1fea787f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.914ex; height:2.676ex;" alt="{\displaystyle \;r=ae^{k\varphi }\;}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ L={\tfrac {\sqrt {k^{2}+1}}{k}}{\big (}r(\varphi _{2})-r(\varphi _{1}){\big )}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>L</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msqrt> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </msqrt> <mi>k</mi> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>r</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ L={\tfrac {\sqrt {k^{2}+1}}{k}}{\big (}r(\varphi _{2})-r(\varphi _{1}){\big )}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c05cd0cf8c2f5ea582a4655fc740c7326d66e9a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:28.592ex; height:5.676ex;" alt="{\displaystyle \ L={\tfrac {\sqrt {k^{2}+1}}{k}}{\big (}r(\varphi _{2})-r(\varphi _{1}){\big )}\ .}"></span> </p> <dl><dt>Circle inversion</dt></dl> <p>The <a href="/wiki/Circle_inversion" class="mw-redirect" title="Circle inversion">inversion at the unit circle</a> has in polar coordinates the simple description: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ (r,\varphi )\mapsto ({\tfrac {1}{r}},\varphi )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mstyle> </mrow> <mo>,</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ (r,\varphi )\mapsto ({\tfrac {1}{r}},\varphi )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b91ce2aeeb184564cbf6cb23cb0523dba862d22d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.209ex; height:3.343ex;" alt="{\displaystyle \ (r,\varphi )\mapsto ({\tfrac {1}{r}},\varphi )\ }"></span>. </p> <ul><li>The image of a spiral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ r=a\varphi ^{n}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ r=a\varphi ^{n}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e270789e592689f82dcecee1c6bb68b08914dd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.277ex; height:2.843ex;" alt="{\displaystyle \ r=a\varphi ^{n}\ }"></span> under the inversion at the unit circle is the spiral with polar equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ r={\tfrac {1}{a}}\varphi ^{-n}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mstyle> </mrow> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ r={\tfrac {1}{a}}\varphi ^{-n}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15440d8ca26fd87ff1a18aa8abf39d730758bad0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.031ex; height:3.343ex;" alt="{\displaystyle \ r={\tfrac {1}{a}}\varphi ^{-n}\ }"></span>. For example: The inverse of an Archimedean spiral is a hyperbolic spiral.</li></ul> <dl><dd>A logarithmic spiral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=ae^{k\varphi }\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=ae^{k\varphi }\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f0272e71ddf4183186c5d609971ec1fea787f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.914ex; height:2.676ex;" alt="{\displaystyle \;r=ae^{k\varphi }\;}"></span> is mapped onto the logarithmic spiral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r={\tfrac {1}{a}}e^{-k\varphi }\;.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mstyle> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mspace width="thickmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r={\tfrac {1}{a}}e^{-k\varphi }\;.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d16af39fb83d4e96818bd5b73efb88ef56890290" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.316ex; height:3.343ex;" alt="{\displaystyle \;r={\tfrac {1}{a}}e^{-k\varphi }\;.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Bounded_spirals">Bounded spirals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=5" title="Edit section: Bounded spirals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spiral-arctan-1-2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Spiral-arctan-1-2.svg/310px-Spiral-arctan-1-2.svg.png" decoding="async" width="310" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Spiral-arctan-1-2.svg/465px-Spiral-arctan-1-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Spiral-arctan-1-2.svg/620px-Spiral-arctan-1-2.svg.png 2x" data-file-width="498" data-file-height="251" /></a><figcaption>Bounded spirals:<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a\arctan(k\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a\arctan(k\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/156f84cb23d19c2c5921d0ed78e84dbac047aa95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.771ex; height:2.843ex;" alt="{\displaystyle r=a\arctan(k\varphi )}"></span> (left), <br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=a(\arctan(k\varphi )+\pi /2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=a(\arctan(k\varphi )+\pi /2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2d55f205fa2008e32c2504fc576fec254231783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.69ex; height:2.843ex;" alt="{\displaystyle r=a(\arctan(k\varphi )+\pi /2)}"></span> (right)</figcaption></figure> <p>The function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fa420a7788c8a1fe01979a97723606512b0017d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.378ex; height:2.843ex;" alt="{\displaystyle r(\varphi )}"></span> of a spiral is usually strictly monotonic, continuous and un<a href="/wiki/Bounded_function" title="Bounded function">bounded</a>. For the standard spirals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fa420a7788c8a1fe01979a97723606512b0017d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.378ex; height:2.843ex;" alt="{\displaystyle r(\varphi )}"></span> is either a power function or an exponential function. If one chooses for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fa420a7788c8a1fe01979a97723606512b0017d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.378ex; height:2.843ex;" alt="{\displaystyle r(\varphi )}"></span> a <i>bounded</i> function, the spiral is bounded, too. A suitable bounded function is the <a href="/wiki/Arctan" class="mw-redirect" title="Arctan">arctan</a> function: </p> <dl><dt>Example 1</dt></dl> <p>Setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=a\arctan(k\varphi )\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=a\arctan(k\varphi )\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e4860ff38d3291ac1dbc8b30dd6ab89fb2270b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.061ex; height:2.843ex;" alt="{\displaystyle \;r=a\arctan(k\varphi )\;}"></span> and the choice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;k=0.1,a=4,\;\varphi \geq 0\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>k</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;k=0.1,a=4,\;\varphi \geq 0\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03851d8509999297030ab2c32f7e457d2989ce6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.557ex; height:2.676ex;" alt="{\displaystyle \;k=0.1,a=4,\;\varphi \geq 0\;}"></span> gives a spiral, that starts at the origin (like an Archimedean spiral) and approaches the circle with radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=a\pi /2\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=a\pi /2\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac24ad73e43a7c5dd3e0804b1e78253e69032603" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.324ex; height:2.843ex;" alt="{\displaystyle \;r=a\pi /2\;}"></span> (diagram, left). </p> <dl><dt>Example 2</dt></dl> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=a(\arctan(k\varphi )+\pi /2)\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=a(\arctan(k\varphi )+\pi /2)\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ae812ff7efdbf7fe7e509fd174662301553455f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.981ex; height:2.843ex;" alt="{\displaystyle \;r=a(\arctan(k\varphi )+\pi /2)\;}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;k=0.2,a=2,\;-\infty &lt;\varphi &lt;\infty \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>k</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>&lt;</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;k=0.2,a=2,\;-\infty &lt;\varphi &lt;\infty \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd34f73c089eaf7b23ac8fde1a09274d72fe7275" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.948ex; height:2.676ex;" alt="{\displaystyle \;k=0.2,a=2,\;-\infty &lt;\varphi &lt;\infty \;}"></span> one gets a spiral, that approaches the origin (like a hyperbolic spiral) and approaches the circle with radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r=a\pi \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mi>&#x03C0;<!-- π --></mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r=a\pi \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/591edd485f0743da24e76f944845f03cca688842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.999ex; height:1.676ex;" alt="{\displaystyle \;r=a\pi \;}"></span> (diagram, right). </p> <div class="mw-heading mw-heading2"><h2 id="Three-dimensional">Three-dimensional</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=6" title="Edit section: Three-dimensional"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Space spiral" redirects here. For the building, see <a href="/wiki/Space_Spiral" title="Space Spiral">Space Spiral</a>.</div> <p>Two well-known spiral <a href="/wiki/Space_curve" class="mw-redirect" title="Space curve">space curves</a> are <i>conical spirals</i> and <i>spherical spirals</i>, defined below. Another instance of space spirals is the <i>toroidal spiral</i>.<sup id="cite_ref-von_Seggern_1994_p._241_8-0" class="reference"><a href="#cite_note-von_Seggern_1994_p._241-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> A spiral wound around a helix,<sup id="cite_ref-Wolfram_MathWorld_2002_9-0" class="reference"><a href="#cite_note-Wolfram_MathWorld_2002-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> also known as <i>double-twisted helix</i>,<sup id="cite_ref-Ugajin_Ishimoto_Kuroki_Hirata_2001_pp._437–451_10-0" class="reference"><a href="#cite_note-Ugajin_Ishimoto_Kuroki_Hirata_2001_pp._437–451-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> represents objects such as <a href="/wiki/Coiled_coil_filament" class="mw-redirect" title="Coiled coil filament">coiled coil filaments</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Conical_spirals">Conical spirals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=7" title="Edit section: Conical spirals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spiral-cone-arch-s.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Spiral-cone-arch-s.svg/180px-Spiral-cone-arch-s.svg.png" decoding="async" width="180" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Spiral-cone-arch-s.svg/270px-Spiral-cone-arch-s.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/Spiral-cone-arch-s.svg/360px-Spiral-cone-arch-s.svg.png 2x" data-file-width="228" data-file-height="254" /></a><figcaption>Conical spiral with Archimedean spiral as floor plan</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Conical_spiral" title="Conical spiral">conical spiral</a></div> <p>If in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>-plane a spiral with parametric representation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/113fa49e9011194717010c20dd3027936d0e5def" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.253ex; height:2.843ex;" alt="{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi }"></span></dd></dl> <p>is given, then there can be added a third coordinate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b1cd0a3b2c929c890cc62109913f331cda54846" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle z(\varphi )}"></span>, such that the now space curve lies on the <a href="/wiki/Cone" title="Cone">cone</a> with equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;m(x^{2}+y^{2})=(z-z_{0})^{2}\ ,\ m&gt;0\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>m</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>m</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;m(x^{2}+y^{2})=(z-z_{0})^{2}\ ,\ m&gt;0\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae6974765c3594ece32358620088d6bead3ef501" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.102ex; height:3.176ex;" alt="{\displaystyle \;m(x^{2}+y^{2})=(z-z_{0})^{2}\ ,\ m&gt;0\;}"></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi \ ,\qquad \color {red}{z=z_{0}+mr(\varphi )}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>m</mi> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi \ ,\qquad \color {red}{z=z_{0}+mr(\varphi )}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94d26defb57252548819e48c874fa8a92f55dc9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:57.322ex; height:2.843ex;" alt="{\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi \ ,\qquad \color {red}{z=z_{0}+mr(\varphi )}\ .}"></span></li></ul> <p>Spirals based on this procedure are called <b>conical spirals</b>. </p> <dl><dt>Example</dt></dl> <p>Starting with an <i>archimedean spiral</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;r(\varphi )=a\varphi \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>r</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>&#x03C6;<!-- φ --></mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;r(\varphi )=a\varphi \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf4b4e5247d29a2bca680ad5dd67ee9562df9ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.517ex; height:2.843ex;" alt="{\displaystyle \;r(\varphi )=a\varphi \;}"></span> one gets the conical spiral (see diagram) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=a\varphi \cos \varphi \ ,\qquad y=a\varphi \sin \varphi \ ,\qquad z=z_{0}+ma\varphi \ ,\quad \varphi \geq 0\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>a</mi> <mi>&#x03C6;<!-- φ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mi>y</mi> <mo>=</mo> <mi>a</mi> <mi>&#x03C6;<!-- φ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="2em" /> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>m</mi> <mi>a</mi> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mo>,</mo> <mspace width="1em" /> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=a\varphi \cos \varphi \ ,\qquad y=a\varphi \sin \varphi \ ,\qquad z=z_{0}+ma\varphi \ ,\quad \varphi \geq 0\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a99db3d4281727b1dd564fdf0ca30b3057f3ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.155ex; height:2.676ex;" alt="{\displaystyle x=a\varphi \cos \varphi \ ,\qquad y=a\varphi \sin \varphi \ ,\qquad z=z_{0}+ma\varphi \ ,\quad \varphi \geq 0\ .}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Spherical_spirals">Spherical spirals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=8" title="Edit section: Spherical spirals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Kugel-spirale-1-2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Kugel-spirale-1-2.svg/260px-Kugel-spirale-1-2.svg.png" decoding="async" width="260" height="129" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Kugel-spirale-1-2.svg/390px-Kugel-spirale-1-2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Kugel-spirale-1-2.svg/520px-Kugel-spirale-1-2.svg.png 2x" data-file-width="759" data-file-height="377" /></a><figcaption>Clelia curve with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0977619356f0caa405a5f40070bed06c655db0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;" alt="{\displaystyle c=8}"></span></figcaption></figure> <p>Any <a href="/wiki/Cylindrical_map_projection" class="mw-redirect" title="Cylindrical map projection">cylindrical map projection</a> can be used as the basis for a <b>spherical spiral</b>: draw a straight line on the map and find its inverse projection on the sphere, a kind of <a href="/wiki/Spherical_curve" class="mw-redirect" title="Spherical curve">spherical curve</a>. </p><p>One of the most basic families of spherical spirals is the <a href="/wiki/Clelia_curve" class="mw-redirect" title="Clelia curve">Clelia curves</a>, which project to straight lines on an <a href="/wiki/Equirectangular_projection" title="Equirectangular projection">equirectangular projection</a>. These are curves for which <a href="/wiki/Longitude" title="Longitude">longitude</a> and <a href="/wiki/Colatitude" title="Colatitude">colatitude</a> are in a linear relationship, analogous to Archimedean spirals in the plane; under the <a href="/wiki/Azimuthal_equidistant_projection" title="Azimuthal equidistant projection">azimuthal equidistant projection</a> a Clelia curve projects to a planar Archimedean spiral. </p><p>If one represents a unit sphere by <a href="/wiki/Spherical_coordinates" class="mw-redirect" title="Spherical coordinates">spherical coordinates</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\sin \theta \,\cos \varphi ,\quad y=\sin \theta \,\sin \varphi ,\quad z=\cos \theta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mspace width="1em" /> <mi>y</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mspace width="1em" /> <mi>z</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\sin \theta \,\cos \varphi ,\quad y=\sin \theta \,\sin \varphi ,\quad z=\cos \theta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd3549b7711e68d92714912524fedcc7dbabdfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.813ex; height:2.676ex;" alt="{\displaystyle x=\sin \theta \,\cos \varphi ,\quad y=\sin \theta \,\sin \varphi ,\quad z=\cos \theta ,}"></span></dd></dl> <p>then setting the linear dependency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =c\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>c</mi> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =c\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a365cf05a4238676a4e7e910703829da0fa09d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.716ex; height:2.676ex;" alt="{\displaystyle \varphi =c\theta }"></span> for the angle coordinates gives a <a href="/wiki/Parametric_curve" class="mw-redirect" title="Parametric curve">parametric curve</a> in terms of parameter <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>&#8288;</span>,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigl (}\sin \theta \,\cos c\theta ,\,\sin \theta \,\sin c\theta ,\,\cos \theta \,{\bigr )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>c</mi> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigl (}\sin \theta \,\cos c\theta ,\,\sin \theta \,\sin c\theta ,\,\cos \theta \,{\bigr )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bfe964ce6c7426524a66c0e77a1ff49e8556f9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.132ex; height:3.176ex;" alt="{\displaystyle {\bigl (}\sin \theta \,\cos c\theta ,\,\sin \theta \,\sin c\theta ,\,\cos \theta \,{\bigr )}.}"></span></dd></dl> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:KUGSPI-5_Archimedische_Kugelspirale.gif" class="mw-file-description" title="Clelia curve"><img alt="Clelia curve" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/KUGSPI-5_Archimedische_Kugelspirale.gif/120px-KUGSPI-5_Archimedische_Kugelspirale.gif" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bb/KUGSPI-5_Archimedische_Kugelspirale.gif/180px-KUGSPI-5_Archimedische_Kugelspirale.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/b/bb/KUGSPI-5_Archimedische_Kugelspirale.gif 2x" data-file-width="200" data-file-height="200" /></a></span></div> <div class="gallerytext">Clelia curve</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/File:KUGSPI-9_Loxodrome.gif" class="mw-file-description" title="Loxodrome"><img alt="Loxodrome" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/KUGSPI-9_Loxodrome.gif/120px-KUGSPI-9_Loxodrome.gif" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6e/KUGSPI-9_Loxodrome.gif/180px-KUGSPI-9_Loxodrome.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/6/6e/KUGSPI-9_Loxodrome.gif 2x" data-file-width="200" data-file-height="200" /></a></span></div> <div class="gallerytext">Loxodrome</div> </li> </ul> <p>Another family of spherical spirals is the <a href="/wiki/Rhumb_line" title="Rhumb line">rhumb lines</a> or loxodromes, that project to straight lines on the <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a>. These are the trajectories traced by a ship traveling with constant <a href="/wiki/Bearing_(navigation)" title="Bearing (navigation)">bearing</a>. Any loxodrome (except for the meridians and parallels) spirals infinitely around either pole, closer and closer each time, unlike a Clelia curve which maintains uniform spacing in colatitude. Under <a href="/wiki/Stereographic_projection" title="Stereographic projection">stereographic projection</a>, a loxodrome projects to a logarithmic spiral in the plane. </p> <div class="mw-heading mw-heading2"><h2 id="In_nature">In nature</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=9" title="Edit section: In nature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The study of spirals in <a href="/wiki/Nature" title="Nature">nature</a> has a long history. <a href="/wiki/Christopher_Wren" title="Christopher Wren">Christopher Wren</a> observed that many <a href="/wiki/Exoskeleton" title="Exoskeleton">shells</a> form a <a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">logarithmic spiral</a>; <a href="/wiki/Jan_Swammerdam" title="Jan Swammerdam">Jan Swammerdam</a> observed the common mathematical characteristics of a wide range of shells from <i><a href="/wiki/Helix_(genus)" class="mw-redirect" title="Helix (genus)">Helix</a></i> to <i><a href="/wiki/Spirula" title="Spirula">Spirula</a></i>; and <a href="/wiki/Henry_Nottidge_Moseley" title="Henry Nottidge Moseley">Henry Nottidge Moseley</a> described the mathematics of <a href="/wiki/Univalve" class="mw-redirect" title="Univalve">univalve</a> shells. <a href="/wiki/D%27Arcy_Wentworth_Thompson" title="D&#39;Arcy Wentworth Thompson">D’Arcy Wentworth Thompson</a>'s <i><a href="/wiki/On_Growth_and_Form" title="On Growth and Form">On Growth and Form</a></i> gives extensive treatment to these spirals. He describes how shells are formed by rotating a closed curve around a fixed axis: the <a href="/wiki/Shape" title="Shape">shape</a> of the curve remains fixed, but its size grows in a <a href="/wiki/Geometric_progression" title="Geometric progression">geometric progression</a>. In some shells, such as <i><a href="/wiki/Nautilus" title="Nautilus">Nautilus</a></i> and <a href="/wiki/Ammonite" class="mw-redirect" title="Ammonite">ammonites</a>, the generating curve revolves in a plane perpendicular to the axis and the shell will form a planar discoid shape. In others it follows a skew path forming a <a href="/wiki/Helix" title="Helix">helico</a>-spiral pattern. Thompson also studied spirals occurring in <a href="/wiki/Horn_(anatomy)" title="Horn (anatomy)">horns</a>, <a href="/wiki/Teeth" class="mw-redirect" title="Teeth">teeth</a>, <a href="/wiki/Claw" title="Claw">claws</a> and <a href="/wiki/Plant" title="Plant">plants</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>A model for the pattern of <a href="/wiki/Floret" class="mw-redirect" title="Floret">florets</a> in the head of a <a href="/wiki/Sunflower" class="mw-redirect" title="Sunflower">sunflower</a><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> was proposed by H. Vogel. This has the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta =n\times 137.5^{\circ },\ r=c{\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>137.5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>r</mi> <mo>=</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta =n\times 137.5^{\circ },\ r=c{\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ef90014a2f275adab8b24b5319157ab3c3db7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.874ex; height:3.009ex;" alt="{\displaystyle \theta =n\times 137.5^{\circ },\ r=c{\sqrt {n}}}"></span></dd></dl> <p>where <i>n</i> is the index number of the floret and <i>c</i> is a constant scaling factor, and is a form of <a href="/wiki/Fermat%27s_spiral" title="Fermat&#39;s spiral">Fermat's spiral</a>. The angle 137.5° is the <a href="/wiki/Golden_angle" title="Golden angle">golden angle</a> which is related to the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio</a> and gives a close packing of florets.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>Spirals in plants and animals are frequently described as <a href="/wiki/Whorl_(botany)" title="Whorl (botany)">whorls</a>. This is also the name given to spiral shaped <a href="/wiki/Fingerprint" title="Fingerprint">fingerprints</a>. </p> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 255px"> <div class="thumb" style="width: 250px; height: 190px;"><span typeof="mw:File"><a href="/wiki/File:Milky_Way_2008.jpg" class="mw-file-description" title="An artist&#39;s rendering of a spiral galaxy."><img alt="An artist&#39;s rendering of a spiral galaxy." src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Milky_Way_2008.jpg/160px-Milky_Way_2008.jpg" decoding="async" width="160" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Milky_Way_2008.jpg/240px-Milky_Way_2008.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Milky_Way_2008.jpg/320px-Milky_Way_2008.jpg 2x" data-file-width="5600" data-file-height="5600" /></a></span></div> <div class="gallerytext">An artist's rendering of a spiral galaxy.</div> </li> <li class="gallerybox" style="width: 255px"> <div class="thumb" style="width: 250px; height: 190px;"><span typeof="mw:File"><a href="/wiki/File:Helianthus_whorl.jpg" class="mw-file-description" title="Sunflower head displaying florets in spirals of 34 and 55 around the outside."><img alt="Sunflower head displaying florets in spirals of 34 and 55 around the outside." src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Helianthus_whorl.jpg/213px-Helianthus_whorl.jpg" decoding="async" width="213" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Helianthus_whorl.jpg/320px-Helianthus_whorl.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Helianthus_whorl.jpg/427px-Helianthus_whorl.jpg 2x" data-file-width="640" data-file-height="480" /></a></span></div> <div class="gallerytext">Sunflower head displaying florets in spirals of 34 and 55 around the outside.</div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="As_a_symbol">As a symbol</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=10" title="Edit section: As a symbol"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A spiral like form has been found in <a href="/wiki/Mezine" title="Mezine">Mezine</a>, <a href="/wiki/Ukraine" title="Ukraine">Ukraine</a>, as part of a decorative object dated to 10,000 BCE.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2019)">citation needed</span></a></i>&#93;</sup> Spiral and <a href="/wiki/Triple_spiral" class="mw-redirect" title="Triple spiral">triple spiral</a> motifs served as <a href="/wiki/Neolithic" title="Neolithic">Neolithic</a> symbols in Europe (<a href="/wiki/Megalithic_Temples_of_Malta" title="Megalithic Temples of Malta">Megalithic Temples of Malta</a>). The <a href="/wiki/Celts" title="Celts">Celtic</a> triple-spiral is in fact a pre-Celtic symbol.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> It is carved into the rock of a stone lozenge near the main entrance of the prehistoric <a href="/wiki/Newgrange" title="Newgrange">Newgrange</a> monument in <a href="/wiki/County_Meath" title="County Meath">County Meath</a>, <a href="/wiki/Republic_of_Ireland" title="Republic of Ireland">Ireland</a>. Newgrange was built around 3200 BCE, predating the Celts; triple spirals were carved at least 2,500 years before the Celts reached Ireland, but have long since become part of Celtic culture.<sup id="cite_ref-knowth.com_16-0" class="reference"><a href="#cite_note-knowth.com-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Triskelion" title="Triskelion">triskelion</a> symbol, consisting of three interlocked spirals or three bent human legs, appears in many early cultures: examples include <a href="/wiki/Mycenaean_Greece" title="Mycenaean Greece">Mycenaean</a> vessels, coinage from <a href="/wiki/Lycia" title="Lycia">Lycia</a>, <a href="/wiki/Stater" title="Stater">staters</a> of <a href="/wiki/Pamphylia" title="Pamphylia">Pamphylia</a> (at <a href="/wiki/Aspendos" title="Aspendos">Aspendos</a>, 370–333 BC) and <a href="/wiki/Pisidia" title="Pisidia">Pisidia</a>, as well as the <a href="/wiki/Heraldic" class="mw-redirect" title="Heraldic">heraldic</a> emblem on warriors' shields depicted on Greek pottery.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>Spirals occur commonly in pre-Columbian art in Latin and Central America. The more than 1,400 <a href="/wiki/Petroglyphs" class="mw-redirect" title="Petroglyphs">petroglyphs</a> (rock engravings) in <a href="/w/index.php?title=Las_Plazuelas&amp;action=edit&amp;redlink=1" class="new" title="Las Plazuelas (page does not exist)">Las Plazuelas</a>, <a href="/wiki/Guanajuato" title="Guanajuato">Guanajuato</a> <a href="/wiki/Mexico" title="Mexico">Mexico</a>, dating 750-1200 AD, predominantly depict spirals, dot figures and scale models.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> In Colombia, monkeys, frog and lizard-like figures depicted in petroglyphs or as gold offering-figures frequently include spirals, for example on the palms of hands.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> In Lower Central America, spirals along with circles, wavy lines, crosses and points are universal petroglyph characters.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Spirals also appear among the <a href="/wiki/Nazca_Lines" class="mw-redirect" title="Nazca Lines">Nazca Lines</a> in the coastal desert of Peru, dating from 200 BC to 500 AD. The <a href="/wiki/Geoglyphs" class="mw-redirect" title="Geoglyphs">geoglyphs</a> number in the thousands and depict animals, plants and geometric motifs, including spirals.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>Spiral shapes, including the <a href="/wiki/Swastika" title="Swastika">swastika</a>, <a href="/wiki/Triskele" class="mw-redirect" title="Triskele">triskele</a>, etc., have often been interpreted as <a href="/wiki/Solar_symbol" title="Solar symbol">solar symbols</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2016)">citation needed</span></a></i>&#93;</sup> Roof tiles dating back to the <a href="/wiki/Tang_dynasty" title="Tang dynasty">Tang dynasty</a> with this symbol have been found west of the ancient city of <a href="/wiki/Chang%27an" title="Chang&#39;an">Chang'an</a> (modern-day Xi'an).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2016)">citation needed</span></a></i>&#93;</sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Manual_of_Style/Dates_and_numbers" title="Wikipedia:Manual of Style/Dates and numbers"><span title="Need the year this event took place (November 2016)">year&#160;needed</span></a></i>&#93;</sup> </p><p>Spirals are also a symbol of <a href="/wiki/Hypnosis" title="Hypnosis">hypnosis</a>, stemming from the <a href="/wiki/Clich%C3%A9" title="Cliché">cliché</a> of people and cartoon characters being hypnotized by staring into a spinning spiral (one example being <a href="/wiki/Kaa" title="Kaa">Kaa</a> in Disney's <a href="/wiki/The_Jungle_Book_(1967_film)" title="The Jungle Book (1967 film)"> <i>The Jungle Book</i></a>). They are also used as a symbol of <a href="/wiki/Dizziness" title="Dizziness">dizziness</a>, where the eyes of a cartoon character, especially in <a href="/wiki/Anime" title="Anime">anime</a> and <a href="/wiki/Manga" title="Manga">manga</a>, will turn into spirals to suggest that they are dizzy or dazed. The spiral is also found in structures as small as the <a href="/wiki/Double_helix" class="mw-redirect" title="Double helix">double helix</a> of <a href="/wiki/DNA" title="DNA">DNA</a> and as large as a <a href="/wiki/Spiral_galaxy" title="Spiral galaxy">galaxy</a>. Due to this frequent natural occurrence, the spiral is the official symbol of the <a href="/wiki/World_Pantheist_Movement" title="World Pantheist Movement">World Pantheist Movement</a>.<sup id="cite_ref-WPM_22-0" class="reference"><a href="#cite_note-WPM-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> The spiral is also a symbol of the <a href="/wiki/Dialectic" title="Dialectic">dialectic</a> process and of <a href="/wiki/Dialectical_monism" title="Dialectical monism">Dialectical monism</a>. </p> <blockquote> <p>The spiral is a frequent symbol for <a href="/wiki/Spiritual_experience" class="mw-redirect" title="Spiritual experience"> spiritual</a> purification, both within <a href="/wiki/Christianity" title="Christianity">Christianity</a> and beyond (one thinks of the spiral as the <a href="/wiki/Neoplatonism" title="Neoplatonism"> neo-Platonist</a> symbol for prayer and contemplation, circling around a subject and ascending at the same time, and as a <a href="/wiki/Buddhist" class="mw-redirect" title="Buddhist">Buddhist</a> symbol for the gradual process on the Path to <a href="/wiki/Enlightenment_in_Buddhism" title="Enlightenment in Buddhism"> Enlightenment</a>). [...] while a helix is repetitive, a spiral expands and thus epitomizes <a href="/wiki/Exponential_growth" title="Exponential growth"> growth</a> - conceptually <i>ad infinitum</i>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> </blockquote> <ul class="gallery mw-gallery-packed"> <li class="gallerybox" style="width: 258px"> <div class="thumb" style="width: 256px;"><span typeof="mw:File"><a href="/wiki/File:%E5%BA%93%E5%BA%93%E7%89%B9%E5%B0%BC%E9%99%B6%E7%A2%97%E9%99%B6%E7%BD%90.JPG" class="mw-file-description" title="Cucuteni Culture spirals on a bowl on stand, a vessel on stand, and an amphora, 4300-4000 BCE, ceramic, Palace of Culture, Iași, Romania"><img alt="Cucuteni Culture spirals on a bowl on stand, a vessel on stand, and an amphora, 4300-4000 BCE, ceramic, Palace of Culture, Iași, Romania" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/%E5%BA%93%E5%BA%93%E7%89%B9%E5%B0%BC%E9%99%B6%E7%A2%97%E9%99%B6%E7%BD%90.JPG/384px-%E5%BA%93%E5%BA%93%E7%89%B9%E5%B0%BC%E9%99%B6%E7%A2%97%E9%99%B6%E7%BD%90.JPG" decoding="async" width="256" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/%E5%BA%93%E5%BA%93%E7%89%B9%E5%B0%BC%E9%99%B6%E7%A2%97%E9%99%B6%E7%BD%90.JPG/577px-%E5%BA%93%E5%BA%93%E7%89%B9%E5%B0%BC%E9%99%B6%E7%A2%97%E9%99%B6%E7%BD%90.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/%E5%BA%93%E5%BA%93%E7%89%B9%E5%B0%BC%E9%99%B6%E7%A2%97%E9%99%B6%E7%BD%90.JPG/768px-%E5%BA%93%E5%BA%93%E7%89%B9%E5%B0%BC%E9%99%B6%E7%A2%97%E9%99%B6%E7%BD%90.JPG 2x" data-file-width="3684" data-file-height="2160" /></a></span></div> <div class="gallerytext"><a href="/wiki/Cucuteni_Culture" class="mw-redirect" title="Cucuteni Culture">Cucuteni Culture</a> spirals on a bowl on stand, a vessel on stand, and an amphora, 4300-4000 BCE, ceramic, <a href="/wiki/Palace_of_Culture_(Ia%C8%99i)" title="Palace of Culture (Iași)">Palace of Culture</a>, <a href="/wiki/Ia%C8%99i" title="Iași">Iași</a>, <a href="/wiki/Romania" title="Romania">Romania</a></div> </li> <li class="gallerybox" style="width: 227.33333333333px"> <div class="thumb" style="width: 225.33333333333px;"><span typeof="mw:File"><a href="/wiki/File:Newgrange_Entrance_Stone.jpg" class="mw-file-description" title="Neolithic spirals on the Newgrange entrance slab, unknown sculptor or architect, 3rd millennium BC"><img alt="Neolithic spirals on the Newgrange entrance slab, unknown sculptor or architect, 3rd millennium BC" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Newgrange_Entrance_Stone.jpg/338px-Newgrange_Entrance_Stone.jpg" decoding="async" width="226" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/6/62/Newgrange_Entrance_Stone.jpg 1.5x" data-file-width="450" data-file-height="300" /></a></span></div> <div class="gallerytext"><a href="/wiki/Neolithic_Europe" title="Neolithic Europe">Neolithic</a> spirals on the <a href="/wiki/Newgrange" title="Newgrange">Newgrange</a> entrance slab, unknown sculptor or architect, 3rd millennium BC</div> </li> <li class="gallerybox" style="width: 107.33333333333px"> <div class="thumb" style="width: 105.33333333333px;"><span typeof="mw:File"><a href="/wiki/File:Mycenaean_funerary_stele_at_the_National_Archaeological_Museum_of_Athens_on_October_6,_2021.jpg" class="mw-file-description" title="Mycenaean spirals on a burial stela, Grave Circle A, c.1550 BC, stone, National Archaeological Museum, Athens, Greece"><img alt="Mycenaean spirals on a burial stela, Grave Circle A, c.1550 BC, stone, National Archaeological Museum, Athens, Greece" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Mycenaean_funerary_stele_at_the_National_Archaeological_Museum_of_Athens_on_October_6%2C_2021.jpg/158px-Mycenaean_funerary_stele_at_the_National_Archaeological_Museum_of_Athens_on_October_6%2C_2021.jpg" decoding="async" width="106" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Mycenaean_funerary_stele_at_the_National_Archaeological_Museum_of_Athens_on_October_6%2C_2021.jpg/238px-Mycenaean_funerary_stele_at_the_National_Archaeological_Museum_of_Athens_on_October_6%2C_2021.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Mycenaean_funerary_stele_at_the_National_Archaeological_Museum_of_Athens_on_October_6%2C_2021.jpg/316px-Mycenaean_funerary_stele_at_the_National_Archaeological_Museum_of_Athens_on_October_6%2C_2021.jpg 2x" data-file-width="3295" data-file-height="4684" /></a></span></div> <div class="gallerytext"><a href="/wiki/Mycenaean_Greece" title="Mycenaean Greece">Mycenaean</a> spirals on a burial stela, Grave Circle A, <abbr title="circa">c.</abbr>1550 BC, stone, <a href="/wiki/National_Archaeological_Museum,_Athens" title="National Archaeological Museum, Athens">National Archaeological Museum</a>, <a href="/wiki/Athens" title="Athens">Athens</a>, Greece</div> </li> <li class="gallerybox" style="width: 114.66666666667px"> <div class="thumb" style="width: 112.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:Temple_of_Amun_alley_of_rams_(4)_(34143965175).jpg" class="mw-file-description" title="Meroitic spirals on a ram of the alley of the Amun Temple of Naqa, unknown sculptor, 1st century AD, stone, in situ"><img alt="Meroitic spirals on a ram of the alley of the Amun Temple of Naqa, unknown sculptor, 1st century AD, stone, in situ" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Temple_of_Amun_alley_of_rams_%284%29_%2834143965175%29.jpg/169px-Temple_of_Amun_alley_of_rams_%284%29_%2834143965175%29.jpg" decoding="async" width="113" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Temple_of_Amun_alley_of_rams_%284%29_%2834143965175%29.jpg/253px-Temple_of_Amun_alley_of_rams_%284%29_%2834143965175%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Temple_of_Amun_alley_of_rams_%284%29_%2834143965175%29.jpg/337px-Temple_of_Amun_alley_of_rams_%284%29_%2834143965175%29.jpg 2x" data-file-width="2805" data-file-height="3740" /></a></span></div> <div class="gallerytext"><a href="/wiki/Mero%C3%AB" title="Meroë">Meroitic</a> spirals on a ram of the alley of the <a href="/wiki/Amun" title="Amun">Amun</a> Temple of <a href="/wiki/Naqa" title="Naqa">Naqa</a>, unknown sculptor, 1st century AD, stone, <a href="/wiki/In_situ" title="In situ">in situ</a></div> </li> <li class="gallerybox" style="width: 222px"> <div class="thumb" style="width: 220px;"><span typeof="mw:File"><a href="/wiki/File:Samarra,_Iraq_(25270211056)_edited.jpg" class="mw-file-description" title="Islamic spiral design of the Great Mosque of Samarra, Samarra, Iraq, unknown architect, c. 851"><img alt="Islamic spiral design of the Great Mosque of Samarra, Samarra, Iraq, unknown architect, c. 851" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Samarra%2C_Iraq_%2825270211056%29_edited.jpg/330px-Samarra%2C_Iraq_%2825270211056%29_edited.jpg" decoding="async" width="220" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Samarra%2C_Iraq_%2825270211056%29_edited.jpg/495px-Samarra%2C_Iraq_%2825270211056%29_edited.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Samarra%2C_Iraq_%2825270211056%29_edited.jpg/659px-Samarra%2C_Iraq_%2825270211056%29_edited.jpg 2x" data-file-width="2639" data-file-height="1802" /></a></span></div> <div class="gallerytext"><a href="/wiki/Islamic_architecture" title="Islamic architecture">Islamic</a> spiral design of the <a href="/wiki/Great_Mosque_of_Samarra" title="Great Mosque of Samarra">Great Mosque of Samarra</a>, <a href="/wiki/Samarra" title="Samarra">Samarra</a>, <a href="/wiki/Iraq" title="Iraq">Iraq</a>, unknown architect, <abbr title="circa">c.</abbr> 851</div> </li> <li class="gallerybox" style="width: 114.66666666667px"> <div class="thumb" style="width: 112.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:Nantes_Maison_compagnonnage_Clocher_tors.jpg" class="mw-file-description" title="Gothic Revival spiralling bell-tower of the Maison des compagnons du tour de France, Nantes, unknown architect, c. 1910"><img alt="Gothic Revival spiralling bell-tower of the Maison des compagnons du tour de France, Nantes, unknown architect, c. 1910" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Nantes_Maison_compagnonnage_Clocher_tors.jpg/169px-Nantes_Maison_compagnonnage_Clocher_tors.jpg" decoding="async" width="113" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Nantes_Maison_compagnonnage_Clocher_tors.jpg/253px-Nantes_Maison_compagnonnage_Clocher_tors.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Nantes_Maison_compagnonnage_Clocher_tors.jpg/337px-Nantes_Maison_compagnonnage_Clocher_tors.jpg 2x" data-file-width="1944" data-file-height="2592" /></a></span></div> <div class="gallerytext"><a href="/wiki/Gothic_Revival" class="mw-redirect" title="Gothic Revival">Gothic Revival</a> spiralling bell-tower of the Maison des compagnons du tour de France, <a href="/wiki/Nantes" title="Nantes">Nantes</a>, unknown architect, <abbr title="circa">c.</abbr> 1910</div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="In_art">In art</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=11" title="Edit section: In art"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The spiral has inspired artists throughout the ages. Among the most famous of spiral-inspired art is <a href="/wiki/Robert_Smithson" title="Robert Smithson">Robert Smithson</a>'s <a href="/wiki/Earthworks_(art)" class="mw-redirect" title="Earthworks (art)">earthwork</a>, "<a href="/wiki/Spiral_Jetty" title="Spiral Jetty">Spiral Jetty</a>", at the <a href="/wiki/Great_Salt_Lake" title="Great Salt Lake">Great Salt Lake</a> in Utah.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> The spiral theme is also present in David Wood's Spiral Resonance Field at the <a href="/wiki/Anderson-Abruzzo_Albuquerque_International_Balloon_Museum" title="Anderson-Abruzzo Albuquerque International Balloon Museum">Balloon Museum</a> in Albuquerque, as well as in the critically acclaimed <a href="/wiki/Nine_Inch_Nails" title="Nine Inch Nails">Nine Inch Nails</a> 1994 concept album <i><a href="/wiki/The_Downward_Spiral" title="The Downward Spiral">The Downward Spiral</a></i>. The Spiral is also a prominent theme in the anime <i><a href="/wiki/Gurren_Lagann" title="Gurren Lagann">Gurren Lagann</a></i>, where it represents a philosophy and way of life. It also central in Mario Merz and Andy Goldsworthy's work. The spiral is the central theme of the horror manga <i><a href="/wiki/Uzumaki" title="Uzumaki">Uzumaki</a></i> by <a href="/wiki/Junji_Ito" title="Junji Ito">Junji Ito</a>, where a small coastal town is afflicted by a curse involving spirals. <i>2012 A Piece of Mind By Wayne A Beale</i> also depicts a large spiral in this book of dreams and images.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources#What_information_to_include" title="Wikipedia:Citing sources"><span title="A complete citation is needed. (December 2018)">full citation needed</span></a></i>&#93;</sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag needs to be fact-checked with the cited source(s). (December 2018)">verification needed</span></a></i>&#93;</sup> The coiled spiral is a central image in Australian artist Tanja Stark's <a href="/wiki/Suburban_Gothic" title="Suburban Gothic">Suburban Gothic</a> iconography, that incorporates spiral <a href="/wiki/Stove" title="Stove">electric stove top elements</a> as symbols of domestic alchemy and spirituality.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=12" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Celtic_maze" title="Celtic maze">Celtic maze</a> (straight-line spiral)</li> <li><a href="/wiki/Concentric_circles" class="mw-redirect" title="Concentric circles">Concentric circles</a></li> <li><a href="/wiki/DNA" title="DNA">DNA</a></li> <li><a href="/wiki/Fibonacci_number" class="mw-redirect" title="Fibonacci number">Fibonacci number</a></li> <li><a href="/wiki/Hypogeum_of_%C4%A6al-Saflieni" class="mw-redirect" title="Hypogeum of Ħal-Saflieni">Hypogeum of Ħal-Saflieni</a></li> <li><a href="/wiki/Megalithic_Temples_of_Malta" title="Megalithic Temples of Malta">Megalithic Temples of Malta</a></li> <li><a href="/wiki/Patterns_in_nature" title="Patterns in nature">Patterns in nature</a></li> <li><a href="/wiki/Seashell_surface" title="Seashell surface">Seashell surface</a></li> <li><a href="/wiki/Spirangle" title="Spirangle">Spirangle</a></li> <li><a href="/wiki/Spiral_vegetable_slicer" title="Spiral vegetable slicer">Spiral vegetable slicer</a></li> <li><a href="/wiki/Spiral_stairs" class="mw-redirect" title="Spiral stairs">Spiral stairs</a></li> <li><a href="/wiki/Triskelion" title="Triskelion">Triskelion</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=13" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/spiral-mathematics">"Spiral | mathematics"</a>. <i>Encyclopedia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Encyclopedia+Britannica&amp;rft.atitle=Spiral+%7C+mathematics&amp;rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2Fspiral-mathematics&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/definitions/spiral.html">"Spiral Definition (Illustrated Mathematics Dictionary)"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mathsisfun.com&amp;rft.atitle=Spiral+Definition+%28Illustrated+Mathematics+Dictionary%29&amp;rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Fdefinitions%2Fspiral.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.math.tamu.edu/~dallen/digitalcam/spiral/spiral.htm">"spiral.htm"</a>. <i>www.math.tamu.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.math.tamu.edu&amp;rft.atitle=spiral.htm&amp;rft_id=https%3A%2F%2Fwww.math.tamu.edu%2F~dallen%2Fdigitalcam%2Fspiral%2Fspiral.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.fi.edu/math-patterns-nature">"Math Patterns in Nature"</a>. <i>The Franklin Institute</i>. 2017-06-01<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Franklin+Institute&amp;rft.atitle=Math+Patterns+in+Nature&amp;rft.date=2017-06-01&amp;rft_id=https%3A%2F%2Fwww.fi.edu%2Fmath-patterns-nature&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-free-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-free_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-free_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">"<a rel="nofollow" class="external text" href="http://www.thefreedictionary.com/spiral">Spiral</a>, <i>American Heritage Dictionary of the English Language</i>, Houghton Mifflin Company, Fourth Edition, 2009.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/ArchimedeanSpiral.html">"Archimedean Spiral"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft.atitle=Archimedean+Spiral&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FArchimedeanSpiral.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/HyperbolicSpiral.html">"Hyperbolic Spiral"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft.atitle=Hyperbolic+Spiral&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FHyperbolicSpiral.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-von_Seggern_1994_p._241-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-von_Seggern_1994_p._241_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Seggern1994" class="citation book cs1">von Seggern, D.H. (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PVKXqob2dhAC&amp;pg=PA241"><i>Practical Handbook of Curve Design and Generation</i></a>. Taylor &amp; Francis. p.&#160;241. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8493-8916-0" title="Special:BookSources/978-0-8493-8916-0"><bdi>978-0-8493-8916-0</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Practical+Handbook+of+Curve+Design+and+Generation&amp;rft.pages=241&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=1994&amp;rft.isbn=978-0-8493-8916-0&amp;rft.aulast=von+Seggern&amp;rft.aufirst=D.H.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPVKXqob2dhAC%26pg%3DPA241&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-Wolfram_MathWorld_2002-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wolfram_MathWorld_2002_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Slinky.html">"Slinky -- from Wolfram MathWorld"</a>. <i>Wolfram MathWorld</i>. 2002-09-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-03-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+MathWorld&amp;rft.atitle=Slinky+--+from+Wolfram+MathWorld&amp;rft.date=2002-09-13&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FSlinky.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-Ugajin_Ishimoto_Kuroki_Hirata_2001_pp._437–451-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Ugajin_Ishimoto_Kuroki_Hirata_2001_pp._437–451_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUgajinIshimotoKurokiHirata2001" class="citation journal cs1">Ugajin, R.; Ishimoto, C.; Kuroki, Y.; Hirata, S.; Watanabe, S. (2001). "Statistical analysis of a multiply-twisted helix". <i>Physica A: Statistical Mechanics and Its Applications</i>. <b>292</b> (1–4). Elsevier BV: 437–451. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhyA..292..437U">2001PhyA..292..437U</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fs0378-4371%2800%2900572-0">10.1016/s0378-4371(00)00572-0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-4371">0378-4371</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+A%3A+Statistical+Mechanics+and+Its+Applications&amp;rft.atitle=Statistical+analysis+of+a+multiply-twisted+helix&amp;rft.volume=292&amp;rft.issue=1%E2%80%934&amp;rft.pages=437-451&amp;rft.date=2001&amp;rft.issn=0378-4371&amp;rft_id=info%3Adoi%2F10.1016%2Fs0378-4371%2800%2900572-0&amp;rft_id=info%3Abibcode%2F2001PhyA..292..437U&amp;rft.aulast=Ugajin&amp;rft.aufirst=R.&amp;rft.au=Ishimoto%2C+C.&amp;rft.au=Kuroki%2C+Y.&amp;rft.au=Hirata%2C+S.&amp;rft.au=Watanabe%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Kuno Fladt: <i>Analytische Geometrie spezieller Flächen und Raumkurven</i>, Springer-Verlag, 2013, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3322853659" title="Special:BookSources/3322853659">3322853659</a>, 9783322853653, S. 132</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThompson1942" class="citation book cs1">Thompson, D'Arcy (1942) [1917]. <a rel="nofollow" class="external text" href="https://archive.org/details/ongrowthform00thom"><i>On Growth and Form</i></a>. Cambridge&#160;: University Press&#160;; New York&#160;: Macmillan. pp.&#160;748–933.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=On+Growth+and+Form&amp;rft.pages=748-933&amp;rft.pub=Cambridge+%3A+University+Press+%3B+New+York+%3A+Macmillan&amp;rft.date=1942&amp;rft.aulast=Thompson&amp;rft.aufirst=D%27Arcy&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fongrowthform00thom&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen_Sparks" class="citation web cs1">Ben Sparks. <a rel="nofollow" class="external text" href="https://www.geogebra.org/m/B4C9bbuy">"Geogebra: Sunflowers are Irrationally Pretty"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Geogebra%3A+Sunflowers+are+Irrationally+Pretty&amp;rft.au=Ben+Sparks&amp;rft_id=https%3A%2F%2Fwww.geogebra.org%2Fm%2FB4C9bbuy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrusinkiewiczLindenmayer,_Aristid1990" class="citation book cs1"><a href="/wiki/Przemyslaw_Prusinkiewicz" class="mw-redirect" title="Przemyslaw Prusinkiewicz">Prusinkiewicz, Przemyslaw</a>; <a href="/wiki/Aristid_Lindenmayer" title="Aristid Lindenmayer">Lindenmayer, Aristid</a> (1990). <a rel="nofollow" class="external text" href="https://archive.org/details/algorithmicbeaut0000prus/page/101"><i>The Algorithmic Beauty of Plants</i></a>. Springer-Verlag. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/algorithmicbeaut0000prus/page/101">101–107</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-97297-8" title="Special:BookSources/978-0-387-97297-8"><bdi>978-0-387-97297-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Algorithmic+Beauty+of+Plants&amp;rft.pages=101-107&amp;rft.pub=Springer-Verlag&amp;rft.date=1990&amp;rft.isbn=978-0-387-97297-8&amp;rft.aulast=Prusinkiewicz&amp;rft.aufirst=Przemyslaw&amp;rft.au=Lindenmayer%2C+Aristid&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgorithmicbeaut0000prus%2Fpage%2F101&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Anthony Murphy and Richard Moore, <i>Island of the Setting Sun: In Search of Ireland's Ancient Astronomers,</i> 2nd ed., Dublin: The Liffey Press, 2008, pp. 168-169</span> </li> <li id="cite_note-knowth.com-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-knowth.com_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://knowth.com/newgrange.htm">"Newgrange Ireland - Megalithic Passage Tomb - World Heritage Site"</a>. Knowth.com. 2007-12-21. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130726102318/http://www.knowth.com/newgrange.htm">Archived</a> from the original on 2013-07-26<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-08-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Newgrange+Ireland+-+Megalithic+Passage+Tomb+-+World+Heritage+Site&amp;rft.pub=Knowth.com&amp;rft.date=2007-12-21&amp;rft_id=http%3A%2F%2Fknowth.com%2Fnewgrange.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">For example, the trislele on <a href="/wiki/Achilles" title="Achilles">Achilles</a>' round shield on an Attic late sixth-century <i><a href="/wiki/Hydria" title="Hydria">hydria</a></i> at the <a href="/wiki/Boston_Museum_of_Fine_Arts" class="mw-redirect" title="Boston Museum of Fine Arts">Boston Museum of Fine Arts</a>, illustrated in John Boardman, Jasper Griffin and Oswyn Murray, <i>Greece and the Hellenistic World</i> (Oxford History of the Classical World) vol. I (1988), p. 50.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.icomos.org/studies/rockart-latinamerica/fulltext.pdf">"Rock Art Of Latin America &amp; The Caribbean"</a> <span class="cs1-format">(PDF)</span>. International Council on Monuments &amp; Sites. June 2006. p.&#160;5. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140105032613/http://www.icomos.org/studies/rockart-latinamerica/fulltext.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 5 January 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Rock+Art+Of+Latin+America+%26+The+Caribbean&amp;rft.pages=5&amp;rft.pub=International+Council+on+Monuments+%26+Sites&amp;rft.date=2006-06&amp;rft_id=http%3A%2F%2Fwww.icomos.org%2Fstudies%2Frockart-latinamerica%2Ffulltext.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.icomos.org/studies/rockart-latinamerica/fulltext.pdf">"Rock Art Of Latin America &amp; The Caribbean"</a> <span class="cs1-format">(PDF)</span>. International Council on Monuments &amp; Sites. June 2006. p.&#160;99. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140105032613/http://www.icomos.org/studies/rockart-latinamerica/fulltext.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 5 January 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Rock+Art+Of+Latin+America+%26+The+Caribbean&amp;rft.pages=99&amp;rft.pub=International+Council+on+Monuments+%26+Sites&amp;rft.date=2006-06&amp;rft_id=http%3A%2F%2Fwww.icomos.org%2Fstudies%2Frockart-latinamerica%2Ffulltext.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.icomos.org/studies/rockart-latinamerica/fulltext.pdf">"Rock Art Of Latin America &amp; The Caribbean"</a> <span class="cs1-format">(PDF)</span>. International Council on Monuments &amp; Sites. June 2006. p.&#160;17. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140105032613/http://www.icomos.org/studies/rockart-latinamerica/fulltext.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 5 January 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Rock+Art+Of+Latin+America+%26+The+Caribbean&amp;rft.pages=17&amp;rft.pub=International+Council+on+Monuments+%26+Sites&amp;rft.date=2006-06&amp;rft_id=http%3A%2F%2Fwww.icomos.org%2Fstudies%2Frockart-latinamerica%2Ffulltext.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJarus2012" class="citation web cs1">Jarus, Owen (14 August 2012). <a rel="nofollow" class="external text" href="http://www.livescience.com/22370-nazca-lines.html">"Nazca Lines: Mysterious Geoglyphs in Peru"</a>. LiveScience. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140104122842/http://www.livescience.com/22370-nazca-lines.html">Archived</a> from the original on 4 January 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">4 January</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Nazca+Lines%3A+Mysterious+Geoglyphs+in+Peru&amp;rft.pub=LiveScience&amp;rft.date=2012-08-14&amp;rft.aulast=Jarus&amp;rft.aufirst=Owen&amp;rft_id=http%3A%2F%2Fwww.livescience.com%2F22370-nazca-lines.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-WPM-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-WPM_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrison" class="citation web cs1">Harrison, Paul. <a rel="nofollow" class="external text" href="http://www.pantheism.net/pan/free/pan9.pdf">"Pantheist Art"</a> <span class="cs1-format">(PDF)</span>. World Pantheist Movement<span class="reference-accessdate">. Retrieved <span class="nowrap">7 June</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Pantheist+Art&amp;rft.pub=World+Pantheist+Movement&amp;rft.aulast=Harrison&amp;rft.aufirst=Paul&amp;rft_id=http%3A%2F%2Fwww.pantheism.net%2Fpan%2Ffree%2Fpan9.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBruhn1997" class="citation book cs1"><a href="/wiki/Siglind_Bruhn" title="Siglind Bruhn">Bruhn, Siglind</a> (1997). "The Exchange of Natures and the Nature(s) of Time and Silence". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_2V4i07PNzkC"><i>Images and Ideas in Modern French Piano Music: The Extra-musical Subtext in Piano Works by Ravel, Debussy, and Messiaen</i></a>. Aesthetics in music, ISSN 1062-404X, number 6. Stuyvesant, New York: Pendragon Press. p.&#160;353<span class="reference-accessdate">. Retrieved <span class="nowrap">30 June</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Exchange+of+Natures+and+the+Nature%28s%29+of+Time+and+Silence&amp;rft.btitle=Images+and+Ideas+in+Modern+French+Piano+Music%3A+The+Extra-musical+Subtext+in+Piano+Works+by+Ravel%2C+Debussy%2C+and+Messiaen&amp;rft.place=Stuyvesant%2C+New+York&amp;rft.series=Aesthetics+in+music%2C+ISSN+1062-404X%2C+number+6&amp;rft.pages=353&amp;rft.pub=Pendragon+Press&amp;rft.date=1997&amp;rft.aulast=Bruhn&amp;rft.aufirst=Siglind&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_2V4i07PNzkC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span> </span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsrael,_Nico2015" class="citation book cs1">Israel, Nico (2015). <i>Spirals&#160;: the whirled image in twentieth-century literature and art</i>. New York Columbia University Press. pp.&#160;161–186. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-231-15302-7" title="Special:BookSources/978-0-231-15302-7"><bdi>978-0-231-15302-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spirals+%3A+the+whirled+image+in+twentieth-century+literature+and+art&amp;rft.pages=161-186&amp;rft.pub=New+York+Columbia+University+Press&amp;rft.date=2015&amp;rft.isbn=978-0-231-15302-7&amp;rft.au=Israel%2C+Nico&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">2012 A Piece of Mind By Wayne A Beale</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external free" href="http://www.blurb.com/distribution?id=573100/#/project/573100/project-details/edit">http://www.blurb.com/distribution?id=573100/#/project/573100/project-details/edit</a> <span style="font-size:0.95em; font-size:95%; color: var( --color-subtle, #555 )">(subscription required)</span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStark2012" class="citation web cs1">Stark, Tanja (4 July 2012). <a rel="nofollow" class="external text" href="https://tanjastark.com/exhibition-notes/">"Spiral Journeys&#160;: Turning and Returning"</a>. <i>tanjastark.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=tanjastark.com&amp;rft.atitle=Spiral+Journeys+%3A+Turning+and+Returning&amp;rft.date=2012-07-04&amp;rft.aulast=Stark&amp;rft.aufirst=Tanja&amp;rft_id=https%3A%2F%2Ftanjastark.com%2Fexhibition-notes%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStark" class="citation web cs1">Stark, Tanja. <a rel="nofollow" class="external text" href="https://www.jungsocietymelbourne.com/march-2022">"Lecture&#160;: Spiralling Undercurrents: Archetypal Symbols of Hurt, Hope and Healing"</a>. <i>Jung Society Melbourne</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Jung+Society+Melbourne&amp;rft.atitle=Lecture+%3A+Spiralling+Undercurrents%3A+Archetypal+Symbols+of+Hurt%2C+Hope+and+Healing&amp;rft.aulast=Stark&amp;rft.aufirst=Tanja&amp;rft_id=https%3A%2F%2Fwww.jungsocietymelbourne.com%2Fmarch-2022&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Related_publications">Related publications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=14" title="Edit section: Related publications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Cook, T., 1903. <i>Spirals in nature and art</i>. Nature 68 (1761), 296.</li> <li>Cook, T., 1979. <i>The curves of life</i>. Dover, New York.</li> <li>Habib, Z., Sakai, M., 2005. <i>Spiral transition curves and their applications</i>. Scientiae Mathematicae Japonicae 61 (2), 195 – 206.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDimulyoHabibSakai2009" class="citation journal cs1">Dimulyo, Sarpono; Habib, Zulfiqar; Sakai, Manabu (2009). "Fair cubic transition between two circles with one circle inside or tangent to the other". <i>Numerical Algorithms</i>. <b>51</b> (4): 461–476. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009NuAlg..51..461D">2009NuAlg..51..461D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11075-008-9252-1">10.1007/s11075-008-9252-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22532724">22532724</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Numerical+Algorithms&amp;rft.atitle=Fair+cubic+transition+between+two+circles+with+one+circle+inside+or+tangent+to+the+other&amp;rft.volume=51&amp;rft.issue=4&amp;rft.pages=461-476&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22532724%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs11075-008-9252-1&amp;rft_id=info%3Abibcode%2F2009NuAlg..51..461D&amp;rft.aulast=Dimulyo&amp;rft.aufirst=Sarpono&amp;rft.au=Habib%2C+Zulfiqar&amp;rft.au=Sakai%2C+Manabu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></li> <li>Harary, G., Tal, A., 2011. <i>The natural 3D spiral</i>. Computer Graphics Forum 30 (2), 237 – 246 <a rel="nofollow" class="external autonumber" href="http://webee.technion.ac.il/~ayellet/Ps/11-HararyTal.pdf">[1]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151122013249/http://webee.technion.ac.il/~ayellet/Ps/11-HararyTal.pdf">Archived</a> 2015-11-22 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li>Xu, L., Mould, D., 2009. <i>Magnetic curves: curvature-controlled aesthetic curves using magnetic fields</i>. In: Deussen, O., Hall, P. (Eds.), Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association <a rel="nofollow" class="external autonumber" href="http://gigl.scs.carleton.ca/sites/default/files/ling_xu/artn-cae.pdf">[2]</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangZhaoZhangXu2004" class="citation journal cs1">Wang, Yulin; Zhao, Bingyan; Zhang, Luzou; Xu, Jiachuan; Wang, Kanchang; Wang, Shuchun (2004). "Designing fair curves using monotone curvature pieces". <i>Computer Aided Geometric Design</i>. <b>21</b> (5): 515–527. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cagd.2004.04.001">10.1016/j.cagd.2004.04.001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computer+Aided+Geometric+Design&amp;rft.atitle=Designing+fair+curves+using+monotone+curvature+pieces&amp;rft.volume=21&amp;rft.issue=5&amp;rft.pages=515-527&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cagd.2004.04.001&amp;rft.aulast=Wang&amp;rft.aufirst=Yulin&amp;rft.au=Zhao%2C+Bingyan&amp;rft.au=Zhang%2C+Luzou&amp;rft.au=Xu%2C+Jiachuan&amp;rft.au=Wang%2C+Kanchang&amp;rft.au=Wang%2C+Shuchun&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurnosenko2010" class="citation journal cs1">Kurnosenko, A. (2010). "Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data". <i>Computer Aided Geometric Design</i>. <b>27</b> (3): 262–280. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0902.4834">0902.4834</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cagd.2009.12.004">10.1016/j.cagd.2009.12.004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14476206">14476206</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computer+Aided+Geometric+Design&amp;rft.atitle=Applying+inversion+to+construct+planar%2C+rational+spirals+that+satisfy+two-point+G2+Hermite+data&amp;rft.volume=27&amp;rft.issue=3&amp;rft.pages=262-280&amp;rft.date=2010&amp;rft_id=info%3Aarxiv%2F0902.4834&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14476206%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cagd.2009.12.004&amp;rft.aulast=Kurnosenko&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></li> <li>A. Kurnosenko. <i>Two-point G2 Hermite interpolation with spirals by inversion of hyperbola</i>. Computer Aided Geometric Design, 27(6), 474–481, 2010.</li> <li>Miura, K.T., 2006. <i>A general equation of aesthetic curves and its self-affinity</i>. Computer-Aided Design and Applications 3 (1–4), 457–464 <a rel="nofollow" class="external autonumber" href="http://ktm11.eng.shizuoka.ac.jp/profile/ktmiura/pdf/KTMiura-CAD06Final.pdf">[3]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130628000547/http://ktm11.eng.shizuoka.ac.jp/profile/ktmiura/pdf/KTMiura-CAD06Final.pdf">Archived</a> 2013-06-28 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li>Miura, K., Sone, J., Yamashita, A., Kaneko, T., 2005. <i>Derivation of a general formula of aesthetic curves</i>. In: 8th International Conference on Humans and Computers (HC2005). Aizu-Wakamutsu, Japan, pp.&#160;166 – 171 <a rel="nofollow" class="external autonumber" href="http://ktm11.eng.shizuoka.ac.jp/profile/ktmiura/pdf/acurveHC0.pdf">[4]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130628051506/http://ktm11.eng.shizuoka.ac.jp/profile/ktmiura/pdf/acurveHC0.pdf">Archived</a> 2013-06-28 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeekWalton1989" class="citation journal cs1">Meek, D.S.; Walton, D.J. (1989). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0377-0427%2889%2990076-9">"The use of Cornu spirals in drawing planar curves of controlled curvature"</a>. <i>Journal of Computational and Applied Mathematics</i>. <b>25</b>: 69–78. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0377-0427%2889%2990076-9">10.1016/0377-0427(89)90076-9</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computational+and+Applied+Mathematics&amp;rft.atitle=The+use+of+Cornu+spirals+in+drawing+planar+curves+of+controlled+curvature&amp;rft.volume=25&amp;rft.pages=69-78&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1016%2F0377-0427%2889%2990076-9&amp;rft.aulast=Meek&amp;rft.aufirst=D.S.&amp;rft.au=Walton%2C+D.J.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0377-0427%252889%252990076-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomas2017" class="citation journal cs1">Thomas, Sunil (2017). "Potassium sulfate forms a spiral structure when dissolved in solution". <i>Russian Journal of Physical Chemistry B</i>. <b>11</b> (1): 195–198. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017RJPCB..11..195T">2017RJPCB..11..195T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1134%2FS1990793117010328">10.1134/S1990793117010328</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:99162341">99162341</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Russian+Journal+of+Physical+Chemistry+B&amp;rft.atitle=Potassium+sulfate+forms+a+spiral+structure+when+dissolved+in+solution&amp;rft.volume=11&amp;rft.issue=1&amp;rft.pages=195-198&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A99162341%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1134%2FS1990793117010328&amp;rft_id=info%3Abibcode%2F2017RJPCB..11..195T&amp;rft.aulast=Thomas&amp;rft.aufirst=Sunil&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarin2006" class="citation journal cs1">Farin, Gerald (2006). "Class a Bézier curves". <i>Computer Aided Geometric Design</i>. <b>23</b> (7): 573–581. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cagd.2006.03.004">10.1016/j.cagd.2006.03.004</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computer+Aided+Geometric+Design&amp;rft.atitle=Class+a+B%C3%A9zier+curves&amp;rft.volume=23&amp;rft.issue=7&amp;rft.pages=573-581&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cagd.2006.03.004&amp;rft.aulast=Farin&amp;rft.aufirst=Gerald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpiral" class="Z3988"></span></li> <li>Farouki, R.T., 1997. <i>Pythagorean-hodograph quintic transition curves of monotone curvature</i>. Computer-Aided Design 29 (9), 601–606.</li> <li>Yoshida, N., Saito, T., 2006. <i>Interactive aesthetic curve segments</i>. The Visual Computer 22 (9), 896–905 <a rel="nofollow" class="external autonumber" href="http://www.yoshida-lab.net/aesthetic/ias2006pg.pdf">[5]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304064701/http://www.yoshida-lab.net/aesthetic/ias2006pg.pdf">Archived</a> 2016-03-04 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li>Yoshida, N., Saito, T., 2007. <i>Quasi-aesthetic curves in rational cubic Bézier forms</i>. Computer-Aided Design and Applications 4 (9–10), 477–486 <a rel="nofollow" class="external autonumber" href="http://www.yoshida-lab.net/aesthetic/cad07yoshida.pdf">[6]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303205632/http://www.yoshida-lab.net/aesthetic/cad07yoshida.pdf">Archived</a> 2016-03-03 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</li> <li>Ziatdinov, R., Yoshida, N., Kim, T., 2012. <i>Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions</i>. Computer Aided Geometric Design 29 (2), 129—140 <a rel="nofollow" class="external autonumber" href="https://www.sciencedirect.com/science/article/abs/pii/S0167839611001452">[7]</a>.</li> <li>Ziatdinov, R., Yoshida, N., Kim, T., 2012. <i>Fitting G2 multispiral transition curve joining two straight lines</i>, Computer-Aided Design 44(6), 591—596 <a rel="nofollow" class="external autonumber" href="https://www.sciencedirect.com/science/article/pii/S001044851200019X">[8]</a>.</li> <li>Ziatdinov, R., 2012. <i>Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function</i>. Computer Aided Geometric Design 29(7): 510–518, 2012 <a rel="nofollow" class="external autonumber" href="https://www.sciencedirect.com/science/article/abs/pii/S0167839612000325">[9]</a>.</li> <li>Ziatdinov, R., Miura K.T., 2012. <i>On the Variety of Planar Spirals and Their Applications in Computer Aided Design</i>. European Researcher 27(8–2), 1227—1232 <a rel="nofollow" class="external autonumber" href="http://www.erjournal.ru/pdf.html?n=1345307278.pdf">[10]</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spiral&amp;action=edit&amp;section=15" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Spirals" class="extiw" title="commons:Category:Spirals">Spiral</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external autonumber" href="http://www.mathe.tu-freiberg.de/~hebisch/cafe/jamnitzer/galerie7g.html">[11]</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210702004420/http://www.mathe.tu-freiberg.de/~hebisch/cafe/jamnitzer/galerie7g.html">Archived</a> 2021-07-02 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://oeis.org/A202407">Archimedes' spiral transforms into Galileo's spiral. Mikhail Gaichenkov, OEIS</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Spirals,_curves_and_helices" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Spirals" title="Template:Spirals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Spirals" title="Template talk:Spirals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Spirals" title="Special:EditPage/Template:Spirals"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Spirals,_curves_and_helices" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Spirals</a>, <a href="/wiki/Curve" title="Curve">curves</a> and <a href="/wiki/Helix" title="Helix">helices</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Curves</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_curve" title="Algebraic curve">Algebraic</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Gallery_of_curves" title="Gallery of curves">Gallery</a></li> <li><a href="/wiki/List_of_curves" title="List of curves">List</a></li> <li><a href="/wiki/List_of_curves_topics" title="List of curves topics">Topics</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="3" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Golden_spiral_in_triangles.png/60px-Golden_spiral_in_triangles.png" decoding="async" width="60" height="70" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Golden_spiral_in_triangles.png/90px-Golden_spiral_in_triangles.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/59/Golden_spiral_in_triangles.png/120px-Golden_spiral_in_triangles.png 2x" data-file-width="284" data-file-height="329" /></span></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Helices</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Helix_angle" title="Helix angle">Angle</a></li> <li><a href="/wiki/Helical_antenna" title="Helical antenna">Antenna</a></li> <li><a href="/wiki/Boerdijk%E2%80%93Coxeter_helix" title="Boerdijk–Coxeter helix">Boerdijk–Coxeter</a></li> <li><a href="/wiki/Hemihelix" title="Hemihelix">Hemi</a></li> <li><a href="/wiki/Helical_symmetry" class="mw-redirect" title="Helical symmetry">Symmetry</a></li> <li><a href="/wiki/Triple_helix" title="Triple helix">Triple</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Biochemistry" scope="row" class="navbox-group" style="width:1%;text-align: center;">Biochemistry</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/310_helix" title="310 helix">3<sub>10</sub></a></li> <li><a href="/wiki/Alpha_helix" title="Alpha helix">Alpha</a></li> <li><a href="/wiki/Beta_helix" title="Beta helix">Beta</a></li> <li><a href="/wiki/Nucleic_acid_double_helix" title="Nucleic acid double helix">Double</a></li> <li><a href="/wiki/Pi_helix" title="Pi helix">Pi</a></li> <li><a href="/wiki/Polyproline_helix" title="Polyproline helix">Polyproline</a></li> <li><a href="/wiki/Superhelix" title="Superhelix">Super</a></li> <li><a href="/wiki/Triple_helix" title="Triple helix">Triple</a> <ul><li><a href="/wiki/Collagen_helix" title="Collagen helix">Collagen</a></li></ul></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spirals</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Archimedean_spiral" title="Archimedean spiral">Archimedean</a></li> <li><a href="/wiki/Cotes%27s_spiral" title="Cotes&#39;s spiral">Cotes's</a> <ul><li><a href="/wiki/Epispiral" title="Epispiral">Epispiral</a></li> <li><a href="/wiki/Hyperbolic_spiral" title="Hyperbolic spiral">Hyperbolic</a></li> <li><a href="/wiki/Poinsot%27s_spirals" title="Poinsot&#39;s spirals">Poinsot's</a></li></ul></li> <li><a href="/wiki/Doyle_spiral" title="Doyle spiral">Doyle</a></li> <li><a href="/wiki/Euler_spiral" title="Euler spiral">Euler</a></li> <li><a href="/wiki/Fermat%27s_spiral" title="Fermat&#39;s spiral">Fermat's</a></li> <li><a href="/wiki/Involute" title="Involute">Involute</a></li> <li><a href="/wiki/List_of_spirals" title="List of spirals">List</a></li> <li><a href="/wiki/Logarithmic_spiral" title="Logarithmic spiral">Logarithmic</a> <ul><li><a href="/wiki/Golden_spiral" title="Golden spiral">Golden</a></li></ul></li> <li><i><a href="/wiki/On_Spirals" title="On Spirals">On Spirals</a></i></li> <li><a href="/wiki/Padovan_cuboid_spiral" title="Padovan cuboid spiral">Padovan</a></li> <li><a href="/wiki/Pitch_angle_of_a_spiral" title="Pitch angle of a spiral">Pitch angle</a></li> <li><a href="/wiki/Spiral_of_Theodorus" title="Spiral of Theodorus">Theodorus</a></li> <li><a href="/wiki/Spirangle" title="Spirangle">Spirangle</a></li> <li><a href="/wiki/Ulam_spiral" title="Ulam spiral">Ulam</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q189114#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4182346-1">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="spirály"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph167623&amp;CON_LNG=ENG">Czech Republic</a></span></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐6fdd9f9b88‐qndd6 Cached time: 20241129060929 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.680 seconds Real time usage: 0.930 seconds Preprocessor visited node count: 3932/1000000 Post‐expand include size: 81908/2097152 bytes Template argument size: 4633/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 133066/5000000 bytes Lua time usage: 0.362/10.000 seconds Lua memory usage: 6767211/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 655.951 1 -total 31.63% 207.468 1 Template:Reflist 20.01% 131.277 16 Template:Cite_web 12.17% 79.854 1 Template:Spirals 12.10% 79.358 2 Template:Navbox 10.12% 66.368 1 Template:Short_description 9.31% 61.101 6 Template:Fix 7.94% 52.114 3 Template:Citation_needed 7.60% 49.860 1 Template:Commons_category 7.30% 47.885 1 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:idhash:61563-0!canonical and timestamp 20241129060929 and revision id 1258722324. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Spiral&amp;oldid=1258722324">https://en.wikipedia.org/w/index.php?title=Spiral&amp;oldid=1258722324</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Spirals" title="Category:Spirals">Spirals</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Pages_containing_links_to_subscription-only_content" title="Category:Pages containing links to subscription-only content">Pages containing links to subscription-only content</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2019" title="Category:Articles with unsourced statements from November 2019">Articles with unsourced statements from November 2019</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2016" title="Category:Articles with unsourced statements from November 2016">Articles with unsourced statements from November 2016</a></li><li><a href="/wiki/Category:Articles_needing_the_year_an_event_occurred_from_November_2016" title="Category:Articles needing the year an event occurred from November 2016">Articles needing the year an event occurred from November 2016</a></li><li><a href="/wiki/Category:All_articles_with_incomplete_citations" title="Category:All articles with incomplete citations">All articles with incomplete citations</a></li><li><a href="/wiki/Category:Articles_with_incomplete_citations_from_December_2018" title="Category:Articles with incomplete citations from December 2018">Articles with incomplete citations from December 2018</a></li><li><a href="/wiki/Category:All_pages_needing_factual_verification" title="Category:All pages needing factual verification">All pages needing factual verification</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_factual_verification_from_December_2018" title="Category:Wikipedia articles needing factual verification from December 2018">Wikipedia articles needing factual verification from December 2018</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 06:53<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Spiral&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-9htwb","wgBackendResponseTime":168,"wgPageParseReport":{"limitreport":{"cputime":"0.680","walltime":"0.930","ppvisitednodes":{"value":3932,"limit":1000000},"postexpandincludesize":{"value":81908,"limit":2097152},"templateargumentsize":{"value":4633,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":133066,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 655.951 1 -total"," 31.63% 207.468 1 Template:Reflist"," 20.01% 131.277 16 Template:Cite_web"," 12.17% 79.854 1 Template:Spirals"," 12.10% 79.358 2 Template:Navbox"," 10.12% 66.368 1 Template:Short_description"," 9.31% 61.101 6 Template:Fix"," 7.94% 52.114 3 Template:Citation_needed"," 7.60% 49.860 1 Template:Commons_category"," 7.30% 47.885 1 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.362","limit":"10.000"},"limitreport-memusage":{"value":6767211,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-6fdd9f9b88-qndd6","timestamp":"20241129060929","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Spiral","url":"https:\/\/en.wikipedia.org\/wiki\/Spiral","sameAs":"http:\/\/www.wikidata.org\/entity\/Q189114","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q189114","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-07-11T22:30:51Z","dateModified":"2024-11-21T06:53:27Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/08\/NautilusCutawayLogarithmicSpiral.jpg","headline":"curve which emanates from a point, moving farther away as it revolves around the point"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10