CINXE.COM

Ring (mathematics) - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ring (mathematics) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3af1da85-a74d-4a55-8cef-5f3cbde279f8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ring_(mathematics)","wgTitle":"Ring (mathematics)","wgCurRevisionId":1252011286,"wgRevisionId":1252011286,"wgArticleId":48404,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from October 2023","Articles with unsourced statements from November 2013","CS1: long volume value","Algebraic structures","Ring theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Ring_(mathematics)","wgRelevantArticleId":48404,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q161172","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ring (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Ring_(mathematics)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Ring_(mathematics)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Ring_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ring_mathematics rootpage-Ring_mathematics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ring+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Ring+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ring+%28mathematics%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Ring+%28mathematics%29" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Variations_on_the_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Variations_on_the_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Variations on the definition</span> </div> </a> <ul id="toc-Variations_on_the_definition-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Illustration" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Illustration"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Illustration</span> </div> </a> <button aria-controls="toc-Illustration-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Illustration subsection</span> </button> <ul id="toc-Illustration-sublist" class="vector-toc-list"> <li id="toc-Some_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Some_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Some properties</span> </div> </a> <ul id="toc-Some_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example:_Integers_modulo_4" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example:_Integers_modulo_4"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Example: Integers modulo 4</span> </div> </a> <ul id="toc-Example:_Integers_modulo_4-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example:_2-by-2_matrices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example:_2-by-2_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Example: 2-by-2 matrices</span> </div> </a> <ul id="toc-Example:_2-by-2_matrices-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Dedekind" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dedekind"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Dedekind</span> </div> </a> <ul id="toc-Dedekind-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hilbert" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hilbert"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Hilbert</span> </div> </a> <ul id="toc-Hilbert-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fraenkel_and_Noether" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fraenkel_and_Noether"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Fraenkel and Noether</span> </div> </a> <ul id="toc-Fraenkel_and_Noether-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiplicative_identity_and_the_term_&quot;ring&quot;" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiplicative_identity_and_the_term_&quot;ring&quot;"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Multiplicative identity and the term "ring"</span> </div> </a> <ul id="toc-Multiplicative_identity_and_the_term_&quot;ring&quot;-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Basic_examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Basic_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Basic examples</span> </div> </a> <button aria-controls="toc-Basic_examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic examples subsection</span> </button> <ul id="toc-Basic_examples-sublist" class="vector-toc-list"> <li id="toc-Commutative_rings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Commutative_rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Commutative rings</span> </div> </a> <ul id="toc-Commutative_rings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Noncommutative_rings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Noncommutative_rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Noncommutative rings</span> </div> </a> <ul id="toc-Noncommutative_rings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-rings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Non-rings</span> </div> </a> <ul id="toc-Non-rings-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Basic_concepts" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Basic_concepts"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Basic concepts</span> </div> </a> <button aria-controls="toc-Basic_concepts-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic concepts subsection</span> </button> <ul id="toc-Basic_concepts-sublist" class="vector-toc-list"> <li id="toc-Products_and_powers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Products_and_powers"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Products and powers</span> </div> </a> <ul id="toc-Products_and_powers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Elements_in_a_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Elements_in_a_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Elements in a ring</span> </div> </a> <ul id="toc-Elements_in_a_ring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Subring"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Subring</span> </div> </a> <ul id="toc-Subring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ideal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ideal"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Ideal</span> </div> </a> <ul id="toc-Ideal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Homomorphism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Homomorphism"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Homomorphism</span> </div> </a> <ul id="toc-Homomorphism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quotient_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quotient_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Quotient ring</span> </div> </a> <ul id="toc-Quotient_ring-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Module" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Module"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Module</span> </div> </a> <ul id="toc-Module-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Constructions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Constructions</span> </div> </a> <button aria-controls="toc-Constructions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Constructions subsection</span> </button> <ul id="toc-Constructions-sublist" class="vector-toc-list"> <li id="toc-Direct_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Direct_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Direct product</span> </div> </a> <ul id="toc-Direct_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polynomial_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polynomial_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Polynomial ring</span> </div> </a> <ul id="toc-Polynomial_ring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrix_ring_and_endomorphism_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrix_ring_and_endomorphism_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Matrix ring and endomorphism ring</span> </div> </a> <ul id="toc-Matrix_ring_and_endomorphism_ring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Limits_and_colimits_of_rings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Limits_and_colimits_of_rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Limits and colimits of rings</span> </div> </a> <ul id="toc-Limits_and_colimits_of_rings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Localization" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Localization"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Localization</span> </div> </a> <ul id="toc-Localization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Completion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Completion"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Completion</span> </div> </a> <ul id="toc-Completion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rings_with_generators_and_relations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rings_with_generators_and_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7</span> <span>Rings with generators and relations</span> </div> </a> <ul id="toc-Rings_with_generators_and_relations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Special_kinds_of_rings" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Special_kinds_of_rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Special kinds of rings</span> </div> </a> <button aria-controls="toc-Special_kinds_of_rings-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Special kinds of rings subsection</span> </button> <ul id="toc-Special_kinds_of_rings-sublist" class="vector-toc-list"> <li id="toc-Domains" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Domains"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Domains</span> </div> </a> <ul id="toc-Domains-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Division_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Division_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Division ring</span> </div> </a> <ul id="toc-Division_ring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Semisimple_rings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Semisimple_rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Semisimple rings</span> </div> </a> <ul id="toc-Semisimple_rings-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3.2</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Central_simple_algebra_and_Brauer_group" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Central_simple_algebra_and_Brauer_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Central simple algebra and Brauer group</span> </div> </a> <ul id="toc-Central_simple_algebra_and_Brauer_group-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Valuation_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Valuation_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Valuation ring</span> </div> </a> <ul id="toc-Valuation_ring-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Rings_with_extra_structure" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Rings_with_extra_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Rings with extra structure</span> </div> </a> <ul id="toc-Rings_with_extra_structure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Some_examples_of_the_ubiquity_of_rings" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Some_examples_of_the_ubiquity_of_rings"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Some examples of the ubiquity of rings</span> </div> </a> <button aria-controls="toc-Some_examples_of_the_ubiquity_of_rings-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Some examples of the ubiquity of rings subsection</span> </button> <ul id="toc-Some_examples_of_the_ubiquity_of_rings-sublist" class="vector-toc-list"> <li id="toc-Cohomology_ring_of_a_topological_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cohomology_ring_of_a_topological_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Cohomology ring of a topological space</span> </div> </a> <ul id="toc-Cohomology_ring_of_a_topological_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Burnside_ring_of_a_group" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Burnside_ring_of_a_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>Burnside ring of a group</span> </div> </a> <ul id="toc-Burnside_ring_of_a_group-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representation_ring_of_a_group_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Representation_ring_of_a_group_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.3</span> <span>Representation ring of a group ring</span> </div> </a> <ul id="toc-Representation_ring_of_a_group_ring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Function_field_of_an_irreducible_algebraic_variety" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Function_field_of_an_irreducible_algebraic_variety"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.4</span> <span>Function field of an irreducible algebraic variety</span> </div> </a> <ul id="toc-Function_field_of_an_irreducible_algebraic_variety-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Face_ring_of_a_simplicial_complex" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Face_ring_of_a_simplicial_complex"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.5</span> <span>Face ring of a simplicial complex</span> </div> </a> <ul id="toc-Face_ring_of_a_simplicial_complex-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Category-theoretic_description" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Category-theoretic_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Category-theoretic description</span> </div> </a> <ul id="toc-Category-theoretic_description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalization" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalization"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Generalization</span> </div> </a> <button aria-controls="toc-Generalization-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalization subsection</span> </button> <ul id="toc-Generalization-sublist" class="vector-toc-list"> <li id="toc-Rng" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rng"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.1</span> <span>Rng</span> </div> </a> <ul id="toc-Rng-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nonassociative_ring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nonassociative_ring"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.2</span> <span>Nonassociative ring</span> </div> </a> <ul id="toc-Nonassociative_ring-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Semiring" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Semiring"> <div class="vector-toc-text"> <span class="vector-toc-numb">12.3</span> <span>Semiring</span> </div> </a> <ul id="toc-Semiring-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_ring-like_objects" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_ring-like_objects"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Other ring-like objects</span> </div> </a> <button aria-controls="toc-Other_ring-like_objects-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other ring-like objects subsection</span> </button> <ul id="toc-Other_ring-like_objects-sublist" class="vector-toc-list"> <li id="toc-Ring_object_in_a_category" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ring_object_in_a_category"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.1</span> <span>Ring object in a category</span> </div> </a> <ul id="toc-Ring_object_in_a_category-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ring_scheme" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ring_scheme"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.2</span> <span>Ring scheme</span> </div> </a> <ul id="toc-Ring_scheme-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ring_spectrum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ring_spectrum"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.3</span> <span>Ring spectrum</span> </div> </a> <ul id="toc-Ring_spectrum-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-General_references" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.1</span> <span>General references</span> </div> </a> <ul id="toc-General_references-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_references" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.2</span> <span>Special references</span> </div> </a> <ul id="toc-Special_references-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Primary_sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primary_sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.3</span> <span>Primary sources</span> </div> </a> <ul id="toc-Primary_sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Historical_references" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Historical_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">17.4</span> <span>Historical references</span> </div> </a> <ul id="toc-Historical_references-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ring (mathematics)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 66 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-66" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">66 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D9%84%D9%82%D8%A9_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="حلقة (رياضيات) – Arabic" lang="ar" hreflang="ar" data-title="حلقة (رياضيات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Kh%C3%B4an" title="Khôan – Minnan" lang="nan" hreflang="nan" data-title="Khôan" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D2%A0%D1%83%D0%BB%D1%81%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ҡулса (математика) – Bashkir" lang="ba" hreflang="ba" data-title="Ҡулса (математика)" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BB%D1%8C%D1%86%D0%BE_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Кальцо (алгебра) – Belarusian" lang="be" hreflang="be" data-title="Кальцо (алгебра)" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D1%8A%D1%81%D1%82%D0%B5%D0%BD_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Пръстен (алгебра) – Bulgarian" lang="bg" hreflang="bg" data-title="Пръстен (алгебра)" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Prsten_(matematika)" title="Prsten (matematika) – Bosnian" lang="bs" hreflang="bs" data-title="Prsten (matematika)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Anell_(matem%C3%A0tiques)" title="Anell (matemàtiques) – Catalan" lang="ca" hreflang="ca" data-title="Anell (matemàtiques)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A3%D0%BD%D0%BA%C4%83_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Ункă (математика) – Chuvash" lang="cv" hreflang="cv" data-title="Ункă (математика)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Okruh_(algebra)" title="Okruh (algebra) – Czech" lang="cs" hreflang="cs" data-title="Okruh (algebra)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Modrwy_(mathemateg)" title="Modrwy (mathemateg) – Welsh" lang="cy" hreflang="cy" data-title="Modrwy (mathemateg)" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ring_(matematik)" title="Ring (matematik) – Danish" lang="da" hreflang="da" data-title="Ring (matematik)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ring_(Algebra)" title="Ring (Algebra) – German" lang="de" hreflang="de" data-title="Ring (Algebra)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Ring_(algebra)" title="Ring (algebra) – Estonian" lang="et" hreflang="et" data-title="Ring (algebra)" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B1%CE%BA%CF%84%CF%8D%CE%BB%CE%B9%CE%BF%CF%82_(%CE%AC%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1)" title="Δακτύλιος (άλγεβρα) – Greek" lang="el" hreflang="el" data-title="Δακτύλιος (άλγεβρα)" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Anillo_(matem%C3%A1tica)" title="Anillo (matemática) – Spanish" lang="es" hreflang="es" data-title="Anillo (matemática)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ringo_(algebro)" title="Ringo (algebro) – Esperanto" lang="eo" hreflang="eo" data-title="Ringo (algebro)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Eraztun_(matematika)" title="Eraztun (matematika) – Basque" lang="eu" hreflang="eu" data-title="Eraztun (matematika)" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AD%D9%84%D9%82%D9%87_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="حلقه (ریاضیات) – Persian" lang="fa" hreflang="fa" data-title="حلقه (ریاضیات)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Anneau_(math%C3%A9matiques)" title="Anneau (mathématiques) – French" lang="fr" hreflang="fr" data-title="Anneau (mathématiques)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/F%C3%A1inne_(matamaitic)" title="Fáinne (matamaitic) – Irish" lang="ga" hreflang="ga" data-title="Fáinne (matamaitic)" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Anel_(%C3%A1lxebra)" title="Anel (álxebra) – Galician" lang="gl" hreflang="gl" data-title="Anel (álxebra)" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%99%98_(%EC%88%98%ED%95%99)" title="환 (수학) – Korean" lang="ko" hreflang="ko" data-title="환 (수학)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%95%D5%B2%D5%A1%D5%AF_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Օղակ (մաթեմատիկա) – Armenian" lang="hy" hreflang="hy" data-title="Օղակ (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Prsten_(matematika)" title="Prsten (matematika) – Croatian" lang="hr" hreflang="hr" data-title="Prsten (matematika)" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Gelanggang_(matematika)" title="Gelanggang (matematika) – Indonesian" lang="id" hreflang="id" data-title="Gelanggang (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Anello_(algebra)" title="Anello (algebra) – Interlingua" lang="ia" hreflang="ia" data-title="Anello (algebra)" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Anello_(algebra)" title="Anello (algebra) – Italian" lang="it" hreflang="it" data-title="Anello (algebra)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%95%D7%92_(%D7%9E%D7%91%D7%A0%D7%94_%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%99)" title="חוג (מבנה אלגברי) – Hebrew" lang="he" hreflang="he" data-title="חוג (מבנה אלגברי)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B0%E0%B2%BF%E0%B2%82%E0%B2%97%E0%B3%8D" title="ರಿಂಗ್ – Kannada" lang="kn" hreflang="kn" data-title="ರಿಂಗ್" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A0%E1%83%92%E1%83%9D%E1%83%9A%E1%83%98_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="რგოლი (მათემატიკა) – Georgian" lang="ka" hreflang="ka" data-title="რგოლი (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Anellus" title="Anellus – Latin" lang="la" hreflang="la" data-title="Anellus" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Rank_(Algeber)" title="Rank (Algeber) – Luxembourgish" lang="lb" hreflang="lb" data-title="Rank (Algeber)" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Anell_(matematega)" title="Anell (matematega) – Lombard" lang="lmo" hreflang="lmo" data-title="Anell (matematega)" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Gy%C5%B1r%C5%B1_(matematika)" title="Gyűrű (matematika) – Hungarian" lang="hu" hreflang="hu" data-title="Gyűrű (matematika)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B4%B2%E0%B4%AF%E0%B4%82_(%E0%B4%97%E0%B4%A3%E0%B4%BF%E0%B4%A4%E0%B4%82)" title="വലയം (ഗണിതം) – Malayalam" lang="ml" hreflang="ml" data-title="വലയം (ഗണിതം)" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B0%E0%A4%BF%E0%A4%82%E0%A4%97" title="रिंग – Marathi" lang="mr" hreflang="mr" data-title="रिंग" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Gelanggang_(matematik)" title="Gelanggang (matematik) – Malay" lang="ms" hreflang="ms" data-title="Gelanggang (matematik)" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ring_(wiskunde)" title="Ring (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Ring (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%92%B0_(%E6%95%B0%E5%AD%A6)" title="環 (数学) – Japanese" lang="ja" hreflang="ja" data-title="環 (数学)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ring_(matematikk)" title="Ring (matematikk) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Ring (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ring_i_matematikk" title="Ring i matematikk – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Ring i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-nov mw-list-item"><a href="https://nov.wikipedia.org/wiki/Ringe_(matematike)" title="Ringe (matematike) – Novial" lang="nov" hreflang="nov" data-title="Ringe (matematike)" data-language-autonym="Novial" data-language-local-name="Novial" class="interlanguage-link-target"><span>Novial</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Anel" title="Anel – Piedmontese" lang="pms" hreflang="pms" data-title="Anel" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pier%C5%9Bcie%C5%84_(matematyka)" title="Pierścień (matematyka) – Polish" lang="pl" hreflang="pl" data-title="Pierścień (matematyka)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Anel_(matem%C3%A1tica)" title="Anel (matemática) – Portuguese" lang="pt" hreflang="pt" data-title="Anel (matemática)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Inel_(matematic%C4%83)" title="Inel (matematică) – Romanian" lang="ro" hreflang="ro" data-title="Inel (matematică)" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D1%8C%D1%86%D0%BE_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Кольцо (математика) – Russian" lang="ru" hreflang="ru" data-title="Кольцо (математика)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Aneddu_(matim%C3%A0tica)" title="Aneddu (matimàtica) – Sicilian" lang="scn" hreflang="scn" data-title="Aneddu (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Ring_(mathematics)" title="Ring (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Ring (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Okruh_(algebra)" title="Okruh (algebra) – Slovak" lang="sk" hreflang="sk" data-title="Okruh (algebra)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kolobar_(algebra)" title="Kolobar (algebra) – Slovenian" lang="sl" hreflang="sl" data-title="Kolobar (algebra)" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D0%B0%D1%80%D1%81%D0%BA%D0%B8_%D0%BF%D1%80%D1%81%D1%82%D0%B5%D0%BD" title="Алгебарски прстен – Serbian" lang="sr" hreflang="sr" data-title="Алгебарски прстен" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Algebarski_prsten" title="Algebarski prsten – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Algebarski prsten" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Rengas_(matematiikka)" title="Rengas (matematiikka) – Finnish" lang="fi" hreflang="fi" data-title="Rengas (matematiikka)" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ring_(matematik)" title="Ring (matematik) – Swedish" lang="sv" hreflang="sv" data-title="Ring (matematik)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%B3%E0%AF%88%E0%AE%AF%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="வளையம் (கணிதம்) – Tamil" lang="ta" hreflang="ta" data-title="வளையம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B4%E0%B8%87_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="ริง (คณิตศาสตร์) – Thai" lang="th" hreflang="th" data-title="ริง (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Halka" title="Halka – Turkish" lang="tr" hreflang="tr" data-title="Halka" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D1%96%D0%BB%D1%8C%D1%86%D0%B5_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Кільце (алгебра) – Ukrainian" lang="uk" hreflang="uk" data-title="Кільце (алгебра)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AD%D9%84%D9%82%DB%81_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="حلقہ (ریاضی) – Urdu" lang="ur" hreflang="ur" data-title="حلقہ (ریاضی)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/V%C3%A0nh" title="Vành – Vietnamese" lang="vi" hreflang="vi" data-title="Vành" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%92%B0_(%E4%BB%A3%E6%95%B8)" title="環 (代數) – Literary Chinese" lang="lzh" hreflang="lzh" data-title="環 (代數)" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Rienk_(algebra)" title="Rienk (algebra) – West Flemish" lang="vls" hreflang="vls" data-title="Rienk (algebra)" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%8E%AF%EF%BC%88%E4%BB%A3%E6%95%B0%EF%BC%89" title="环(代数) – Wu" lang="wuu" hreflang="wuu" data-title="环(代数)" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%92%B0_(%E4%BB%A3%E6%95%B8)" title="環 (代數) – Cantonese" lang="yue" hreflang="yue" data-title="環 (代數)" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8E%AF_(%E4%BB%A3%E6%95%B0)" title="环 (代数) – Chinese" lang="zh" hreflang="zh" data-title="环 (代数)" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q161172#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ring_(mathematics)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Ring_(mathematics)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ring_(mathematics)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ring_(mathematics)&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ring_(mathematics)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ring_(mathematics)&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Ring_(mathematics)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Ring_(mathematics)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ring_(mathematics)&amp;oldid=1252011286" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ring_(mathematics)&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Ring_%28mathematics%29&amp;id=1252011286&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRing_%28mathematics%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRing_%28mathematics%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Ring_%28mathematics%29&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ring_(mathematics)&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Abstract_Algebra/Rings" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q161172" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Algebraic structure with addition and multiplication</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the algebraic structure. For other uses in mathematics, see <a href="/wiki/Ring_(disambiguation)#Mathematics" class="mw-redirect mw-disambig" title="Ring (disambiguation)">Ring (disambiguation) §&#160;Mathematics</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist" style="width: 20.5em;"><tbody><tr><th class="sidebar-title" style="padding-bottom:0.4em;"><span style="font-size: 8pt; font-weight: none"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structure</a> → Ring theory</span><br /><a href="/wiki/Ring_theory" title="Ring theory">Ring theory</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Basic concepts</div><div class="sidebar-list-content mw-collapsible-content" style="text-align: left;"><b><a class="mw-selflink selflink">Rings</a></b> <dl><dd>• <a href="/wiki/Subring" title="Subring">Subrings</a></dd> <dd>• <a href="/wiki/Ideal_(ring_theory)" title="Ideal (ring theory)">Ideal</a></dd> <dd>• <a href="/wiki/Quotient_ring" title="Quotient ring">Quotient ring</a> <dl><dd>• <a href="/wiki/Fractional_ideal" title="Fractional ideal">Fractional ideal</a></dd> <dd>• <a href="/wiki/Total_ring_of_fractions" title="Total ring of fractions">Total ring of fractions</a></dd></dl></dd> <dd>• <a href="/wiki/Product_of_rings" title="Product of rings">Product of rings</a></dd> <dd>•&#160;<a href="/wiki/Free_product_of_associative_algebras" title="Free product of associative algebras">Free product of associative algebras</a></dd> <dd>• <a href="/wiki/Tensor_product_of_algebras" title="Tensor product of algebras">Tensor product of algebras</a></dd></dl> <p><b><a href="/wiki/Ring_homomorphism" title="Ring homomorphism">Ring homomorphisms</a></b> </p> <dl><dd>• <a href="/wiki/Kernel_(algebra)#Ring_homomorphisms" title="Kernel (algebra)">Kernel</a></dd> <dd>• <a href="/wiki/Inner_automorphism#Ring_case" title="Inner automorphism">Inner automorphism</a></dd> <dd>• <a href="/wiki/Frobenius_endomorphism" title="Frobenius endomorphism">Frobenius endomorphism</a></dd></dl> <p><b><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structures</a></b> </p> <dl><dd>• <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a></dd> <dd>• <a href="/wiki/Associative_algebra" title="Associative algebra">Associative algebra</a></dd> <dd>• <a href="/wiki/Graded_ring" title="Graded ring">Graded ring</a></dd> <dd>• <a href="/wiki/Involutive_ring" class="mw-redirect" title="Involutive ring">Involutive ring</a></dd> <dd>• <a href="/wiki/Category_of_rings" title="Category of rings">Category of rings</a> <dl><dd>• <a href="/wiki/Integer" title="Integer">Initial ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span></dd> <dd>• <a href="/wiki/Zero_ring" title="Zero ring">Terminal ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e45ab495cb8cfbac68a9322af662c3d6c7dbe494" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.686ex; height:2.843ex;" alt="{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }"></span></dd></dl></dd></dl> <p><b>Related structures</b> </p> <dl><dd>• <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">Field</a> <dl><dd>• <a href="/wiki/Finite_field" title="Finite field">Finite field</a></dd></dl></dd> <dd>• <a href="/wiki/Non-associative_ring" class="mw-redirect" title="Non-associative ring">Non-associative ring</a> <dl><dd>• <a href="/wiki/Lie_ring" class="mw-redirect" title="Lie ring">Lie ring</a></dd> <dd>• <a href="/wiki/Jordan_ring" class="mw-redirect" title="Jordan ring">Jordan ring</a></dd></dl></dd> <dd>• <a href="/wiki/Semiring" title="Semiring">Semiring</a> <dl><dd>• <a href="/wiki/Semifield" title="Semifield">Semifield</a></dd></dl></dd></dl></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Commutative_algebra" title="Commutative algebra">Commutative algebra</a></div><div class="sidebar-list-content mw-collapsible-content" style="text-align: left;"><b><a href="/wiki/Commutative_ring" title="Commutative ring">Commutative rings</a></b> <dl><dd>• <a href="/wiki/Integral_domain" title="Integral domain">Integral domain</a> <dl><dd>• <a href="/wiki/Integrally_closed_domain" title="Integrally closed domain">Integrally closed domain</a></dd> <dd>• <a href="/wiki/GCD_domain" title="GCD domain">GCD domain</a></dd> <dd>• <a href="/wiki/Unique_factorization_domain" title="Unique factorization domain">Unique factorization domain</a></dd> <dd>• <a href="/wiki/Principal_ideal_domain" title="Principal ideal domain">Principal ideal domain</a></dd> <dd>• <a href="/wiki/Euclidean_domain" title="Euclidean domain">Euclidean domain</a></dd> <dd>• <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">Field</a> <dl><dd>• <a href="/wiki/Finite_field" title="Finite field">Finite field</a></dd></dl></dd> <dd>• <a href="/wiki/Polynomial_ring" title="Polynomial ring">Polynomial ring</a></dd> <dd>• <a href="/wiki/Formal_power_series_ring" class="mw-redirect" title="Formal power series ring">Formal power series ring</a></dd></dl></dd></dl> <p><b><a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">Algebraic number theory</a></b> </p> <dl><dd>• <a href="/wiki/Algebraic_number_field" title="Algebraic number field">Algebraic number field</a></dd> <dd>• <a href="/wiki/Integers_modulo_n" class="mw-redirect" title="Integers modulo n">Integers modulo <span class="texhtml mvar" style="font-style:italic;">n</span></a></dd> <dd>• <a href="/wiki/Ring_of_integers" title="Ring of integers">Ring of integers</a></dd> <dd>• <a href="/wiki/P-adic_integer" class="mw-redirect" title="P-adic integer"><i>p</i>-adic integers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span></dd> <dd>• <a href="/wiki/P-adic_number" title="P-adic number"><i>p</i>-adic numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f44bc6894c682710705f3ea74f33042e0acc3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.867ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q} _{p}}"></span></dd> <dd>• <a href="/wiki/Pr%C3%BCfer_group#The_Prüfer_group_as_a_ring" title="Prüfer group">Prüfer <i>p</i>-ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} (p^{\infty })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} (p^{\infty })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14af623e08c241266c125ad927dd35086ec8ce90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.404ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} (p^{\infty })}"></span></dd></dl></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Noncommutative_algebra" class="mw-redirect" title="Noncommutative algebra">Noncommutative algebra</a></div><div class="sidebar-list-content mw-collapsible-content" style="text-align: left;"><b><a href="/wiki/Noncommutative_ring" title="Noncommutative ring">Noncommutative rings</a></b> <dl><dd>• <a href="/wiki/Division_ring" title="Division ring">Division ring</a></dd> <dd>• <a href="/wiki/Semiprimitive_ring" title="Semiprimitive ring">Semiprimitive ring</a></dd> <dd>• <a href="/wiki/Simple_ring" title="Simple ring">Simple ring</a></dd> <dd>• <a href="/wiki/Commutator_(ring_theory)" class="mw-redirect" title="Commutator (ring theory)">Commutator</a></dd></dl> <p><b><a href="/wiki/Noncommutative_algebraic_geometry" title="Noncommutative algebraic geometry">Noncommutative algebraic geometry</a></b> </p><p><b><a href="/wiki/Free_algebra" title="Free algebra">Free algebra</a></b> </p><p><b><a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a></b> </p> <dl><dd>• <a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></dd></dl> <b><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></b></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Ring_theory_sidebar" title="Template:Ring theory sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Ring_theory_sidebar" title="Template talk:Ring theory sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Ring_theory_sidebar" title="Special:EditPage/Template:Ring theory sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <b>rings</b> are <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structures</a> that generalize <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a>: multiplication need not be <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a> and <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverses</a> need not exist. Informally, a <i>ring</i> is a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> equipped with two <a href="/wiki/Binary_operation" title="Binary operation">binary operations</a> satisfying properties analogous to those of <a href="/wiki/Addition" title="Addition">addition</a> and <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> of <a href="/wiki/Integer" title="Integer">integers</a>. Ring <a href="/wiki/Element_(mathematics)" title="Element (mathematics)">elements</a> may be numbers such as integers or <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, but they may also be non-numerical objects such as <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>, <a href="/wiki/Square_matrices" class="mw-redirect" title="Square matrices">square matrices</a>, <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a>, and <a href="/wiki/Power_series" title="Power series">power series</a>. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title" style="display:block;margin-bottom:0.35em;"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structures</a></th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Group_(mathematics)" title="Group (mathematics)">Group</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Group_(mathematics)" title="Group (mathematics)">Group</a></li> <li><a href="/wiki/Semigroup" title="Semigroup">Semigroup</a>&#160;/&#32;<a href="/wiki/Monoid" title="Monoid">Monoid</a></li> <li><a href="/wiki/Racks_and_quandles" title="Racks and quandles">Rack and quandle</a></li> <li><a href="/wiki/Quasigroup" title="Quasigroup">Quasigroup and loop</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Abelian_group" title="Abelian group">Abelian group</a></li> <li><a href="/wiki/Magma_(algebra)" title="Magma (algebra)">Magma</a></li> <li><a href="/wiki/Lie_group" title="Lie group">Lie group</a></li></ul> </div> <i><a href="/wiki/Group_theory" title="Group theory">Group theory</a></i></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a class="mw-selflink selflink">Ring</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a class="mw-selflink selflink">Ring</a></li> <li><a href="/wiki/Rng_(algebra)" title="Rng (algebra)">Rng</a></li> <li><a href="/wiki/Semiring" title="Semiring">Semiring</a></li> <li><a href="/wiki/Near-ring" title="Near-ring">Near-ring</a></li> <li><a href="/wiki/Commutative_ring" title="Commutative ring">Commutative ring</a></li> <li><a href="/wiki/Domain_(ring_theory)" title="Domain (ring theory)">Domain</a></li> <li><a href="/wiki/Integral_domain" title="Integral domain">Integral domain</a></li> <li><a href="/wiki/Field_(mathematics)" title="Field (mathematics)">Field</a></li> <li><a href="/wiki/Division_ring" title="Division ring">Division ring</a></li> <li><a href="/wiki/Lie_algebra#Lie_ring" title="Lie algebra">Lie ring</a></li></ul> </div> <i><a href="/wiki/Ring_theory" title="Ring theory">Ring theory</a></i></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Lattice_(order)" title="Lattice (order)">Lattice</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Lattice_(order)" title="Lattice (order)">Lattice</a></li> <li><a href="/wiki/Semilattice" title="Semilattice">Semilattice</a></li> <li><a href="/wiki/Complemented_lattice" title="Complemented lattice">Complemented lattice</a></li> <li><a href="/wiki/Total_order" title="Total order">Total order</a></li> <li><a href="/wiki/Heyting_algebra" title="Heyting algebra">Heyting algebra</a></li> <li><a href="/wiki/Boolean_algebra_(structure)" title="Boolean algebra (structure)">Boolean algebra</a></li></ul> </div> <ul><li><a href="/wiki/Map_of_lattices" title="Map of lattices">Map of lattices</a></li> <li><i><a href="/wiki/Lattice_(order)" title="Lattice (order)">Lattice theory</a></i></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a></li> <li><a href="/wiki/Group_with_operators" title="Group with operators">Group with operators</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div> <ul><li><i><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></i></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Algebra_over_a_field" title="Algebra over a field">Algebra</a>-like</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Algebra_over_a_field" title="Algebra over a field">Algebra</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Associative_algebra" title="Associative algebra">Associative</a></li> <li><a href="/wiki/Non-associative_algebra" title="Non-associative algebra">Non-associative</a></li> <li><a href="/wiki/Composition_algebra" title="Composition algebra">Composition algebra</a></li> <li><a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a></li> <li><a href="/wiki/Graded_ring" title="Graded ring">Graded</a></li> <li><a href="/wiki/Bialgebra" title="Bialgebra">Bialgebra</a></li> <li><a href="/wiki/Hopf_algebra" title="Hopf algebra">Hopf algebra</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Algebraic_structures" title="Template:Algebraic structures"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Algebraic_structures" title="Template talk:Algebraic structures"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Algebraic_structures" title="Special:EditPage/Template:Algebraic structures"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>Formally, a <i>ring</i> is a set endowed with two binary operations called <i>addition</i> and <i>multiplication</i> such that the ring is an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> with respect to the addition operator, and the multiplication operator is <a href="/wiki/Associative_property" title="Associative property">associative</a>, is <a href="/wiki/Distributive_property" title="Distributive property">distributive</a> over the addition operation, and has a multiplicative <a href="/wiki/Identity_element" title="Identity element">identity element</a>. (Some authors define rings without requiring a multiplicative identity and instead call the structure defined above a <i>ring with identity</i>. See <i><a href="#Variations_on_the_definition">§&#160;Variations on the definition</a></i>.) </p><p>Whether a ring is commutative has profound implications on its behavior. <a href="/wiki/Commutative_algebra" title="Commutative algebra">Commutative algebra</a>, the theory of <a href="/wiki/Commutative_ring" title="Commutative ring">commutative rings</a>, is a major branch of <a href="/wiki/Ring_theory" title="Ring theory">ring theory</a>. Its development has been greatly influenced by problems and ideas of <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic number theory</a> and <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a>. The simplest commutative rings are those that admit division by non-zero elements; such rings are called <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a>. </p><p>Examples of commutative rings include the set of integers with their standard addition and multiplication, the set of polynomials with their addition and multiplication, the <a href="/wiki/Coordinate_ring" class="mw-redirect" title="Coordinate ring">coordinate ring</a> of an <a href="/wiki/Affine_algebraic_variety" class="mw-redirect" title="Affine algebraic variety">affine algebraic variety</a>, and the <a href="/wiki/Ring_of_integers" title="Ring of integers">ring of integers</a> of a number field. Examples of noncommutative rings include the ring of <span class="texhtml"><i>n</i> × <i>n</i></span> real <a href="/wiki/Square_matrix" title="Square matrix">square matrices</a> with <span class="texhtml"><i>n</i> ≥ 2</span>, <a href="/wiki/Group_ring" title="Group ring">group rings</a> in <a href="/wiki/Representation_theory" title="Representation theory">representation theory</a>, <a href="/wiki/Operator_algebra" title="Operator algebra">operator algebras</a> in <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>, <a href="/wiki/Ring_of_differential_operators" class="mw-redirect" title="Ring of differential operators">rings of differential operators</a>, and <a href="/wiki/Cohomology_ring" title="Cohomology ring">cohomology rings</a> in <a href="/wiki/Topology" title="Topology">topology</a>. </p><p>The conceptualization of rings spanned the 1870s to the 1920s, with key contributions by <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Dedekind</a>, <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a>, <a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Fraenkel</a>, and <a href="/wiki/Emmy_Noether" title="Emmy Noether">Noether</a>. Rings were first formalized as a generalization of <a href="/wiki/Dedekind_domain" title="Dedekind domain">Dedekind domains</a> that occur in <a href="/wiki/Number_theory" title="Number theory">number theory</a>, and of <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial rings</a> and rings of invariants that occur in <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a> and <a href="/wiki/Invariant_theory" title="Invariant theory">invariant theory</a>. They later proved useful in other branches of mathematics such as <a href="/wiki/Geometry" title="Geometry">geometry</a> and <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">analysis</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b>ring</b> is a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="texhtml mvar" style="font-style:italic;">R</span> equipped with two binary operations<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> + (addition) and ⋅ (multiplication) satisfying the following three sets of axioms, called the <b>ring axioms</b>:<sup id="cite_ref-FOOTNOTEBourbaki198996Ch_1,_§8.1_2-0" class="reference"><a href="#cite_note-FOOTNOTEBourbaki198996Ch_1,_§8.1-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEMac_LaneBirkhoff196785_3-0" class="reference"><a href="#cite_note-FOOTNOTEMac_LaneBirkhoff196785-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTELang200283_4-0" class="reference"><a href="#cite_note-FOOTNOTELang200283-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li><span class="texhtml mvar" style="font-style:italic;">R</span> is an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> under addition, meaning that: <ul><li><span class="texhtml">(<i>a</i> + <i>b</i>) + <i>c</i> = <i>a</i> + (<i>b</i> + <i>c</i>)</span> for all <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> (that is, <span class="texhtml">+</span> is <a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associative</a>).</li> <li><span class="texhtml"><i>a</i> + <i>b</i> = <i>b</i> + <i>a</i></span> for all <span class="texhtml"><i>a</i>, <i>b</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> (that is, <span class="texhtml">+</span> is <a href="/wiki/Commutativity" class="mw-redirect" title="Commutativity">commutative</a>).</li> <li>There is an element <span class="texhtml">0</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> such that <span class="texhtml"><i>a</i> + 0 = <i>a</i></span> for all <span class="texhtml mvar" style="font-style:italic;">a</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> (that is, <span class="texhtml">0</span> is the <a href="/wiki/Additive_identity" title="Additive identity">additive identity</a>).</li> <li>For each <span class="texhtml mvar" style="font-style:italic;">a</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> there exists <span class="texhtml">−<i>a</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> such that <span class="texhtml"><i>a</i> + (−<i>a</i>) = 0</span> (that is, <span class="texhtml">−<i>a</i></span> is the <a href="/wiki/Additive_inverse" title="Additive inverse">additive inverse</a> of <span class="texhtml mvar" style="font-style:italic;">a</span>).</li></ul></li> <li><span class="texhtml mvar" style="font-style:italic;">R</span> is a <a href="/wiki/Monoid" title="Monoid">monoid</a> under multiplication, meaning that: <ul><li><span class="texhtml">(<i>a</i> · <i>b</i>) · <i>c</i> = <i>a</i> · (<i>b</i> · <i>c</i>)</span> for all <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> (that is, <span class="texhtml">⋅</span> is associative).</li> <li>There is an element <span class="texhtml">1</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> such that <span class="texhtml"><i>a</i> · 1 = <i>a</i></span> and <span class="texhtml">1 · <i>a</i> = <i>a</i></span> for all <span class="texhtml mvar" style="font-style:italic;">a</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> (that is, <span class="texhtml">1</span> is the <a href="/wiki/Multiplicative_identity" class="mw-redirect" title="Multiplicative identity">multiplicative identity</a>).<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>Multiplication is <a href="/wiki/Distributive_law" class="mw-redirect" title="Distributive law">distributive</a> with respect to addition, meaning that: <ul><li><span class="texhtml"><i>a</i> · (<i>b</i> + <i>c</i>) = (<i>a</i> · <i>b</i>) + (<i>a</i> · <i>c</i>)</span> for all <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> (left distributivity).</li> <li><span class="texhtml">(<i>b</i> + <i>c</i>) · <i>a</i> = (<i>b</i> · <i>a</i>) + (<i>c</i> · <i>a</i>)</span> for all <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> (right distributivity).</li></ul></li></ol> <p>In notation, the multiplication symbol <span class="texhtml">·</span> is often omitted, in which case <span class="texhtml"><i>a</i> · <i>b</i></span> is written as <span class="texhtml"><i>ab</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Variations_on_the_definition">Variations on the definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=2" title="Edit section: Variations on the definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the terminology of this article, a ring is defined to have a multiplicative identity, while a structure with the same axiomatic definition but without the requirement for a multiplicative identity is instead called a "<a href="/wiki/Rng_(algebra)" title="Rng (algebra)">rng</a>" (IPA: <span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="&#39;r&#39; in &#39;rye&#39;">r</span><span title="/ʊ/: &#39;u&#39; in &#39;push&#39;">ʊ</span><span title="/ŋ/: &#39;ng&#39; in &#39;sing&#39;">ŋ</span></span>/</a></span></span>) with a missing "i". For example, the set of <a href="/wiki/Even_integer" class="mw-redirect" title="Even integer">even integers</a> with the usual + and ⋅ is a rng, but not a ring. As explained in <i><a href="#History">§&#160;History</a></i> below, many authors apply the term "ring" without requiring a multiplicative identity. </p><p>Although ring addition is <a href="/wiki/Commutative_law" class="mw-redirect" title="Commutative law">commutative</a>, ring multiplication is not required to be commutative: <span class="texhtml mvar" style="font-style:italic;">ab</span> need not necessarily equal <span class="texhtml"><i>ba</i></span>. Rings that also satisfy commutativity for multiplication (such as the ring of integers) are called <i><a href="/wiki/Commutative_ring" title="Commutative ring">commutative rings</a></i>. Books on commutative algebra or algebraic geometry often adopt the convention that <i>ring</i> means <i>commutative ring</i>, to simplify terminology. </p><p>In a ring, multiplicative inverses are not required to exist. A non<a href="/wiki/Zero_ring" title="Zero ring">zero</a> commutative ring in which every nonzero element has a <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> is called a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>. </p><p>The additive group of a ring is the underlying set equipped with only the operation of addition. Although the definition requires that the additive group be abelian, this can be inferred from the other ring axioms.<sup id="cite_ref-FOOTNOTEIsaacs1994160_6-0" class="reference"><a href="#cite_note-FOOTNOTEIsaacs1994160-6"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The proof makes use of the "<span class="texhtml">1</span>", and does not work in a rng. (For a rng, omitting the axiom of commutativity of addition leaves it inferable from the remaining rng assumptions only for elements that are products: <span class="texhtml"><i>ab</i> + <i>cd</i> = <i>cd</i> + <i>ab</i></span>.) </p><p>There are a few authors who use the term "ring" to refer to structures in which there is no requirement for multiplication to be associative.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> For these authors, every <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebra</a> is a "ring". </p> <div class="mw-heading mw-heading2"><h2 id="Illustration">Illustration</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=3" title="Edit section: Illustration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Number-line.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Number-line.svg/410px-Number-line.svg.png" decoding="async" width="410" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Number-line.svg/615px-Number-line.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Number-line.svg/820px-Number-line.svg.png 2x" data-file-width="750" data-file-height="50" /></a><figcaption>The <a href="/wiki/Integer" title="Integer">integers</a>, along with the two operations of <a href="/wiki/Addition" title="Addition">addition</a> and <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>, form the prototypical example of a ring.</figcaption></figure> <p>The most familiar example of a ring is the set of all integers <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3aa4cb112cbe4f94a3ff8569f869c31dce5fce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.197ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} ,}"></span>&#8288;</span> consisting of the <a href="/wiki/Number" title="Number">numbers</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dots ,-5,-4,-3,-2,-1,0,1,2,3,4,5,\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dots ,-5,-4,-3,-2,-1,0,1,2,3,4,5,\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd12a48efb912d354df2a4b13958229538efd27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:40.069ex; height:2.509ex;" alt="{\displaystyle \dots ,-5,-4,-3,-2,-1,0,1,2,3,4,5,\dots }"></span></dd></dl> <p>The axioms of a ring were elaborated as a generalization of familiar properties of addition and multiplication of integers. </p> <div class="mw-heading mw-heading3"><h3 id="Some_properties">Some properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=4" title="Edit section: Some properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some basic properties of a ring follow immediately from the axioms: </p> <ul><li>The additive identity is unique.</li> <li>The additive inverse of each element is unique.</li> <li>The multiplicative identity is unique.</li> <li>For any element <span class="texhtml mvar" style="font-style:italic;">x</span> in a ring <span class="texhtml mvar" style="font-style:italic;">R</span>, one has <span class="texhtml"><i>x</i>0 = 0 = 0<i>x</i></span> (zero is an <a href="/wiki/Absorbing_element" title="Absorbing element">absorbing element</a> with respect to multiplication) and <span class="texhtml">(–1)<i>x</i> = –<i>x</i></span>.</li> <li>If <span class="texhtml">0 = 1</span> in a ring <span class="texhtml mvar" style="font-style:italic;">R</span> (or more generally, <span class="texhtml">0</span> is a unit element), then <span class="texhtml mvar" style="font-style:italic;">R</span> has only one element, and is called the <a href="/wiki/Zero_ring" title="Zero ring">zero ring</a>.</li> <li>If a ring <span class="texhtml mvar" style="font-style:italic;">R</span> contains the zero ring as a subring, then <span class="texhtml mvar" style="font-style:italic;">R</span> itself is the zero ring.<sup id="cite_ref-FOOTNOTEIsaacs1994161_8-0" class="reference"><a href="#cite_note-FOOTNOTEIsaacs1994161-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Binomial_formula" class="mw-redirect" title="Binomial formula">binomial formula</a> holds for any <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> satisfying <span class="texhtml"><i>xy</i> = <i>yx</i></span>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Example:_Integers_modulo_4">Example: Integers modulo 4</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=5" title="Edit section: Example: Integers modulo 4"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">Modular arithmetic</a></div> <p>Equip the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} =\left\{{\overline {0}},{\overline {1}},{\overline {2}},{\overline {3}}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>1</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>2</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} =\left\{{\overline {0}},{\overline {1}},{\overline {2}},{\overline {3}}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d75fb08c8e035122a0d6bed3e3513fcb24447cdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.836ex; height:4.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} =\left\{{\overline {0}},{\overline {1}},{\overline {2}},{\overline {3}}\right\}}"></span> with the following operations: </p> <ul><li>The sum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {x}}+{\overline {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {x}}+{\overline {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e6d71e60fdb7117c681854580a4bdebb0fb730f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.566ex; height:2.676ex;" alt="{\displaystyle {\overline {x}}+{\overline {y}}}"></span> in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3ded1f832ca4738a18c9e4779381bd9591c058" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"></span>&#8288;</span> is the remainder when the integer <span class="texhtml"><i>x</i> + <i>y</i></span> is divided by <span class="texhtml">4</span> (as <span class="texhtml"><i>x</i> + <i>y</i></span> is always smaller than <span class="texhtml">8</span>, this remainder is either <span class="texhtml"><i>x</i> + <i>y</i></span> or <span class="texhtml"><i>x</i> + <i>y</i> − 4</span>). For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {2}}+{\overline {3}}={\overline {1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>2</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>1</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {2}}+{\overline {3}}={\overline {1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/797a15b50e32954f45330f42720bc3d016214b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.771ex; height:3.009ex;" alt="{\displaystyle {\overline {2}}+{\overline {3}}={\overline {1}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {3}}+{\overline {3}}={\overline {2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>2</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {3}}+{\overline {3}}={\overline {2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f542bb21871274e7f0cb2d353c1257704a65623" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.418ex; height:3.009ex;" alt="{\displaystyle {\overline {3}}+{\overline {3}}={\overline {2}}.}"></span></li> <li>The product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {x}}\cdot {\overline {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {x}}\cdot {\overline {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50794127a87517f127ad072dd45bee54fffcaed6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.405ex; height:2.676ex;" alt="{\displaystyle {\overline {x}}\cdot {\overline {y}}}"></span> in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3ded1f832ca4738a18c9e4779381bd9591c058" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"></span>&#8288;</span> is the remainder when the integer <span class="texhtml mvar" style="font-style:italic;">xy</span> is divided by <span class="texhtml">4</span>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {2}}\cdot {\overline {3}}={\overline {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>2</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>2</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {2}}\cdot {\overline {3}}={\overline {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ab24b33a90fe702102a430ea7fe1c6924666fab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.61ex; height:2.843ex;" alt="{\displaystyle {\overline {2}}\cdot {\overline {3}}={\overline {2}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {3}}\cdot {\overline {3}}={\overline {1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>1</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {3}}\cdot {\overline {3}}={\overline {1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12fe1b546fb9d2cfed9b69e2dc0dd01fd5896565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.257ex; height:2.843ex;" alt="{\displaystyle {\overline {3}}\cdot {\overline {3}}={\overline {1}}.}"></span></li></ul> <p>Then <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3ded1f832ca4738a18c9e4779381bd9591c058" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"></span>&#8288;</span> is a ring: each axiom follows from the corresponding axiom for <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89f4f38f32c2068bca9dc701d13b03dd4a5d52ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.197ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} .}"></span>&#8288;</span> If <span class="texhtml mvar" style="font-style:italic;">x</span> is an integer, the remainder of <span class="texhtml mvar" style="font-style:italic;">x</span> when divided by <span class="texhtml">4</span> may be considered as an element of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9954f452bf8c42d2e57f9fee109cd3b119a9c32d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} ,}"></span>&#8288;</span> and this element is often denoted by "<span class="texhtml"><i>x</i> mod 4</span>" or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {x}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {x}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daaa5bc4a6855a8512f663ce36480a3746e202ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.091ex; height:2.676ex;" alt="{\displaystyle {\overline {x}},}"></span> which is consistent with the notation for <span class="texhtml">0, 1, 2, 3</span>. The additive inverse of any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fa4039bbc2a0048c3a3c02e5fd24390cab0dc97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.445ex; height:2.343ex;" alt="{\displaystyle {\overline {x}}}"></span> in <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3ded1f832ca4738a18c9e4779381bd9591c058" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"></span>&#8288;</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\overline {x}}={\overline {-x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\overline {x}}={\overline {-x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/012b00df35e4d48800fb2c96e5b4b5c3993d3f65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.251ex; height:2.843ex;" alt="{\displaystyle -{\overline {x}}={\overline {-x}}.}"></span> For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\overline {3}}={\overline {-3}}={\overline {1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>3</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>1</mn> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\overline {3}}={\overline {-3}}={\overline {1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ee7c0f8b89615ff3d2f3ccb13ccc869eb65e8a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.292ex; height:3.009ex;" alt="{\displaystyle -{\overline {3}}={\overline {-3}}={\overline {1}}.}"></span> </p><p><span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3ded1f832ca4738a18c9e4779381bd9591c058" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"></span>&#8288;</span> has a subring <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /2\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /2\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b3bb21abe942aa9c0c63bae35a0c38905e1712c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /2\mathbb {Z} }"></span>&#8288;</span>, and if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is prime, then <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /p\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /p\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57869a3a3c4c431cc49c4c7ab1d9c7ea692b517b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.433ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /p\mathbb {Z} }"></span>&#8288;</span> has no subrings. </p> <div class="mw-heading mw-heading3"><h3 id="Example:_2-by-2_matrices">Example: 2-by-2 matrices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=6" title="Edit section: Example: 2-by-2 matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The set of 2-by-2 <a href="/wiki/Square_matrices" class="mw-redirect" title="Square matrices">square matrices</a> with entries in a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml mvar" style="font-style:italic;">F</span> is<sup id="cite_ref-FOOTNOTELam2001Theorem_3.1_9-0" class="reference"><a href="#cite_note-FOOTNOTELam2001Theorem_3.1-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTELang2005Ch_V,_§3_10-0" class="reference"><a href="#cite_note-FOOTNOTELang2005Ch_V,_§3-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESerre20063_11-0" class="reference"><a href="#cite_note-FOOTNOTESerre20063-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTESerre1979158_12-0" class="reference"><a href="#cite_note-FOOTNOTESerre1979158-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {M} _{2}(F)=\left\{\left.{\begin{pmatrix}a&amp;b\\c&amp;d\end{pmatrix}}\right|\ a,b,c,d\in F\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mi>d</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {M} _{2}(F)=\left\{\left.{\begin{pmatrix}a&amp;b\\c&amp;d\end{pmatrix}}\right|\ a,b,c,d\in F\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301e5b10afa8978219c607b62983e5040b7fee40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.043ex; height:6.176ex;" alt="{\displaystyle \operatorname {M} _{2}(F)=\left\{\left.{\begin{pmatrix}a&amp;b\\c&amp;d\end{pmatrix}}\right|\ a,b,c,d\in F\right\}.}"></span></dd></dl> <p>With the operations of matrix addition and <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {M} _{2}(F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {M} _{2}(F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47e46d4eb6cbb2ef7434911b05cb58bc2ec4ac96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.735ex; height:2.843ex;" alt="{\displaystyle \operatorname {M} _{2}(F)}"></span> satisfies the above ring axioms. The element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\begin{smallmatrix}1&amp;0\\0&amp;1\end{smallmatrix}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\begin{smallmatrix}1&amp;0\\0&amp;1\end{smallmatrix}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e2c32857c6e3dd650a1af2ce5e3c1af4001c65e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:5.299ex; height:3.343ex;" alt="{\displaystyle \left({\begin{smallmatrix}1&amp;0\\0&amp;1\end{smallmatrix}}\right)}"></span> is the multiplicative identity of the ring. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\left({\begin{smallmatrix}0&amp;1\\1&amp;0\end{smallmatrix}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\left({\begin{smallmatrix}0&amp;1\\1&amp;0\end{smallmatrix}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ac7bfb99cd7b15476b202cc8918d85b98e1e40b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.14ex; height:3.343ex;" alt="{\displaystyle A=\left({\begin{smallmatrix}0&amp;1\\1&amp;0\end{smallmatrix}}\right)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=\left({\begin{smallmatrix}0&amp;1\\0&amp;0\end{smallmatrix}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=\left({\begin{smallmatrix}0&amp;1\\0&amp;0\end{smallmatrix}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85adef3f770948fce8dc8439b92f11d5aaa0532d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.195ex; height:3.343ex;" alt="{\displaystyle B=\left({\begin{smallmatrix}0&amp;1\\0&amp;0\end{smallmatrix}}\right),}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB=\left({\begin{smallmatrix}0&amp;0\\0&amp;1\end{smallmatrix}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB=\left({\begin{smallmatrix}0&amp;0\\0&amp;1\end{smallmatrix}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e180f61c282e04e3668d3e16f7e232dd2a6970b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.904ex; height:3.343ex;" alt="{\displaystyle AB=\left({\begin{smallmatrix}0&amp;0\\0&amp;1\end{smallmatrix}}\right)}"></span> while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BA=\left({\begin{smallmatrix}1&amp;0\\0&amp;0\end{smallmatrix}}\right);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>A</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle scriptlevel="1"> <mtable rowspacing=".2em" columnspacing="0.333em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mstyle> </mrow> <mo>)</mo> </mrow> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BA=\left({\begin{smallmatrix}1&amp;0\\0&amp;0\end{smallmatrix}}\right);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab21accfa153a9a1b0fc47155bf11b8d1fb644ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.938ex; height:3.343ex;" alt="{\displaystyle BA=\left({\begin{smallmatrix}1&amp;0\\0&amp;0\end{smallmatrix}}\right);}"></span> this example shows that the ring is noncommutative. </p><p>More generally, for any ring <span class="texhtml mvar" style="font-style:italic;">R</span>, commutative or not, and any nonnegative integer <span class="texhtml mvar" style="font-style:italic;">n</span>, the square matrices of dimension <span class="texhtml mvar" style="font-style:italic;">n</span> with entries in <span class="texhtml mvar" style="font-style:italic;">R</span> form a ring; see <i><a href="/wiki/Matrix_ring" title="Matrix ring">Matrix ring</a></i>. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=7" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Ring_theory#History" title="Ring theory">Ring theory §&#160;History</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Dedekind.jpeg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Dedekind.jpeg/100px-Dedekind.jpeg" decoding="async" width="100" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Dedekind.jpeg/150px-Dedekind.jpeg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Dedekind.jpeg/200px-Dedekind.jpeg 2x" data-file-width="262" data-file-height="326" /></a><figcaption><a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a>, one of the founders of <a href="/wiki/Ring_theory" title="Ring theory">ring theory</a></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Dedekind">Dedekind</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=8" title="Edit section: Dedekind"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The study of rings originated from the theory of <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial rings</a> and the theory of <a href="/wiki/Algebraic_integer" title="Algebraic integer">algebraic integers</a>.<sup id="cite_ref-history_13-0" class="reference"><a href="#cite_note-history-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> In 1871, <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a> defined the concept of the ring of integers of a number field.<sup id="cite_ref-FOOTNOTEKleiner199827_14-0" class="reference"><a href="#cite_note-FOOTNOTEKleiner199827-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> In this context, he introduced the terms "ideal" (inspired by <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Ernst Kummer</a>'s notion of ideal number) and "module" and studied their properties. Dedekind did not use the term "ring" and did not define the concept of a ring in a general setting. </p> <div class="mw-heading mw-heading3"><h3 id="Hilbert">Hilbert</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=9" title="Edit section: Hilbert"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The term "Zahlring" (number ring) was coined by <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> in 1892 and published in 1897.<sup id="cite_ref-FOOTNOTEHilbert1897_15-0" class="reference"><a href="#cite_note-FOOTNOTEHilbert1897-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> In 19th century German, the word "Ring" could mean "association", which is still used today in English in a limited sense (for example, spy ring),<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2023)">citation needed</span></a></i>&#93;</sup> so if that were the etymology then it would be similar to the way "group" entered mathematics by being a non-technical word for "collection of related things". According to Harvey Cohn, Hilbert used the term for a ring that had the property of "circling directly back" to an element of itself (in the sense of an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence</a>).<sup id="cite_ref-FOOTNOTECohn1980&#91;httpsarchiveorgdetailsadvancednumberth00cohn_0page49_p._49&#93;_16-0" class="reference"><a href="#cite_note-FOOTNOTECohn1980[httpsarchiveorgdetailsadvancednumberth00cohn_0page49_p._49]-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Specifically, in a ring of algebraic integers, all high powers of an algebraic integer can be written as an integral combination of a fixed set of lower powers, and thus the powers "cycle back". For instance, if <span class="texhtml"><i>a</i><sup>3</sup> − 4<i>a</i> + 1 = 0</span> then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}a^{3}&amp;=4a-1,\\a^{4}&amp;=4a^{2}-a,\\a^{5}&amp;=-a^{2}+16a-4,\\a^{6}&amp;=16a^{2}-8a+1,\\a^{7}&amp;=-8a^{2}+65a-16,\\\vdots \ &amp;\qquad \vdots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>4</mn> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>4</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>16</mn> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>16</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> <mi>a</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>65</mn> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mn>16</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> <mtext>&#xA0;</mtext> </mtd> <mtd> <mi></mi> <mspace width="2em" /> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}a^{3}&amp;=4a-1,\\a^{4}&amp;=4a^{2}-a,\\a^{5}&amp;=-a^{2}+16a-4,\\a^{6}&amp;=16a^{2}-8a+1,\\a^{7}&amp;=-8a^{2}+65a-16,\\\vdots \ &amp;\qquad \vdots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c1203276972526f071f434f80d1c18aecec01d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.505ex; width:23.596ex; height:20.176ex;" alt="{\displaystyle {\begin{aligned}a^{3}&amp;=4a-1,\\a^{4}&amp;=4a^{2}-a,\\a^{5}&amp;=-a^{2}+16a-4,\\a^{6}&amp;=16a^{2}-8a+1,\\a^{7}&amp;=-8a^{2}+65a-16,\\\vdots \ &amp;\qquad \vdots \end{aligned}}}"></span></dd></dl> <p>and so on; in general, <span class="texhtml"><i>a</i><sup><i>n</i></sup></span> is going to be an integral linear combination of <span class="texhtml">1</span>, <span class="texhtml"><i>a</i></span>, and <span class="texhtml"><i>a</i><sup>2</sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Fraenkel_and_Noether">Fraenkel and Noether</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=10" title="Edit section: Fraenkel and Noether"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first axiomatic definition of a ring was given by <a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Adolf Fraenkel</a> in 1915,<sup id="cite_ref-FOOTNOTEFraenkel1915143–145_17-0" class="reference"><a href="#cite_note-FOOTNOTEFraenkel1915143–145-17"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEJacobson200986footnote_1_18-0" class="reference"><a href="#cite_note-FOOTNOTEJacobson200986footnote_1-18"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> but his axioms were stricter than those in the modern definition. For instance, he required every <a href="/wiki/Zero_divisor" title="Zero divisor">non-zero-divisor</a> to have a <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a>.<sup id="cite_ref-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;8)&lt;/sub&gt;_19-0" class="reference"><a href="#cite_note-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;8)&lt;/sub&gt;-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> In 1921, <a href="/wiki/Emmy_Noether" title="Emmy Noether">Emmy Noether</a> gave a modern axiomatic definition of commutative rings (with and without 1) and developed the foundations of commutative ring theory in her paper <i>Idealtheorie in Ringbereichen</i>.<sup id="cite_ref-FOOTNOTENoether192129_20-0" class="reference"><a href="#cite_note-FOOTNOTENoether192129-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Multiplicative_identity_and_the_term_&quot;ring&quot;"><span id="Multiplicative_identity_and_the_term_.22ring.22"></span>Multiplicative identity and the term "ring"</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=11" title="Edit section: Multiplicative identity and the term &quot;ring&quot;"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fraenkel's axioms for a "ring" included that of a multiplicative identity,<sup id="cite_ref-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;7)&lt;/sub&gt;_21-0" class="reference"><a href="#cite_note-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;7)&lt;/sub&gt;-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> whereas Noether's did not.<sup id="cite_ref-FOOTNOTENoether192129_20-1" class="reference"><a href="#cite_note-FOOTNOTENoether192129-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p><p>Most or all books on algebra<sup id="cite_ref-FOOTNOTEvan_der_Waerden1930_22-0" class="reference"><a href="#cite_note-FOOTNOTEvan_der_Waerden1930-22"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEZariskiSamuel1958_23-0" class="reference"><a href="#cite_note-FOOTNOTEZariskiSamuel1958-23"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> up to around 1960 followed Noether's convention of not requiring a <span class="texhtml">1</span> for a "ring". Starting in the 1960s, it became increasingly common to see books including the existence of <span class="texhtml">1</span> in the definition of "ring", especially in advanced books by notable authors such as Artin,<sup id="cite_ref-FOOTNOTEArtin2018346_24-0" class="reference"><a href="#cite_note-FOOTNOTEArtin2018346-24"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Bourbaki,<sup id="cite_ref-FOOTNOTEBourbaki198996_25-0" class="reference"><a href="#cite_note-FOOTNOTEBourbaki198996-25"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> Eisenbud,<sup id="cite_ref-FOOTNOTEEisenbud199511_26-0" class="reference"><a href="#cite_note-FOOTNOTEEisenbud199511-26"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> and Lang.<sup id="cite_ref-FOOTNOTELang200283_4-1" class="reference"><a href="#cite_note-FOOTNOTELang200283-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> There are also books published as late as 2022 that use the term without the requirement for a <span class="texhtml">1</span>.<sup id="cite_ref-FOOTNOTEGallian2006235_27-0" class="reference"><a href="#cite_note-FOOTNOTEGallian2006235-27"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEHungerford199742_28-0" class="reference"><a href="#cite_note-FOOTNOTEHungerford199742-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEWarner1965188_29-0" class="reference"><a href="#cite_note-FOOTNOTEWarner1965188-29"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEGarling2022_30-0" class="reference"><a href="#cite_note-FOOTNOTEGarling2022-30"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Likewise, the <a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a> does not require unit elements in rings.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> In a research article, the authors often specify which definition of ring they use in the beginning of that article. </p><p>Gardner and Wiegandt assert that, when dealing with several objects in the category of rings (as opposed to working with a fixed ring), if one requires all rings to have a <span class="texhtml">1</span>, then some consequences include the lack of existence of infinite direct sums of rings, and that proper direct summands of rings are not subrings. They conclude that "in many, maybe most, branches of ring theory the requirement of the existence of a unity element is not sensible, and therefore unacceptable."<sup id="cite_ref-FOOTNOTEGardnerWiegandt2003_32-0" class="reference"><a href="#cite_note-FOOTNOTEGardnerWiegandt2003-32"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Bjorn_Poonen" title="Bjorn Poonen">Poonen</a> makes the counterargument that the natural notion for rings would be the <a href="/wiki/Direct_product" title="Direct product">direct product</a> rather than the direct sum. However, his main argument is that rings without a multiplicative identity are not totally associative, in the sense that they do not contain the product of any finite sequence of ring elements, including the empty sequence.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEPoonen2019_34-0" class="reference"><a href="#cite_note-FOOTNOTEPoonen2019-34"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>Authors who follow either convention for the use of the term "ring" may use one of the following terms to refer to objects satisfying the other convention: </p> <dl><dd><ul><li>to include a requirement for a multiplicative identity: "unital ring", "unitary ring", "unit ring", "ring with unity", "ring with identity", "ring with a unit",<sup id="cite_ref-FOOTNOTEWilder1965176_35-0" class="reference"><a href="#cite_note-FOOTNOTEWilder1965176-35"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> or "ring with&#160;1".<sup id="cite_ref-FOOTNOTERotman19987_36-0" class="reference"><a href="#cite_note-FOOTNOTERotman19987-36"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup></li> <li>to omit a requirement for a multiplicative identity: "rng"<sup id="cite_ref-FOOTNOTEJacobson2009155_37-0" class="reference"><a href="#cite_note-FOOTNOTEJacobson2009155-37"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> or "pseudo-ring",<sup id="cite_ref-FOOTNOTEBourbaki198998_38-0" class="reference"><a href="#cite_note-FOOTNOTEBourbaki198998-38"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> although the latter may be confusing because it also has other meanings.</li></ul></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Basic_examples">Basic examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=12" title="Edit section: Basic examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Associative_algebra#Examples" title="Associative algebra">Associative algebra §&#160;Examples</a></div> <div class="mw-heading mw-heading3"><h3 id="Commutative_rings">Commutative rings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=13" title="Edit section: Commutative rings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The prototypical example is the ring of integers with the two operations of addition and multiplication.</li> <li>The rational, real and complex numbers are commutative rings of a type called <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a>.</li> <li>A unital associative <a href="/wiki/Algebra_over_a_ring" class="mw-redirect" title="Algebra over a ring">algebra over a commutative ring</a> <span class="texhtml mvar" style="font-style:italic;">R</span> is itself a ring as well as an <a href="/wiki/Module_(mathematics)" title="Module (mathematics)"><span class="texhtml mvar" style="font-style:italic;">R</span>-module</a>. Some examples: <ul><li>The algebra <span class="texhtml"><i>R</i>[<i>X</i>]</span> of <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomials</a> with coefficients in <span class="texhtml mvar" style="font-style:italic;">R</span>.</li> <li>The algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[[X_{1},\dots ,X_{n}]]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[[X_{1},\dots ,X_{n}]]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9faeec0b7c5fd0fcd5c02b2d94988eb501c67591" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.651ex; height:2.843ex;" alt="{\displaystyle R[[X_{1},\dots ,X_{n}]]}"></span> of <a href="/wiki/Formal_power_series" title="Formal power series">formal power series</a> with coefficients in <span class="texhtml mvar" style="font-style:italic;">R</span>.</li> <li>The set of all <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> real-valued <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> defined on the real line forms a commutative <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>&#8288;</span>-algebra. The operations are <a href="/wiki/Pointwise" title="Pointwise">pointwise</a> addition and multiplication of functions.</li> <li>Let <span class="texhtml mvar" style="font-style:italic;">X</span> be a set, and let <span class="texhtml mvar" style="font-style:italic;">R</span> be a ring. Then the set of all functions from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">R</span> forms a ring, which is commutative if <span class="texhtml mvar" style="font-style:italic;">R</span> is commutative.</li></ul></li> <li>The ring of <a href="/wiki/Quadratic_integers" class="mw-redirect" title="Quadratic integers">quadratic integers</a>, the integral closure of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span> in a quadratic extension of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869719f08f506bf866043442858fb3da1d4b4b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.455ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} .}"></span>&#8288;</span> It is a subring of the ring of all <a href="/wiki/Algebraic_integers" class="mw-redirect" title="Algebraic integers">algebraic integers</a>.</li> <li>The ring of <a href="/wiki/Profinite_integer" title="Profinite integer">profinite integers</a> <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\mathbb {Z} }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mathbb {Z} }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8098caf3ca92d1ff05ae06a57d6c0f8f074939c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.197ex; height:3.176ex;" alt="{\displaystyle {\widehat {\mathbb {Z} }},}"></span>&#8288;</span> the (infinite) product of the rings of <span class="texhtml mvar" style="font-style:italic;">p</span>-adic integers <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc1df7227ef11fe88dccd2dae3adc7bbdeae5f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}}"></span>&#8288;</span> over all prime numbers <span class="texhtml mvar" style="font-style:italic;">p</span>.</li> <li>The <a href="/wiki/Hecke_algebra" title="Hecke algebra">Hecke ring</a>, the ring generated by Hecke operators.</li> <li>If <span class="texhtml mvar" style="font-style:italic;">S</span> is a set, then the <a href="/wiki/Power_set" title="Power set">power set</a> of <span class="texhtml mvar" style="font-style:italic;">S</span> becomes a ring if we define addition to be the <a href="/wiki/Symmetric_difference" title="Symmetric difference">symmetric difference</a> of sets and multiplication to be <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a>. This is an example of a <a href="/wiki/Boolean_ring" title="Boolean ring">Boolean ring</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Noncommutative_rings">Noncommutative rings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=14" title="Edit section: Noncommutative rings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>For any ring <span class="texhtml mvar" style="font-style:italic;">R</span> and any natural number <span class="texhtml mvar" style="font-style:italic;">n</span>, the set of all square <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> with entries from <span class="texhtml mvar" style="font-style:italic;">R</span>, forms a ring with matrix addition and matrix multiplication as operations. For <span class="texhtml"><i>n</i> = 1</span>, this matrix ring is isomorphic to <span class="texhtml mvar" style="font-style:italic;">R</span> itself. For <span class="texhtml"><i>n</i> &gt; 1</span> (and <span class="texhtml mvar" style="font-style:italic;">R</span> not the zero ring), this matrix ring is noncommutative.</li> <li>If <span class="texhtml"><i>G</i></span> is an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a>, then the <a href="/wiki/Group_homomorphism" title="Group homomorphism">endomorphisms</a> of <span class="texhtml"><i>G</i></span> form a ring, the <a href="/wiki/Endomorphism_ring" title="Endomorphism ring">endomorphism ring</a> <span class="texhtml">End(<i>G</i>)</span> of&#160;<span class="texhtml"><i>G</i></span>. The operations in this ring are addition and composition of endomorphisms. More generally, if <span class="texhtml mvar" style="font-style:italic;">V</span> is a <a href="/wiki/Left_module" class="mw-redirect" title="Left module">left module</a> over a ring <span class="texhtml mvar" style="font-style:italic;">R</span>, then the set of all <span class="texhtml mvar" style="font-style:italic;">R</span>-linear maps forms a ring, also called the endomorphism ring and denoted by <span class="texhtml">End<sub><i>R</i></sub>(<i>V</i>)</span>.</li> <li>The <a href="/wiki/Endomorphism_ring_of_an_elliptic_curve" class="mw-redirect" title="Endomorphism ring of an elliptic curve">endomorphism ring of an elliptic curve</a>. It is a commutative ring if the elliptic curve is defined over a field of characteristic zero.</li> <li>If <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> and <span class="texhtml mvar" style="font-style:italic;">R</span> is a ring, the <a href="/wiki/Group_ring" title="Group ring">group ring</a> of <span class="texhtml"><i>G</i></span> over <span class="texhtml mvar" style="font-style:italic;">R</span> is a <a href="/wiki/Free_module" title="Free module">free module</a> over <span class="texhtml mvar" style="font-style:italic;">R</span> having <span class="texhtml"><i>G</i></span> as basis. Multiplication is defined by the rules that the elements of <span class="texhtml"><i>G</i></span> commute with the elements of <span class="texhtml mvar" style="font-style:italic;">R</span> and multiply together as they do in the group <span class="texhtml"><i>G</i></span>.</li> <li>The <a href="/wiki/Ring_of_differential_operators" class="mw-redirect" title="Ring of differential operators">ring of differential operators</a> (depending on the context). In fact, many rings that appear in analysis are noncommutative. For example, most <a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebras</a> are noncommutative.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Non-rings">Non-rings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=15" title="Edit section: Non-rings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The set of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a> <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span>&#8288;</span> with the usual operations is not a ring, since <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {N} ,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {N} ,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0072a6ee0ab943ce24dc44083bd60d50739a0b1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle (\mathbb {N} ,+)}"></span>&#8288;</span> is not even a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> (not all the elements are <a href="/wiki/Inverse_element" title="Inverse element">invertible</a> with respect to addition – for instance, there is no natural number which can be added to <span class="texhtml">3</span> to get <span class="texhtml">0</span> as a result). There is a natural way to enlarge it to a ring, by including negative numbers to produce the ring of integers <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89f4f38f32c2068bca9dc701d13b03dd4a5d52ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.197ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} .}"></span>&#8288;</span> The natural numbers (including <span class="texhtml">0</span>) form an algebraic structure known as a <a href="/wiki/Semiring" title="Semiring">semiring</a> (which has all of the axioms of a ring excluding that of an additive inverse).</li> <li>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be the set of all continuous functions on the real line that vanish outside a bounded interval that depends on the function, with addition as usual but with multiplication defined as <a href="/wiki/Convolution" title="Convolution">convolution</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/294affe71f6e28d18165e12aac5f9bad340d8558" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.369ex; height:6.009ex;" alt="{\displaystyle (f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy.}"></span> Then <span class="texhtml mvar" style="font-style:italic;">R</span> is a rng, but not a ring: the <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> has the property of a multiplicative identity, but it is not a function and hence is not an element of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Basic_concepts">Basic concepts</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=16" title="Edit section: Basic concepts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Products_and_powers">Products and powers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=17" title="Edit section: Products and powers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For each nonnegative integer <span class="texhtml mvar" style="font-style:italic;">n</span>, given a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{1},\dots ,a_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{1},\dots ,a_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f32ea8be17cff0b2d07309b931aa8a6af949ac8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.72ex; height:2.843ex;" alt="{\displaystyle (a_{1},\dots ,a_{n})}"></span> of <span class="texhtml mvar" style="font-style:italic;">n</span> elements of <span class="texhtml mvar" style="font-style:italic;">R</span>, one can define the product <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}=\prod _{i=1}^{n}a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n}=\prod _{i=1}^{n}a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dc7ea3e7d5fa04def71ebe5c042a67804d00bbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.195ex; height:6.843ex;" alt="{\displaystyle P_{n}=\prod _{i=1}^{n}a_{i}}"></span> recursively: let <span class="texhtml"><i>P</i><sub>0</sub> = 1</span> and let <span class="texhtml"><i>P</i><sub><i>m</i></sub> = <i>P</i><sub><i>m</i>−1</sub><i>a</i><sub><i>m</i></sub></span> for <span class="texhtml">1 ≤ <i>m</i> ≤ <i>n</i></span>. </p><p>As a special case, one can define nonnegative integer powers of an element <span class="texhtml mvar" style="font-style:italic;">a</span> of a ring: <span class="texhtml"><i>a</i><sup>0</sup> = 1</span> and <span class="texhtml"><i>a</i><sup><i>n</i></sup> = <i>a</i><sup><i>n</i>−1</sup><i>a</i></span> for <span class="texhtml"><i>n</i> ≥ 1</span>. Then <span class="texhtml"><i>a</i><sup><i>m</i>+<i>n</i></sup> = <i>a</i><sup><i>m</i></sup><i>a</i><sup><i>n</i></sup></span> for all <span class="texhtml"><i>m</i>, <i>n</i> ≥ 0</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Elements_in_a_ring">Elements in a ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=18" title="Edit section: Elements in a ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A left <a href="/wiki/Zero_divisor" title="Zero divisor">zero divisor</a> of a ring <span class="texhtml mvar" style="font-style:italic;">R</span> is an element <span class="texhtml mvar" style="font-style:italic;">a</span> in the ring such that there exists a nonzero element <span class="texhtml mvar" style="font-style:italic;">b</span> of <span class="texhtml mvar" style="font-style:italic;">R</span> such that <span class="texhtml"><i>ab</i> = 0</span>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup> A right zero divisor is defined similarly. </p><p>A <a href="/wiki/Nilpotent_element" class="mw-redirect" title="Nilpotent element">nilpotent element</a> is an element <span class="texhtml mvar" style="font-style:italic;">a</span> such that <span class="texhtml"><i>a<sup>n</sup></i> = 0</span> for some <span class="texhtml"><i>n</i> &gt; 0</span>. One example of a nilpotent element is a <a href="/wiki/Nilpotent_matrix" title="Nilpotent matrix">nilpotent matrix</a>. A nilpotent element in a <a href="/wiki/Zero_ring" title="Zero ring">nonzero ring</a> is necessarily a zero divisor. </p><p>An <a href="/wiki/Idempotent_element_(ring_theory)" class="mw-redirect" title="Idempotent element (ring theory)">idempotent</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> is an element such that <span class="texhtml"><i>e</i><sup>2</sup> = <i>e</i></span>. One example of an idempotent element is a <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">projection</a> in linear algebra. </p><p>A <a href="/wiki/Unit_(ring_theory)" title="Unit (ring theory)">unit</a> is an element <span class="texhtml mvar" style="font-style:italic;">a</span> having a <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a>; in this case the inverse is unique, and is denoted by <span class="texhtml"><i>a</i><sup>–1</sup></span>. The set of units of a ring is a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> under ring multiplication; this group is denoted by <span class="texhtml"><i>R</i><sup>×</sup></span> or <span class="texhtml"><i>R</i>*</span> or <span class="texhtml"><i>U</i>(<i>R</i>)</span>. For example, if <span class="texhtml mvar" style="font-style:italic;">R</span> is the ring of all square matrices of size <span class="texhtml mvar" style="font-style:italic;">n</span> over a field, then <span class="texhtml"><i>R</i><sup>×</sup></span> consists of the set of all invertible matrices of size <span class="texhtml mvar" style="font-style:italic;">n</span>, and is called the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Subring">Subring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=19" title="Edit section: Subring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Subring" title="Subring">Subring</a></div> <p>A subset <span class="texhtml mvar" style="font-style:italic;">S</span> of <span class="texhtml mvar" style="font-style:italic;">R</span> is called a <a href="/wiki/Subring" title="Subring">subring</a> if any one of the following equivalent conditions holds: </p> <ul><li>the addition and multiplication of <span class="texhtml mvar" style="font-style:italic;">R</span> <a href="/wiki/Restricted_function" class="mw-redirect" title="Restricted function">restrict</a> to give operations <span class="texhtml"><i>S</i> × <i>S</i> → <i>S</i></span> making <span class="texhtml mvar" style="font-style:italic;">S</span> a ring with the same multiplicative identity as&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>.</li> <li><span class="texhtml">1 ∈ <i>S</i></span>; and for all <span class="texhtml mvar" style="font-style:italic;">x, y</span> in <span class="texhtml mvar" style="font-style:italic;">S</span>, the elements <span class="texhtml mvar" style="font-style:italic;">xy</span>, <span class="texhtml"><i>x</i> + <i>y</i></span>, and <span class="texhtml mvar" style="font-style:italic;">−x</span> are in&#160;<span class="texhtml mvar" style="font-style:italic;">S</span>.</li> <li><span class="texhtml mvar" style="font-style:italic;">S</span> can be equipped with operations making it a ring such that the inclusion map <span class="texhtml"><i>S</i> → <i>R</i></span> is a ring homomorphism.</li></ul> <p>For example, the ring <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span> of integers is a subring of the <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> of real numbers and also a subring of the ring of <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} [X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} [X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a538d203a057d4c604f799c28e9a7be410fdcac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.824ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} [X]}"></span>&#8288;</span> (in both cases, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span> contains&#160;1, which is the multiplicative identity of the larger rings). On the other hand, the subset of even integers <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c112372c16743e8c02db5eac5c6de0659841bec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.713ex; height:2.176ex;" alt="{\displaystyle 2\mathbb {Z} }"></span>&#8288;</span> does not contain the identity element <span class="texhtml">1</span> and thus does not qualify as a subring of&#160;<span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/237089e243508123c48781cce997626d9c012e7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.197ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} ;}"></span>&#8288;</span> one could call <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c112372c16743e8c02db5eac5c6de0659841bec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.713ex; height:2.176ex;" alt="{\displaystyle 2\mathbb {Z} }"></span>&#8288;</span> a <a href="/wiki/Rng_(algebra)" title="Rng (algebra)">subrng</a>, however. </p><p>An intersection of subrings is a subring. Given a subset <span class="texhtml mvar" style="font-style:italic;">E</span> of <span class="texhtml mvar" style="font-style:italic;">R</span>, the smallest subring of <span class="texhtml mvar" style="font-style:italic;">R</span> containing <span class="texhtml mvar" style="font-style:italic;">E</span> is the intersection of all subrings of <span class="texhtml mvar" style="font-style:italic;">R</span> containing&#160;<span class="texhtml mvar" style="font-style:italic;">E</span>, and it is called <i>the subring generated by&#160;<span class="texhtml">E</span></i>. </p><p>For a ring <span class="texhtml mvar" style="font-style:italic;">R</span>, the smallest subring of <span class="texhtml mvar" style="font-style:italic;">R</span> is called the <i>characteristic subring</i> of <span class="texhtml mvar" style="font-style:italic;">R</span>. It can be generated through addition of copies of <span class="texhtml">1</span> and&#160;<span class="texhtml">−1</span>. It is possible that <span class="texhtml"><i>n</i> · 1 = 1 + 1 + ... + 1</span> (<span class="texhtml mvar" style="font-style:italic;">n</span> times) can be zero. If <span class="texhtml mvar" style="font-style:italic;">n</span> is the smallest positive integer such that this occurs, then <span class="texhtml mvar" style="font-style:italic;">n</span> is called the <i><a href="/wiki/Characteristic_(algebra)" title="Characteristic (algebra)">characteristic</a></i> of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. In some rings, <span class="texhtml"><i>n</i> · 1</span> is never zero for any positive integer <span class="texhtml mvar" style="font-style:italic;">n</span>, and those rings are said to have <i>characteristic zero</i>. </p><p>Given a ring <span class="texhtml mvar" style="font-style:italic;">R</span>, let <span class="texhtml">Z(<i>R</i>)</span> denote the set of all elements <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> such that <span class="texhtml mvar" style="font-style:italic;">x</span> commutes with every element in <span class="texhtml mvar" style="font-style:italic;">R</span>: <span class="texhtml"><i>xy</i> = <i>yx</i></span> for any <span class="texhtml mvar" style="font-style:italic;">y</span> in&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. Then <span class="texhtml">Z(<i>R</i>)</span> is a subring of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>, called the <a href="/wiki/Center_(ring_theory)" title="Center (ring theory)">center</a> of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. More generally, given a subset <span class="texhtml mvar" style="font-style:italic;">X</span> of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>, let <span class="texhtml mvar" style="font-style:italic;">S</span> be the set of all elements in <span class="texhtml mvar" style="font-style:italic;">R</span> that commute with every element in&#160;<span class="texhtml mvar" style="font-style:italic;">X</span>. Then <span class="texhtml mvar" style="font-style:italic;">S</span> is a subring of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>, called the <a href="/wiki/Centralizer_(ring_theory)" class="mw-redirect" title="Centralizer (ring theory)">centralizer</a> (or commutant) of&#160;<span class="texhtml mvar" style="font-style:italic;">X</span>. The center is the centralizer of the entire ring&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. Elements or subsets of the center are said to be <i>central</i> in&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>; they (each individually) generate a subring of the center. </p> <div class="mw-heading mw-heading3"><h3 id="Ideal">Ideal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=20" title="Edit section: Ideal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ideal_(ring_theory)" title="Ideal (ring theory)">Ideal (ring theory)</a></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be a ring. A <b>left ideal</b> of <span class="texhtml mvar" style="font-style:italic;">R</span> is a nonempty subset <span class="texhtml mvar" style="font-style:italic;">I</span> of <span class="texhtml mvar" style="font-style:italic;">R</span> such that for any <span class="texhtml mvar" style="font-style:italic;">x, y</span> in <span class="texhtml mvar" style="font-style:italic;">I</span> and <span class="texhtml mvar" style="font-style:italic;">r</span> in <span class="texhtml mvar" style="font-style:italic;">R</span>, the elements <span class="texhtml"><i>x</i> + <i>y</i></span> and <span class="texhtml mvar" style="font-style:italic;">rx</span> are in <span class="texhtml mvar" style="font-style:italic;">I</span>. If <span class="texhtml mvar" style="font-style:italic;">R I</span> denotes the <span class="texhtml mvar" style="font-style:italic;">R</span>-span of <span class="texhtml mvar" style="font-style:italic;">I</span>, that is, the set of finite sums </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{1}x_{1}+\cdots +r_{n}x_{n}\quad {\textrm {such}}\;{\textrm {that}}\;r_{i}\in R\;{\textrm {and}}\;x_{i}\in I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>such</mtext> </mrow> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>that</mtext> </mrow> </mrow> <mspace width="thickmathspace" /> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> </mrow> <mspace width="thickmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{1}x_{1}+\cdots +r_{n}x_{n}\quad {\textrm {such}}\;{\textrm {that}}\;r_{i}\in R\;{\textrm {and}}\;x_{i}\in I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/828ef119c361f6abf95b844ad6f557580d84f7b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:48.396ex; height:2.509ex;" alt="{\displaystyle r_{1}x_{1}+\cdots +r_{n}x_{n}\quad {\textrm {such}}\;{\textrm {that}}\;r_{i}\in R\;{\textrm {and}}\;x_{i}\in I,}"></span></dd></dl> <p>then <span class="texhtml mvar" style="font-style:italic;">I</span> is a left ideal if <span class="texhtml"><i>RI</i> ⊆ <i>I</i></span>. Similarly, a <b>right ideal</b> is a subset <span class="texhtml mvar" style="font-style:italic;">I</span> such that <span class="texhtml"><i>IR</i> ⊆ <i>I</i></span>. A subset <span class="texhtml mvar" style="font-style:italic;">I</span> is said to be a <b>two-sided ideal</b> or simply <b>ideal</b> if it is both a left ideal and right ideal. A one-sided or two-sided ideal is then an additive subgroup of <span class="texhtml mvar" style="font-style:italic;">R</span>. If <span class="texhtml mvar" style="font-style:italic;">E</span> is a subset of <span class="texhtml mvar" style="font-style:italic;">R</span>, then <span class="texhtml"><i>RE</i></span> is a left ideal, called the left ideal generated by <span class="texhtml mvar" style="font-style:italic;">E</span>; it is the smallest left ideal containing <span class="texhtml mvar" style="font-style:italic;">E</span>. Similarly, one can consider the right ideal or the two-sided ideal generated by a subset of <span class="texhtml mvar" style="font-style:italic;">R</span>. </p><p>If <span class="texhtml mvar" style="font-style:italic;">x</span> is in <span class="texhtml mvar" style="font-style:italic;">R</span>, then <span class="texhtml"><i>Rx</i></span> and <span class="texhtml"><i>xR</i></span> are left ideals and right ideals, respectively; they are called the <a href="/wiki/Principal_ideal" title="Principal ideal">principal</a> left ideals and right ideals generated by <span class="texhtml mvar" style="font-style:italic;">x</span>. The principal ideal <span class="texhtml"><i>RxR</i></span> is written as <span class="texhtml">(<i>x</i>)</span>. For example, the set of all positive and negative multiples of <span class="texhtml">2</span> along with <span class="texhtml">0</span> form an ideal of the integers, and this ideal is generated by the integer&#160;<span class="texhtml">2</span>. In fact, every ideal of the ring of integers is principal. </p><p>Like a group, a ring is said to be <a href="/wiki/Simple_ring" title="Simple ring">simple</a> if it is nonzero and it has no proper nonzero two-sided ideals. A commutative simple ring is precisely a field. </p><p>Rings are often studied with special conditions set upon their ideals. For example, a ring in which there is no strictly increasing infinite <a href="/wiki/Total_order#Chains" title="Total order">chain</a> of left ideals is called a left <a href="/wiki/Noetherian_ring" title="Noetherian ring">Noetherian ring</a>. A ring in which there is no strictly decreasing infinite chain of left ideals is called a left <a href="/wiki/Artinian_ring" title="Artinian ring">Artinian ring</a>. It is a somewhat surprising fact that a left Artinian ring is left Noetherian (the <a href="/wiki/Hopkins%E2%80%93Levitzki_theorem" title="Hopkins–Levitzki theorem">Hopkins–Levitzki theorem</a>). The integers, however, form a Noetherian ring which is not Artinian. </p><p>For commutative rings, the ideals generalize the classical notion of divisibility and decomposition of an integer into prime numbers in algebra. A proper ideal <span class="texhtml mvar" style="font-style:italic;">P</span> of <span class="texhtml mvar" style="font-style:italic;">R</span> is called a <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideal</a> if for any elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd941136d77e1d2a54ec7a326c4216d9e2ffa587" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.124ex; height:2.509ex;" alt="{\displaystyle x,y\in R}"></span> we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy\in P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy\in P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/298c1a56c15cf0821836a96909e59aa15ee4a067" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.071ex; height:2.509ex;" alt="{\displaystyle xy\in P}"></span> implies either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cc98d5d7d5ae8afe28ea054450cac2af7bca3d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.916ex; height:2.176ex;" alt="{\displaystyle x\in P}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in P.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in P.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19f0998dac9af00ca54173db6d48fff7cf185128" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.388ex; height:2.509ex;" alt="{\displaystyle y\in P.}"></span> Equivalently, <span class="texhtml mvar" style="font-style:italic;">P</span> is prime if for any ideals <span class="texhtml"><i>I</i></span>, <span class="texhtml"><i>J</i></span> we have that <span class="texhtml"><i>IJ</i> ⊆ <i>P</i></span> implies either <span class="texhtml"><i>I</i> ⊆ <i>P</i></span> or <span class="texhtml"><i>J</i> ⊆ <i>P</i></span>. This latter formulation illustrates the idea of ideals as generalizations of elements. </p> <div class="mw-heading mw-heading3"><h3 id="Homomorphism">Homomorphism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=21" title="Edit section: Homomorphism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ring_homomorphism" title="Ring homomorphism">Ring homomorphism</a></div> <p>A <b><a href="/wiki/Ring_homomorphism" title="Ring homomorphism">homomorphism</a></b> from a ring <span class="texhtml">(<i>R</i>, +, <b>⋅</b>)</span> to a ring <span class="texhtml">(<i>S</i>, ‡, ∗)</span> is a function <span class="texhtml mvar" style="font-style:italic;">f</span> from <span class="texhtml mvar" style="font-style:italic;">R</span> to&#160;<span class="texhtml mvar" style="font-style:italic;">S</span> that preserves the ring operations; namely, such that, for all <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> the following identities hold: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;f(a+b)=f(a)\ddagger f(b)\\&amp;f(a\cdot b)=f(a)*f(b)\\&amp;f(1_{R})=1_{S}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2021;<!-- ‡ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;f(a+b)=f(a)\ddagger f(b)\\&amp;f(a\cdot b)=f(a)*f(b)\\&amp;f(1_{R})=1_{S}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2553fe96c6adf91c05410aecb1a18505a42441cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.473ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}&amp;f(a+b)=f(a)\ddagger f(b)\\&amp;f(a\cdot b)=f(a)*f(b)\\&amp;f(1_{R})=1_{S}\end{aligned}}}"></span></dd></dl> <p>If one is working with rngs, then the third condition is dropped. </p><p>A ring homomorphism <span class="texhtml mvar" style="font-style:italic;">f</span> is said to be an <b><a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a></b> if there exists an inverse homomorphism to <span class="texhtml mvar" style="font-style:italic;">f</span> (that is, a ring homomorphism that is an <a href="/wiki/Inverse_function" title="Inverse function">inverse function</a>), or equivalently if it is <a href="/wiki/Bijection" title="Bijection">bijective</a>. </p><p>Examples: </p> <ul><li>The function that maps each integer <span class="texhtml mvar" style="font-style:italic;">x</span> to its remainder modulo <span class="texhtml">4</span> (a number in <span class="texhtml">{0, 1, 2, 3}</span>) is a homomorphism from the ring <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span> to the quotient ring <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /4\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb3ded1f832ca4738a18c9e4779381bd9591c058" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.426ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /4\mathbb {Z} }"></span>&#8288;</span> ("quotient ring" is defined below).</li> <li>If <span class="texhtml mvar" style="font-style:italic;">u</span> is a unit element in a ring <span class="texhtml mvar" style="font-style:italic;">R</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\to R,x\mapsto uxu^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>u</mi> <mi>x</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\to R,x\mapsto uxu^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb810ddb07e05bc04b530a55e529bc372ab924ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.442ex; height:3.009ex;" alt="{\displaystyle R\to R,x\mapsto uxu^{-1}}"></span> is a ring homomorphism, called an <a href="/wiki/Inner_automorphism" title="Inner automorphism">inner automorphism</a> of <span class="texhtml mvar" style="font-style:italic;">R</span>.</li> <li>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be a commutative ring of prime characteristic <span class="texhtml mvar" style="font-style:italic;">p</span>. Then <span class="texhtml"><i>x</i> ↦ <span style="padding-right:0.15em;"><i>x</i></span><sup><i>p</i></sup></span> is a ring endomorphism of <span class="texhtml mvar" style="font-style:italic;">R</span> called the <a href="/wiki/Frobenius_homomorphism" class="mw-redirect" title="Frobenius homomorphism">Frobenius homomorphism</a>.</li> <li>The <a href="/wiki/Galois_group" title="Galois group">Galois group</a> of a field extension <span class="texhtml"><i>L</i> / <i>K</i></span> is the set of all automorphisms of <span class="texhtml mvar" style="font-style:italic;">L</span> whose restrictions to <span class="texhtml mvar" style="font-style:italic;">K</span> are the identity.</li> <li>For any ring <span class="texhtml mvar" style="font-style:italic;">R</span>, there are a unique ring homomorphism <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} \mapsto R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} \mapsto R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1254ca3029e362f5a586691b6cf2896de1d6e1e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.928ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} \mapsto R}"></span>&#8288;</span> and a unique ring homomorphism <span class="texhtml"><i>R</i> → 0</span>.</li> <li>An <a href="/wiki/Epimorphism" title="Epimorphism">epimorphism</a> (that is, right-cancelable morphism) of rings need not be surjective. For example, the unique map <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} \to \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} \to \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcf77268bcc36d0149c3388c50868effdd7f417" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.973ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} \to \mathbb {Q} }"></span>&#8288;</span> is an epimorphism.</li> <li>An algebra homomorphism from a <span class="texhtml mvar" style="font-style:italic;">k</span>-algebra to the <a href="/wiki/Endomorphism_algebra" class="mw-redirect" title="Endomorphism algebra">endomorphism algebra</a> of a vector space over <span class="texhtml mvar" style="font-style:italic;">k</span> is called a <a href="/wiki/Algebra_representation" title="Algebra representation">representation of the algebra</a>.</li></ul> <p>Given a ring homomorphism <span class="texhtml"><i>f</i>&#160;: <i>R</i> → <i>S</i></span>, the set of all elements mapped to 0 by <span class="texhtml mvar" style="font-style:italic;">f</span> is called the <a href="/wiki/Kernel_of_a_ring_homomorphism" class="mw-redirect" title="Kernel of a ring homomorphism">kernel</a> of&#160;<span class="texhtml mvar" style="font-style:italic;">f</span>. The kernel is a two-sided ideal of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. The image of&#160;<span class="texhtml mvar" style="font-style:italic;">f</span>, on the other hand, is not always an ideal, but it is always a subring of&#160;<span class="texhtml mvar" style="font-style:italic;">S</span>. </p><p>To give a ring homomorphism from a commutative ring <span class="texhtml mvar" style="font-style:italic;">R</span> to a ring <span class="texhtml mvar" style="font-style:italic;">A</span> with image contained in the center of <span class="texhtml mvar" style="font-style:italic;">A</span> is the same as to give a structure of an <a href="/wiki/Associative_algebra" title="Associative algebra">algebra</a> over <span class="texhtml mvar" style="font-style:italic;">R</span> to&#160;<span class="texhtml mvar" style="font-style:italic;">A</span> (which in particular gives a structure of an <span class="texhtml mvar" style="font-style:italic;">A</span>-module). </p> <div class="mw-heading mw-heading3"><h3 id="Quotient_ring">Quotient ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=22" title="Edit section: Quotient ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quotient_ring" title="Quotient ring">Quotient ring</a></div> <p>The notion of <a href="/wiki/Quotient_ring" title="Quotient ring">quotient ring</a> is analogous to the notion of a <a href="/wiki/Quotient_group" title="Quotient group">quotient group</a>. Given a ring <span class="texhtml">(<i>R</i>, +, <b>⋅</b>)</span> and a two-sided <a href="/wiki/Ideal_(ring_theory)" title="Ideal (ring theory)">ideal</a> <span class="texhtml mvar" style="font-style:italic;">I</span> of <span class="texhtml">(<i>R</i>, +, <b>⋅</b>)</span>, view <span class="texhtml mvar" style="font-style:italic;">I</span> as subgroup of <span class="texhtml">(<i>R</i>, +)</span>; then the <b>quotient ring</b> <span class="texhtml"><i>R</i> / <i>I</i></span> is the set of <a href="/wiki/Coset" title="Coset">cosets</a> of <span class="texhtml mvar" style="font-style:italic;">I</span> together with the operations </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;(a+I)+(b+I)=(a+b)+I,\\&amp;(a+I)(b+I)=(ab)+I.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>I</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>I</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;(a+I)+(b+I)=(a+b)+I,\\&amp;(a+I)(b+I)=(ab)+I.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/613200ac47a306f8080e74b8f71f82bc48dfa4ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.097ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}&amp;(a+I)+(b+I)=(a+b)+I,\\&amp;(a+I)(b+I)=(ab)+I.\end{aligned}}}"></span></dd></dl> <p>for all <span class="texhtml"><i>a</i>, <i>b</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span>. The ring <span class="texhtml"><i>R</i> / <i>I</i></span> is also called a <b>factor ring</b>. </p><p>As with a quotient group, there is a canonical homomorphism <span class="texhtml"><i>p</i>&#160;: <i>R</i> → <i>R</i> / <i>I</i></span>, given by <span class="texhtml"><i>x</i> ↦ <i>x</i> + <i>I</i></span>. It is surjective and satisfies the following universal property: </p> <ul><li>If <span class="texhtml"><i>f</i>&#160;: <i>R</i> → <i>S</i></span> is a ring homomorphism such that <span class="texhtml"><i>f</i>(<i>I</i>) = 0</span>, then there is a unique homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f}}:R/I\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>:</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>I</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f}}:R/I\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efa9d21aa213614fce915af61d2d38cb9574a37d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.633ex; height:3.509ex;" alt="{\displaystyle {\overline {f}}:R/I\to S}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\overline {f}}\circ p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2218;<!-- ∘ --></mo> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\overline {f}}\circ p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e294a5e001dbfc1c5669393f066359a98b99f4b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.872ex; height:3.343ex;" alt="{\displaystyle f={\overline {f}}\circ p.}"></span></li></ul> <p>For any ring homomorphism <span class="texhtml"><i>f</i>&#160;: <i>R</i> → <i>S</i></span>, invoking the universal property with <span class="texhtml"><i>I</i> = ker <i>f</i></span> produces a homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f}}:R/\ker f\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>:</mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f}}:R/\ker f\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5497d1fb5d13fabfa8476a47457f152d6165ff30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.685ex; height:3.509ex;" alt="{\displaystyle {\overline {f}}:R/\ker f\to S}"></span> that gives an isomorphism from <span class="texhtml"><i>R</i> / ker <i>f</i></span> to the image of <span class="texhtml mvar" style="font-style:italic;">f</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Module">Module</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=23" title="Edit section: Module"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module (mathematics)</a></div> <p>The concept of a <i>module over a ring</i> generalizes the concept of a <a href="/wiki/Vector_space" title="Vector space">vector space</a> (over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>) by generalizing from multiplication of vectors with elements of a field (<a href="/wiki/Scalar_multiplication" title="Scalar multiplication">scalar multiplication</a>) to multiplication with elements of a ring. More precisely, given a ring <span class="texhtml mvar" style="font-style:italic;">R</span>, an <span class="texhtml mvar" style="font-style:italic;">R</span>-module <span class="texhtml mvar" style="font-style:italic;">M</span> is an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> equipped with an <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">operation</a> <span class="texhtml"><i>R</i> × <i>M</i> → <i>M</i></span> (associating an element of <span class="texhtml mvar" style="font-style:italic;">M</span> to every pair of an element of <span class="texhtml mvar" style="font-style:italic;">R</span> and an element of <span class="texhtml mvar" style="font-style:italic;">M</span>) that satisfies certain <a href="/wiki/Axiom#Non-logical_axioms" title="Axiom">axioms</a>. This operation is commonly denoted by juxtaposition and called multiplication. The axioms of modules are the following: for all <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> and all <span class="texhtml"><i>x</i></span>, <span class="texhtml"><i>y</i></span> in <span class="texhtml mvar" style="font-style:italic;">M</span>, </p> <dl><dd><span class="texhtml mvar" style="font-style:italic;">M</span> is an abelian group under addition.</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;a(x+y)=ax+ay\\&amp;(a+b)x=ax+bx\\&amp;1x=x\\&amp;(ab)x=a(bx)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mn>1</mn> <mi>x</mi> <mo>=</mo> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;a(x+y)=ax+ay\\&amp;(a+b)x=ax+bx\\&amp;1x=x\\&amp;(ab)x=a(bx)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32dd53b7bbb701685499b47335200650201d401c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:20ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}&amp;a(x+y)=ax+ay\\&amp;(a+b)x=ax+bx\\&amp;1x=x\\&amp;(ab)x=a(bx)\end{aligned}}}"></span></dd></dl> <p>When the ring is <a href="/wiki/Noncommutative_ring" title="Noncommutative ring">noncommutative</a> these axioms define <i>left modules</i>; <i>right modules</i> are defined similarly by writing <span class="texhtml mvar" style="font-style:italic;">xa</span> instead of <span class="texhtml mvar" style="font-style:italic;">ax</span>. This is not only a change of notation, as the last axiom of right modules (that is <span class="texhtml"><i>x</i>(<i>ab</i>) = (<i>xa</i>)<i>b</i></span>) becomes <span class="texhtml">(<i>ab</i>)<i>x</i> = <i>b</i>(<i>ax</i>)</span>, if left multiplication (by ring elements) is used for a right module. </p><p>Basic examples of modules are ideals, including the ring itself. </p><p>Although similarly defined, the theory of modules is much more complicated than that of vector space, mainly, because, unlike vector spaces, modules are not characterized (up to an isomorphism) by a single invariant (the <a href="/wiki/Dimension_(vector_space)" title="Dimension (vector space)">dimension of a vector space</a>). In particular, not all modules have a <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a>. </p><p>The axioms of modules imply that <span class="texhtml">(−1)<i>x</i> = −<i>x</i></span>, where the first minus denotes the <a href="/wiki/Additive_inverse" title="Additive inverse">additive inverse</a> in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers. </p><p>Any ring homomorphism induces a structure of a module: if <span class="texhtml"><i>f</i>&#160;: <i>R</i> → <i>S</i></span> is a ring homomorphism, then <span class="texhtml mvar" style="font-style:italic;">S</span> is a left module over <span class="texhtml mvar" style="font-style:italic;">R</span> by the multiplication: <span class="texhtml"><i>rs</i> = <i>f</i>(<i>r</i>)<i>s</i></span>. If <span class="texhtml mvar" style="font-style:italic;">R</span> is commutative or if <span class="texhtml"><i>f</i>(<i>R</i>)</span> is contained in the <a href="/wiki/Center_of_a_ring" class="mw-redirect" title="Center of a ring">center</a> of <span class="texhtml mvar" style="font-style:italic;">S</span>, the ring <span class="texhtml mvar" style="font-style:italic;">S</span> is called a <span class="texhtml mvar" style="font-style:italic;">R</span>-<a href="/wiki/Algebra_over_a_ring" class="mw-redirect" title="Algebra over a ring">algebra</a>. In particular, every ring is an algebra over the integers. </p> <div class="mw-heading mw-heading2"><h2 id="Constructions">Constructions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=24" title="Edit section: Constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Direct_product">Direct product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=25" title="Edit section: Direct product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Direct_product_of_rings" class="mw-redirect" title="Direct product of rings">Direct product of rings</a></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">R</span> and <span class="texhtml mvar" style="font-style:italic;">S</span> be rings. Then the <a href="/wiki/Cartesian_product" title="Cartesian product">product</a> <span class="texhtml"><i>R</i> × <i>S</i></span> can be equipped with the following natural ring structure: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;(r_{1},s_{1})+(r_{2},s_{2})=(r_{1}+r_{2},s_{1}+s_{2})\\&amp;(r_{1},s_{1})\cdot (r_{2},s_{2})=(r_{1}\cdot r_{2},s_{1}\cdot s_{2})\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;(r_{1},s_{1})+(r_{2},s_{2})=(r_{1}+r_{2},s_{1}+s_{2})\\&amp;(r_{1},s_{1})\cdot (r_{2},s_{2})=(r_{1}\cdot r_{2},s_{1}\cdot s_{2})\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67b317bd44af52eace2fcb352bf7c7651cb9ef41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.891ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}&amp;(r_{1},s_{1})+(r_{2},s_{2})=(r_{1}+r_{2},s_{1}+s_{2})\\&amp;(r_{1},s_{1})\cdot (r_{2},s_{2})=(r_{1}\cdot r_{2},s_{1}\cdot s_{2})\end{aligned}}}"></span></dd></dl> <p>for all <span class="texhtml"><i>r</i><sub>1</sub>, <i>r</i><sub>2</sub></span> in <span class="texhtml mvar" style="font-style:italic;">R</span> and <span class="texhtml"><i>s</i><sub>1</sub>, <i>s</i><sub>2</sub></span> in&#160;<span class="texhtml mvar" style="font-style:italic;">S</span>. The ring <span class="texhtml"><i>R</i> × <i>S</i></span> with the above operations of addition and multiplication and the multiplicative identity <span class="texhtml">(1, 1)</span> is called the <b><a href="/wiki/Direct_product_of_rings" class="mw-redirect" title="Direct product of rings">direct product</a></b> of <span class="texhtml mvar" style="font-style:italic;">R</span> with&#160;<span class="texhtml mvar" style="font-style:italic;">S</span>. The same construction also works for an arbitrary family of rings: if <span class="texhtml mvar" style="font-style:italic;">R<sub>i</sub></span> are rings indexed by a set <span class="texhtml mvar" style="font-style:italic;">I</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \prod _{i\in I}R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \prod _{i\in I}R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3925beb567895538aa9c1945dfa914536eeab778" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.869ex; height:3.009ex;" alt="{\textstyle \prod _{i\in I}R_{i}}"></span> is a ring with componentwise addition and multiplication. </p><p>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be a commutative ring and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{1},\cdots ,{\mathfrak {a}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{1},\cdots ,{\mathfrak {a}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9454ea2b80c229917fa96121807f90e4476ec6b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.776ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {a}}_{1},\cdots ,{\mathfrak {a}}_{n}}"></span> be ideals such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i}+{\mathfrak {a}}_{j}=(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i}+{\mathfrak {a}}_{j}=(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57c9f995e0b4e3bc8c7bfd08e33d624bc973ef39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.945ex; height:3.009ex;" alt="{\displaystyle {\mathfrak {a}}_{i}+{\mathfrak {a}}_{j}=(1)}"></span> whenever <span class="texhtml"><i>i</i> ≠ <i>j</i></span>. Then the <a href="/wiki/Chinese_remainder_theorem" title="Chinese remainder theorem">Chinese remainder theorem</a> says there is a canonical ring isomorphism: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R/{\textstyle \bigcap _{i=1}^{n}{{\mathfrak {a}}_{i}}}\simeq \prod _{i=1}^{n}{R/{\mathfrak {a}}_{i}},\qquad x{\bmod {\textstyle \bigcap _{i=1}^{n}{\mathfrak {a}}_{i}}}\mapsto (x{\bmod {\mathfrak {a}}}_{1},\ldots ,x{\bmod {\mathfrak {a}}}_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <mo>&#x2243;<!-- ≃ --></mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>x</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R/{\textstyle \bigcap _{i=1}^{n}{{\mathfrak {a}}_{i}}}\simeq \prod _{i=1}^{n}{R/{\mathfrak {a}}_{i}},\qquad x{\bmod {\textstyle \bigcap _{i=1}^{n}{\mathfrak {a}}_{i}}}\mapsto (x{\bmod {\mathfrak {a}}}_{1},\ldots ,x{\bmod {\mathfrak {a}}}_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c93a1164449f48b76d0b05784ffcfa7607839685" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:71.198ex; height:6.843ex;" alt="{\displaystyle R/{\textstyle \bigcap _{i=1}^{n}{{\mathfrak {a}}_{i}}}\simeq \prod _{i=1}^{n}{R/{\mathfrak {a}}_{i}},\qquad x{\bmod {\textstyle \bigcap _{i=1}^{n}{\mathfrak {a}}_{i}}}\mapsto (x{\bmod {\mathfrak {a}}}_{1},\ldots ,x{\bmod {\mathfrak {a}}}_{n}).}"></span> </p><p>A "finite" direct product may also be viewed as a direct sum of ideals.<sup id="cite_ref-FOOTNOTECohn2003Theorem_4.5.1_40-0" class="reference"><a href="#cite_note-FOOTNOTECohn2003Theorem_4.5.1-40"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> Namely, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i},1\leq i\leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>i</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i},1\leq i\leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/371858f9c96f8351218374fa0a81a543509b37a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.154ex; height:2.509ex;" alt="{\displaystyle R_{i},1\leq i\leq n}"></span> be rings, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle R_{i}\to R=\prod R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mo>=</mo> <mo>&#x220F;<!-- ∏ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle R_{i}\to R=\prod R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbed16de8bf260389bf86cc1a70476b7224e61be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.185ex; height:2.843ex;" alt="{\textstyle R_{i}\to R=\prod R_{i}}"></span> the inclusions with the images <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e599f543e7b9df295f4407630f1a1123b8ac90e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.962ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {a}}_{i}}"></span> (in particular <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e599f543e7b9df295f4407630f1a1123b8ac90e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.962ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {a}}_{i}}"></span> are rings though not subrings). Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e599f543e7b9df295f4407630f1a1123b8ac90e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.962ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {a}}_{i}}"></span> are ideals of <span class="texhtml mvar" style="font-style:italic;">R</span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R={\mathfrak {a}}_{1}\oplus \cdots \oplus {\mathfrak {a}}_{n},\quad {\mathfrak {a}}_{i}{\mathfrak {a}}_{j}=0,i\neq j,\quad {\mathfrak {a}}_{i}^{2}\subseteq {\mathfrak {a}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2295;<!-- ⊕ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>i</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>j</mi> <mo>,</mo> <mspace width="1em" /> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R={\mathfrak {a}}_{1}\oplus \cdots \oplus {\mathfrak {a}}_{n},\quad {\mathfrak {a}}_{i}{\mathfrak {a}}_{j}=0,i\neq j,\quad {\mathfrak {a}}_{i}^{2}\subseteq {\mathfrak {a}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c726747076bb3a1bf1f5416790d13354b2866748" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.043ex; height:3.176ex;" alt="{\displaystyle R={\mathfrak {a}}_{1}\oplus \cdots \oplus {\mathfrak {a}}_{n},\quad {\mathfrak {a}}_{i}{\mathfrak {a}}_{j}=0,i\neq j,\quad {\mathfrak {a}}_{i}^{2}\subseteq {\mathfrak {a}}_{i}}"></span> as a direct sum of abelian groups (because for abelian groups finite products are the same as direct sums). Clearly the direct sum of such ideals also defines a product of rings that is isomorphic to&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. Equivalently, the above can be done through <a href="/wiki/Central_idempotent" class="mw-redirect" title="Central idempotent">central idempotents</a>. Assume that <span class="texhtml mvar" style="font-style:italic;">R</span> has the above decomposition. Then we can write <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1=e_{1}+\cdots +e_{n},\quad e_{i}\in {\mathfrak {a}}_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1=e_{1}+\cdots +e_{n},\quad e_{i}\in {\mathfrak {a}}_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24447f71ff15b9acb2c1f520137712f84376f1a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.794ex; height:2.509ex;" alt="{\displaystyle 1=e_{1}+\cdots +e_{n},\quad e_{i}\in {\mathfrak {a}}_{i}.}"></span> By the conditions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5d44ffe7b575bec4c3e2e7230786c2cc568956d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.609ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {a}}_{i},}"></span> one has that <span class="texhtml mvar" style="font-style:italic;">e<sub>i</sub></span> are central idempotents and <span class="texhtml"><i>e<sub>i</sub>e<sub>j</sub></i> = 0</span>, <span class="texhtml"><i>i</i> ≠ <i>j</i></span> (orthogonal). Again, one can reverse the construction. Namely, if one is given a partition of 1 in orthogonal central idempotents, then let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}_{i}=Re_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>R</mi> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}_{i}=Re_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/040295c2e18e3158e8b397b4abcb7e74e5adff12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.355ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {a}}_{i}=Re_{i},}"></span> which are two-sided ideals. If each <span class="texhtml mvar" style="font-style:italic;">e<sub>i</sub></span> is not a sum of orthogonal central idempotents,<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup> then their direct sum is isomorphic to&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. </p><p>An important application of an infinite direct product is the construction of a <a href="/wiki/Projective_limit" class="mw-redirect" title="Projective limit">projective limit</a> of rings (see below). Another application is a <a href="/wiki/Restricted_product" title="Restricted product">restricted product</a> of a family of rings (cf. <a href="/wiki/Adele_ring" title="Adele ring">adele ring</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Polynomial_ring">Polynomial ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=26" title="Edit section: Polynomial ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Polynomial_ring" title="Polynomial ring">Polynomial ring</a></div> <p>Given a symbol <span class="texhtml mvar" style="font-style:italic;">t</span> (called a variable) and a commutative ring&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>, the set of polynomials </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[t]=\left\{a_{n}t^{n}+a_{n-1}t^{n-1}+\dots +a_{1}t+a_{0}\mid n\geq 0,a_{j}\in R\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[t]=\left\{a_{n}t^{n}+a_{n-1}t^{n-1}+\dots +a_{1}t+a_{0}\mid n\geq 0,a_{j}\in R\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3eebb362f161716c1bcb50a5656fbfbc21532a5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:57.783ex; height:3.343ex;" alt="{\displaystyle R[t]=\left\{a_{n}t^{n}+a_{n-1}t^{n-1}+\dots +a_{1}t+a_{0}\mid n\geq 0,a_{j}\in R\right\}}"></span></dd></dl> <p>forms a commutative ring with the usual addition and multiplication, containing <span class="texhtml mvar" style="font-style:italic;">R</span> as a subring. It is called the <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial ring</a> over&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. More generally, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[t_{1},\ldots ,t_{n}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[t_{1},\ldots ,t_{n}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc4cf3e812fcb5095239260dbc2ba56ceae257e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.575ex; height:2.843ex;" alt="{\displaystyle R\left[t_{1},\ldots ,t_{n}\right]}"></span> of all polynomials in variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{1},\ldots ,t_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{1},\ldots ,t_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d5d47a886224ab3923f286622880208346f172a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.13ex; height:2.343ex;" alt="{\displaystyle t_{1},\ldots ,t_{n}}"></span> forms a commutative ring, containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[t_{i}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[t_{i}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e9b4f740e9cf30c4b29d9510608e04a28906ec6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.084ex; height:2.843ex;" alt="{\displaystyle R\left[t_{i}\right]}"></span> as subrings. </p><p>If <span class="texhtml mvar" style="font-style:italic;">R</span> is an <a href="/wiki/Integral_domain" title="Integral domain">integral domain</a>, then <span class="texhtml"><i>R</i>[<i>t</i>]</span> is also an integral domain; its field of fractions is the field of <a href="/wiki/Rational_function" title="Rational function">rational functions</a>. If <span class="texhtml mvar" style="font-style:italic;">R</span> is a Noetherian ring, then <span class="texhtml"><i>R</i>[<i>t</i>]</span> is a Noetherian ring. If <span class="texhtml mvar" style="font-style:italic;">R</span> is a unique factorization domain, then <span class="texhtml"><i>R</i>[<i>t</i>]</span> is a unique factorization domain. Finally, <span class="texhtml mvar" style="font-style:italic;">R</span> is a field if and only if <span class="texhtml"><i>R</i>[<i>t</i>]</span> is a principal ideal domain. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\subseteq S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\subseteq S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61ab53336ab789637a720d5ea2ed48097cbf9878" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.362ex; height:2.343ex;" alt="{\displaystyle R\subseteq S}"></span> be commutative rings. Given an element <span class="texhtml mvar" style="font-style:italic;">x</span> of&#160;<span class="texhtml mvar" style="font-style:italic;">S</span>, one can consider the ring homomorphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[t]\to S,\quad f\mapsto f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[t]\to S,\quad f\mapsto f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0226daa10f64386e959d3aadf12fb73e82b45082" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.677ex; height:2.843ex;" alt="{\displaystyle R[t]\to S,\quad f\mapsto f(x)}"></span></dd></dl> <p>(that is, the <a href="/wiki/Substitution_(algebra)" class="mw-redirect" title="Substitution (algebra)">substitution</a>). If <span class="texhtml"><i>S</i> = <i>R</i>[<i>t</i>]</span> and <span class="texhtml"><i>x</i> = <i>t</i></span>, then <span class="texhtml"><i>f</i>(<i>t</i>) = <i>f</i></span>. Because of this, the polynomial <span class="texhtml mvar" style="font-style:italic;">f</span> is often also denoted by <span class="texhtml"><i>f</i>(<i>t</i>)</span>. The image of the map <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\mapsto f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\mapsto f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea98952f3899f06730b085ac6328fcce26293152" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.31ex; height:2.843ex;" alt="{\displaystyle f\mapsto f(x)}"></span>&#8288;</span> is denoted by <span class="texhtml"><i>R</i>[<i>x</i>]</span>; it is the same thing as the subring of <span class="texhtml mvar" style="font-style:italic;">S</span> generated by <span class="texhtml mvar" style="font-style:italic;">R</span> and&#160;<span class="texhtml mvar" style="font-style:italic;">x</span>. </p><p>Example: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left[t^{2},t^{3}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow> <mo>[</mo> <mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left[t^{2},t^{3}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e4541532126a442f0b3099109c17c60a30b0bb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.359ex; height:3.343ex;" alt="{\displaystyle k\left[t^{2},t^{3}\right]}"></span> denotes the image of the homomorphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k[x,y]\to k[t],\,f\mapsto f\left(t^{2},t^{3}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">[</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>k</mi> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k[x,y]\to k[t],\,f\mapsto f\left(t^{2},t^{3}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70de42b23023914ef0b1a1e71bcff1fdc76af67b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.947ex; height:3.343ex;" alt="{\displaystyle k[x,y]\to k[t],\,f\mapsto f\left(t^{2},t^{3}\right).}"></span></dd></dl> <p>In other words, it is the subalgebra of <span class="texhtml"><i>k</i>[<i>t</i>]</span> generated by <span class="texhtml"><i>t</i><sup>2</sup></span> and&#160;<span class="texhtml"><i>t</i><sup>3</sup></span>. </p><p>Example: let <span class="texhtml mvar" style="font-style:italic;">f</span> be a polynomial in one variable, that is, an element in a polynomial ring <span class="texhtml mvar" style="font-style:italic;">R</span>. Then <span class="texhtml"><i>f</i>(<i>x</i> + <i>h</i>)</span> is an element in <span class="texhtml"><i>R</i>[<i>h</i>]</span> and <span class="texhtml"><i>f</i>(<i>x</i> + <i>h</i>) – <i>f</i>(<i>x</i>)</span> is divisible by <span class="texhtml mvar" style="font-style:italic;">h</span> in that ring. The result of substituting zero to <span class="texhtml mvar" style="font-style:italic;">h</span> in <span class="texhtml">(<i>f</i>(<i>x</i> + <i>h</i>) – <i>f</i>(<i>x</i>)) / <i>h</i></span> is <span class="texhtml"><i>f' </i>(<i>x</i>)</span>, the derivative of <span class="texhtml mvar" style="font-style:italic;">f</span> at&#160;<span class="texhtml mvar" style="font-style:italic;">x</span>. </p><p>The substitution is a special case of the universal property of a polynomial ring. The property states: given a ring homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi :R\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>:</mo> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi :R\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/507c68fca8762e2a6e6aaa49dae7c0381fcc6525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.2ex; height:2.509ex;" alt="{\displaystyle \phi :R\to S}"></span> and an element <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">S</span> there exists a unique ring homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\phi }}:R[t]\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03D5;<!-- ϕ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>:</mo> <mi>R</mi> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\phi }}:R[t]\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9727858171f165d5705e60857e97068df5611bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.448ex; height:3.509ex;" alt="{\displaystyle {\overline {\phi }}:R[t]\to S}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\phi }}(t)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03D5;<!-- ϕ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\phi }}(t)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ea7821d2f68704703f72ba7478aea23c483c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.577ex; height:3.509ex;" alt="{\displaystyle {\overline {\phi }}(t)=x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\phi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03D5;<!-- ϕ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\phi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19839359a0b8f888d007de4891a59f29984d41e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.5ex; height:3.343ex;" alt="{\displaystyle {\overline {\phi }}}"></span> restricts to <span class="texhtml mvar" style="font-style:italic;">ϕ</span>.<sup id="cite_ref-FOOTNOTEJacobson2009122Theorem_2.10_42-0" class="reference"><a href="#cite_note-FOOTNOTEJacobson2009122Theorem_2.10-42"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> For example, choosing a basis, a <a href="/wiki/Symmetric_algebra" title="Symmetric algebra">symmetric algebra</a> satisfies the universal property and so is a polynomial ring. </p><p>To give an example, let <span class="texhtml mvar" style="font-style:italic;">S</span> be the ring of all functions from <span class="texhtml mvar" style="font-style:italic;">R</span> to itself; the addition and the multiplication are those of functions. Let <span class="texhtml mvar" style="font-style:italic;">x</span> be the identity function. Each <span class="texhtml mvar" style="font-style:italic;">r</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> defines a constant function, giving rise to the homomorphism <span class="texhtml"><i>R</i> → <i>S</i></span>. The universal property says that this map extends uniquely to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[t]\to S,\quad f\mapsto {\overline {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[t]\to S,\quad f\mapsto {\overline {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15eb76de81b0c53d2b82343a721fc4d0cc6f6e29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.744ex; height:3.509ex;" alt="{\displaystyle R[t]\to S,\quad f\mapsto {\overline {f}}}"></span></dd></dl> <p>(<span class="texhtml mvar" style="font-style:italic;">t</span> maps to <span class="texhtml mvar" style="font-style:italic;">x</span>) where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de4554a5933ca51745edacd34a5a6aaea9a9f4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.484ex; height:3.343ex;" alt="{\displaystyle {\overline {f}}}"></span> is the <a href="/wiki/Polynomial_function" class="mw-redirect" title="Polynomial function">polynomial function</a> defined by <span class="texhtml mvar" style="font-style:italic;">f</span>. The resulting map is injective if and only if <span class="texhtml mvar" style="font-style:italic;">R</span> is infinite. </p><p>Given a non-constant monic polynomial <span class="texhtml mvar" style="font-style:italic;">f</span> in <span class="texhtml"><i>R</i>[<i>t</i>]</span>, there exists a ring <span class="texhtml mvar" style="font-style:italic;">S</span> containing <span class="texhtml mvar" style="font-style:italic;">R</span> such that <span class="texhtml mvar" style="font-style:italic;">f</span> is a product of linear factors in <span class="texhtml"><i>S</i>[<i>t</i>]</span>.<sup id="cite_ref-FOOTNOTEBourbaki1964Ch_5._§1,_Lemma_2_43-0" class="reference"><a href="#cite_note-FOOTNOTEBourbaki1964Ch_5._§1,_Lemma_2-43"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p>Let <span class="texhtml mvar" style="font-style:italic;">k</span> be an algebraically closed field. The <a href="/wiki/Hilbert%27s_Nullstellensatz" title="Hilbert&#39;s Nullstellensatz">Hilbert's Nullstellensatz</a> (theorem of zeros) states that there is a natural one-to-one correspondence between the set of all prime ideals in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\left[t_{1},\ldots ,t_{n}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow> <mo>[</mo> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\left[t_{1},\ldots ,t_{n}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/627d900f3df1fb1ea626778cc817791536cad857" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.022ex; height:2.843ex;" alt="{\displaystyle k\left[t_{1},\ldots ,t_{n}\right]}"></span> and the set of closed subvarieties of <span class="texhtml mvar" style="font-style:italic;">k<sup>n</sup></span>. In particular, many local problems in algebraic geometry may be attacked through the study of the generators of an ideal in a polynomial ring. (cf. <a href="/wiki/Gr%C3%B6bner_basis" title="Gröbner basis">Gröbner basis</a>.) </p><p>There are some other related constructions. A <a href="/wiki/Formal_power_series_ring" class="mw-redirect" title="Formal power series ring">formal power series ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[\![t]\!]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[\![t]\!]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b0ed61bc4efa03186f6fadccd730eb17bc9e0c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.417ex; height:2.843ex;" alt="{\displaystyle R[\![t]\!]}"></span> consists of formal power series </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{0}^{\infty }a_{i}t^{i},\quad a_{i}\in R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{0}^{\infty }a_{i}t^{i},\quad a_{i}\in R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a57a8f3478e3f57a12687fc46e781386df01791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.402ex; height:6.843ex;" alt="{\displaystyle \sum _{0}^{\infty }a_{i}t^{i},\quad a_{i}\in R}"></span></dd></dl> <p>together with multiplication and addition that mimic those for convergent series. It contains <span class="texhtml"><i>R</i>[<i>t</i>]</span> as a subring. A formal power series ring does not have the universal property of a polynomial ring; a series may not converge after a substitution. The important advantage of a formal power series ring over a polynomial ring is that it is <a href="/wiki/Local_ring" title="Local ring">local</a> (in fact, <a href="/wiki/Complete_ring" class="mw-redirect" title="Complete ring">complete</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Matrix_ring_and_endomorphism_ring">Matrix ring and endomorphism ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=27" title="Edit section: Matrix ring and endomorphism ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Matrix_ring" title="Matrix ring">Matrix ring</a> and <a href="/wiki/Endomorphism_ring" title="Endomorphism ring">Endomorphism ring</a></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be a ring (not necessarily commutative). The set of all square matrices of size <span class="texhtml mvar" style="font-style:italic;">n</span> with entries in <span class="texhtml mvar" style="font-style:italic;">R</span> forms a ring with the entry-wise addition and the usual matrix multiplication. It is called the <a href="/wiki/Matrix_ring" title="Matrix ring">matrix ring</a> and is denoted by <span class="texhtml">M<sub><i>n</i></sub>(<i>R</i>)</span>. Given a right <span class="texhtml mvar" style="font-style:italic;">R</span>-module <span class="texhtml mvar" style="font-style:italic;">U</span>, the set of all <span class="texhtml mvar" style="font-style:italic;">R</span>-linear maps from <span class="texhtml mvar" style="font-style:italic;">U</span> to itself forms a ring with addition that is of function and multiplication that is of <a href="/wiki/Composition_of_functions" class="mw-redirect" title="Composition of functions">composition of functions</a>; it is called the endomorphism ring of <span class="texhtml mvar" style="font-style:italic;">U</span> and is denoted by <span class="texhtml">End<sub><i>R</i></sub>(<i>U</i>)</span>. </p><p>As in linear algebra, a matrix ring may be canonically interpreted as an endomorphism ring: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {End} _{R}(R^{n})\simeq \operatorname {M} _{n}(R).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>End</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2243;<!-- ≃ --></mo> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {End} _{R}(R^{n})\simeq \operatorname {M} _{n}(R).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1b83bafcf436ca385bcdb924441c123f20417fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.107ex; height:2.843ex;" alt="{\displaystyle \operatorname {End} _{R}(R^{n})\simeq \operatorname {M} _{n}(R).}"></span> This is a special case of the following fact: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\oplus _{1}^{n}U\to \oplus _{1}^{n}U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msubsup> <mo>&#x2295;<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mo>&#x2295;<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\oplus _{1}^{n}U\to \oplus _{1}^{n}U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0794e4d294e2a0cb15b78e485cf39e825fd5a651" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.448ex; height:2.843ex;" alt="{\displaystyle f:\oplus _{1}^{n}U\to \oplus _{1}^{n}U}"></span> is an <span class="texhtml mvar" style="font-style:italic;">R</span>-linear map, then <span class="texhtml mvar" style="font-style:italic;">f</span> may be written as a matrix with entries <span class="texhtml mvar" style="font-style:italic;">f<sub>ij</sub></span> in <span class="texhtml"><i>S</i> = End<sub><i>R</i></sub>(<i>U</i>)</span>, resulting in the ring isomorphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {End} _{R}(\oplus _{1}^{n}U)\to \operatorname {M} _{n}(S),\quad f\mapsto (f_{ij}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>End</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msubsup> <mo>&#x2295;<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>U</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {End} _{R}(\oplus _{1}^{n}U)\to \operatorname {M} _{n}(S),\quad f\mapsto (f_{ij}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/739fd79fe83d9e73b08e890d9e4558c40ceddff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.86ex; height:3.009ex;" alt="{\displaystyle \operatorname {End} _{R}(\oplus _{1}^{n}U)\to \operatorname {M} _{n}(S),\quad f\mapsto (f_{ij}).}"></span></dd></dl> <p>Any ring homomorphism <span class="texhtml"><i>R</i> → <i>S</i></span> induces <span class="texhtml">M<sub><i>n</i></sub>(<i>R</i>) → M<sub><i>n</i></sub>(<i>S</i>)</span>.<sup id="cite_ref-FOOTNOTECohn20034.4_44-0" class="reference"><a href="#cite_note-FOOTNOTECohn20034.4-44"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Schur%27s_lemma" title="Schur&#39;s lemma">Schur's lemma</a> says that if <span class="texhtml mvar" style="font-style:italic;">U</span> is a simple right <span class="texhtml mvar" style="font-style:italic;">R</span>-module, then <span class="texhtml">End<sub><i>R</i></sub>(<i>U</i>)</span> is a division ring.<sup id="cite_ref-FOOTNOTELang2002Ch._XVII._Proposition_1.1_45-0" class="reference"><a href="#cite_note-FOOTNOTELang2002Ch._XVII._Proposition_1.1-45"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=\bigoplus _{i=1}^{r}U_{i}^{\oplus m_{i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <munderover> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <msubsup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2295;<!-- ⊕ --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=\bigoplus _{i=1}^{r}U_{i}^{\oplus m_{i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dabc8e8c836b2e2aeffbbaf11292e519864d894" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.198ex; height:6.843ex;" alt="{\displaystyle U=\bigoplus _{i=1}^{r}U_{i}^{\oplus m_{i}}}"></span> is a direct sum of <span class="texhtml mvar" style="font-style:italic;">m<sub>i</sub></span>-copies of simple <span class="texhtml mvar" style="font-style:italic;">R</span>-modules <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22cd8453a56ce4cfc76c1a23c80c47a6bbe00441" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.034ex; height:2.509ex;" alt="{\displaystyle U_{i},}"></span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {End} _{R}(U)\simeq \prod _{i=1}^{r}\operatorname {M} _{m_{i}}(\operatorname {End} _{R}(U_{i})).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>End</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>&#x2243;<!-- ≃ --></mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>End</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {End} _{R}(U)\simeq \prod _{i=1}^{r}\operatorname {M} _{m_{i}}(\operatorname {End} _{R}(U_{i})).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f63fe0fcbdba5aeeac0347644927bf7e58b99488" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.425ex; height:6.843ex;" alt="{\displaystyle \operatorname {End} _{R}(U)\simeq \prod _{i=1}^{r}\operatorname {M} _{m_{i}}(\operatorname {End} _{R}(U_{i})).}"></span></dd></dl> <p>The <a href="/wiki/Artin%E2%80%93Wedderburn_theorem" class="mw-redirect" title="Artin–Wedderburn theorem">Artin–Wedderburn theorem</a> states any <a href="/wiki/Semisimple_ring" class="mw-redirect" title="Semisimple ring">semisimple ring</a> (cf. below) is of this form. </p><p>A ring <span class="texhtml mvar" style="font-style:italic;">R</span> and the matrix ring <span class="texhtml">M<sub><i>n</i></sub>(<i>R</i>)</span> over it are <a href="/wiki/Morita_equivalent" class="mw-redirect" title="Morita equivalent">Morita equivalent</a>: the <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a> of right modules of <span class="texhtml mvar" style="font-style:italic;">R</span> is equivalent to the category of right modules over <span class="texhtml">M<sub><i>n</i></sub>(<i>R</i>)</span>.<sup id="cite_ref-FOOTNOTECohn20034.4_44-1" class="reference"><a href="#cite_note-FOOTNOTECohn20034.4-44"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> In particular, two-sided ideals in <span class="texhtml mvar" style="font-style:italic;">R</span> correspond in one-to-one to two-sided ideals in <span class="texhtml">M<sub><i>n</i></sub>(<i>R</i>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Limits_and_colimits_of_rings">Limits and colimits of rings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=28" title="Edit section: Limits and colimits of rings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">R<sub>i</sub></span> be a sequence of rings such that <span class="texhtml mvar" style="font-style:italic;">R<sub>i</sub></span> is a subring of <span class="texhtml"><i>R</i><sub><i>i</i> + 1</sub></span> for all <span class="texhtml mvar" style="font-style:italic;">i</span>. Then the union (or <a href="/wiki/Filtered_colimit" class="mw-redirect" title="Filtered colimit">filtered colimit</a>) of <span class="texhtml mvar" style="font-style:italic;">R<sub>i</sub></span> is the ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varinjlim R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2192;<!-- → --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varinjlim R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeca73f901302826b173c0d18522d64c254c2219" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:6.31ex; height:3.843ex;" alt="{\displaystyle \varinjlim R_{i}}"></span> defined as follows: it is the disjoint union of all <span class="texhtml mvar" style="font-style:italic;">R<sub>i</sub></span>'s modulo the equivalence relation <span class="texhtml"><i>x</i> ~ <i>y</i></span> if and only if <span class="texhtml"><i>x</i> = <i>y</i></span> in <span class="texhtml mvar" style="font-style:italic;">R<sub>i</sub></span> for sufficiently large <span class="texhtml mvar" style="font-style:italic;">i</span>. </p><p>Examples of colimits: </p> <ul><li>A polynomial ring in infinitely many variables: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[t_{1},t_{2},\cdots ]=\varinjlim R[t_{1},t_{2},\cdots ,t_{m}].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2192;<!-- → --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>R</mi> <mo stretchy="false">[</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[t_{1},t_{2},\cdots ]=\varinjlim R[t_{1},t_{2},\cdots ,t_{m}].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c562ae4e64063e5aedc587c8442c596aed80eb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:34.701ex; height:4.009ex;" alt="{\displaystyle R[t_{1},t_{2},\cdots ]=\varinjlim R[t_{1},t_{2},\cdots ,t_{m}].}"></span></li> <li>The <a href="/wiki/Algebraic_closure" title="Algebraic closure">algebraic closure</a> of <a href="/wiki/Finite_field" title="Finite field">finite fields</a> of the same characteristic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\mathbf {F} }}_{p}=\varinjlim \mathbf {F} _{p^{m}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2192;<!-- → --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\mathbf {F} }}_{p}=\varinjlim \mathbf {F} _{p^{m}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/976e381fefbbf86d0cf9b9d9ec400b1003c1b227" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:14.426ex; height:4.676ex;" alt="{\displaystyle {\overline {\mathbf {F} }}_{p}=\varinjlim \mathbf {F} _{p^{m}}.}"></span></li> <li>The field of <a href="/wiki/Formal_Laurent_series" class="mw-redirect" title="Formal Laurent series">formal Laurent series</a> over a field <span class="texhtml mvar" style="font-style:italic;">k</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k(\!(t)\!)=\varinjlim t^{-m}k[\![t]\!]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">(</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2192;<!-- → --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> <mi>k</mi> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k(\!(t)\!)=\varinjlim t^{-m}k[\![t]\!]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/536bed6a210e67bcc910b2055075b9afa8306105" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:19.398ex; height:4.176ex;" alt="{\displaystyle k(\!(t)\!)=\varinjlim t^{-m}k[\![t]\!]}"></span> (it is the field of fractions of the <a href="/wiki/Formal_power_series_ring" class="mw-redirect" title="Formal power series ring">formal power series ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k[\![t]\!].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k[\![t]\!].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db5e2887e456f95fb545b62435a54ac319e7a782" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.511ex; height:2.843ex;" alt="{\displaystyle k[\![t]\!].}"></span>)</li> <li>The <a href="/wiki/Function_field_of_an_algebraic_variety" title="Function field of an algebraic variety">function field of an algebraic variety</a> over a field <span class="texhtml mvar" style="font-style:italic;">k</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varinjlim k[U]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2192;<!-- → --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> <mo stretchy="false">[</mo> <mi>U</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varinjlim k[U]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc7735d64bbdf3d5a25544d60bea11fdd0a5f54e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:8.034ex; height:4.009ex;" alt="{\displaystyle \varinjlim k[U]}"></span> where the limit runs over all the coordinate rings <span class="texhtml"><i>k</i>[<i>U</i>]</span> of nonempty open subsets <span class="texhtml mvar" style="font-style:italic;">U</span> (more succinctly it is the <a href="/wiki/Stalk_(mathematics)" class="mw-redirect" title="Stalk (mathematics)">stalk</a> of the structure sheaf at the <a href="/wiki/Generic_point" title="Generic point">generic point</a>.)</li></ul> <p>Any commutative ring is the colimit of <a href="/wiki/Finitely_generated_ring" class="mw-redirect" title="Finitely generated ring">finitely generated subrings</a>. </p><p>A <a href="/wiki/Projective_limit" class="mw-redirect" title="Projective limit">projective limit</a> (or a <a href="/wiki/Filtered_limit" class="mw-redirect" title="Filtered limit">filtered limit</a>) of rings is defined as follows. Suppose we are given a family of rings <span class="texhtml"><i>R</i><sub><i>i</i></sub></span>, <span class="texhtml"><i>i</i></span> running over positive integers, say, and ring homomorphisms <span class="texhtml"><i>R</i><sub><i>j</i></sub> → <i>R</i><sub><i>i</i></sub></span>, <span class="texhtml"><i>j</i> ≥ <i>i</i></span> such that <span class="texhtml"><i>R</i><sub><i>i</i></sub> → <i>R</i><sub><i>i</i></sub></span> are all the identities and <span class="texhtml"><i>R</i><sub><i>k</i></sub> → <i>R</i><sub><i>j</i></sub> → <i>R</i><sub><i>i</i></sub></span> is <span class="texhtml"><i>R</i><sub><i>k</i></sub> → <i>R</i><sub><i>i</i></sub></span> whenever <span class="texhtml"><i>k</i> ≥ <i>j</i> ≥ <i>i</i></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varprojlim R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2190;<!-- ← --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varprojlim R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75f7b0aaf3560c48ed9d014f38367282ad2b06e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:6.375ex; height:3.843ex;" alt="{\displaystyle \varprojlim R_{i}}"></span> is the subring of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \prod R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>&#x220F;<!-- ∏ --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \prod R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a48ed081fc258b24f86887e97d214d0a1c19ef7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:2.843ex;" alt="{\displaystyle \textstyle \prod R_{i}}"></span> consisting of <span class="texhtml">(<i>x</i><sub><i>n</i></sub>)</span> such that <span class="texhtml"><i>x</i><sub><i>j</i></sub></span> maps to <span class="texhtml"><i>x</i><sub><i>i</i></sub></span> under <span class="texhtml"><i>R</i><sub><i>j</i></sub> → <i>R</i><sub><i>i</i></sub></span>, <span class="texhtml"><i>j</i> ≥ <i>i</i></span>. </p><p>For an example of a projective limit, see <i><a href="#Completion">§&#160;Completion</a></i>. </p> <div class="mw-heading mw-heading3"><h3 id="Localization">Localization</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=29" title="Edit section: Localization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Localization_of_a_ring" class="mw-redirect" title="Localization of a ring">localization</a> generalizes the construction of the <a href="/wiki/Field_of_fractions" title="Field of fractions">field of fractions</a> of an integral domain to an arbitrary ring and modules. Given a (not necessarily commutative) ring <span class="texhtml mvar" style="font-style:italic;">R</span> and a subset <span class="texhtml mvar" style="font-style:italic;">S</span> of <span class="texhtml mvar" style="font-style:italic;">R</span>, there exists a ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R[S^{-1}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R[S^{-1}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc8e9aca12e1c82bcb76786e721b503057d121bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.912ex; height:3.176ex;" alt="{\displaystyle R[S^{-1}]}"></span> together with the ring homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\to R\left[S^{-1}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\to R\left[S^{-1}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ff24251e09611253a5e59710f41fef5e9ea8295" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.323ex; height:3.343ex;" alt="{\displaystyle R\to R\left[S^{-1}\right]}"></span> that "inverts" <span class="texhtml mvar" style="font-style:italic;">S</span>; that is, the homomorphism maps elements in <span class="texhtml mvar" style="font-style:italic;">S</span> to unit elements in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc5da3880f2a84e3c59d744d4a6a70c91648127f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.979ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right],}"></span> and, moreover, any ring homomorphism from <span class="texhtml mvar" style="font-style:italic;">R</span> that "inverts" <span class="texhtml mvar" style="font-style:italic;">S</span> uniquely factors through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/477d928832e71936d39c6e196a1ec4c7f9c5f003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.979ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right].}"></span><sup id="cite_ref-FOOTNOTECohn1995Proposition_1.3.1_46-0" class="reference"><a href="#cite_note-FOOTNOTECohn1995Proposition_1.3.1-46"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> The ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a2fa5e7650f1b84116f5dd0986162ed090cafea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.945ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right]}"></span> is called the <b>localization</b> of <span class="texhtml mvar" style="font-style:italic;">R</span> with respect to <span class="texhtml mvar" style="font-style:italic;">S</span>. For example, if <span class="texhtml mvar" style="font-style:italic;">R</span> is a commutative ring and <span class="texhtml mvar" style="font-style:italic;">f</span> an element in <span class="texhtml mvar" style="font-style:italic;">R</span>, then the localization <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[f^{-1}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[f^{-1}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/866a1856d4f363ae6d4d2f3818ff980b72442c51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.744ex; height:3.343ex;" alt="{\displaystyle R\left[f^{-1}\right]}"></span> consists of elements of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r/f^{n},\,r\in R,\,n\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mspace width="thinmathspace" /> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>R</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r/f^{n},\,r\in R,\,n\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a08b51517face7da73d55a6c17a9e6197cd06bca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.901ex; height:2.843ex;" alt="{\displaystyle r/f^{n},\,r\in R,\,n\geq 0}"></span> (to be precise, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[f^{-1}\right]=R[t]/(tf-1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <mi>R</mi> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mi>f</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[f^{-1}\right]=R[t]/(tf-1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/751001e38a83d034e0cf683b63cf45ac724151ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.479ex; height:3.343ex;" alt="{\displaystyle R\left[f^{-1}\right]=R[t]/(tf-1).}"></span>)<sup id="cite_ref-FOOTNOTEEisenbud1995Exercise_2.2_47-0" class="reference"><a href="#cite_note-FOOTNOTEEisenbud1995Exercise_2.2-47"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>The localization is frequently applied to a commutative ring <span class="texhtml mvar" style="font-style:italic;">R</span> with respect to the complement of a prime ideal (or a union of prime ideals) in&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. In that case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=R-{\mathfrak {p}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=R-{\mathfrak {p}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36bdc81564f7beca745923b53702413398b396b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.011ex; height:2.509ex;" alt="{\displaystyle S=R-{\mathfrak {p}},}"></span> one often writes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124aee5f6d80492d2746e652dee942c36ef6e1c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.818ex; height:2.843ex;" alt="{\displaystyle R_{\mathfrak {p}}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/477d928832e71936d39c6e196a1ec4c7f9c5f003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.979ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right].}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124aee5f6d80492d2746e652dee942c36ef6e1c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.818ex; height:2.843ex;" alt="{\displaystyle R_{\mathfrak {p}}}"></span> is then a <a href="/wiki/Local_ring" title="Local ring">local ring</a> with the <a href="/wiki/Maximal_ideal" title="Maximal ideal">maximal ideal</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}R_{\mathfrak {p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}R_{\mathfrak {p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/582a26f263195247f30fa06dad60f8d88f26c164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.628ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {p}}R_{\mathfrak {p}}.}"></span> This is the reason for the terminology "localization". The field of fractions of an integral domain <span class="texhtml mvar" style="font-style:italic;">R</span> is the localization of <span class="texhtml mvar" style="font-style:italic;">R</span> at the prime ideal zero. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14c125cdf81ac25d76edc2e8d557302c9f555a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {p}}}"></span> is a prime ideal of a commutative ring&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>, then the field of fractions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R/{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R/{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9da6e6f1e63ba7c169bec572ae2ca16f1c58936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.089ex; height:2.843ex;" alt="{\displaystyle R/{\mathfrak {p}}}"></span> is the same as the residue field of the local ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\mathfrak {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\mathfrak {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124aee5f6d80492d2746e652dee942c36ef6e1c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.818ex; height:2.843ex;" alt="{\displaystyle R_{\mathfrak {p}}}"></span> and is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k({\mathfrak {p}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k({\mathfrak {p}}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d44d0082dc4ec6a877af31dc1217fcab471f7e94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.83ex; height:2.843ex;" alt="{\displaystyle k({\mathfrak {p}}).}"></span> </p><p>If <span class="texhtml mvar" style="font-style:italic;">M</span> is a left <span class="texhtml mvar" style="font-style:italic;">R</span>-module, then the localization of <span class="texhtml mvar" style="font-style:italic;">M</span> with respect to <span class="texhtml mvar" style="font-style:italic;">S</span> is given by a <a href="/wiki/Change_of_rings" title="Change of rings">change of rings</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\left[S^{-1}\right]=R\left[S^{-1}\right]\otimes _{R}M.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>M</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\left[S^{-1}\right]=R\left[S^{-1}\right]\otimes _{R}M.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/182e09cf0feec2967d8337e197459da4d0084bde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.075ex; height:3.343ex;" alt="{\displaystyle M\left[S^{-1}\right]=R\left[S^{-1}\right]\otimes _{R}M.}"></span> </p><p>The most important properties of localization are the following: when <span class="texhtml mvar" style="font-style:italic;">R</span> is a commutative ring and <span class="texhtml mvar" style="font-style:italic;">S</span> a multiplicatively closed subset </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {p}}\mapsto {\mathfrak {p}}\left[S^{-1}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {p}}\mapsto {\mathfrak {p}}\left[S^{-1}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc99eed581db91f5f4d659076ee275ba9728331" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.12ex; height:3.343ex;" alt="{\displaystyle {\mathfrak {p}}\mapsto {\mathfrak {p}}\left[S^{-1}\right]}"></span> is a bijection between the set of all prime ideals in <span class="texhtml mvar" style="font-style:italic;">R</span> disjoint from <span class="texhtml mvar" style="font-style:italic;">S</span> and the set of all prime ideals in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/477d928832e71936d39c6e196a1ec4c7f9c5f003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.979ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right].}"></span><sup id="cite_ref-FOOTNOTEMilne2012Proposition_6.4_48-0" class="reference"><a href="#cite_note-FOOTNOTEMilne2012Proposition_6.4-48"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right]=\varinjlim R\left[f^{-1}\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2192;<!-- → --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right]=\varinjlim R\left[f^{-1}\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a32ebca63604a2aebf74c48d3b5f3935c419df84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:23.568ex; height:4.343ex;" alt="{\displaystyle R\left[S^{-1}\right]=\varinjlim R\left[f^{-1}\right],}"></span> <span class="texhtml mvar" style="font-style:italic;">f</span> running over elements in <span class="texhtml mvar" style="font-style:italic;">S</span> with partial ordering given by divisibility.<sup id="cite_ref-FOOTNOTEMilne2012end_of_Chapter_7_49-0" class="reference"><a href="#cite_note-FOOTNOTEMilne2012end_of_Chapter_7-49"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup></li> <li>The localization is exact: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\to M'\left[S^{-1}\right]\to M\left[S^{-1}\right]\to M''\left[S^{-1}\right]\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>M</mi> <mo>&#x2032;</mo> </msup> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>M</mi> <mo>&#x2033;</mo> </msup> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\to M'\left[S^{-1}\right]\to M\left[S^{-1}\right]\to M''\left[S^{-1}\right]\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/645fb810cb3b83f73d5257efcb9871cde5ddd25a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:44.585ex; height:3.343ex;" alt="{\displaystyle 0\to M&#039;\left[S^{-1}\right]\to M\left[S^{-1}\right]\to M&#039;&#039;\left[S^{-1}\right]\to 0}"></span> is exact over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a2fa5e7650f1b84116f5dd0986162ed090cafea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.945ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right]}"></span> whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\to M'\to M\to M''\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>M</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>M</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\to M'\to M\to M''\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a12da2cdc62593c2b3d9e1a796698a052f8ccab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:26.043ex; height:2.509ex;" alt="{\displaystyle 0\to M&#039;\to M\to M&#039;&#039;\to 0}"></span> is exact over&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>.</li> <li>Conversely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\to M'_{\mathfrak {m}}\to M_{\mathfrak {m}}\to M''_{\mathfrak {m}}\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> <mo>&#x2033;</mo> </msubsup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\to M'_{\mathfrak {m}}\to M_{\mathfrak {m}}\to M''_{\mathfrak {m}}\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6599b67cf1f3b3fd12126b3e010da58fa550b58e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.022ex; height:2.509ex;" alt="{\displaystyle 0\to M&#039;_{\mathfrak {m}}\to M_{\mathfrak {m}}\to M&#039;&#039;_{\mathfrak {m}}\to 0}"></span> is exact for any maximal ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {m}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">m</mi> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {m}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95c2e12edac0425066c23a2fb3f6dc66c9498aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.429ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {m}},}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\to M'\to M\to M''\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>M</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>M</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\to M'\to M\to M''\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a12da2cdc62593c2b3d9e1a796698a052f8ccab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:26.043ex; height:2.509ex;" alt="{\displaystyle 0\to M&#039;\to M\to M&#039;&#039;\to 0}"></span> is exact.</li> <li>A remark: localization is no help in proving a global existence. One instance of this is that if two modules are isomorphic at all prime ideals, it does not follow that they are isomorphic. (One way to explain this is that the localization allows one to view a module as a sheaf over prime ideals and a sheaf is inherently a local notion.)</li></ul> <p>In <a href="/wiki/Category_theory" title="Category theory">category theory</a>, a <a href="/wiki/Localization_of_a_category" title="Localization of a category">localization of a category</a> amounts to making some morphisms isomorphisms. An element in a commutative ring <span class="texhtml mvar" style="font-style:italic;">R</span> may be thought of as an endomorphism of any <span class="texhtml mvar" style="font-style:italic;">R</span>-module. Thus, categorically, a localization of <span class="texhtml mvar" style="font-style:italic;">R</span> with respect to a subset <span class="texhtml mvar" style="font-style:italic;">S</span> of <span class="texhtml mvar" style="font-style:italic;">R</span> is a <a href="/wiki/Functor" title="Functor">functor</a> from the category of <span class="texhtml mvar" style="font-style:italic;">R</span>-modules to itself that sends elements of <span class="texhtml mvar" style="font-style:italic;">S</span> viewed as endomorphisms to automorphisms and is universal with respect to this property. (Of course, <span class="texhtml mvar" style="font-style:italic;">R</span> then maps to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a2fa5e7650f1b84116f5dd0986162ed090cafea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.945ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right]}"></span> and <span class="texhtml mvar" style="font-style:italic;">R</span>-modules map to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\left[S^{-1}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\left[S^{-1}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a2fa5e7650f1b84116f5dd0986162ed090cafea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.945ex; height:3.343ex;" alt="{\displaystyle R\left[S^{-1}\right]}"></span>-modules.) </p> <div class="mw-heading mw-heading3"><h3 id="Completion">Completion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=30" title="Edit section: Completion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">R</span> be a commutative ring, and let <span class="texhtml mvar" style="font-style:italic;">I</span> be an ideal of&#160;<span class="texhtml mvar" style="font-style:italic;">R</span>. The <b><a href="/wiki/Completion_(ring_theory)" class="mw-redirect" title="Completion (ring theory)">completion</a></b> of <span class="texhtml mvar" style="font-style:italic;">R</span> at <span class="texhtml mvar" style="font-style:italic;">I</span> is the projective limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {R}}=\varprojlim R/I^{n};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>&#x2190;<!-- ← --></mo> </munder> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {R}}=\varprojlim R/I^{n};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e1290ad833e81e41c7b9a8d12646957943e826e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:14.682ex; height:4.509ex;" alt="{\displaystyle {\hat {R}}=\varprojlim R/I^{n};}"></span> it is a commutative ring. The canonical homomorphisms from <span class="texhtml mvar" style="font-style:italic;">R</span> to the quotients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R/I^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R/I^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/450dc301658614a35b0cc329114812e4055cf50f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.361ex; height:2.843ex;" alt="{\displaystyle R/I^{n}}"></span> induce a homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\to {\hat {R}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\to {\hat {R}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bcf6bbeccf935f3bf76ec426682a07f51a454da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.789ex; height:2.843ex;" alt="{\displaystyle R\to {\hat {R}}.}"></span> The latter homomorphism is injective if <span class="texhtml mvar" style="font-style:italic;">R</span> is a Noetherian integral domain and <span class="texhtml mvar" style="font-style:italic;">I</span> is a proper ideal, or if <span class="texhtml mvar" style="font-style:italic;">R</span> is a Noetherian local ring with maximal ideal <span class="texhtml mvar" style="font-style:italic;">I</span>, by <a href="/wiki/Krull%27s_intersection_theorem" class="mw-redirect" title="Krull&#39;s intersection theorem">Krull's intersection theorem</a>.<sup id="cite_ref-FOOTNOTEAtiyahMacdonald1969Theorem_10.17_and_its_corollaries_50-0" class="reference"><a href="#cite_note-FOOTNOTEAtiyahMacdonald1969Theorem_10.17_and_its_corollaries-50"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> The construction is especially useful when <span class="texhtml mvar" style="font-style:italic;">I</span> is a maximal ideal. </p><p>The basic example is the completion of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span> at the principal ideal <span class="texhtml">(<i>p</i>)</span> generated by a prime number <span class="texhtml mvar" style="font-style:italic;">p</span>; it is called the ring of <a href="/wiki/P-adic_integer" class="mw-redirect" title="P-adic integer"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic integers</a> and is denoted <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2d1fd592239d60f9a9f36feb4b3be40df666f6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.256ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}.}"></span>&#8288;</span> The completion can in this case be constructed also from the <a href="/wiki/P-adic_absolute_value" class="mw-redirect" title="P-adic absolute value"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic absolute value</a> on <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869719f08f506bf866043442858fb3da1d4b4b5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.455ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} .}"></span>&#8288;</span> The <span class="texhtml mvar" style="font-style:italic;">p</span>-adic absolute value on <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>&#8288;</span> is a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto |x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto |x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04f7cb7bcc9c126b2d18614065cfeeb20f8e5514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.567ex; height:2.843ex;" alt="{\displaystyle x\mapsto |x|}"></span> from <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>&#8288;</span> to <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>&#8288;</span> given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |n|_{p}=p^{-v_{p}(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>n</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |n|_{p}=p^{-v_{p}(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/675d39c82a1507cf2905e97039be955bdc0b203b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.425ex; height:3.676ex;" alt="{\displaystyle |n|_{p}=p^{-v_{p}(n)}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{p}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{p}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab7ef07cef84d44d3fd868891d304b7afafae1b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.391ex; height:3.009ex;" alt="{\displaystyle v_{p}(n)}"></span> denotes the exponent of <span class="texhtml mvar" style="font-style:italic;">p</span> in the prime factorization of a nonzero integer <span class="texhtml mvar" style="font-style:italic;">n</span> into prime numbers (we also put <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0|_{p}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0|_{p}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f790cbc348f0929770ccd86dac7e18f5b2644930" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.776ex; height:3.176ex;" alt="{\displaystyle |0|_{p}=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |m/n|_{p}=|m|_{p}/|n|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>m</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>n</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |m/n|_{p}=|m|_{p}/|n|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790be7ff106c016200e34693cce080e32924ab1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.352ex; height:3.176ex;" alt="{\displaystyle |m/n|_{p}=|m|_{p}/|n|_{p}}"></span>). It defines a distance function on <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>&#8288;</span> and the completion of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5909f0b54e4718fa24d5fd34d54189d24a66e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.808ex; height:2.509ex;" alt="{\displaystyle \mathbb {Q} }"></span>&#8288;</span> as a <a href="/wiki/Metric_space" title="Metric space">metric space</a> is denoted by <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} _{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} _{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb4b0959c6687de4ffc0158e0b1d35d2137774d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.514ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q} _{p}.}"></span>&#8288;</span> It is again a field since the field operations extend to the completion. The subring of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f44bc6894c682710705f3ea74f33042e0acc3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.867ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q} _{p}}"></span>&#8288;</span> consisting of elements <span class="texhtml mvar" style="font-style:italic;">x</span> with <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;<sub><i>p</i></sub> ≤ 1</span> is isomorphic to&#160;<span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2d1fd592239d60f9a9f36feb4b3be40df666f6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.256ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p}.}"></span>&#8288;</span> </p><p>Similarly, the formal power series ring <span class="texhtml"><i>R</i>[{[<i>t</i>]}]</span> is the completion of <span class="texhtml"><i>R</i>[<i>t</i>]</span> at <span class="texhtml">(<i>t</i>)</span> (see also <i><a href="/wiki/Hensel%27s_lemma" title="Hensel&#39;s lemma">Hensel's lemma</a></i>) </p><p>A complete ring has much simpler structure than a commutative ring. This owns to the <a href="/wiki/Cohen_structure_theorem" title="Cohen structure theorem">Cohen structure theorem</a>, which says, roughly, that a complete local ring tends to look like a formal power series ring or a quotient of it. On the other hand, the interaction between the <a href="/wiki/Integral_closure" class="mw-redirect" title="Integral closure">integral closure</a> and completion has been among the most important aspects that distinguish modern commutative ring theory from the classical one developed by the likes of Noether. Pathological examples found by Nagata led to the reexamination of the roles of Noetherian rings and motivated, among other things, the definition of <a href="/wiki/Excellent_ring" title="Excellent ring">excellent ring</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Rings_with_generators_and_relations">Rings with generators and relations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=31" title="Edit section: Rings with generators and relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The most general way to construct a ring is by specifying generators and relations. Let <span class="texhtml mvar" style="font-style:italic;">F</span> be a <a href="/wiki/Free_ring" class="mw-redirect" title="Free ring">free ring</a> (that is, free algebra over the integers) with the set <span class="texhtml mvar" style="font-style:italic;">X</span> of symbols, that is, <span class="texhtml mvar" style="font-style:italic;">F</span> consists of polynomials with integral coefficients in noncommuting variables that are elements of <span class="texhtml mvar" style="font-style:italic;">X</span>. A free ring satisfies the universal property: any function from the set <span class="texhtml mvar" style="font-style:italic;">X</span> to a ring <span class="texhtml mvar" style="font-style:italic;">R</span> factors through <span class="texhtml mvar" style="font-style:italic;">F</span> so that <span class="texhtml"><i>F</i> → <i>R</i></span> is the unique ring homomorphism. Just as in the group case, every ring can be represented as a quotient of a free ring.<sup id="cite_ref-FOOTNOTECohn1995&#91;httpsbooksgooglecombooksidu-4ADgUgpSMCpgPA242_pg._242&#93;_51-0" class="reference"><a href="#cite_note-FOOTNOTECohn1995[httpsbooksgooglecombooksidu-4ADgUgpSMCpgPA242_pg._242]-51"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p><p>Now, we can impose relations among symbols in <span class="texhtml mvar" style="font-style:italic;">X</span> by taking a quotient. Explicitly, if <span class="texhtml mvar" style="font-style:italic;">E</span> is a subset of <span class="texhtml mvar" style="font-style:italic;">F</span>, then the quotient ring of <span class="texhtml mvar" style="font-style:italic;">F</span> by the ideal generated by <span class="texhtml mvar" style="font-style:italic;">E</span> is called the ring with generators <span class="texhtml mvar" style="font-style:italic;">X</span> and relations <span class="texhtml mvar" style="font-style:italic;">E</span>. If we used a ring, say, <span class="texhtml mvar" style="font-style:italic;">A</span> as a base ring instead of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3aa4cb112cbe4f94a3ff8569f869c31dce5fce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.197ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} ,}"></span>&#8288;</span> then the resulting ring will be over <span class="texhtml mvar" style="font-style:italic;">A</span>. For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\{xy-yx\mid x,y\in X\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mi>x</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\{xy-yx\mid x,y\in X\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b34960c4750ac9c3844ff164c38a233d41d92367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.934ex; height:2.843ex;" alt="{\displaystyle E=\{xy-yx\mid x,y\in X\},}"></span> then the resulting ring will be the usual polynomial ring with coefficients in <span class="texhtml mvar" style="font-style:italic;">A</span> in variables that are elements of <span class="texhtml mvar" style="font-style:italic;">X</span> (It is also the same thing as the <a href="/wiki/Symmetric_algebra" title="Symmetric algebra">symmetric algebra</a> over <span class="texhtml mvar" style="font-style:italic;">A</span> with symbols <span class="texhtml mvar" style="font-style:italic;">X</span>.) </p><p>In the category-theoretic terms, the formation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\mapsto {\text{the free ring generated by the set }}S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>the free ring generated by the set&#xA0;</mtext> </mrow> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\mapsto {\text{the free ring generated by the set }}S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bd4c70bcd65ed54c5ce2b3d34ffdcc3895e89ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:40.035ex; height:2.509ex;" alt="{\displaystyle S\mapsto {\text{the free ring generated by the set }}S}"></span> is the left adjoint functor of the <a href="/wiki/Forgetful_functor" title="Forgetful functor">forgetful functor</a> from the <a href="/wiki/Category_of_rings" title="Category of rings">category of rings</a> to <b>Set</b> (and it is often called the free ring functor.) </p><p> Let <span class="texhtml"><i>A</i></span>, <span class="texhtml"><i>B</i></span> be algebras over a commutative ring <span class="texhtml mvar" style="font-style:italic;">R</span>. Then the tensor product of <span class="texhtml mvar" style="font-style:italic;">R</span>-modules <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\otimes _{R}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\otimes _{R}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4773c5f4d6541ec487737f1c3962e1aafb7fe55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.827ex; height:2.509ex;" alt="{\displaystyle A\otimes _{R}B}"></span> is an <span class="texhtml mvar" style="font-style:italic;">R</span>-algebra with multiplication characterized by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x\otimes u)(y\otimes v)=xy\otimes uv.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mi>y</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>u</mi> <mi>v</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x\otimes u)(y\otimes v)=xy\otimes uv.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae8c6a4f66f11f6c77cb20c78d91b6c5a26b7f10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.77ex; height:2.843ex;" alt="{\displaystyle (x\otimes u)(y\otimes v)=xy\otimes uv.}"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"></p><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Tensor_product_of_algebras" title="Tensor product of algebras">Tensor product of algebras</a> and <a href="/wiki/Change_of_rings" title="Change of rings">Change of rings</a></div> <div class="mw-heading mw-heading2"><h2 id="Special_kinds_of_rings">Special kinds of rings</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=32" title="Edit section: Special kinds of rings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Domains">Domains</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=33" title="Edit section: Domains"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Zero_ring" title="Zero ring">nonzero</a> ring with no nonzero <a href="/wiki/Zero-divisor" class="mw-redirect" title="Zero-divisor">zero-divisors</a> is called a <a href="/wiki/Domain_(ring_theory)" title="Domain (ring theory)">domain</a>. A commutative domain is called an <a href="/wiki/Integral_domain" title="Integral domain">integral domain</a>. The most important integral domains are principal ideal domains, PIDs for short, and fields. A principal ideal domain is an integral domain in which every ideal is principal. An important class of integral domains that contain a PID is a <a href="/wiki/Unique_factorization_domain" title="Unique factorization domain">unique factorization domain</a> (UFD), an integral domain in which every nonunit element is a product of <a href="/wiki/Prime_element" title="Prime element">prime elements</a> (an element is prime if it generates a <a href="/wiki/Prime_ideal" title="Prime ideal">prime ideal</a>.) The fundamental question in <a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">algebraic number theory</a> is on the extent to which the <a href="/wiki/Ring_of_integers" title="Ring of integers">ring of (generalized) integers</a> in a <a href="/wiki/Number_field" class="mw-redirect" title="Number field">number field</a>, where an "ideal" admits prime factorization, fails to be a PID. </p><p>Among theorems concerning a PID, the most important one is the <a href="/wiki/Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_domain" title="Structure theorem for finitely generated modules over a principal ideal domain">structure theorem for finitely generated modules over a principal ideal domain</a>. The theorem may be illustrated by the following application to linear algebra.<sup id="cite_ref-FOOTNOTELang2002Ch_XIV,_§2_52-0" class="reference"><a href="#cite_note-FOOTNOTELang2002Ch_XIV,_§2-52"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> Let <span class="texhtml mvar" style="font-style:italic;">V</span> be a finite-dimensional vector space over a field <span class="texhtml mvar" style="font-style:italic;">k</span> and <span class="texhtml"><i>f</i>&#160;: <i>V</i> → <i>V</i></span> a linear map with minimal polynomial <span class="texhtml mvar" style="font-style:italic;">q</span>. Then, since <span class="texhtml"><i>k</i>[<i>t</i>]</span> is a unique factorization domain, <span class="texhtml mvar" style="font-style:italic;">q</span> factors into powers of distinct irreducible polynomials (that is, prime elements): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=p_{1}^{e_{1}}\ldots p_{s}^{e_{s}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x2026;<!-- … --></mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=p_{1}^{e_{1}}\ldots p_{s}^{e_{s}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f28851de1068565f9fc8372bc4d86b8766e31ea7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.27ex; height:3.176ex;" alt="{\displaystyle q=p_{1}^{e_{1}}\ldots p_{s}^{e_{s}}.}"></span> </p><p>Letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\cdot v=f(v),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>v</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\cdot v=f(v),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5206ffecae8cd986993c59935a9a90a256f37b71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.607ex; height:2.843ex;" alt="{\displaystyle t\cdot v=f(v),}"></span> we make <span class="texhtml mvar" style="font-style:italic;">V</span> a <span class="texhtml"><i>k</i>[<i>t</i>]</span>-module. The structure theorem then says <span class="texhtml mvar" style="font-style:italic;">V</span> is a direct sum of <a href="/wiki/Cyclic_module" title="Cyclic module">cyclic modules</a>, each of which is isomorphic to the module of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k[t]/\left(p_{i}^{k_{j}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <msubsup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k[t]/\left(p_{i}^{k_{j}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20d1f6688eda0ad0b9ab06a59cc999e376b2b3fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.676ex; height:4.843ex;" alt="{\displaystyle k[t]/\left(p_{i}^{k_{j}}\right).}"></span> Now, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i}(t)=t-\lambda _{i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i}(t)=t-\lambda _{i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb23afca7f93a8402603789615154ac7e849252e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:14.288ex; height:2.843ex;" alt="{\displaystyle p_{i}(t)=t-\lambda _{i},}"></span> then such a cyclic module (for <span class="texhtml mvar" style="font-style:italic;">p<sub>i</sub></span>) has a basis in which the restriction of <span class="texhtml mvar" style="font-style:italic;">f</span> is represented by a <a href="/wiki/Jordan_matrix" title="Jordan matrix">Jordan matrix</a>. Thus, if, say, <span class="texhtml mvar" style="font-style:italic;">k</span> is algebraically closed, then all <span class="texhtml mvar" style="font-style:italic;">p<sub>i</sub></span>'s are of the form <span class="texhtml"><i>t</i> – <i>λ<sub>i</sub></i></span> and the above decomposition corresponds to the <a href="/wiki/Jordan_canonical_form" class="mw-redirect" title="Jordan canonical form">Jordan canonical form</a> of <span class="texhtml mvar" style="font-style:italic;">f</span>. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Ringhierarchy.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Ringhierarchy.png/272px-Ringhierarchy.png" decoding="async" width="272" height="153" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Ringhierarchy.png/408px-Ringhierarchy.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Ringhierarchy.png/544px-Ringhierarchy.png 2x" data-file-width="1280" data-file-height="720" /></a><figcaption>Hierarchy of several classes of rings with examples.</figcaption></figure> <p>In algebraic geometry, UFDs arise because of smoothness. More precisely, a point in a variety (over a perfect field) is smooth if the local ring at the point is a <a href="/wiki/Regular_local_ring" title="Regular local ring">regular local ring</a>. A regular local ring is a UFD.<sup id="cite_ref-FOOTNOTEWeibel2013&#91;httpsbooksgooglecombooksidJa8xAAAAQBAJpgPA26_26&#93;Ch_1,_Theorem_3.8_53-0" class="reference"><a href="#cite_note-FOOTNOTEWeibel2013[httpsbooksgooglecombooksidJa8xAAAAQBAJpgPA26_26]Ch_1,_Theorem_3.8-53"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p><p>The following is a chain of <a href="/wiki/Subclass_(set_theory)" title="Subclass (set theory)">class inclusions</a> that describes the relationship between rings, domains and fields: </p> <dl><dd><b><a href="/wiki/Rng_(algebra)" title="Rng (algebra)">rngs</a></b> ⊃ <b><a class="mw-selflink selflink">rings</a></b> ⊃ <b><a href="/wiki/Commutative_ring" title="Commutative ring">commutative&#160;rings</a></b> ⊃ <b><a href="/wiki/Integral_domain" title="Integral domain">integral&#160;domains</a></b> ⊃ <b><a href="/wiki/Integrally_closed_domain" title="Integrally closed domain">integrally&#160;closed&#160;domains</a></b> ⊃ <b><a href="/wiki/GCD_domain" title="GCD domain">GCD&#160;domains</a></b> ⊃ <b><a href="/wiki/Unique_factorization_domain" title="Unique factorization domain">unique&#160;factorization&#160;domains</a></b> ⊃ <b><a href="/wiki/Principal_ideal_domain" title="Principal ideal domain">principal&#160;ideal&#160;domains</a></b> ⊃ <b><a href="/wiki/Euclidean_domain" title="Euclidean domain">Euclidean&#160;domains</a></b> ⊃ <b><a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a></b> ⊃ <b><a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically&#160;closed fields</a></b></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Division_ring">Division ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=34" title="Edit section: Division ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Division_ring" title="Division ring">division ring</a> is a ring such that every non-zero element is a unit. A commutative division ring is a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>. A prominent example of a division ring that is not a field is the ring of <a href="/wiki/Quaternion" title="Quaternion">quaternions</a>. Any centralizer in a division ring is also a division ring. In particular, the center of a division ring is a field. It turned out that every <i>finite</i> domain (in particular finite division ring) is a field; in particular commutative (the <a href="/wiki/Wedderburn%27s_little_theorem" title="Wedderburn&#39;s little theorem">Wedderburn's little theorem</a>). </p><p>Every module over a division ring is a free module (has a basis); consequently, much of linear algebra can be carried out over a division ring instead of a field. </p><p>The study of conjugacy classes figures prominently in the classical theory of division rings; see, for example, the <a href="/wiki/Cartan%E2%80%93Brauer%E2%80%93Hua_theorem" title="Cartan–Brauer–Hua theorem">Cartan–Brauer–Hua theorem</a>. </p><p>A <a href="/wiki/Cyclic_algebra" title="Cyclic algebra">cyclic algebra</a>, introduced by <a href="/wiki/L._E._Dickson" class="mw-redirect" title="L. E. Dickson">L. E. Dickson</a>, is a generalization of a <a href="/wiki/Quaternion_algebra" title="Quaternion algebra">quaternion algebra</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Semisimple_rings">Semisimple rings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=35" title="Edit section: Semisimple rings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Semisimple_module" title="Semisimple module">Semisimple module</a></div> <p>A <i><a href="/wiki/Semisimple_module" title="Semisimple module">semisimple module</a></i> is a direct sum of simple modules. A <i><a href="/wiki/Semisimple_ring" class="mw-redirect" title="Semisimple ring">semisimple ring</a></i> is a ring that is semisimple as a left module (or right module) over itself. </p> <div class="mw-heading mw-heading4"><h4 id="Examples">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=36" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>A <a href="/wiki/Division_ring" title="Division ring">division ring</a> is semisimple (and <a href="/wiki/Simple_ring" title="Simple ring">simple</a>).</li> <li>For any division ring <span class="texhtml mvar" style="font-style:italic;">D</span> and positive integer <span class="texhtml mvar" style="font-style:italic;">n</span>, the matrix ring <span class="texhtml">M<sub><i>n</i></sub>(<i>D</i>)</span> is semisimple (and <a href="/wiki/Simple_ring" title="Simple ring">simple</a>).</li> <li>For a field <span class="texhtml mvar" style="font-style:italic;">k</span> and finite group <span class="texhtml mvar" style="font-style:italic;">G</span>, the group ring <span class="texhtml"><i>kG</i></span> is semisimple if and only if the <a href="/wiki/Characteristic_(algebra)" title="Characteristic (algebra)">characteristic</a> of <span class="texhtml mvar" style="font-style:italic;">k</span> does not divide the <a href="/wiki/Order_(algebra)" class="mw-redirect" title="Order (algebra)">order</a> of <span class="texhtml mvar" style="font-style:italic;">G</span> (<a href="/wiki/Maschke%27s_theorem" title="Maschke&#39;s theorem">Maschke's theorem</a>).</li> <li><a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebras</a> are semisimple.</li></ul> <p>The <a href="/wiki/Weyl_algebra" title="Weyl algebra">Weyl algebra</a> over a field is a <a href="/wiki/Simple_ring" title="Simple ring">simple ring</a>, but it is not semisimple. The same holds for a <a href="/wiki/Differential_operator#Ring_of_multivariate_polynomial_differential_operators" title="Differential operator">ring of differential operators in many variables</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Properties">Properties</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=37" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Any module over a semisimple ring is semisimple. (Proof: A free module over a semisimple ring is semisimple and any module is a quotient of a free module.) </p><p>For a ring <span class="texhtml mvar" style="font-style:italic;">R</span>, the following are equivalent: </p> <ul><li><span class="texhtml mvar" style="font-style:italic;">R</span> is semisimple.</li> <li><span class="texhtml mvar" style="font-style:italic;">R</span> is <a href="/wiki/Artinian_ring" title="Artinian ring">artinian</a> and <a href="/wiki/Semiprimitive_ring" title="Semiprimitive ring">semiprimitive</a>.</li> <li><span class="texhtml mvar" style="font-style:italic;">R</span> is a finite <a href="/wiki/Direct_product" title="Direct product">direct product</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \prod _{i=1}^{r}\operatorname {M} _{n_{i}}(D_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <msub> <mi mathvariant="normal">M</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \prod _{i=1}^{r}\operatorname {M} _{n_{i}}(D_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b282119601ed34d92b79364c1d79e70a21d68ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.989ex; height:3.176ex;" alt="{\textstyle \prod _{i=1}^{r}\operatorname {M} _{n_{i}}(D_{i})}"></span> where each <span class="texhtml"><i>n</i><sub><i>i</i></sub></span> is a positive integer, and each <span class="texhtml"><i>D</i><sub><i>i</i></sub></span> is a division ring (<a href="/wiki/Artin%E2%80%93Wedderburn_theorem" class="mw-redirect" title="Artin–Wedderburn theorem">Artin–Wedderburn theorem</a>).</li></ul> <p>Semisimplicity is closely related to separability. A unital associative algebra <span class="texhtml mvar" style="font-style:italic;">A</span> over a field <span class="texhtml mvar" style="font-style:italic;">k</span> is said to be <a href="/wiki/Separable_algebra" title="Separable algebra">separable</a> if the base extension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\otimes _{k}F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\otimes _{k}F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b94ca94291b3216fd6f42f2624996c75350e583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.413ex; height:2.509ex;" alt="{\displaystyle A\otimes _{k}F}"></span> is semisimple for every <a href="/wiki/Field_extension" title="Field extension">field extension</a> <span class="texhtml"><i>F</i> / <i>k</i></span>. If <span class="texhtml mvar" style="font-style:italic;">A</span> happens to be a field, then this is equivalent to the usual definition in field theory (cf. <a href="/wiki/Separable_extension" title="Separable extension">separable extension</a>.) </p> <div class="mw-heading mw-heading3"><h3 id="Central_simple_algebra_and_Brauer_group">Central simple algebra and Brauer group</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=38" title="Edit section: Central simple algebra and Brauer group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Central_simple_algebra" title="Central simple algebra">Central simple algebra</a></div> <p>For a field <span class="texhtml mvar" style="font-style:italic;">k</span>, a <span class="texhtml mvar" style="font-style:italic;">k</span>-algebra is central if its center is <span class="texhtml mvar" style="font-style:italic;">k</span> and is simple if it is a <a href="/wiki/Simple_ring" title="Simple ring">simple ring</a>. Since the center of a simple <span class="texhtml mvar" style="font-style:italic;">k</span>-algebra is a field, any simple <span class="texhtml mvar" style="font-style:italic;">k</span>-algebra is a central simple algebra over its center. In this section, a central simple algebra is assumed to have finite dimension. Also, we mostly fix the base field; thus, an algebra refers to a <span class="texhtml mvar" style="font-style:italic;">k</span>-algebra. The matrix ring of size <span class="texhtml mvar" style="font-style:italic;">n</span> over a ring <span class="texhtml mvar" style="font-style:italic;">R</span> will be denoted by <span class="texhtml"><i>R</i><sub><i>n</i></sub></span>. </p><p>The <a href="/wiki/Skolem%E2%80%93Noether_theorem" title="Skolem–Noether theorem">Skolem–Noether theorem</a> states any automorphism of a central simple algebra is inner. </p><p>Two central simple algebras <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are said to be <i>similar</i> if there are integers <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">m</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\otimes _{k}k_{n}\approx B\otimes _{k}k_{m}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2248;<!-- ≈ --></mo> <mi>B</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\otimes _{k}k_{n}\approx B\otimes _{k}k_{m}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8598a9947bfac9e5a3e9fcdc99e4a4882f427a03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.427ex; height:2.509ex;" alt="{\displaystyle A\otimes _{k}k_{n}\approx B\otimes _{k}k_{m}.}"></span><sup id="cite_ref-FOOTNOTEMilneCFTCh_IV,_§2_54-0" class="reference"><a href="#cite_note-FOOTNOTEMilneCFTCh_IV,_§2-54"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{n}\otimes _{k}k_{m}\simeq k_{nm},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2243;<!-- ≃ --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>m</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{n}\otimes _{k}k_{m}\simeq k_{nm},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6de24e63d8e35c23a05a860a78f57c58fac314ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.863ex; height:2.509ex;" alt="{\displaystyle k_{n}\otimes _{k}k_{m}\simeq k_{nm},}"></span> the similarity is an equivalence relation. The similarity classes <span class="texhtml">[<i>A</i>]</span> with the multiplication <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [A][B]=\left[A\otimes _{k}B\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>A</mi> <mo stretchy="false">]</mo> <mo stretchy="false">[</mo> <mi>B</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mi>A</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>B</mi> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [A][B]=\left[A\otimes _{k}B\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9181c4c9330a227ae8d9ffaabb33c18ed73459d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.923ex; height:2.843ex;" alt="{\displaystyle [A][B]=\left[A\otimes _{k}B\right]}"></span> form an abelian group called the <a href="/wiki/Brauer_group" title="Brauer group">Brauer group</a> of <span class="texhtml mvar" style="font-style:italic;">k</span> and is denoted by <span class="texhtml">Br(<i>k</i>)</span>. By the <a href="/wiki/Artin%E2%80%93Wedderburn_theorem" class="mw-redirect" title="Artin–Wedderburn theorem">Artin–Wedderburn theorem</a>, a central simple algebra is the matrix ring of a division ring; thus, each similarity class is represented by a unique division ring. </p><p>For example, <span class="texhtml">Br(<i>k</i>)</span> is trivial if <span class="texhtml mvar" style="font-style:italic;">k</span> is a finite field or an algebraically closed field (more generally <a href="/wiki/Quasi-algebraically_closed_field" title="Quasi-algebraically closed field">quasi-algebraically closed field</a>; cf. <a href="/wiki/Tsen%27s_theorem" title="Tsen&#39;s theorem">Tsen's theorem</a>). <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Br} (\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Br</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Br} (\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c8afc731a9e2e565c2b768740c1ef3e457c9ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.045ex; height:2.843ex;" alt="{\displaystyle \operatorname {Br} (\mathbb {R} )}"></span> has order 2 (a special case of the <a href="/wiki/Frobenius_theorem_(real_division_algebras)" title="Frobenius theorem (real division algebras)">theorem of Frobenius</a>). Finally, if <span class="texhtml mvar" style="font-style:italic;">k</span> is a nonarchimedean <a href="/wiki/Local_field" title="Local field">local field</a> (for example, <span class="nowrap"><span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Q} _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Q} _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f44bc6894c682710705f3ea74f33042e0acc3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.867ex; height:2.843ex;" alt="{\displaystyle \mathbb {Q} _{p}}"></span>&#8288;</span>),</span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Br} (k)=\mathbb {Q} /\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Br</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Br} (k)=\mathbb {Q} /\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8693ac11b4cd77c6a9a0bd858d3dc9a1f8960787" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.197ex; height:2.843ex;" alt="{\displaystyle \operatorname {Br} (k)=\mathbb {Q} /\mathbb {Z} }"></span> through the <a href="/wiki/Hasse_invariant_of_an_algebra" title="Hasse invariant of an algebra">invariant map</a>. </p><p>Now, if <span class="texhtml mvar" style="font-style:italic;">F</span> is a field extension of <span class="texhtml mvar" style="font-style:italic;">k</span>, then the base extension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\otimes _{k}F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\otimes _{k}F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61c0ea46da2b0e8863daa48560c6ea9ae316da0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.478ex; height:2.509ex;" alt="{\displaystyle -\otimes _{k}F}"></span> induces <span class="texhtml">Br(<i>k</i>) → Br(<i>F</i>)</span>. Its kernel is denoted by <span class="texhtml">Br(<i>F</i> / <i>k</i>)</span>. It consists of <span class="texhtml">[<i>A</i>]</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\otimes _{k}F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <msub> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\otimes _{k}F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b94ca94291b3216fd6f42f2624996c75350e583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.413ex; height:2.509ex;" alt="{\displaystyle A\otimes _{k}F}"></span> is a matrix ring over <span class="texhtml mvar" style="font-style:italic;">F</span> (that is, <span class="texhtml mvar" style="font-style:italic;">A</span> is split by <span class="texhtml mvar" style="font-style:italic;">F</span>.) If the extension is finite and Galois, then <span class="texhtml">Br(<i>F</i> / <i>k</i>)</span> is canonically isomorphic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{2}\left(\operatorname {Gal} (F/k),k^{*}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>Gal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{2}\left(\operatorname {Gal} (F/k),k^{*}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f38858b5f35160ba7a1c07fc0a839895fb75755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.245ex; height:3.176ex;" alt="{\displaystyle H^{2}\left(\operatorname {Gal} (F/k),k^{*}\right).}"></span><sup id="cite_ref-FOOTNOTESerre1950_55-0" class="reference"><a href="#cite_note-FOOTNOTESerre1950-55"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Azumaya_algebra" title="Azumaya algebra">Azumaya algebras</a> generalize the notion of central simple algebras to a commutative local ring. </p> <div class="mw-heading mw-heading3"><h3 id="Valuation_ring">Valuation ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=39" title="Edit section: Valuation ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Valuation_ring" title="Valuation ring">Valuation ring</a></div> <p>If <span class="texhtml mvar" style="font-style:italic;">K</span> is a field, a <a href="/wiki/Valuation_(algebra)" title="Valuation (algebra)">valuation</a> <span class="texhtml mvar" style="font-style:italic;">v</span> is a group homomorphism from the multiplicative group <span class="texhtml"><i>K</i><sup>∗</sup></span> to a totally ordered abelian group <span class="texhtml mvar" style="font-style:italic;">G</span> such that, for any <span class="texhtml"><i>f</i></span>, <span class="texhtml"><i>g</i></span> in <span class="texhtml mvar" style="font-style:italic;">K</span> with <span class="texhtml"><i>f</i> + <i>g</i></span> nonzero, <span class="texhtml"><i>v</i>(<i>f</i> + <i>g</i>) ≥ min{<i>v</i>(<i>f</i>), <i>v</i>(<i>g</i>)}.</span> The <a href="/wiki/Valuation_ring" title="Valuation ring">valuation ring</a> of <span class="texhtml mvar" style="font-style:italic;">v</span> is the subring of <span class="texhtml mvar" style="font-style:italic;">K</span> consisting of zero and all nonzero <span class="texhtml mvar" style="font-style:italic;">f</span> such that <span class="texhtml"><i>v</i>(<i>f</i>) ≥ 0</span>. </p><p>Examples: </p> <ul><li>The field of <a href="/wiki/Formal_Laurent_series" class="mw-redirect" title="Formal Laurent series">formal Laurent series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k(\!(t)\!)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">(</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k(\!(t)\!)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3169860a904aa0d2eeed9dd7beb0bad569a1bce7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.895ex; height:2.843ex;" alt="{\displaystyle k(\!(t)\!)}"></span> over a field <span class="texhtml mvar" style="font-style:italic;">k</span> comes with the valuation <span class="texhtml mvar" style="font-style:italic;">v</span> such that <span class="texhtml"><i>v</i>(<i>f</i>)</span> is the least degree of a nonzero term in <span class="texhtml mvar" style="font-style:italic;">f</span>; the valuation ring of <span class="texhtml mvar" style="font-style:italic;">v</span> is the <a href="/wiki/Formal_power_series_ring" class="mw-redirect" title="Formal power series ring">formal power series ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k[\![t]\!].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k[\![t]\!].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db5e2887e456f95fb545b62435a54ac319e7a782" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.511ex; height:2.843ex;" alt="{\displaystyle k[\![t]\!].}"></span></li> <li>More generally, given a field <span class="texhtml mvar" style="font-style:italic;">k</span> and a totally ordered abelian group <span class="texhtml mvar" style="font-style:italic;">G</span>, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k(\!(G)\!)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">(</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k(\!(G)\!)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34ae08c40a0a9764ac588799a6c08ee8c896f2be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.882ex; height:2.843ex;" alt="{\displaystyle k(\!(G)\!)}"></span> be the set of all functions from <span class="texhtml mvar" style="font-style:italic;">G</span> to <span class="texhtml mvar" style="font-style:italic;">k</span> whose supports (the sets of points at which the functions are nonzero) are <a href="/wiki/Well_ordered" class="mw-redirect" title="Well ordered">well ordered</a>. It is a field with the multiplication given by <a href="/wiki/Convolution" title="Convolution">convolution</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*g)(t)=\sum _{s\in G}f(s)g(t-s).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>G</mi> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*g)(t)=\sum _{s\in G}f(s)g(t-s).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/350472eaccf731c5c0dfdce0a351e7f22829a1eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.409ex; height:5.676ex;" alt="{\displaystyle (f*g)(t)=\sum _{s\in G}f(s)g(t-s).}"></span> It also comes with the valuation <span class="texhtml mvar" style="font-style:italic;">v</span> such that <span class="texhtml"><i>v</i>(<i>f</i>)</span> is the least element in the support of <span class="texhtml mvar" style="font-style:italic;">f</span>. The subring consisting of elements with finite support is called the <a href="/wiki/Group_ring" title="Group ring">group ring</a> of <span class="texhtml mvar" style="font-style:italic;">G</span> (which makes sense even if <span class="texhtml mvar" style="font-style:italic;">G</span> is not commutative). If <span class="texhtml mvar" style="font-style:italic;">G</span> is the ring of integers, then we recover the previous example (by identifying <span class="texhtml mvar" style="font-style:italic;">f</span> with the series whose <span class="texhtml mvar" style="font-style:italic;">n</span>th coefficient is&#160;<span class="texhtml"><i>f</i>(<i>n</i>)</span>.)</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Novikov_ring" title="Novikov ring">Novikov ring</a> and <a href="/wiki/Uniserial_ring" class="mw-redirect" title="Uniserial ring">uniserial ring</a></div> <div class="mw-heading mw-heading2"><h2 id="Rings_with_extra_structure">Rings with extra structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=40" title="Edit section: Rings with extra structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A ring may be viewed as an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> (by using the addition operation), with extra structure: namely, ring multiplication. In the same way, there are other mathematical objects which may be considered as rings with extra structure. For example: </p> <ul><li>An <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebra</a> is a ring that is also a <a href="/wiki/Vector_space" title="Vector space">vector space</a> over a field <span class="texhtml mvar" style="font-style:italic;">n</span> such that the scalar multiplication is compatible with the ring multiplication. For instance, the set of <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices over the real field <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>&#8288;</span> has dimension <span class="texhtml"><i>n</i><sup>2</sup></span> as a real vector space.</li> <li>A ring <span class="texhtml mvar" style="font-style:italic;">R</span> is a <a href="/wiki/Topological_ring" title="Topological ring">topological ring</a> if its set of elements <span class="texhtml mvar" style="font-style:italic;">R</span> is given a <a href="/wiki/Topological_space" title="Topological space">topology</a> which makes the addition map (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +:R\times R\to R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mo>:</mo> <mi>R</mi> <mo>&#x00D7;<!-- × --></mo> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +:R\times R\to R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4817b36ac24c9eca520832e9a231bf030eba826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.492ex; height:2.343ex;" alt="{\displaystyle +:R\times R\to R}"></span>) and the multiplication map <span class="texhtml">⋅&#160;: <i>R</i> × <i>R</i> → <i>R</i></span> to be both <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">continuous</a> as maps between topological spaces (where <span class="texhtml"><i>X</i> × <i>X</i></span> inherits the <a href="/wiki/Product_topology" title="Product topology">product topology</a> or any other product in the category). For example, <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices over the real numbers could be given either the <a href="/wiki/Euclidean_topology" title="Euclidean topology">Euclidean topology</a>, or the <a href="/wiki/Zariski_topology" title="Zariski topology">Zariski topology</a>, and in either case one would obtain a topological ring.</li> <li>A <a href="/wiki/%CE%9B-ring" title="Λ-ring">λ-ring</a> is a commutative ring <span class="texhtml mvar" style="font-style:italic;">R</span> together with operations <span class="texhtml"><i>λ</i><sup><i>n</i></sup>: <i>R</i> → <i>R</i></span> that are like <span class="texhtml mvar" style="font-style:italic;">n</span>th <a href="/wiki/Exterior_power" class="mw-redirect" title="Exterior power">exterior powers</a>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ^{n}(x+y)=\sum _{0}^{n}\lambda ^{i}(x)\lambda ^{n-i}(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ^{n}(x+y)=\sum _{0}^{n}\lambda ^{i}(x)\lambda ^{n-i}(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb62cf6378a1dd0245379befa5b149a5de50705e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.874ex; height:6.843ex;" alt="{\displaystyle \lambda ^{n}(x+y)=\sum _{0}^{n}\lambda ^{i}(x)\lambda ^{n-i}(y).}"></span></dd></dl></li></ul> <dl><dd>For example, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span> is a λ-ring with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ^{n}(x)={\binom {x}{n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>x</mi> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ^{n}(x)={\binom {x}{n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/294f88c6d54e36cc6b504bc1dbe6b0332cabd8fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.274ex; height:6.176ex;" alt="{\displaystyle \lambda ^{n}(x)={\binom {x}{n}},}"></span> the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficients</a>. The notion plays a central rule in the algebraic approach to the <a href="/wiki/Riemann%E2%80%93Roch_theorem" title="Riemann–Roch theorem">Riemann–Roch theorem</a>.</dd></dl> <ul><li>A <a href="/wiki/Totally_ordered_ring" class="mw-redirect" title="Totally ordered ring">totally ordered ring</a> is a ring with a <a href="/wiki/Total_ordering" class="mw-redirect" title="Total ordering">total ordering</a> that is compatible with ring operations.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Some_examples_of_the_ubiquity_of_rings">Some examples of the ubiquity of rings</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=41" title="Edit section: Some examples of the ubiquity of rings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many different kinds of <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical objects</a> can be fruitfully analyzed in terms of some <a href="/wiki/Functor" title="Functor">associated ring</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Cohomology_ring_of_a_topological_space">Cohomology ring of a topological space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=42" title="Edit section: Cohomology ring of a topological space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To any <a href="/wiki/Topological_space" title="Topological space">topological space</a> <span class="texhtml mvar" style="font-style:italic;">X</span> one can associate its integral <a href="/wiki/Cohomology_ring" title="Cohomology ring">cohomology ring</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{*}(X,\mathbb {Z} )=\bigoplus _{i=0}^{\infty }H^{i}(X,\mathbb {Z} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{*}(X,\mathbb {Z} )=\bigoplus _{i=0}^{\infty }H^{i}(X,\mathbb {Z} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/007cfceac67b838abd3dc7413c8f5b3d26253776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.451ex; height:6.843ex;" alt="{\displaystyle H^{*}(X,\mathbb {Z} )=\bigoplus _{i=0}^{\infty }H^{i}(X,\mathbb {Z} ),}"></span></dd></dl> <p>a <a href="/wiki/Graded_ring" title="Graded ring">graded ring</a>. There are also <a href="/wiki/Homology_group" class="mw-redirect" title="Homology group">homology groups</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{i}(X,\mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{i}(X,\mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27bfcca13ba463426618f76328f9b24346afb2f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.104ex; height:2.843ex;" alt="{\displaystyle H_{i}(X,\mathbb {Z} )}"></span> of a space, and indeed these were defined first, as a useful tool for distinguishing between certain pairs of topological spaces, like the <a href="/wiki/Sphere" title="Sphere">spheres</a> and <a href="/wiki/Torus" title="Torus">tori</a>, for which the methods of <a href="/wiki/Point-set_topology" class="mw-redirect" title="Point-set topology">point-set topology</a> are not well-suited. <a href="/wiki/Cohomology_group" class="mw-redirect" title="Cohomology group">Cohomology groups</a> were later defined in terms of homology groups in a way which is roughly analogous to the dual of a <a href="/wiki/Vector_space" title="Vector space">vector space</a>. To know each individual integral homology group is essentially the same as knowing each individual integral cohomology group, because of the <a href="/wiki/Universal_coefficient_theorem" title="Universal coefficient theorem">universal coefficient theorem</a>. However, the advantage of the cohomology groups is that there is a <a href="/wiki/Cup_product" title="Cup product">natural product</a>, which is analogous to the observation that one can multiply pointwise a <span class="texhtml mvar" style="font-style:italic;">k</span>-<a href="/wiki/Multilinear_form" title="Multilinear form">multilinear form</a> and an <span class="texhtml mvar" style="font-style:italic;">l</span>-multilinear form to get a (<span class="texhtml"><i>k</i> + <i>l</i></span>)-multilinear form. </p><p>The ring structure in cohomology provides the foundation for <a href="/wiki/Characteristic_class" title="Characteristic class">characteristic classes</a> of <a href="/wiki/Fiber_bundle" title="Fiber bundle">fiber bundles</a>, intersection theory on manifolds and <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic varieties</a>, <a href="/wiki/Schubert_calculus" title="Schubert calculus">Schubert calculus</a> and much more. </p> <div class="mw-heading mw-heading3"><h3 id="Burnside_ring_of_a_group">Burnside ring of a group</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=43" title="Edit section: Burnside ring of a group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To any <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> is associated its <a href="/wiki/Burnside_ring" title="Burnside ring">Burnside ring</a> which uses a ring to describe the various ways the group can <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">act</a> on a finite set. The Burnside ring's additive group is the <a href="/wiki/Free_abelian_group" title="Free abelian group">free abelian group</a> whose basis is the set of transitive actions of the group and whose addition is the disjoint union of the action. Expressing an action in terms of the basis is decomposing an action into its transitive constituents. The multiplication is easily expressed in terms of the <a href="/wiki/Representation_ring" title="Representation ring">representation ring</a>: the multiplication in the Burnside ring is formed by writing the tensor product of two permutation modules as a permutation module. The ring structure allows a formal way of subtracting one action from another. Since the Burnside ring is contained as a finite index subring of the representation ring, one can pass easily from one to the other by extending the coefficients from integers to the rational numbers. </p> <div class="mw-heading mw-heading3"><h3 id="Representation_ring_of_a_group_ring">Representation ring of a group ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=44" title="Edit section: Representation ring of a group ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To any <a href="/wiki/Group_ring" title="Group ring">group ring</a> or <a href="/wiki/Hopf_algebra" title="Hopf algebra">Hopf algebra</a> is associated its <a href="/wiki/Representation_ring" title="Representation ring">representation ring</a> or "Green ring". The representation ring's additive group is the free abelian group whose basis are the indecomposable modules and whose addition corresponds to the direct sum. Expressing a module in terms of the basis is finding an indecomposable decomposition of the module. The multiplication is the tensor product. When the algebra is semisimple, the representation ring is just the character ring from <a href="/wiki/Character_theory" title="Character theory">character theory</a>, which is more or less the <a href="/wiki/Grothendieck_group" title="Grothendieck group">Grothendieck group</a> given a ring structure. </p> <div class="mw-heading mw-heading3"><h3 id="Function_field_of_an_irreducible_algebraic_variety">Function field of an irreducible algebraic variety</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=45" title="Edit section: Function field of an irreducible algebraic variety"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To any irreducible <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic variety</a> is associated its <a href="/wiki/Function_field_of_an_algebraic_variety" title="Function field of an algebraic variety">function field</a>. The points of an algebraic variety correspond to <a href="/wiki/Valuation_ring" title="Valuation ring">valuation rings</a> contained in the function field and containing the <a href="/wiki/Coordinate_ring" class="mw-redirect" title="Coordinate ring">coordinate ring</a>. The study of <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a> makes heavy use of <a href="/wiki/Commutative_algebra" title="Commutative algebra">commutative algebra</a> to study geometric concepts in terms of ring-theoretic properties. <a href="/wiki/Birational_geometry" title="Birational geometry">Birational geometry</a> studies maps between the subrings of the function field. </p> <div class="mw-heading mw-heading3"><h3 id="Face_ring_of_a_simplicial_complex">Face ring of a simplicial complex</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=46" title="Edit section: Face ring of a simplicial complex"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every <a href="/wiki/Simplicial_complex" title="Simplicial complex">simplicial complex</a> has an associated face ring, also called its <a href="/wiki/Stanley%E2%80%93Reisner_ring" title="Stanley–Reisner ring">Stanley–Reisner ring</a>. This ring reflects many of the combinatorial properties of the simplicial complex, so it is of particular interest in <a href="/wiki/Algebraic_combinatorics" title="Algebraic combinatorics">algebraic combinatorics</a>. In particular, the algebraic geometry of the Stanley–Reisner ring was used to characterize the numbers of faces in each dimension of <a href="/wiki/Simplicial_polytope" title="Simplicial polytope">simplicial polytopes</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Category-theoretic_description">Category-theoretic description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=47" title="Edit section: Category-theoretic description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Category_of_rings" title="Category of rings">Category of rings</a></div> <p>Every ring can be thought of as a <a href="/wiki/Monoid_(category_theory)" title="Monoid (category theory)">monoid</a> in <b>Ab</b>, the <a href="/wiki/Category_of_abelian_groups" title="Category of abelian groups">category of abelian groups</a> (thought of as a <a href="/wiki/Monoidal_category" title="Monoidal category">monoidal category</a> under the <a href="/wiki/Tensor_product_of_abelian_groups" class="mw-redirect" title="Tensor product of abelian groups">tensor product of <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>&#8288;</span>-modules</a>). The monoid action of a ring <span class="texhtml mvar" style="font-style:italic;">R</span> on an abelian group is simply an <a href="/wiki/Module_(mathematics)" title="Module (mathematics)"><span class="texhtml mvar" style="font-style:italic;">R</span>-module</a>. Essentially, an <span class="texhtml mvar" style="font-style:italic;">R</span>-module is a generalization of the notion of a <a href="/wiki/Vector_space" title="Vector space">vector space</a> – where rather than a vector space over a field, one has a "vector space over a ring". </p><p>Let <span class="texhtml">(<i>A</i>, +)</span> be an abelian group and let <span class="texhtml">End(<i>A</i>)</span> be its <a href="/wiki/Endomorphism_ring" title="Endomorphism ring">endomorphism ring</a> (see above). Note that, essentially, <span class="texhtml">End(<i>A</i>)</span> is the set of all morphisms of <span class="texhtml mvar" style="font-style:italic;">A</span>, where if <span class="texhtml mvar" style="font-style:italic;">f</span> is in <span class="texhtml">End(<i>A</i>)</span>, and <span class="texhtml mvar" style="font-style:italic;">g</span> is in <span class="texhtml">End(<i>A</i>)</span>, the following rules may be used to compute <span class="texhtml"><i>f</i> + <i>g</i></span> and <span class="texhtml"><i>f</i> ⋅ <i>g</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;(f+g)(x)=f(x)+g(x)\\&amp;(f\cdot g)(x)=f(g(x)),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;(f+g)(x)=f(x)+g(x)\\&amp;(f\cdot g)(x)=f(g(x)),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a11be4f8f2849ef871ab5aa11de39757a7d63130" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.546ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}&amp;(f+g)(x)=f(x)+g(x)\\&amp;(f\cdot g)(x)=f(g(x)),\end{aligned}}}"></span></dd></dl> <p>where <span class="texhtml">+</span> as in <span class="texhtml"><i>f</i>(<i>x</i>) + <i>g</i>(<i>x</i>)</span> is addition in <span class="texhtml mvar" style="font-style:italic;">A</span>, and function composition is denoted from right to left. Therefore, <a href="/wiki/Functor" title="Functor">associated</a> to any abelian group, is a ring. Conversely, given any ring, <span class="texhtml">(<i>R</i>, +, <b>⋅</b> )</span>, <span class="texhtml">(<i>R</i>, +)</span> is an abelian group. Furthermore, for every <span class="texhtml mvar" style="font-style:italic;">r</span> in <span class="texhtml mvar" style="font-style:italic;">R</span>, right (or left) multiplication by <span class="texhtml mvar" style="font-style:italic;">r</span> gives rise to a morphism of <span class="texhtml">(<i>R</i>, +)</span>, by right (or left) distributivity. Let <span class="texhtml"><i>A</i> = (<i>R</i>, +)</span>. Consider those <a href="/wiki/Endomorphism" title="Endomorphism">endomorphisms</a> of <span class="texhtml mvar" style="font-style:italic;">A</span>, that "factor through" right (or left) multiplication of <span class="texhtml mvar" style="font-style:italic;">R</span>. In other words, let <span class="texhtml">End<sub><i>R</i></sub>(<i>A</i>)</span> be the set of all morphisms <span class="texhtml mvar" style="font-style:italic;">m</span> of <span class="texhtml mvar" style="font-style:italic;">A</span>, having the property that <span class="texhtml"><i>m</i>(<i>r</i> ⋅ <i>x</i>) = <i>r</i> ⋅ <i>m</i>(<i>x</i>)</span>. It was seen that every <span class="texhtml mvar" style="font-style:italic;">r</span> in <span class="texhtml mvar" style="font-style:italic;">R</span> gives rise to a morphism of <span class="texhtml mvar" style="font-style:italic;">A</span>: right multiplication by <span class="texhtml mvar" style="font-style:italic;">r</span>. It is in fact true that this association of any element of <span class="texhtml mvar" style="font-style:italic;">R</span>, to a morphism of <span class="texhtml mvar" style="font-style:italic;">A</span>, as a function from <span class="texhtml mvar" style="font-style:italic;">R</span> to <span class="texhtml">End<sub><i>R</i></sub>(<i>A</i>)</span>, is an isomorphism of rings. In this sense, therefore, any ring can be viewed as the endomorphism ring of some abelian <span class="texhtml mvar" style="font-style:italic;">X</span>-group (by <span class="texhtml mvar" style="font-style:italic;">X</span>-group, it is meant a group with <span class="texhtml mvar" style="font-style:italic;">X</span> being its <a href="/wiki/Group_with_operators" title="Group with operators">set of operators</a>).<sup id="cite_ref-FOOTNOTEJacobson2009162Theorem_3.2_56-0" class="reference"><a href="#cite_note-FOOTNOTEJacobson2009162Theorem_3.2-56"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> In essence, the most general form of a ring, is the endomorphism group of some abelian <span class="texhtml mvar" style="font-style:italic;">X</span>-group. </p><p>Any ring can be seen as a <a href="/wiki/Preadditive_category" title="Preadditive category">preadditive category</a> with a single object. It is therefore natural to consider arbitrary preadditive categories to be generalizations of rings. And indeed, many definitions and theorems originally given for rings can be translated to this more general context. <a href="/wiki/Additive_functor" class="mw-redirect" title="Additive functor">Additive functors</a> between preadditive categories generalize the concept of ring homomorphism, and ideals in additive categories can be defined as sets of <a href="/wiki/Morphism" title="Morphism">morphisms</a> closed under addition and under composition with arbitrary morphisms. </p> <div class="mw-heading mw-heading2"><h2 id="Generalization">Generalization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=48" title="Edit section: Generalization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Algebraists have defined structures more general than rings by weakening or dropping some of ring axioms. </p> <div class="mw-heading mw-heading3"><h3 id="Rng">Rng</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=49" title="Edit section: Rng"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Rng_(algebra)" title="Rng (algebra)">rng</a> is the same as a ring, except that the existence of a multiplicative identity is not assumed.<sup id="cite_ref-FOOTNOTEJacobson2009_57-0" class="reference"><a href="#cite_note-FOOTNOTEJacobson2009-57"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nonassociative_ring">Nonassociative ring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=50" title="Edit section: Nonassociative ring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Nonassociative_ring" class="mw-redirect" title="Nonassociative ring">nonassociative ring</a> is an algebraic structure that satisfies all of the ring axioms except the associative property and the existence of a multiplicative identity. A notable example is a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>. There exists some structure theory for such algebras that generalizes the analogous results for Lie algebras and associative algebras.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2013)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Semiring">Semiring</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=51" title="Edit section: Semiring"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Semiring" title="Semiring">semiring</a> (sometimes <i>rig</i>) is obtained by weakening the assumption that <span class="texhtml">(<i>R</i>, +)</span> is an abelian group to the assumption that <span class="texhtml">(<i>R</i>, +)</span> is a commutative monoid, and adding the axiom that <span class="texhtml">0 ⋅ <i>a</i> = <i>a</i> ⋅ 0 = 0</span> for all <i>a</i> in <span class="texhtml mvar" style="font-style:italic;">R</span> (since it no longer follows from the other axioms). </p><p>Examples: </p> <ul><li>the non-negative integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0,1,2,\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0,1,2,\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb18e9a1a9837670a4823e5b3658cd3aa8cc8e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.637ex; height:2.843ex;" alt="{\displaystyle \{0,1,2,\ldots \}}"></span> with ordinary addition and multiplication;</li> <li>the <a href="/wiki/Tropical_semiring" title="Tropical semiring">tropical semiring</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Other_ring-like_objects">Other ring-like objects</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=52" title="Edit section: Other ring-like objects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Ring_object_in_a_category">Ring object in a category</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=53" title="Edit section: Ring object in a category"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">C</span> be a category with finite <a href="/wiki/Product_(category_theory)" title="Product (category theory)">products</a>. Let pt denote a <a href="/wiki/Terminal_object" class="mw-redirect" title="Terminal object">terminal object</a> of <span class="texhtml mvar" style="font-style:italic;">C</span> (an empty product). A <b>ring object</b> in <span class="texhtml mvar" style="font-style:italic;">C</span> is an object <span class="texhtml mvar" style="font-style:italic;">R</span> equipped with morphisms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\times R\;{\stackrel {a}{\to }}\,R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x00D7;<!-- × --></mo> <mi>R</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\times R\;{\stackrel {a}{\to }}\,R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3de6e0646f13dd9b1133145e4563fbf7e20b6dbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.488ex; height:3.176ex;" alt="{\displaystyle R\times R\;{\stackrel {a}{\to }}\,R}"></span> (addition), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\times R\;{\stackrel {m}{\to }}\,R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x00D7;<!-- × --></mo> <mi>R</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\times R\;{\stackrel {m}{\to }}\,R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d87e6f5625947f205990dcd191ecdc9f614fc48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.488ex; height:3.176ex;" alt="{\displaystyle R\times R\;{\stackrel {m}{\to }}\,R}"></span> (multiplication), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {pt} {\stackrel {0}{\to }}\,R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>pt</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {pt} {\stackrel {0}{\to }}\,R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd7ddef0dcb0b4f63601addbbba841818aca8905" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.059ex; height:3.843ex;" alt="{\displaystyle \operatorname {pt} {\stackrel {0}{\to }}\,R}"></span> (additive identity), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\;{\stackrel {i}{\to }}\,R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\;{\stackrel {i}{\to }}\,R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f756799ecd6928776d7a00c4a45a1ce971bf1e7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.884ex; height:3.509ex;" alt="{\displaystyle R\;{\stackrel {i}{\to }}\,R}"></span> (additive inverse), and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {pt} {\stackrel {1}{\to }}\,R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>pt</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x2192;<!-- → --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {pt} {\stackrel {1}{\to }}\,R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02f1a2fe161c516d9adac5334883dd04c9c3e09c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.059ex; height:3.843ex;" alt="{\displaystyle \operatorname {pt} {\stackrel {1}{\to }}\,R}"></span> (multiplicative identity) satisfying the usual ring axioms. Equivalently, a ring object is an object <span class="texhtml mvar" style="font-style:italic;">R</span> equipped with a factorization of its functor of points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{R}=\operatorname {Hom} (-,R):C^{\operatorname {op} }\to \mathbf {Sets} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mi>Hom</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>op</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> <mi mathvariant="bold">e</mi> <mi mathvariant="bold">t</mi> <mi mathvariant="bold">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{R}=\operatorname {Hom} (-,R):C^{\operatorname {op} }\to \mathbf {Sets} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f8d69b8d4c90ba7492d015b23e93831a4403059" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.297ex; height:2.843ex;" alt="{\displaystyle h_{R}=\operatorname {Hom} (-,R):C^{\operatorname {op} }\to \mathbf {Sets} }"></span> through the category of rings: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\operatorname {op} }\to \mathbf {Rings} {\stackrel {\textrm {forgetful}}{\longrightarrow }}\mathbf {Sets} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>op</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> <mi mathvariant="bold">i</mi> <mi mathvariant="bold">n</mi> <mi mathvariant="bold">g</mi> <mi mathvariant="bold">s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>forgetful</mtext> </mrow> </mrow> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> <mi mathvariant="bold">e</mi> <mi mathvariant="bold">t</mi> <mi mathvariant="bold">s</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\operatorname {op} }\to \mathbf {Rings} {\stackrel {\textrm {forgetful}}{\longrightarrow }}\mathbf {Sets} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcb39c4a8d8364f343dce7ddf4103e29084cb2d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.492ex; height:4.176ex;" alt="{\displaystyle C^{\operatorname {op} }\to \mathbf {Rings} {\stackrel {\textrm {forgetful}}{\longrightarrow }}\mathbf {Sets} .}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Ring_scheme">Ring scheme</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=54" title="Edit section: Ring scheme"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In algebraic geometry, a <b>ring scheme</b> over a base <a href="/wiki/Scheme_(mathematics)" title="Scheme (mathematics)">scheme</a> <span class="texhtml mvar" style="font-style:italic;">S</span> is a ring object in the category of <span class="texhtml mvar" style="font-style:italic;">S</span>-schemes. One example is the ring scheme <span class="texhtml">W<sub><i>n</i></sub></span> over <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Spec} \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Spec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Spec} \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd34331bea4cfc6371708f3e886e16c8c7adedcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.587ex; height:2.509ex;" alt="{\displaystyle \operatorname {Spec} \mathbb {Z} }"></span>&#8288;</span>, which for any commutative ring <span class="texhtml mvar" style="font-style:italic;">A</span> returns the ring <span class="texhtml">W<sub><i>n</i></sub>(<i>A</i>)</span> of <span class="texhtml mvar" style="font-style:italic;">p</span>-isotypic <a href="/wiki/Witt_vector" title="Witt vector">Witt vectors</a> of length <span class="texhtml mvar" style="font-style:italic;">n</span> over <span class="texhtml mvar" style="font-style:italic;">A</span>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ring_spectrum">Ring spectrum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=55" title="Edit section: Ring spectrum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Algebraic_topology" title="Algebraic topology">algebraic topology</a>, a <a href="/wiki/Ring_spectrum" title="Ring spectrum">ring spectrum</a> is a <a href="/wiki/Spectrum_(topology)" title="Spectrum (topology)">spectrum</a> <span class="texhtml mvar" style="font-style:italic;">X</span> together with a multiplication <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu :X\wedge X\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>:</mo> <mi>X</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu :X\wedge X\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd313f336cfb91f1fbc73e1ece962fc9d7f81cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.476ex; height:2.676ex;" alt="{\displaystyle \mu :X\wedge X\to X}"></span> and a unit map <span class="texhtml"><i>S</i> → <i>X</i></span> from the <a href="/wiki/Sphere_spectrum" title="Sphere spectrum">sphere spectrum</a> <span class="texhtml mvar" style="font-style:italic;">S</span>, such that the ring axiom diagrams commute up to homotopy. In practice, it is common to define a ring spectrum as a <a href="/wiki/Monoid_object" class="mw-redirect" title="Monoid object">monoid object</a> in a good category of spectra such as the category of <a href="/wiki/Symmetric_spectrum" title="Symmetric spectrum">symmetric spectra</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=56" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">Wikibooks has a book on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Abstract_Algebra/Rings" class="extiw" title="wikibooks:Abstract Algebra/Rings">Abstract Algebra/Rings</a></b></i></div></div> </div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 18em;"> <ul><li><a href="/wiki/Algebra_over_a_commutative_ring" class="mw-redirect" title="Algebra over a commutative ring">Algebra over a commutative ring</a></li> <li><a href="/wiki/Categorical_ring" class="mw-redirect" title="Categorical ring">Categorical ring</a></li> <li><a href="/wiki/Category_of_rings" title="Category of rings">Category of rings</a></li> <li><a href="/wiki/Glossary_of_ring_theory" title="Glossary of ring theory">Glossary of ring theory</a></li> <li><a href="/wiki/Non-associative_algebra" title="Non-associative algebra">Non-associative algebra</a></li> <li><a href="/wiki/Ring_of_sets" title="Ring of sets">Ring of sets</a></li> <li><a href="/wiki/Semiring" title="Semiring">Semiring</a></li> <li><a href="/wiki/Spectrum_of_a_ring" title="Spectrum of a ring">Spectrum of a ring</a></li> <li><a href="/wiki/Simplicial_commutative_ring" title="Simplicial commutative ring">Simplicial commutative ring</a></li></ul> </div> <p>Special types of rings: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1184024115"><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Boolean_ring" title="Boolean ring">Boolean ring</a></li> <li><a href="/wiki/Dedekind_ring" class="mw-redirect" title="Dedekind ring">Dedekind ring</a></li> <li><a href="/wiki/Differential_ring" class="mw-redirect" title="Differential ring">Differential ring</a></li> <li><a href="/wiki/Exponential_field" title="Exponential field">Exponential ring</a></li> <li><a href="/wiki/Finite_ring" title="Finite ring">Finite ring</a></li> <li><a href="/wiki/Lie_ring" class="mw-redirect" title="Lie ring">Lie ring</a></li> <li><a href="/wiki/Local_ring" title="Local ring">Local ring</a></li> <li><a href="/wiki/Noetherian_ring" title="Noetherian ring">Noetherian</a> and <a href="/wiki/Artinian_ring" title="Artinian ring">artinian rings</a></li> <li><a href="/wiki/Ordered_ring" title="Ordered ring">Ordered ring</a></li> <li><a href="/wiki/Poisson_ring" title="Poisson ring">Poisson ring</a></li> <li><a href="/wiki/Reduced_ring" title="Reduced ring">Reduced ring</a></li> <li><a href="/wiki/Regular_ring" class="mw-redirect" title="Regular ring">Regular ring</a></li> <li><a href="/wiki/Ring_of_periods" class="mw-redirect" title="Ring of periods">Ring of periods</a></li> <li><a href="/wiki/SBI_ring" title="SBI ring">SBI ring</a></li> <li><a href="/wiki/Valuation_ring" title="Valuation ring">Valuation ring</a> and <a href="/wiki/Discrete_valuation_ring" title="Discrete valuation ring">discrete valuation ring</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=57" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">This means that each operation is defined and produces a unique result in <span class="texhtml mvar" style="font-style:italic;">R</span> for each ordered pair of elements of <span class="texhtml mvar" style="font-style:italic;">R</span>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">The existence of 1 is not assumed by some authors; here, the term <i><a href="/wiki/Rng_(algebra)" title="Rng (algebra)">rng</a></i> is used if existence of a multiplicative identity is not assumed. See <a class="mw-selflink-fragment" href="#Variations_on_the_definition">next subsection</a>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Poonen claims that "the natural extension of associativity demands that rings should contain an empty product, so it is natural to require rings to have a&#160;<span class="texhtml">1</span>".</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">Some other authors such as Lang further require a zero divisor to be nonzero.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Such a central idempotent is called <a href="/wiki/Centrally_primitive" class="mw-redirect" title="Centrally primitive">centrally primitive</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=58" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-FOOTNOTEBourbaki198996Ch_1,_§8.1-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBourbaki198996Ch_1,_§8.1_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki1989">Bourbaki (1989)</a>, p.&#160;96, Ch 1, §8.1</span> </li> <li id="cite_note-FOOTNOTEMac_LaneBirkhoff196785-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMac_LaneBirkhoff196785_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMac_LaneBirkhoff1967">Mac Lane &amp; Birkhoff (1967)</a>, p.&#160;85</span> </li> <li id="cite_note-FOOTNOTELang200283-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTELang200283_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTELang200283_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang (2002)</a>, p.&#160;83</span> </li> <li id="cite_note-FOOTNOTEIsaacs1994160-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEIsaacs1994160_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFIsaacs1994">Isaacs (1994)</a>, p.&#160;160</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php/Non-associative_rings_and_algebras">"Non-associative rings and algebras"</a>. <i>Encyclopedia of Mathematics</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Encyclopedia+of+Mathematics&amp;rft.atitle=Non-associative+rings+and+algebras&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%2FNon-associative_rings_and_algebras&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEIsaacs1994161-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEIsaacs1994161_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFIsaacs1994">Isaacs (1994)</a>, p.&#160;161</span> </li> <li id="cite_note-FOOTNOTELam2001Theorem_3.1-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELam2001Theorem_3.1_9-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLam2001">Lam (2001)</a>, Theorem 3.1</span> </li> <li id="cite_note-FOOTNOTELang2005Ch_V,_§3-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2005Ch_V,_§3_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2005">Lang (2005)</a>, Ch V, §3.</span> </li> <li id="cite_note-FOOTNOTESerre20063-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESerre20063_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSerre2006">Serre (2006)</a>, p.&#160;3</span> </li> <li id="cite_note-FOOTNOTESerre1979158-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESerre1979158_12-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSerre1979">Serre (1979)</a>, p.&#160;158</span> </li> <li id="cite_note-history-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-history_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Ring_theory/">"The development of Ring Theory"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+development+of+Ring+Theory&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2FRing_theory%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEKleiner199827-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKleiner199827_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKleiner1998">Kleiner (1998)</a>, p.&#160;27</span> </li> <li id="cite_note-FOOTNOTEHilbert1897-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHilbert1897_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHilbert1897">Hilbert (1897)</a></span> </li> <li id="cite_note-FOOTNOTECohn1980&#91;httpsarchiveorgdetailsadvancednumberth00cohn_0page49_p._49&#93;-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECohn1980[httpsarchiveorgdetailsadvancednumberth00cohn_0page49_p._49]_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCohn1980">Cohn (1980)</a>, <a rel="nofollow" class="external text" href="https://archive.org/details/advancednumberth00cohn_0/page/49">p. 49</a></span> </li> <li id="cite_note-FOOTNOTEFraenkel1915143–145-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFraenkel1915143–145_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFraenkel1915">Fraenkel (1915)</a>, pp.&#160;143–145</span> </li> <li id="cite_note-FOOTNOTEJacobson200986footnote_1-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJacobson200986footnote_1_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJacobson2009">Jacobson (2009)</a>, p.&#160;86, footnote 1</span> </li> <li id="cite_note-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;8)&lt;/sub&gt;-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;8)&lt;/sub&gt;_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFraenkel1915">Fraenkel (1915)</a>, p.&#160;144, axiom <i>R</i><sub>8)</sub></span> </li> <li id="cite_note-FOOTNOTENoether192129-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENoether192129_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENoether192129_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNoether1921">Noether (1921)</a>, p.&#160;29</span> </li> <li id="cite_note-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;7)&lt;/sub&gt;-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFraenkel1915144axiom_&#39;&#39;R&#39;&#39;&lt;sub&gt;7)&lt;/sub&gt;_21-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFraenkel1915">Fraenkel (1915)</a>, p.&#160;144, axiom <i>R</i><sub>7)</sub></span> </li> <li id="cite_note-FOOTNOTEvan_der_Waerden1930-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEvan_der_Waerden1930_22-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFvan_der_Waerden1930">van der Waerden (1930)</a></span> </li> <li id="cite_note-FOOTNOTEZariskiSamuel1958-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEZariskiSamuel1958_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFZariskiSamuel1958">Zariski &amp; Samuel (1958)</a></span> </li> <li id="cite_note-FOOTNOTEArtin2018346-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEArtin2018346_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFArtin2018">Artin (2018)</a>, p.&#160;346</span> </li> <li id="cite_note-FOOTNOTEBourbaki198996-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBourbaki198996_25-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki1989">Bourbaki (1989)</a>, p.&#160;96</span> </li> <li id="cite_note-FOOTNOTEEisenbud199511-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEisenbud199511_26-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEisenbud1995">Eisenbud (1995)</a>, p.&#160;11</span> </li> <li id="cite_note-FOOTNOTEGallian2006235-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGallian2006235_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGallian2006">Gallian (2006)</a>, p.&#160;235</span> </li> <li id="cite_note-FOOTNOTEHungerford199742-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHungerford199742_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHungerford1997">Hungerford (1997)</a>, p.&#160;42</span> </li> <li id="cite_note-FOOTNOTEWarner1965188-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWarner1965188_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWarner1965">Warner (1965)</a>, p.&#160;188</span> </li> <li id="cite_note-FOOTNOTEGarling2022-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGarling2022_30-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGarling2022">Garling (2022)</a></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php/Associative_rings_and_algebras">"Associative rings and algebras"</a>. <i>Encyclopedia of Mathematics</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Encyclopedia+of+Mathematics&amp;rft.atitle=Associative+rings+and+algebras&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%2FAssociative_rings_and_algebras&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEGardnerWiegandt2003-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGardnerWiegandt2003_32-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGardnerWiegandt2003">Gardner &amp; Wiegandt (2003)</a></span> </li> <li id="cite_note-FOOTNOTEPoonen2019-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPoonen2019_34-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPoonen2019">Poonen (2019)</a></span> </li> <li id="cite_note-FOOTNOTEWilder1965176-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWilder1965176_35-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWilder1965">Wilder (1965)</a>, p.&#160;176</span> </li> <li id="cite_note-FOOTNOTERotman19987-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERotman19987_36-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRotman1998">Rotman (1998)</a>, p.&#160;7</span> </li> <li id="cite_note-FOOTNOTEJacobson2009155-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJacobson2009155_37-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJacobson2009">Jacobson (2009)</a>, p.&#160;155</span> </li> <li id="cite_note-FOOTNOTEBourbaki198998-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBourbaki198998_38-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki1989">Bourbaki (1989)</a>, p.&#160;98</span> </li> <li id="cite_note-FOOTNOTECohn2003Theorem_4.5.1-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECohn2003Theorem_4.5.1_40-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCohn2003">Cohn (2003)</a>, Theorem 4.5.1</span> </li> <li id="cite_note-FOOTNOTEJacobson2009122Theorem_2.10-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJacobson2009122Theorem_2.10_42-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJacobson2009">Jacobson (2009)</a>, p.&#160;122, Theorem 2.10</span> </li> <li id="cite_note-FOOTNOTEBourbaki1964Ch_5._§1,_Lemma_2-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBourbaki1964Ch_5._§1,_Lemma_2_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBourbaki1964">Bourbaki (1964)</a>, Ch 5. §1, Lemma 2</span> </li> <li id="cite_note-FOOTNOTECohn20034.4-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTECohn20034.4_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTECohn20034.4_44-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFCohn2003">Cohn (2003)</a>, 4.4</span> </li> <li id="cite_note-FOOTNOTELang2002Ch._XVII._Proposition_1.1-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002Ch._XVII._Proposition_1.1_45-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang (2002)</a>, Ch. XVII. Proposition 1.1</span> </li> <li id="cite_note-FOOTNOTECohn1995Proposition_1.3.1-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECohn1995Proposition_1.3.1_46-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCohn1995">Cohn (1995)</a>, Proposition 1.3.1</span> </li> <li id="cite_note-FOOTNOTEEisenbud1995Exercise_2.2-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEisenbud1995Exercise_2.2_47-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEisenbud1995">Eisenbud (1995)</a>, Exercise 2.2</span> </li> <li id="cite_note-FOOTNOTEMilne2012Proposition_6.4-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMilne2012Proposition_6.4_48-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMilne2012">Milne (2012)</a>, Proposition 6.4</span> </li> <li id="cite_note-FOOTNOTEMilne2012end_of_Chapter_7-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMilne2012end_of_Chapter_7_49-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMilne2012">Milne (2012)</a>, end of Chapter 7</span> </li> <li id="cite_note-FOOTNOTEAtiyahMacdonald1969Theorem_10.17_and_its_corollaries-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAtiyahMacdonald1969Theorem_10.17_and_its_corollaries_50-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAtiyahMacdonald1969">Atiyah &amp; Macdonald (1969)</a>, Theorem 10.17 and its corollaries</span> </li> <li id="cite_note-FOOTNOTECohn1995&#91;httpsbooksgooglecombooksidu-4ADgUgpSMCpgPA242_pg._242&#93;-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECohn1995[httpsbooksgooglecombooksidu-4ADgUgpSMCpgPA242_pg._242]_51-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCohn1995">Cohn (1995)</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=u-4ADgUgpSMC&amp;pg=PA242">pg. 242</a></span> </li> <li id="cite_note-FOOTNOTELang2002Ch_XIV,_§2-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang2002Ch_XIV,_§2_52-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang2002">Lang (2002)</a>, Ch XIV, §2</span> </li> <li id="cite_note-FOOTNOTEWeibel2013&#91;httpsbooksgooglecombooksidJa8xAAAAQBAJpgPA26_26&#93;Ch_1,_Theorem_3.8-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWeibel2013[httpsbooksgooglecombooksidJa8xAAAAQBAJpgPA26_26]Ch_1,_Theorem_3.8_53-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWeibel2013">Weibel (2013)</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ja8xAAAAQBAJ&amp;pg=PA26">26</a>, Ch 1, Theorem 3.8</span> </li> <li id="cite_note-FOOTNOTEMilneCFTCh_IV,_§2-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMilneCFTCh_IV,_§2_54-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMilneCFT">Milne &amp; CFT</a>, Ch IV, §2</span> </li> <li id="cite_note-FOOTNOTESerre1950-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESerre1950_55-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSerre1950">Serre (1950)</a></span> </li> <li id="cite_note-FOOTNOTEJacobson2009162Theorem_3.2-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJacobson2009162Theorem_3.2_56-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJacobson2009">Jacobson (2009)</a>, p.&#160;162, Theorem 3.2</span> </li> <li id="cite_note-FOOTNOTEJacobson2009-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJacobson2009_57-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJacobson2009">Jacobson (2009)</a></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">Serre, p.&#160;44</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=59" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarling2022" class="citation book cs1">Garling, D. J. H. (2022). <i>Galois Theory and Its Algebraic Background</i> (2nd&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-108-83892-4" title="Special:BookSources/978-1-108-83892-4"><bdi>978-1-108-83892-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Galois+Theory+and+Its+Algebraic+Background&amp;rft.place=Cambridge&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2022&amp;rft.isbn=978-1-108-83892-4&amp;rft.aulast=Garling&amp;rft.aufirst=D.+J.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohn1980" class="citation cs2">Cohn, Harvey (1980), <i>Advanced Number Theory</i>, New York: Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-64023-5" title="Special:BookSources/978-0-486-64023-5"><bdi>978-0-486-64023-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Number+Theory&amp;rft.place=New+York&amp;rft.pub=Dover+Publications&amp;rft.date=1980&amp;rft.isbn=978-0-486-64023-5&amp;rft.aulast=Cohn&amp;rft.aufirst=Harvey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerre1950" class="citation cs2">Serre, J-P. (1950), <a rel="nofollow" class="external text" href="http://www.numdam.org/numdam-bin/feuilleter?id=SHC_1950-1951__3_"><i>Applications algébriques de la cohomologie des groupes, I, II, Séminaire Henri Cartan, 1950/51</i></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applications+alg%C3%A9briques+de+la+cohomologie+des+groupes%2C+I%2C+II%2C+S%C3%A9minaire+Henri+Cartan%2C+1950%2F51&amp;rft.date=1950&amp;rft.aulast=Serre&amp;rft.aufirst=J-P.&amp;rft_id=http%3A%2F%2Fwww.numdam.org%2Fnumdam-bin%2Ffeuilleter%3Fid%3DSHC_1950-1951&#95;_3_&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerre2006" class="citation cs2">Serre (2006), <i>Lie algebras and Lie groups</i> (2nd&#160;ed.), Springer</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+algebras+and+Lie+groups&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2006&amp;rft.au=Serre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span> [corrected 5th printing]</li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="General_references">General references</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=60" title="Edit section: General references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArtin2018" class="citation book cs1"><a href="/wiki/Michael_Artin" title="Michael Artin">Artin, Michael</a> (2018). <i>Algebra</i> (2nd&#160;ed.). Pearson.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra&amp;rft.edition=2nd&amp;rft.pub=Pearson&amp;rft.date=2018&amp;rft.aulast=Artin&amp;rft.aufirst=Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtiyahMacdonald1969" class="citation book cs1"><a href="/wiki/Michael_Atiyah" title="Michael Atiyah">Atiyah, Michael</a>; <a href="/wiki/Ian_G._Macdonald" title="Ian G. Macdonald">Macdonald, Ian G.</a> (1969). <i>Introduction to commutative algebra</i>. Addison–Wesley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+commutative+algebra&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1969&amp;rft.aulast=Atiyah&amp;rft.aufirst=Michael&amp;rft.au=Macdonald%2C+Ian+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1964" class="citation book cs1"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, N.</a> (1964). <i>Algèbre commutative</i>. Hermann.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Alg%C3%A8bre+commutative&amp;rft.pub=Hermann&amp;rft.date=1964&amp;rft.aulast=Bourbaki&amp;rft.aufirst=N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourbaki1989" class="citation book cs1"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">Bourbaki, N.</a> (1989). <i>Algebra I, Chapters 1–3</i>. Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra+I%2C+Chapters+1%E2%80%933&amp;rft.pub=Springer&amp;rft.date=1989&amp;rft.aulast=Bourbaki&amp;rft.aufirst=N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohn2003" class="citation cs2"><a href="/wiki/Paul_Cohn" title="Paul Cohn">Cohn, Paul Moritz</a> (2003), <i>Basic algebra: groups, rings, and fields</i>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-85233-587-8" title="Special:BookSources/978-1-85233-587-8"><bdi>978-1-85233-587-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+algebra%3A+groups%2C+rings%2C+and+fields&amp;rft.pub=Springer&amp;rft.date=2003&amp;rft.isbn=978-1-85233-587-8&amp;rft.aulast=Cohn&amp;rft.aufirst=Paul+Moritz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEisenbud1995" class="citation book cs1"><a href="/wiki/David_Eisenbud" title="David Eisenbud">Eisenbud, David</a> (1995). <i>Commutative algebra with a view toward algebraic geometry</i>. Graduate Texts in Mathematics. Vol.&#160;150. Springer. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1322960">1322960</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+algebra+with+a+view+toward+algebraic+geometry&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1322960%23id-name%3DMR&amp;rft.aulast=Eisenbud&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGallian2006" class="citation book cs1">Gallian, Joseph A. (2006). <i>Contemporary Abstract Algebra, Sixth Edition</i>. Houghton Mifflin. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780618514717" title="Special:BookSources/9780618514717"><bdi>9780618514717</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Contemporary+Abstract+Algebra%2C+Sixth+Edition.&amp;rft.pub=Houghton+Mifflin&amp;rft.date=2006&amp;rft.isbn=9780618514717&amp;rft.aulast=Gallian&amp;rft.aufirst=Joseph+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardnerWiegandt2003" class="citation book cs1">Gardner, J.W.; Wiegandt, R. (2003). <i>Radical Theory of Rings</i>. Chapman &amp; Hall/CRC Pure and Applied Mathematics. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0824750330" title="Special:BookSources/0824750330"><bdi>0824750330</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Radical+Theory+of+Rings&amp;rft.pub=Chapman+%26+Hall%2FCRC+Pure+and+Applied+Mathematics&amp;rft.date=2003&amp;rft.isbn=0824750330&amp;rft.aulast=Gardner&amp;rft.aufirst=J.W.&amp;rft.au=Wiegandt%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerstein1994" class="citation book cs1"><a href="/wiki/Israel_Nathan_Herstein" title="Israel Nathan Herstein">Herstein, I. N.</a> (1994) [reprint of the 1968 original]. <i>Noncommutative rings</i>. Carus Mathematical Monographs. Vol.&#160;15. With an afterword by Lance W. Small. Mathematical Association of America. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-88385-015-X" title="Special:BookSources/0-88385-015-X"><bdi>0-88385-015-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Noncommutative+rings&amp;rft.series=Carus+Mathematical+Monographs&amp;rft.pub=Mathematical+Association+of+America&amp;rft.date=1994&amp;rft.isbn=0-88385-015-X&amp;rft.aulast=Herstein&amp;rft.aufirst=I.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHungerford1997" class="citation book cs1">Hungerford, Thomas W. (1997). <i>Abstract Algebra: an Introduction, Second Edition</i>. Brooks/Cole. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780030105593" title="Special:BookSources/9780030105593"><bdi>9780030105593</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Abstract+Algebra%3A+an+Introduction%2C+Second+Edition.&amp;rft.pub=Brooks%2FCole&amp;rft.date=1997&amp;rft.isbn=9780030105593&amp;rft.aulast=Hungerford&amp;rft.aufirst=Thomas+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobson1964" class="citation journal cs1"><a href="/wiki/Nathan_Jacobson" title="Nathan Jacobson">Jacobson, Nathan</a> (1964). "Structure of rings". <i>American Mathematical Society Colloquium Publications</i>. <b>37</b> (Revised&#160;ed.).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Society+Colloquium+Publications&amp;rft.atitle=Structure+of+rings&amp;rft.volume=37&amp;rft.date=1964&amp;rft.aulast=Jacobson&amp;rft.aufirst=Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobson1943" class="citation journal cs1"><a href="/wiki/Nathan_Jacobson" title="Nathan Jacobson">Jacobson, Nathan</a> (1943). "The Theory of Rings". <i>American Mathematical Society Mathematical Surveys</i>. <b>I</b>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Society+Mathematical+Surveys&amp;rft.atitle=The+Theory+of+Rings&amp;rft.volume=I&amp;rft.date=1943&amp;rft.aulast=Jacobson&amp;rft.aufirst=Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobson2009" class="citation book cs1"><a href="/wiki/Nathan_Jacobson" title="Nathan Jacobson">Jacobson, Nathan</a> (2009). <i>Basic algebra</i>. Vol.&#160;1 (2nd&#160;ed.). Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-47189-1" title="Special:BookSources/978-0-486-47189-1"><bdi>978-0-486-47189-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+algebra&amp;rft.edition=2nd&amp;rft.pub=Dover&amp;rft.date=2009&amp;rft.isbn=978-0-486-47189-1&amp;rft.aulast=Jacobson&amp;rft.aufirst=Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaplansky1974" class="citation cs2"><a href="/wiki/Irving_Kaplansky" title="Irving Kaplansky">Kaplansky, Irving</a> (1974), <a rel="nofollow" class="external text" href="https://archive.org/details/commutativerings00irvi"><i>Commutative rings</i></a> (Revised&#160;ed.), <a href="/wiki/University_of_Chicago_Press" title="University of Chicago Press">University of Chicago Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-226-42454-5" title="Special:BookSources/0-226-42454-5"><bdi>0-226-42454-5</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0345945">0345945</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+rings&amp;rft.edition=Revised&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1974&amp;rft.isbn=0-226-42454-5&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0345945%23id-name%3DMR&amp;rft.aulast=Kaplansky&amp;rft.aufirst=Irving&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcommutativerings00irvi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLam1999" class="citation book cs1"><a href="/wiki/Tsit_Yuen_Lam" title="Tsit Yuen Lam">Lam, Tsit Yuen</a> (1999). <i>Lectures on modules and rings</i>. Graduate Texts in Mathematics. Vol.&#160;189. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-98428-3" title="Special:BookSources/0-387-98428-3"><bdi>0-387-98428-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lectures+on+modules+and+rings&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1999&amp;rft.isbn=0-387-98428-3&amp;rft.aulast=Lam&amp;rft.aufirst=Tsit+Yuen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLam2001" class="citation book cs1"><a href="/wiki/Tsit_Yuen_Lam" title="Tsit Yuen Lam">Lam, Tsit Yuen</a> (2001). <i>A first course in noncommutative rings</i>. Graduate Texts in Mathematics. Vol.&#160;131 (2nd&#160;ed.). Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-95183-0" title="Special:BookSources/0-387-95183-0"><bdi>0-387-95183-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+first+course+in+noncommutative+rings&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2001&amp;rft.isbn=0-387-95183-0&amp;rft.aulast=Lam&amp;rft.aufirst=Tsit+Yuen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLam2003" class="citation book cs1"><a href="/wiki/Tsit_Yuen_Lam" title="Tsit Yuen Lam">Lam, Tsit Yuen</a> (2003). <i>Exercises in classical ring theory</i>. Problem Books in Mathematics (2nd&#160;ed.). Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-00500-5" title="Special:BookSources/0-387-00500-5"><bdi>0-387-00500-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Exercises+in+classical+ring+theory&amp;rft.series=Problem+Books+in+Mathematics&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2003&amp;rft.isbn=0-387-00500-5&amp;rft.aulast=Lam&amp;rft.aufirst=Tsit+Yuen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang2002" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (2002), <i>Algebra</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, vol.&#160;211 (Revised third&#160;ed.), New York: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95385-4" title="Special:BookSources/978-0-387-95385-4"><bdi>978-0-387-95385-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1878556">1878556</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0984.00001">0984.00001</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=Revised+third&amp;rft.pub=Springer-Verlag&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0984.00001%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1878556%23id-name%3DMR&amp;rft.isbn=978-0-387-95385-4&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang2005" class="citation cs2">Lang, Serge (2005), <i>Undergraduate algebra</i> (3rd&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-22025-9" title="Special:BookSources/0-387-22025-9"><bdi>0-387-22025-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Undergraduate+algebra&amp;rft.edition=3rd&amp;rft.pub=Springer&amp;rft.date=2005&amp;rft.isbn=0-387-22025-9&amp;rft.aulast=Lang&amp;rft.aufirst=Serge&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMac_LaneBirkhoff1967" class="citation book cs1"><a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Mac Lane, Saunders</a>; Birkhoff, Garrett (1967). <i>Algebra</i>. AMS Chelsea.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra&amp;rft.pub=AMS+Chelsea&amp;rft.date=1967&amp;rft.aulast=Mac+Lane&amp;rft.aufirst=Saunders&amp;rft.au=Birkhoff%2C+Garrett&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatsumura1989" class="citation book cs1">Matsumura, Hideyuki (1989). <i>Commutative Ring Theory</i>. Cambridge Studies in Advanced Mathematics (2nd&#160;ed.). <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-36764-6" title="Special:BookSources/978-0-521-36764-6"><bdi>978-0-521-36764-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+Ring+Theory&amp;rft.series=Cambridge+Studies+in+Advanced+Mathematics&amp;rft.edition=2nd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1989&amp;rft.isbn=978-0-521-36764-6&amp;rft.aulast=Matsumura&amp;rft.aufirst=Hideyuki&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilne2012" class="citation web cs1">Milne, J. (2012). <a rel="nofollow" class="external text" href="http://www.jmilne.org/math/xnotes/ca.html">"A primer of commutative algebra"</a>. v2.23.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=A+primer+of+commutative+algebra&amp;rft.date=2012&amp;rft.aulast=Milne&amp;rft.aufirst=J.&amp;rft_id=http%3A%2F%2Fwww.jmilne.org%2Fmath%2Fxnotes%2Fca.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRotman1998" class="citation cs2">Rotman, Joseph (1998), <i>Galois Theory</i> (2nd&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-98541-7" title="Special:BookSources/0-387-98541-7"><bdi>0-387-98541-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Galois+Theory&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=1998&amp;rft.isbn=0-387-98541-7&amp;rft.aulast=Rotman&amp;rft.aufirst=Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Waerden1930" class="citation cs2"><a href="/wiki/Bartel_Leendert_van_der_Waerden" title="Bartel Leendert van der Waerden">van der Waerden, Bartel Leendert</a> (1930), <a href="/wiki/Moderne_Algebra" title="Moderne Algebra"><i>Moderne Algebra. Teil I</i></a>, Die Grundlehren der mathematischen Wissenschaften, vol.&#160;33, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-56799-8" title="Special:BookSources/978-3-540-56799-8"><bdi>978-3-540-56799-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0009016">0009016</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Moderne+Algebra.+Teil+I&amp;rft.series=Die+Grundlehren+der+mathematischen+Wissenschaften&amp;rft.pub=Springer&amp;rft.date=1930&amp;rft.isbn=978-3-540-56799-8&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0009016%23id-name%3DMR&amp;rft.aulast=van+der+Waerden&amp;rft.aufirst=Bartel+Leendert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarner1965" class="citation book cs1">Warner, Seth (1965). <i>Modern Algebra</i>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780486663418" title="Special:BookSources/9780486663418"><bdi>9780486663418</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Algebra&amp;rft.pub=Dover&amp;rft.date=1965&amp;rft.isbn=9780486663418&amp;rft.aulast=Warner&amp;rft.aufirst=Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilder1965" class="citation book cs1">Wilder, Raymond Louis (1965). <i>Introduction to Foundations of Mathematics</i>. Wiley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Foundations+of+Mathematics&amp;rft.pub=Wiley&amp;rft.date=1965&amp;rft.aulast=Wilder&amp;rft.aufirst=Raymond+Louis&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZariskiSamuel1958" class="citation book cs1">Zariski, Oscar; Samuel, Pierre (1958). <i>Commutative Algebra</i>. Vol.&#160;1. Van Nostrand.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+Algebra&amp;rft.pub=Van+Nostrand&amp;rft.date=1958&amp;rft.aulast=Zariski&amp;rft.aufirst=Oscar&amp;rft.au=Samuel%2C+Pierre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Special_references">Special references</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=61" title="Edit section: Special references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalcerzykJózefiak1989" class="citation cs2">Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), <i>Commutative Noetherian and Krull rings</i>, Mathematics and its Applications, Chichester: Ellis Horwood Ltd., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-155615-7" title="Special:BookSources/978-0-13-155615-7"><bdi>978-0-13-155615-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+Noetherian+and+Krull+rings&amp;rft.place=Chichester&amp;rft.series=Mathematics+and+its+Applications&amp;rft.pub=Ellis+Horwood+Ltd.&amp;rft.date=1989&amp;rft.isbn=978-0-13-155615-7&amp;rft.aulast=Balcerzyk&amp;rft.aufirst=Stanis%C5%82aw&amp;rft.au=J%C3%B3zefiak%2C+Tadeusz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalcerzykJózefiak1989" class="citation cs2">Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), <i>Dimension, multiplicity and homological methods</i>, Mathematics and its Applications, Chichester: Ellis Horwood Ltd., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-155623-2" title="Special:BookSources/978-0-13-155623-2"><bdi>978-0-13-155623-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dimension%2C+multiplicity+and+homological+methods&amp;rft.place=Chichester&amp;rft.series=Mathematics+and+its+Applications&amp;rft.pub=Ellis+Horwood+Ltd.&amp;rft.date=1989&amp;rft.isbn=978-0-13-155623-2&amp;rft.aulast=Balcerzyk&amp;rft.aufirst=Stanis%C5%82aw&amp;rft.au=J%C3%B3zefiak%2C+Tadeusz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBallieu1947" class="citation journal cs1">Ballieu, R. (1947). "Anneaux finis; systèmes hypercomplexes de rang trois sur un corps commutatif". <i>Ann. Soc. Sci. Bruxelles</i>. <b>I</b> (61): 222–227.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann.+Soc.+Sci.+Bruxelles&amp;rft.atitle=Anneaux+finis%3B+syst%C3%A8mes+hypercomplexes+de+rang+trois+sur+un+corps+commutatif&amp;rft.volume=I&amp;rft.issue=61&amp;rft.pages=222-227&amp;rft.date=1947&amp;rft.aulast=Ballieu&amp;rft.aufirst=R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerrickKeating2000" class="citation book cs1">Berrick, A. J.; Keating, M. E. (2000). <i>An Introduction to Rings and Modules with K-Theory in View</i>. Cambridge University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Rings+and+Modules+with+K-Theory+in+View&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft.aulast=Berrick&amp;rft.aufirst=A.+J.&amp;rft.au=Keating%2C+M.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohn1995" class="citation cs2"><a href="/wiki/Paul_Cohn" title="Paul Cohn">Cohn, Paul Moritz</a> (1995), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/skewfieldstheory0000cohn"><i>Skew Fields: Theory of General Division Rings</i></a></span>, Encyclopedia of Mathematics and its Applications, vol.&#160;57, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780521432177" title="Special:BookSources/9780521432177"><bdi>9780521432177</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Skew+Fields%3A+Theory+of+General+Division+Rings&amp;rft.series=Encyclopedia+of+Mathematics+and+its+Applications&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1995&amp;rft.isbn=9780521432177&amp;rft.aulast=Cohn&amp;rft.aufirst=Paul+Moritz&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fskewfieldstheory0000cohn&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGilmerMott1973" class="citation journal cs1">Gilmer, R.; Mott, J. (1973). <a rel="nofollow" class="external text" href="https://doi.org/10.3792%2Fpja%2F1195519146">"Associative Rings of Order"</a>. <i>Proc. Japan Acad</i>. <b>49</b>: 795–799. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3792%2Fpja%2F1195519146">10.3792/pja/1195519146</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+Japan+Acad.&amp;rft.atitle=Associative+Rings+of+Order&amp;rft.volume=49&amp;rft.pages=795-799&amp;rft.date=1973&amp;rft_id=info%3Adoi%2F10.3792%2Fpja%2F1195519146&amp;rft.aulast=Gilmer&amp;rft.aufirst=R.&amp;rft.au=Mott%2C+J.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3792%252Fpja%252F1195519146&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrisStocker1998" class="citation book cs1">Harris, J. W.; Stocker, H. (1998). <i>Handbook of Mathematics and Computational Science</i>. Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Mathematics+and+Computational+Science&amp;rft.pub=Springer&amp;rft.date=1998&amp;rft.aulast=Harris&amp;rft.aufirst=J.+W.&amp;rft.au=Stocker%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsaacs1994" class="citation book cs1"><a href="/wiki/Martin_Isaacs" title="Martin Isaacs">Isaacs, I. M.</a> (1994). <i>Algebra: A Graduate Course</i>. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">AMS</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4799-2" title="Special:BookSources/978-0-8218-4799-2"><bdi>978-0-8218-4799-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra%3A+A+Graduate+Course&amp;rft.pub=AMS&amp;rft.date=1994&amp;rft.isbn=978-0-8218-4799-2&amp;rft.aulast=Isaacs&amp;rft.aufirst=I.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobson1945" class="citation cs2"><a href="/wiki/Nathan_Jacobson" title="Nathan Jacobson">Jacobson, Nathan</a> (1945), "Structure theory of algebraic algebras of bounded degree", <i><a href="/wiki/Annals_of_Mathematics" title="Annals of Mathematics">Annals of Mathematics</a></i>, <b>46</b> (4), Annals of Mathematics: 695–707, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1969205">10.2307/1969205</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-486X">0003-486X</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1969205">1969205</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Mathematics&amp;rft.atitle=Structure+theory+of+algebraic+algebras+of+bounded+degree&amp;rft.volume=46&amp;rft.issue=4&amp;rft.pages=695-707&amp;rft.date=1945&amp;rft.issn=0003-486X&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1969205%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1969205&amp;rft.aulast=Jacobson&amp;rft.aufirst=Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1998" class="citation book cs1 cs1-prop-long-vol"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, D. E.</a> (1998). <i>The Art of Computer Programming</i>. Vol.&#160;2: Seminumerical Algorithms (3rd&#160;ed.). Addison–Wesley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Art+of+Computer+Programming&amp;rft.edition=3rd&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1998&amp;rft.aulast=Knuth&amp;rft.aufirst=D.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKornKorn2000" class="citation book cs1">Korn, G. A.; <a href="/wiki/Theresa_M._Korn" title="Theresa M. Korn">Korn, T. M.</a> (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xUQc0RZhQnAC&amp;q=ring"><i>Mathematical Handbook for Scientists and Engineers</i></a>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780486411477" title="Special:BookSources/9780486411477"><bdi>9780486411477</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Handbook+for+Scientists+and+Engineers&amp;rft.pub=Dover&amp;rft.date=2000&amp;rft.isbn=9780486411477&amp;rft.aulast=Korn&amp;rft.aufirst=G.+A.&amp;rft.au=Korn%2C+T.+M.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxUQc0RZhQnAC%26q%3Dring&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilneCFT" class="citation web cs1">Milne, J. <a rel="nofollow" class="external text" href="http://www.jmilne.org/math/CourseNotes/cft.html">"Class field theory"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Class+field+theory&amp;rft.aulast=Milne&amp;rft.aufirst=J.&amp;rft_id=http%3A%2F%2Fwww.jmilne.org%2Fmath%2FCourseNotes%2Fcft.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNagata1962" class="citation cs2"><a href="/wiki/Masayoshi_Nagata" title="Masayoshi Nagata">Nagata, Masayoshi</a> (1962) [1975 reprint], <i>Local rings</i>, Interscience Tracts in Pure and Applied Mathematics, vol.&#160;13, Interscience Publishers, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-88275-228-0" title="Special:BookSources/978-0-88275-228-0"><bdi>978-0-88275-228-0</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0155856">0155856</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Local+rings&amp;rft.series=Interscience+Tracts+in+Pure+and+Applied+Mathematics&amp;rft.pub=Interscience+Publishers&amp;rft.date=1962&amp;rft.isbn=978-0-88275-228-0&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0155856%23id-name%3DMR&amp;rft.aulast=Nagata&amp;rft.aufirst=Masayoshi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierce1982" class="citation book cs1">Pierce, Richard S. (1982). <a rel="nofollow" class="external text" href="https://archive.org/details/associativealgeb00pier_0"><i>Associative algebras</i></a>. Graduate Texts in Mathematics. Vol.&#160;88. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-90693-2" title="Special:BookSources/0-387-90693-2"><bdi>0-387-90693-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Associative+algebras&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1982&amp;rft.isbn=0-387-90693-2&amp;rft.aulast=Pierce&amp;rft.aufirst=Richard+S.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fassociativealgeb00pier_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoonen2019" class="citation cs2"><a href="/wiki/Bjorn_Poonen" title="Bjorn Poonen">Poonen, Bjorn</a> (2019), <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/48666015">"Why all rings should have a 1"</a>, <i>Mathematics Magazine</i>, <b>92</b> (1): 58−62, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.0135">1404.0135</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/48666015">48666015</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Why+all+rings+should+have+a+1&amp;rft.volume=92&amp;rft.issue=1&amp;rft.pages=58%E2%88%9262&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1404.0135&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F48666015%23id-name%3DJSTOR&amp;rft.aulast=Poonen&amp;rft.aufirst=Bjorn&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F48666015&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerre1979" class="citation cs2"><a href="/wiki/Jean-Pierre_Serre" title="Jean-Pierre Serre">Serre, Jean-Pierre</a> (1979), <i>Local fields</i>, Graduate Texts in Mathematics, vol.&#160;67, Springer</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Local+fields&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1979&amp;rft.aulast=Serre&amp;rft.aufirst=Jean-Pierre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpringer1977" class="citation cs2">Springer, Tonny A. (1977), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pTV7CwAAQBAJ&amp;q=ring"><i>Invariant theory</i></a>, Lecture Notes in Mathematics, vol.&#160;585, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783540373704" title="Special:BookSources/9783540373704"><bdi>9783540373704</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Invariant+theory&amp;rft.series=Lecture+Notes+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1977&amp;rft.isbn=9783540373704&amp;rft.aulast=Springer&amp;rft.aufirst=Tonny+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpTV7CwAAQBAJ%26q%3Dring&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeibel2013" class="citation cs2">Weibel, Charles A. (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Ja8xAAAAQBAJ"><i>The K-book: An Introduction to Algebraic K-theory</i></a>, Graduate Studies in Mathermatics, vol.&#160;145, American Mathematical Society, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780821891322" title="Special:BookSources/9780821891322"><bdi>9780821891322</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+K-book%3A+An+Introduction+to+Algebraic+K-theory&amp;rft.series=Graduate+Studies+in+Mathermatics&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2013&amp;rft.isbn=9780821891322&amp;rft.aulast=Weibel&amp;rft.aufirst=Charles+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJa8xAAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span> (also <a rel="nofollow" class="external text" href="https://sites.math.rutgers.edu/~weibel/Kbook/Kbook.I.pdf">online</a>)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZariskiSamuel1975" class="citation book cs1 cs1-prop-long-vol"><a href="/wiki/Oscar_Zariski" title="Oscar Zariski">Zariski, Oscar</a>; <a href="/wiki/Pierre_Samuel" title="Pierre Samuel">Samuel, Pierre</a> (1975). <i>Commutative algebra</i>. Graduate Texts in Mathematics. Vol.&#160;28–29. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-90089-6" title="Special:BookSources/0-387-90089-6"><bdi>0-387-90089-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Commutative+algebra&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=1975&amp;rft.isbn=0-387-90089-6&amp;rft.aulast=Zariski&amp;rft.aufirst=Oscar&amp;rft.au=Samuel%2C+Pierre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Primary_sources">Primary sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=62" title="Edit section: Primary sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFraenkel1915" class="citation journal cs1"><a href="/wiki/Abraham_Fraenkel" title="Abraham Fraenkel">Fraenkel, A.</a> (1915). "Über die Teiler der Null und die Zerlegung von Ringen". <i>J. Reine Angew. Math</i>. <b>1915</b> (145): 139–176. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fcrll.1915.145.139">10.1515/crll.1915.145.139</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118962421">118962421</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Reine+Angew.+Math.&amp;rft.atitle=%C3%9Cber+die+Teiler+der+Null+und+die+Zerlegung+von+Ringen&amp;rft.volume=1915&amp;rft.issue=145&amp;rft.pages=139-176&amp;rft.date=1915&amp;rft_id=info%3Adoi%2F10.1515%2Fcrll.1915.145.139&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118962421%23id-name%3DS2CID&amp;rft.aulast=Fraenkel&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbert1897" class="citation journal cs1"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a> (1897). "Die Theorie der algebraischen Zahlkörper". <i>Jahresbericht der Deutschen Mathematiker-Vereinigung</i>. <b>4</b>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Jahresbericht+der+Deutschen+Mathematiker-Vereinigung&amp;rft.atitle=Die+Theorie+der+algebraischen+Zahlk%C3%B6rper&amp;rft.volume=4&amp;rft.date=1897&amp;rft.aulast=Hilbert&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNoether1921" class="citation journal cs1"><a href="/wiki/Emmy_Noether" title="Emmy Noether">Noether, Emmy</a> (1921). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1428306">"Idealtheorie in Ringbereichen"</a>. <i>Math. Annalen</i>. <b>83</b> (1–2): 24–66. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01464225">10.1007/bf01464225</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121594471">121594471</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Annalen&amp;rft.atitle=Idealtheorie+in+Ringbereichen&amp;rft.volume=83&amp;rft.issue=1%E2%80%932&amp;rft.pages=24-66&amp;rft.date=1921&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01464225&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121594471%23id-name%3DS2CID&amp;rft.aulast=Noether&amp;rft.aufirst=Emmy&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1428306&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Historical_references">Historical references</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ring_(mathematics)&amp;action=edit&amp;section=63" title="Edit section: Historical references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li>Bronshtein, I. N. and Semendyayev, K. A. (2004) <a href="/wiki/Bronshtein_and_Semendyayev" title="Bronshtein and Semendyayev">Handbook of Mathematics</a>, 4th ed. New York: Springer-Verlag <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-43491-7" title="Special:BookSources/3-540-43491-7">3-540-43491-7</a>.</li> <li><a rel="nofollow" class="external text" href="http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Ring_theory.html">History of ring theory at the MacTutor Archive</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirkhoffMac_Lane1996" class="citation cs2"><a href="/wiki/Garrett_Birkhoff" title="Garrett Birkhoff">Birkhoff, Garrett</a>; <a href="/wiki/Saunders_Mac_Lane" title="Saunders Mac Lane">Mac Lane, Saunders</a> (1996), <i>A Survey of Modern Algebra</i> (5th&#160;ed.), New York: Macmillan</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Survey+of+Modern+Algebra&amp;rft.place=New+York&amp;rft.edition=5th&amp;rft.pub=Macmillan&amp;rft.date=1996&amp;rft.aulast=Birkhoff&amp;rft.aufirst=Garrett&amp;rft.au=Mac+Lane%2C+Saunders&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li>Faith, Carl (1999) <i>Rings and things and a fine array of twentieth century associative algebra</i>. Mathematical Surveys and Monographs, 65. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8218-0993-8" title="Special:BookSources/0-8218-0993-8">0-8218-0993-8</a>.</li> <li>Itô, K. editor (1986) "Rings." §368 in <i>Encyclopedic Dictionary of Mathematics</i>, 2nd ed., Vol. 2. Cambridge, MA: <a href="/wiki/MIT_Press" title="MIT Press">MIT Press</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleiner1996" class="citation journal cs1"><a href="/wiki/Israel_Kleiner_(mathematician)" title="Israel Kleiner (mathematician)">Kleiner, Israel</a> (1996). "The Genesis of the Abstract Ring Concept". <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>. <b>103</b> (5): 417–424. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2974935">10.2307/2974935</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2974935">2974935</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.atitle=The+Genesis+of+the+Abstract+Ring+Concept&amp;rft.volume=103&amp;rft.issue=5&amp;rft.pages=417-424&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.2307%2F2974935&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2974935%23id-name%3DJSTOR&amp;rft.aulast=Kleiner&amp;rft.aufirst=Israel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleiner1998" class="citation journal cs1"><a href="/wiki/Israel_Kleiner_(mathematician)" title="Israel Kleiner (mathematician)">Kleiner, Israel</a> (February 1998). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs000170050029">"From Numbers to Rings: The Early History of Ring Theory"</a>. <i><a href="/wiki/Elemente_der_Mathematik" title="Elemente der Mathematik">Elemente der Mathematik</a></i>. <b>53</b> (1): 18–35. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs000170050029">10.1007/s000170050029</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Elemente+der+Mathematik&amp;rft.atitle=From+Numbers+to+Rings%3A+The+Early+History+of+Ring+Theory&amp;rft.volume=53&amp;rft.issue=1&amp;rft.pages=18-35&amp;rft.date=1998-02&amp;rft_id=info%3Adoi%2F10.1007%2Fs000170050029&amp;rft.aulast=Kleiner&amp;rft.aufirst=Israel&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs000170050029&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Waerden1985" class="citation cs2"><a href="/wiki/Bartel_Leendert_van_der_Waerden" title="Bartel Leendert van der Waerden">van der Waerden, B. L.</a> (1985), <i>A History of Algebra</i>, Springer-Verlag</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Algebra&amp;rft.pub=Springer-Verlag&amp;rft.date=1985&amp;rft.aulast=van+der+Waerden&amp;rft.aufirst=B.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARing+%28mathematics%29" class="Z3988"></span></li></ul> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q161172#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Edit_this_at_Wikidata&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q161172#identifiers&amp;#124;class=noprint&amp;#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q161172#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1098024/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4128084-2">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85114140">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb131630283">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb131630283">BnF data</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="okruhy (algebra)"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph126754&amp;CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX531097">Spain</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007538867405171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐828bf Cached time: 20241122140736 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.052 seconds Real time usage: 2.390 seconds Preprocessor visited node count: 25636/1000000 Post‐expand include size: 234403/2097152 bytes Template argument size: 30006/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 24/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 238935/5000000 bytes Lua time usage: 1.003/10.000 seconds Lua memory usage: 9128790/52428800 bytes Lua Profile: MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 260 ms 22.0% ? 160 ms 13.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 120 ms 10.2% recursiveClone <mwInit.lua:45> 100 ms 8.5% (for generator) 60 ms 5.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getEntityStatements 40 ms 3.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 40 ms 3.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 40 ms 3.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 40 ms 3.4% <mwInit.lua:45> 40 ms 3.4% [others] 280 ms 23.7% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1710.165 1 -total 19.74% 337.524 268 Template:Math 12.56% 214.874 52 Template:Sfnp 8.72% 149.172 26 Template:Cite_book 8.18% 139.812 2 Template:Reflist 7.40% 126.572 2 Template:Sidebar_with_collapsible_lists 7.34% 125.468 1 Template:Short_description 6.96% 118.977 5 Template:Cite_web 6.89% 117.757 1 Template:Ring_theory_sidebar 6.20% 105.950 20 Template:Citation --> <!-- Saved in parser cache with key enwiki:pcache:idhash:48404-0!canonical and timestamp 20241122140736 and revision id 1252011286. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Ring_(mathematics)&amp;oldid=1252011286">https://en.wikipedia.org/w/index.php?title=Ring_(mathematics)&amp;oldid=1252011286</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Algebraic_structures" title="Category:Algebraic structures">Algebraic structures</a></li><li><a href="/wiki/Category:Ring_theory" title="Category:Ring theory">Ring theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2023" title="Category:Articles with unsourced statements from October 2023">Articles with unsourced statements from October 2023</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2013" title="Category:Articles with unsourced statements from November 2013">Articles with unsourced statements from November 2013</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 October 2024, at 08:52<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Ring_(mathematics)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-r2wfs","wgBackendResponseTime":170,"wgPageParseReport":{"limitreport":{"cputime":"2.052","walltime":"2.390","ppvisitednodes":{"value":25636,"limit":1000000},"postexpandincludesize":{"value":234403,"limit":2097152},"templateargumentsize":{"value":30006,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":24,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":238935,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1710.165 1 -total"," 19.74% 337.524 268 Template:Math"," 12.56% 214.874 52 Template:Sfnp"," 8.72% 149.172 26 Template:Cite_book"," 8.18% 139.812 2 Template:Reflist"," 7.40% 126.572 2 Template:Sidebar_with_collapsible_lists"," 7.34% 125.468 1 Template:Short_description"," 6.96% 118.977 5 Template:Cite_web"," 6.89% 117.757 1 Template:Ring_theory_sidebar"," 6.20% 105.950 20 Template:Citation"]},"scribunto":{"limitreport-timeusage":{"value":"1.003","limit":"10.000"},"limitreport-memusage":{"value":9128790,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFArtin2018\"] = 1,\n [\"CITEREFAtiyahMacdonald1969\"] = 1,\n [\"CITEREFBalcerzykJózefiak1989\"] = 2,\n [\"CITEREFBallieu1947\"] = 1,\n [\"CITEREFBerrickKeating2000\"] = 1,\n [\"CITEREFBirkhoffMac_Lane1996\"] = 1,\n [\"CITEREFBourbaki1964\"] = 1,\n [\"CITEREFBourbaki1989\"] = 1,\n [\"CITEREFCohn1980\"] = 1,\n [\"CITEREFCohn1995\"] = 1,\n [\"CITEREFCohn2003\"] = 1,\n [\"CITEREFEisenbud1995\"] = 1,\n [\"CITEREFFraenkel1915\"] = 1,\n [\"CITEREFGallian2006\"] = 1,\n [\"CITEREFGardnerWiegandt2003\"] = 1,\n [\"CITEREFGarling2022\"] = 1,\n [\"CITEREFGilmerMott1973\"] = 1,\n [\"CITEREFHarrisStocker1998\"] = 1,\n [\"CITEREFHerstein1994\"] = 1,\n [\"CITEREFHilbert1897\"] = 1,\n [\"CITEREFHungerford1997\"] = 1,\n [\"CITEREFIsaacs1994\"] = 1,\n [\"CITEREFJacobson1943\"] = 1,\n [\"CITEREFJacobson1945\"] = 1,\n [\"CITEREFJacobson1964\"] = 1,\n [\"CITEREFJacobson2009\"] = 1,\n [\"CITEREFKaplansky1974\"] = 1,\n [\"CITEREFKleiner1996\"] = 1,\n [\"CITEREFKleiner1998\"] = 1,\n [\"CITEREFKnuth1998\"] = 1,\n [\"CITEREFKornKorn2000\"] = 1,\n [\"CITEREFLam1999\"] = 1,\n [\"CITEREFLam2001\"] = 1,\n [\"CITEREFLam2003\"] = 1,\n [\"CITEREFLang2005\"] = 1,\n [\"CITEREFMac_LaneBirkhoff1967\"] = 1,\n [\"CITEREFMatsumura1989\"] = 1,\n [\"CITEREFMilne2012\"] = 1,\n [\"CITEREFMilneCFT\"] = 1,\n [\"CITEREFNagata1962\"] = 1,\n [\"CITEREFNoether1921\"] = 1,\n [\"CITEREFPierce1982\"] = 1,\n [\"CITEREFPoonen2019\"] = 1,\n [\"CITEREFRotman1998\"] = 1,\n [\"CITEREFSerre1950\"] = 1,\n [\"CITEREFSerre1979\"] = 1,\n [\"CITEREFSerre2006\"] = 1,\n [\"CITEREFSpringer1977\"] = 1,\n [\"CITEREFWarner1965\"] = 1,\n [\"CITEREFWeibel2013\"] = 1,\n [\"CITEREFWilder1965\"] = 1,\n [\"CITEREFZariskiSamuel1958\"] = 1,\n [\"CITEREFZariskiSamuel1975\"] = 1,\n [\"CITEREFvan_der_Waerden1930\"] = 1,\n [\"CITEREFvan_der_Waerden1985\"] = 1,\n}\ntemplate_list = table#1 {\n [\"About\"] = 1,\n [\"Abs\"] = 1,\n [\"Algebraic structures\"] = 1,\n [\"Authority control\"] = 1,\n [\"CN\"] = 1,\n [\"Citation\"] = 19,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 26,\n [\"Cite journal\"] = 9,\n [\"Cite web\"] = 5,\n [\"Commutative ring classes\"] = 1,\n [\"DEFAULTSORT:Ring (Mathematics)\"] = 1,\n [\"Div col\"] = 2,\n [\"Div col end\"] = 2,\n [\"Efn\"] = 5,\n [\"Harvid\"] = 1,\n [\"IPAc-en\"] = 1,\n [\"Isbn\"] = 2,\n [\"Itco\"] = 1,\n [\"Lang Algebra\"] = 1,\n [\"Main\"] = 11,\n [\"Math\"] = 268,\n [\"Mset\"] = 1,\n [\"Mvar\"] = 479,\n [\"Nat\"] = 1,\n [\"Not a typo\"] = 1,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 1,\n [\"Refbegin\"] = 5,\n [\"Refend\"] = 5,\n [\"Reflist\"] = 1,\n [\"Ring theory sidebar\"] = 1,\n [\"Section link\"] = 1,\n [\"See also\"] = 6,\n [\"Sfnp\"] = 52,\n [\"Short description\"] = 1,\n [\"Slink\"] = 2,\n [\"Sub\"] = 56,\n [\"Sup\"] = 18,\n [\"Tmath\"] = 46,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","260","22.0"],["?","160","13.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","120","10.2"],["recursiveClone \u003CmwInit.lua:45\u003E","100","8.5"],["(for generator)","60","5.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getEntityStatements","40","3.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","40","3.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","40","3.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","40","3.4"],["\u003CmwInit.lua:45\u003E","40","3.4"],["[others]","280","23.7"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-828bf","timestamp":"20241122140736","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ring (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Ring_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q161172","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q161172","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-09T17:15:20Z","dateModified":"2024-10-19T08:52:26Z","headline":"algebraic structure that has compatible structures of an abelian group and a monoid, in particular having multiplicative identity"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10