CINXE.COM

Search results for: Cavity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Cavity</title> <meta name="description" content="Search results for: Cavity"> <meta name="keywords" content="Cavity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Cavity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Cavity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 401</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Cavity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Study of the Electromagnetic Resonances of a Cavity with an Aperture Using Numerical Method and Equivalent Circuit Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Chu%20Yin">Ming-Chu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-An%20Du"> Ping-An Du</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shielding ability of a shielding cavity is affected greatly by its resonances, which include resonance modes and frequencies. The equivalent circuit method and numerical method of transmission line matrix (TLM) are used to analyze the effect of aperture-cavity coupling on electromagnetic resonances of a cavity with an aperture in this paper. Both theoretical and numerical results show that the resonance modes of a shielding cavity with an aperture can be considered as the combination of cavity and aperture inherent resonance modes with resonance frequencies shifting, and the reason of this shift is aperture-cavity coupling. Because aperture sizes are important parameters to aperture-cavity coupling, variation rules of electromagnetic resonances of a shielding cavity with its aperture sizes are given, which will be useful for the design of shielding cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aperture-cavity%20coupling" title="aperture-cavity coupling">aperture-cavity coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20method" title=" equivalent circuit method"> equivalent circuit method</a>, <a href="https://publications.waset.org/abstracts/search?q=resonances" title=" resonances"> resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20equipment" title=" shielding equipment"> shielding equipment</a> </p> <a href="https://publications.waset.org/abstracts/34273/study-of-the-electromagnetic-resonances-of-a-cavity-with-an-aperture-using-numerical-method-and-equivalent-circuit-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> Numerical Study on the Cavity-Induced Piping Failure of Embankment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Kim">H. J. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Park"> G. C. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Kim"> K. C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Shin"> J. H. Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavities are frequently found beneath conduits on pile foundations in old embankments. Cavity reduces seepage length significantly and consequently causes piping failure of embankments. Case studies of embankment failures indicate that the relative settlement between ground and pile supported-concrete conduit was the main reason of the cavity. In this paper, an attempt to simulate the cavity-induced piping failure mechanism was made using finite element numerical method. Piping potential is examined by carrying out parametric study for influencing factors such as cavity length, water level, and flow conditions. The concentration of hydraulic gradient adjacent to cavity was found. It is found that the hydraulic gradient close to the cavity exceeds considerably the critical hydraulic gradient causing piping. Piping failure potential due to the existence of cavity is evaluated and contour map for the potential risk of an embankment for piping failure is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20gradient" title=" hydraulic gradient"> hydraulic gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=levee" title=" levee"> levee</a>, <a href="https://publications.waset.org/abstracts/search?q=piping" title=" piping"> piping</a> </p> <a href="https://publications.waset.org/abstracts/33770/numerical-study-on-the-cavity-induced-piping-failure-of-embankment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Hydrodynamics of Wound Ballistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20Kaur">Harpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Er.%20Arjun"> Er. Arjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirandeep%20Kaur"> Kirandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Mittal"> P. K. Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a human body from 20% gelatin & 80% water mixture is examined from wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to permanent cavity. This occurs for a 10mm size bullets & settle down to permanent cavity in case of 4 different bullets i.e. 5.45, 5.56, 7.62,10 mm sizes The obtained results are in excellent agreement with the body as right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. Keywords. Gelatin, gunshot, hydrodynamic model, oscillation time, temporary cavity and permanent cavity, Wound Ballistic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatin" title="gelatin">gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=gunshot" title=" gunshot"> gunshot</a>, <a href="https://publications.waset.org/abstracts/search?q=wound" title=" wound"> wound</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a> </p> <a href="https://publications.waset.org/abstracts/175051/hydrodynamics-of-wound-ballistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Neuroendocrine Tumors of the Oral Cavity: A Summarized Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sona%20Babu%20Rathinam">Sona Babu Rathinam</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavanya%20Dharmendran"> Lavanya Dharmendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Therraddi%20Mutthu"> Therraddi Mutthu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The purpose of this paper is to provides an overview of the neuroendocrine tumors that arise in the oral cavity. Material and Methods: An overview of the relevant papers on neuroendocrine tumors of the oral cavity by various authors was studied and summarized. Results: On the basis of the relevant studies, this paper provides an overview of the classification and histological differentiation of the neuroendocrine tumors that arise in the oral cavity. Conclusions: The basis of classification of neuroendocrine tumors is largely determined by their histologic differentiation. Though they reveal biologic heterogeneity, there should be an awareness of the occurrence of such lesions in the oral cavity to enable them to be detected and treated early. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malignant%20peripheral%20nerve%20sheath%20tumor" title="malignant peripheral nerve sheath tumor">malignant peripheral nerve sheath tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=olfactory%20neuroblastoma" title=" olfactory neuroblastoma"> olfactory neuroblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=paraganglioma" title=" paraganglioma"> paraganglioma</a>, <a href="https://publications.waset.org/abstracts/search?q=schwannoma" title=" schwannoma"> schwannoma</a> </p> <a href="https://publications.waset.org/abstracts/168796/neuroendocrine-tumors-of-the-oral-cavity-a-summarized-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Combline Cavity Bandpass Filter Design and Implementation Using EM Simulation Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Ahmed%20%C3%96zbey">Taha Ahmed Özbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Nazl%C4%B1bilek"> Sedat Nazlıbilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Alparslan%20%C3%87a%C4%9Fr%C4%B1%20Yap%C4%B1c%C4%B1"> Alparslan Çağrı Yapıcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combline cavity filters have gained significant attention in recent years due to their exceptional narrowband characteristics, high unloaded Q, remarkable out-of-band rejection, and versatile post-manufacturing tuning capabilities. These filters play a vital role in various wireless communication systems, radar applications, and other advanced technologies where stringent frequency selectivity and superior performance are required. This paper represents combined cavity filter design and implementation by coupling matrix synthesis. Limited filter length, 50 dB out-of-band rejection, and agile design were aimed. To do so, CAD tools and intuitive methods were used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=band%20pass%20filter" title=" band pass filter"> band pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20combline%20filter" title=" cavity combline filter"> cavity combline filter</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20matrix%20synthesis" title=" coupling matrix synthesis"> coupling matrix synthesis</a> </p> <a href="https://publications.waset.org/abstracts/171516/combline-cavity-bandpass-filter-design-and-implementation-using-em-simulation-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habibis%20Saleh">Habibis Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Hashim"> Ishak Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=marangoni%20convection" title=" marangoni convection"> marangoni convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20open%20cavity" title=" square open cavity"> square open cavity</a> </p> <a href="https://publications.waset.org/abstracts/16711/combined-surface-tension-and-natural-convection-of-nanofluids-in-a-square-open-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Material Detection by Phase Shift Cavity Ring-Down Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Muhammad%20Armaghan%20Ayaz">Rana Muhammad Armaghan Ayaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yigit%20Uysall%C4%B1"> Yigit Uysallı</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Bavili"> Nima Bavili</a>, <a href="https://publications.waset.org/abstracts/search?q=Berna%20Morova"> Berna Morova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Kiraz"> Alper Kiraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=materials" title="materials">materials</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20shift" title=" phase shift"> phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20wavelength" title=" resonance wavelength"> resonance wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20approach" title=" time domain approach"> time domain approach</a> </p> <a href="https://publications.waset.org/abstracts/107606/material-detection-by-phase-shift-cavity-ring-down-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Hydrodynamics of Wound Ballistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20Kaur">Harpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Er.%20Arjun"> Er. Arjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirandeep%20Kaur"> Kirandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Mittal"> P. K. Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a human body from a 20% gelatin & 80% water mixture is examined from a wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of the human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to a permanent cavity. This occurs for 10mm size bullets & settles down to a permanent cavity in the case of 4 different bullets, i.e., 5.45, 5.56, 7.62,10 mm sizes. The obtained results are in excellent agreement with the body as a right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatine" title="gelatine">gelatine</a>, <a href="https://publications.waset.org/abstracts/search?q=gunshot" title=" gunshot"> gunshot</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation%20time" title=" oscillation time"> oscillation time</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20and%20permanent%20cavity" title=" temporary and permanent cavity"> temporary and permanent cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20ballistics" title=" wound ballistics"> wound ballistics</a> </p> <a href="https://publications.waset.org/abstracts/173570/hydrodynamics-of-wound-ballistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Numerical Modeling of Turbulent Natural Convection in a Square Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Sedighi">Mohammadreza Sedighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Said%20Saidi"> Mohammad Said Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesamoddin%20Salarian"> Hesamoddin Salarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buoyancy" title="Buoyancy">Buoyancy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cavity" title=" Cavity"> Cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Natural%20Convection" title=" Natural Convection"> Natural Convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Turbulence" title=" Turbulence "> Turbulence </a> </p> <a href="https://publications.waset.org/abstracts/22257/numerical-modeling-of-turbulent-natural-convection-in-a-square-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Hua%20Chen">Yi-Hua Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Wen%20Tang"> Hsiang-Wen Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Chang"> I-Ling Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lien-Wen%20Chen"> Lien-Wen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20mode" title="defect mode">defect mode</a>, <a href="https://publications.waset.org/abstracts/search?q=Archimedean%20tilings" title=" Archimedean tilings"> Archimedean tilings</a>, <a href="https://publications.waset.org/abstracts/search?q=phononic%20crystals" title=" phononic crystals"> phononic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=whispering-gallery%20modes" title=" whispering-gallery modes"> whispering-gallery modes</a> </p> <a href="https://publications.waset.org/abstracts/47506/analysis-of-scattering-behavior-in-the-cavity-of-phononic-crystals-with-archimedean-tilings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Modelling of Cavity Growth in Underground Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam">Preeti Aghalayam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Shah"> Jay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground coal gasification (UCG) is the in-situ gasification of unmineable coals to produce syngas. In UCG, gasifying agents are injected into the coal seam, and a reactive cavity is formed due to coal consumption. The cavity formed is typically hemispherical, and this report consists of the MATLAB model of the UCG cavity to predict the composition of the output gases. There are seven radial and two time-variant ODEs. A MATLAB solver (ode15s) is used to solve the radial ODEs from the above equations. Two for-loops are implemented in the model, i.e., one for time variations and another for radial variation. In the time loop, the radial odes are solved using the MATLAB solver. The radial loop is nested inside the time loop, and the density odes are numerically solved using the Euler method. The model is validated by comparing it with the literature results of laboratory-scale experiments. The model predicts the radial and time variation of the product gases inside the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification%20agent" title="gasification agent">gasification agent</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20model" title=" MATLAB model"> MATLAB model</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification%20%28UCG%29" title=" underground coal gasification (UCG)"> underground coal gasification (UCG)</a> </p> <a href="https://publications.waset.org/abstracts/142719/modelling-of-cavity-growth-in-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicham%20Salhi">Hicham Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Si-Ameur"> Mohamed Si-Ameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjib%20Chafai"> Nadjib Chafai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20cavity" title=" inclined cavity"> inclined cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20temperature" title=" random temperature"> random temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-volume" title=" finite-volume"> finite-volume</a> </p> <a href="https://publications.waset.org/abstracts/45433/numerical-study-of-natural-convection-heat-transfer-performance-in-an-inclined-cavity-nanofluid-and-random-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Analysis of Heat Transfer in a Closed Cavity Ventilated Inside </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benseghir%20Omar">Benseghir Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahmed%20Mohamed"> Bahmed Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20transfer" title="thermal transfer">thermal transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cavity" title=" square cavity"> square cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a> </p> <a href="https://publications.waset.org/abstracts/23319/analysis-of-heat-transfer-in-a-closed-cavity-ventilated-inside" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> The Comparison of Primary B-Cell and NKT-Cell Non-Hodgkin Lymphomas in Nasopharynx, Nasal Cavity, and Paranasal Sinuses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Peng">Jiajia Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqing%20Qiu"> Jianqing Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianjun%20Ren"> Jianjun Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhao"> Yu Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We aimed to compare clinical and survival differences between B-cell (B-NHL) and NKT-cell non-Hodgkin lymphomas (NKT-NHL) located in the nasal cavity, nasopharynx and paranasal sinuses, which are always categorized as one sinonasal type. Methods: Patients diagnosed with primary B-NHL and NKT-NHL in the nasal cavity, nasopharynx, and paranasal sinuses from the SEER database were included. We identified these patients based on histological types and anatomical sites and subsequently conducted univariate and multivariate Cox regression and Kaplan–Meier analyses to examine cancer-special survival (CSS) outcomes. Results: Overall, most B-NHL cases originated from the nasopharynx, while the majority of NKT-NHL cases occurred in the nasal cavity. Notably, the CSS outcomes improved significantly in all sinonasal B-NHL cases over time, whereas no such improvement trend was observed in each sinonasal NKT-NHL type. Additionally, increasing age was linked with an elevated risk of death in B-NHL, particularly in the nasal cavity (HR:3.37), rather than in NKT-NHL. Compared with B-NHL, the adverse effect of the higher stage on CSS was more evident in NKT-NHL, particularly in its nasopharynx site (HR: 5.12). Furthermore, radiotherapy was beneficial for survival in patients with sinonasal B-NHL and NKT-NHL, except in those with NKT-NHL in the nasopharynx site. However, chemotherapy has only been beneficial for CSS in patients with B-NHL in paranasal sinuses (HR: 0.42) since 2010, rather than in other types of B-NHL or NKT-NHL. Conclusions: Although B-NHL and NKT-NHL in the nasal cavity, nasopharynx and paranasal sinuses have similar anatomical locations, their clinic demographics and prognoses are largely different and should be treated and studied as distinct diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-cell%20non-Hodgkin%20lymphomas" title="B-cell non-Hodgkin lymphomas">B-cell non-Hodgkin lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=NKT-cell%20non-Hodgkin%20lymphomas" title=" NKT-cell non-Hodgkin lymphomas"> NKT-cell non-Hodgkin lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20cavity%20lymphomas" title=" nasal cavity lymphomas"> nasal cavity lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20sinuses%20lymphomas" title=" nasal sinuses lymphomas"> nasal sinuses lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nasopharynx%20lymphomas" title=" nasopharynx lymphomas"> nasopharynx lymphomas</a> </p> <a href="https://publications.waset.org/abstracts/156905/the-comparison-of-primary-b-cell-and-nkt-cell-non-hodgkin-lymphomas-in-nasopharynx-nasal-cavity-and-paranasal-sinuses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Chaos in a Stadium-Shaped 2-D Quantum Dot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20Yu">Roger Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title="quantum dot">quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a> </p> <a href="https://publications.waset.org/abstracts/148129/chaos-in-a-stadium-shaped-2-d-quantum-dot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via &chi;(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only &chi;(2)-nonlinearity, where sum-frequency generation in the &chi;(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=periodically-poled%20LiNbO%E2%82%83" title=" periodically-poled LiNbO₃"> periodically-poled LiNbO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=sum-frequency%20generation" title=" sum-frequency generation"> sum-frequency generation</a>, <a href="https://publications.waset.org/abstracts/search?q=third-harmonic%20generation" title=" third-harmonic generation"> third-harmonic generation</a> </p> <a href="https://publications.waset.org/abstracts/77505/cavity-type-periodically-poled-linbo3-device-for-highly-efficient-third-harmonic-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishraq%20M.%20Anjum">Ishraq M. Anjum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaAs" title="GaAs">GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=LASER" title=" LASER"> LASER</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=VCSEL" title=" VCSEL"> VCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20cavity%20surface%20emitting%20laser" title=" vertical cavity surface emitting laser"> vertical cavity surface emitting laser</a> </p> <a href="https://publications.waset.org/abstracts/103827/design-and-analysis-of-metamaterial-based-vertical-cavity-surface-emitting-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupriya">Anupriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Sinfh"> Bikramjit Sinfh</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhay%20Shyam"> Radhay Shyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20loss" title="total pressure loss">total pressure loss</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20holder" title=" flame holder"> flame holder</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20efficiency" title=" combustion efficiency"> combustion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a> </p> <a href="https://publications.waset.org/abstracts/154492/supersonic-combustion-scramjet-containing-flame-holder-with-slot-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Fathinia">Farshid Fathinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection" title="transient natural convection">transient natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20cavity" title=" trapezoidal cavity"> trapezoidal cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20flow" title=" three-dimensional flow"> three-dimensional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law" title=" second law "> second law </a> </p> <a href="https://publications.waset.org/abstracts/24831/three-dimensional-unsteady-natural-convection-and-entropy-generation-in-an-inclined-cubical-trapezoidal-cavity-subjected-to-uniformly-heated-bottom-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinghe%20Wang">Pinghe Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20soliton%20resonance" title=" dissipative soliton resonance"> dissipative soliton resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable" title=" tunable"> tunable</a> </p> <a href="https://publications.waset.org/abstracts/78191/a-tunable-long-cavity-passive-mode-locked-fiber-laser-based-on-nonlinear-amplifier-loop-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Yadav">N. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Verma"> Deepti Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy%20driven%20flow" title="buoyancy driven flow">buoyancy driven flow</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection%20driven%20flow" title=" natural convection driven flow"> natural convection driven flow</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20flow" title=" residual flow"> residual flow</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid" title=" volume of fluid"> volume of fluid</a> </p> <a href="https://publications.waset.org/abstracts/41251/prediction-of-solidification-behavior-of-al-alloy-in-a-cube-mold-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meenu%20Kaushik">Meenu Kaushik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayon%20K.%20Bandhoyadhayay"> Ayon K. Bandhoyadhayay</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalit%20M.%20Joshi"> Lalit M. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inductive%20output%20tubes" title="inductive output tubes">inductive output tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=IOT" title=" IOT"> IOT</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20cavity" title=" radial cavity"> radial cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=coaxial%20cavity" title=" coaxial cavity"> coaxial cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20accelerators" title=" particle accelerators"> particle accelerators</a> </p> <a href="https://publications.waset.org/abstracts/98117/design-and-radio-frequency-characterization-of-radial-reentrant-narrow-gap-cavity-for-the-inductive-output-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Quantum Localization of Vibrational Mirror in Cavity Optomechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Tariq">Madiha Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Hena%20Rabbani"> Hena Rabbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-P&eacute;rot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |&psi;(x)&sup2;| and momentum space |&psi;(p)&sup2;| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20localization" title="dynamical localization">dynamical localization</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20optomechanics" title=" cavity optomechanics"> cavity optomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20chaos" title=" Hamiltonian chaos"> Hamiltonian chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=probe%20field" title=" probe field"> probe field</a> </p> <a href="https://publications.waset.org/abstracts/108127/quantum-localization-of-vibrational-mirror-in-cavity-optomechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Yu%20Wu">Jia-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Fen%20Chuang"> Shu-Fen Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong-Yang%20Lai"> Rong-Yang Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=class%20v%20restoration" title="class v restoration">class v restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20situation" title=" loading situation"> loading situation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/66073/effect-of-class-v-cavity-configuration-and-loading-situation-on-the-stress-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foo%20Kok">Foo Kok</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Thangamani"> Varun Thangamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LES" title="LES">LES</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20flows" title=" cavity flows"> cavity flows</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20shear%20layer" title=" unsteady shear layer"> unsteady shear layer</a>, <a href="https://publications.waset.org/abstracts/search?q=instability%20modes" title=" instability modes"> instability modes</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a> </p> <a href="https://publications.waset.org/abstracts/182312/numerical-investigation-of-the-effect-of-sidewalls-on-low-speed-finite-width-cavity-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Study of a Fabry-Perot Resonator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hadjaj">F. Hadjaj</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belghachi"> A. Belghachi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Halmaoui"> A. Halmaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhadj"> M. Belhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mazouz"> H. Mazouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air and also has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light, being emitted in unwanted directions from the junction and Sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, Finesse, Linewidth, Transmission and so on that describe the performance of resonator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabry-Perot%20Resonator" title="Fabry-Perot Resonator">Fabry-Perot Resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20diod" title=" laser diod"> laser diod</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor "> semiconductor </a> </p> <a href="https://publications.waset.org/abstracts/4422/study-of-a-fabry-perot-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Thiers">Nicolas Thiers</a>, <a href="https://publications.waset.org/abstracts/search?q=Romain%20Gers"> Romain Gers</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Skurtys"> Olivier Skurtys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title="direct numerical simulation">direct numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20thermal%20perturbations" title=" localized thermal perturbations"> localized thermal perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20differentially-heated%20cavity" title=" rectangular differentially-heated cavity"> rectangular differentially-heated cavity</a> </p> <a href="https://publications.waset.org/abstracts/109171/heat-transfer-enhancement-by-localized-time-varying-thermal-perturbations-at-hot-and-cold-walls-in-a-rectangular-differentially-heated-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belmiloud%20Mohamed%20Amine">Belmiloud Mohamed Amine</a>, <a href="https://publications.waset.org/abstracts/search?q=Sad%20Chemloul%20Nord-Eddine"> Sad Chemloul Nord-Eddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity and the varying of the Richardson number on the variation of the average Nusselt number. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless governing equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to10. The Rayleigh number is fixed to Ra = 10000 and the Prandtl number is maintained constant Pr = 0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number and emissivity affect the average Nusselt number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title="mixed convection">mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cavity" title=" square cavity"> square cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20emissivity" title=" wall emissivity"> wall emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lid-driven" title=" lid-driven"> lid-driven</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a> </p> <a href="https://publications.waset.org/abstracts/34521/numerical-study-of-mixed-convection-coupled-to-radiation-in-a-square-cavity-with-a-lid-driven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Solid Angle Approach to Quantify the Shape of Daughter Cavity in Drying Nano Colloidal Sessile Droplets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Hans">Rishabh Hans</a>, <a href="https://publications.waset.org/abstracts/search?q=Saksham%20Sharma"> Saksham Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying of a sessile droplet imbibed with colloidal solution is a complex process in many aspects. Till now, most of the work revolves around; conditions for buckling onset, post-buckling effects, nature of change of droplet shape etc. In this work, we are determining the shape of daughter cavity (DC) formed during post-buckling onset, a less explored stage, and its relationship with experimental parameters. We have introduced solid angle as a special parameter that can quantify the shape of DC at any instant. It facilitates us to compare the shape while experimenting across different substrate types, droplet sizes and particle concentration. Furthermore, the angular location of ‘weak spot’ on the periphery of droplet, which marks the initiation of cavity growth, varies in different conditions. To solve this problem, we have evaluated the deflection angle of weak spots w.r.t. the vertical axis going through the middle of droplet. Subsequently, the solid angle subtended by DC is analyzed about that inclined axis. Finally, results of analysis allude that increasing colloidal concentration has inverse effect on the growth rate of cavity’s shape. Moreover, the cap radius of DC is observed lower for high PLR which makes the capillary pressure higher and thus tougher to expedite cavity formation relatively. This analysis can be helpful in further studies to relate the shape, deflection angle, growth rate of daughter cavity to the type of droplet crust formed in the end. Examining DC stage shall add another layer to nano-colloidal research which aims to influence many industrial applications like patterning, coatings, drug delivery, food processing etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20of%20sessile%20droplets" title="buckling of sessile droplets">buckling of sessile droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=daughter%20cavity" title=" daughter cavity"> daughter cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20evaporation" title=" droplet evaporation"> droplet evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20shell%20formation" title=" nanoporous shell formation"> nanoporous shell formation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20angle" title=" solid angle"> solid angle</a> </p> <a href="https://publications.waset.org/abstracts/66496/solid-angle-approach-to-quantify-the-shape-of-daughter-cavity-in-drying-nano-colloidal-sessile-droplets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Inhibitory Effect of Potential Bacillus Probiotic Strains against Pathogenic Bacteria and Yeast Isolated from Oral Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fdhila%20Walid">Fdhila Walid</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayar%20Sihem"> Bayar Sihem</a>, <a href="https://publications.waset.org/abstracts/search?q=Khouidi%20Bochra"> Khouidi Bochra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%C3%A2touk%20Fethi"> Maâtouk Fethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Amor%20Feten"> Ben Amor Feten</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajer%20Hentati"> Hajer Hentati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdhi%20Abdelkarim"> Mahdhi Abdelkarim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The potential use of probiotic bacteria can be considered as a new alternative in the prevention or cure of oral cavity diseases. In this study, different Bacillus strains isolated from the environment were isolated and characterized using biochemical and molecular procedures. The inhibitory activity against different pathogenic bacteria and yeast strains was tested using diffusion agar assay method. Our data revealed that the tested strains have an antimicrobial effect against the pathogenic strains such as Streptococcus mutants. The inhibitory effect was variable depending from the probiotic and pathogenic strains. The obtained result demonstrated that Bacillus can be used as a potential candidates probiotic and help in the prevention and treatment of oral infections, including dental caries, periodontal disease and halitosis. Our data, partly encourage the use of probiotic strains because they do not produce acid which can contribute to faster installation decay and these are spore-forming bacteria that can withstand the stress of the oral cavity (acids, alkalis, and salty foods). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotic" title="probiotic">probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenic%20bacteria" title=" pathogenic bacteria"> pathogenic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20cavity" title=" oral cavity"> oral cavity</a> </p> <a href="https://publications.waset.org/abstracts/1415/inhibitory-effect-of-potential-bacillus-probiotic-strains-against-pathogenic-bacteria-and-yeast-isolated-from-oral-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Cavity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10