CINXE.COM

Search results for: leaching behavior

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: leaching behavior</title> <meta name="description" content="Search results for: leaching behavior"> <meta name="keywords" content="leaching behavior"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="leaching behavior" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="leaching behavior"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6615</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: leaching behavior</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6615</span> Chemical Leaching of Metals from Landfill’s Fine Fraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Balkauskait%C4%97">E. Balkauskaitė</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bu%C4%8Dinskas"> A. Bučinskas</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ivanauskas"> R. Ivanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kriipsalu"> M. Kriipsalu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Denafas"> G. Denafas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaching of heavy metals (chromium, zinc, copper) from the fine fraction of the Torma landfill (Estonia) was investigated. The leaching kinetics studies have determined the dependence of some metal&rsquo;s concentration on the leaching time. Metals were leached with Aqua Regia, distilled water and EDTA (Ethylenediaminetetraacetic acid); process was most intensive 2 hours after the start of the experiment, except for copper with EDTA (0.5 h) and lead with EDTA (4 h). During leaching, steady concentrations of Fe, Mn, Cd and Pb were fully stabilized after 8 h; however concentrations of Cu and Ni were not stabilized after 10 h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine%20fraction" title="fine fraction">fine fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=landfills" title=" landfills"> landfills</a>, <a href="https://publications.waset.org/abstracts/search?q=leached%20metals" title=" leached metals"> leached metals</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20kinetics" title=" leaching kinetics"> leaching kinetics</a> </p> <a href="https://publications.waset.org/abstracts/112677/chemical-leaching-of-metals-from-landfills-fine-fraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6614</span> Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Koech">Lawrence Koech</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Mothibedi"> Olga Mothibedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=CCD" title=" CCD"> CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20constant" title=" rate constant"> rate constant</a> </p> <a href="https://publications.waset.org/abstracts/59859/optimization-of-leaching-properties-of-a-low-grade-copper-ore-using-central-composite-design-ccd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6613</span> Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kefaifi%20Aissa">Kefaifi Aissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahraoui%20Tahar"> Sahraoui Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kheloufi%20Abdelkrim"> Kheloufi Abdelkrim</a>, <a href="https://publications.waset.org/abstracts/search?q=Anas%20Sabiha"> Anas Sabiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannane%20Farouk"> Hannane Farouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20leaching" title="acid leaching">acid leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments%20method%28DOE%29" title=" design of experiments method(DOE)"> design of experiments method(DOE)</a>, <a href="https://publications.waset.org/abstracts/search?q=purity%20silica" title=" purity silica"> purity silica</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20etching" title=" silica etching"> silica etching</a> </p> <a href="https://publications.waset.org/abstracts/46244/forecasting-etching-behavior-silica-sand-using-the-design-of-experiments-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6612</span> Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayfer%20Kilicarslan">Ayfer Kilicarslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Onol"> Kubra Onol</a>, <a href="https://publications.waset.org/abstracts/search?q=Sercan%20Basit"> Sercan Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhlis%20Nezihi%20Saridede"> Muhlis Nezihi Saridede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20leaching" title=" microwave-assisted leaching"> microwave-assisted leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcopyrite" title=" chalcopyrite"> chalcopyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20dichromate" title=" potassium dichromate"> potassium dichromate</a> </p> <a href="https://publications.waset.org/abstracts/25091/comparison-of-microwave-assisted-and-conventional-leaching-for-extraction-of-copper-from-chalcopyrite-concentrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6611</span> Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Rattanakawin">C. Rattanakawin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vasailor"> S. Vasailor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 <sup>o</sup>C and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitation%20leaching" title="agitation leaching">agitation leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution%20kinetics" title=" dissolution kinetics"> dissolution kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20concentrate" title=" flotation concentrate"> flotation concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20copper%20ore" title=" oxide copper ore"> oxide copper ore</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfuric%20acid" title=" sulfuric acid"> sulfuric acid</a> </p> <a href="https://publications.waset.org/abstracts/108978/leaching-of-flotation-concentrate-of-oxide-copper-ore-from-sepon-mine-lao-pdr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6610</span> The Leaching Kinetics of Zinc from Industrial Zinc Slag Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation was aimed at determining the extent at which the zinc will be extracted from secondary sources generated from galvanising process using dilute sulphuric acid under controlled laboratory conditions of temperature, solid-liquid ratio, and agitation rate. The leaching experiment was conducted for a period of 2 hours and to total zinc extracted calculated in relation to the amount of zinc dissolved at a unit time in comparison to the initial zinc content of the zinc ash. Sulphuric acid was found to be an effective leaching agent with an overall extraction of 91.1% when concentration is at 2M, and solid/liquid ratio kept at 1g/200mL leaching solution and temperature set at 65ᵒC while slurry agitation is at 450rpm. The leaching mechanism of zinc ash with sulphuric acid was conformed well to the shrinking core model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20core%20model" title=" shrinking core model"> shrinking core model</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20slag" title=" zinc slag"> zinc slag</a> </p> <a href="https://publications.waset.org/abstracts/116316/the-leaching-kinetics-of-zinc-from-industrial-zinc-slag-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6609</span> The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Deju">R. Deju</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mincu"> M. Mincu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gurau"> D. Gurau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of <sup>137</sup>Cs, <sup>60</sup>Co and <sup>152</sup>Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title="gamma spectrometry">gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20behavior" title=" leaching behavior"> leaching behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse%20and%20recycling%20of%20radioactive%20concrete" title=" reuse and recycling of radioactive concrete"> reuse and recycling of radioactive concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/56421/the-long-term-leaching-behaviour-of-137cs-60co-and-152eu-radionuclides-incorporated-in-mortar-matrices-made-from-natural-aggregates-and-recycled-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6608</span> Leaching of Copper from Copper Ore Using Sulphuric Acid in the Presence of Hydrogen Peroxide as an Oxidizing Agent: An Optimized Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaching with acids are the most commonly reagents used to remove copper ions from its copper ores. It is important that the process conditions are optimized to improve the leaching efficiency. In the present study the effects of pH, oxidizing agent (hydrogen peroxide), stirring speed, solid to liquid ratio and acid concentration on the leaching of copper ions from it ore were investigated using a pH Stat apparatus. Copper ions were analyzed at the end of each experiment using Atomic Absorption (AAS) machine. Results showed that leaching efficiency improved with an increase in acid concentration, stirring speed, oxidizing agent, pH and decreased with an increase in the solid to liquid ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidizing%20agent" title=" oxidizing agent"> oxidizing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stat%20apparatus" title=" pH stat apparatus"> pH stat apparatus</a> </p> <a href="https://publications.waset.org/abstracts/22113/leaching-of-copper-from-copper-ore-using-sulphuric-acid-in-the-presence-of-hydrogen-peroxide-as-an-oxidizing-agent-an-optimized-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6607</span> Experimental Assessment of Alkaline Leaching of Lepidolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20Fi%C3%BAza">António Fiúza</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurora%20Futuro"> Aurora Futuro</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Monteiro"> Joana Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquim%20G%C3%B3is"> Joaquim Góis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, which is necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques minimize the laboratory effort required by conventional approaches and allow phenomenological comprehension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20leaching" title="alkaline leaching">alkaline leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium" title=" lithium"> lithium</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20design" title=" research design"> research design</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20interpretation" title=" statistical interpretation"> statistical interpretation</a> </p> <a href="https://publications.waset.org/abstracts/158712/experimental-assessment-of-alkaline-leaching-of-lepidolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6606</span> Clean Gold Solution from Printed Circuit Board Physical Processing Dust by Selective Complexation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyiola%20O.%20Otunniyi">Iyiola O. Otunniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwayimika%20O.%20Oluokun"> Oluwayimika O. Oluokun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two-step leaching process of PCB dust will produce a first leaching stream containing assorted metals that still requires more demanding multistage processing afterward to recover base metals and precious metals. In this work, three-step selective complexations produce a clean gold solution from printed circuit board dust. After optimizing for temperature and concentrations, the first step under oxidative ammonia leaching recovered no gold, 90 % Cu and 50 % Zn. Second step acid leaching recovered no gold, 89 % Fe, 48 % Zn, 94 % Ni. The recoveries generally increased with reducing dust particle sizes, except for zinc under oxidative ammonia, and it was noted that its various alloy forms in PCB could be responsible for this. At the third leaching step using acidified thiourea with 0.1 M H₂O₂ at 25 OC, gold recovery was 99 %. The leaching rate was shown to be chemically controlled, implying that reagent dosage control will compensate for feed assay shifts in an operation design. Copper, zinc and nickel will be easily recoverable from leach solutions of the first two steps in this leaching scheme. The third step produced a clean gold solution for easy processing downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20thiourea%20complexation" title="gold thiourea complexation">gold thiourea complexation</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title=" printed circuit board"> printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20leaching" title=" step leaching"> step leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20recovery" title=" selective recovery"> selective recovery</a> </p> <a href="https://publications.waset.org/abstracts/195407/clean-gold-solution-from-printed-circuit-board-physical-processing-dust-by-selective-complexation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">0</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6605</span> The Effect of Amendment of Soil with Rice Husk Charcoal Coated Urea and Rice Straw Compost on Nitrogen, Phosphorus and Potassium Leaching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20A.%20S.%20Gamage">D. A. S. Gamage</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20F.%20A.%20Basnayake"> B. F. A. Basnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20J.%20M.%20De%20Costa"> W. A. J. M. De Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. Rice is the staple food of Sri Lankans thus; rice cultivation is the major agricultural activity of the country. In Sri Lanka, out of the total rice production, a considerable amount of rice straw and rice husk goes wasted. Hence, there is a great potential of production of quality compost and rice husk charcoal. The concept of making rice straw compost and rice husk charcoal is practicable in Sri Lanka, where more than 40% of the farmers are engaged in rice cultivation. The application of inorganic nitrogen fertilizer has become a burden to the country. Rice husk charcoal as a coating material to retain N fertilizer is a suitable solution to gradually release nitrogenous compounds. Objective of this study was to produce rice husk charcoal coated urea as a slow releasing fertilizer with rice straw compost and to compare the leaching losses of nitrogen, phosphorus and potassium using leaching columns. Leaching column studies were prepared using 1.2 m tall PVC pipes with a diameter of 15 cm and a sampling port was attached to the bottom end of the column-cap. Leachates (100 ml/leaching column) were obtained from two sets of (each set has four leaching columns) leaching columns. The sampling was done once a week for 3 month period. Rice husk charcoal coated urea can potentially be used as a slow releasing nitrogen fertilizer which reduces leaching losses of urea. It also helps reduce the phosphate and potassium leaching. The cyclic effect of phosphate release is an important finding which could be the central issue in defining microbial behavior in soils. The fluctuations of phosphate may have cyclic effects of 28 days. In addition, rice straw compost and rice husk charcoal coating is less costly and contribute to mitigate pollution of water bodies by inorganic fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigate" title=" mitigate"> mitigate</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20charcoal" title=" rice husk charcoal"> rice husk charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20releasing%20fertilizer" title=" slow releasing fertilizer "> slow releasing fertilizer </a> </p> <a href="https://publications.waset.org/abstracts/35608/the-effect-of-amendment-of-soil-with-rice-husk-charcoal-coated-urea-and-rice-straw-compost-on-nitrogen-phosphorus-and-potassium-leaching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6604</span> Evaluation of the Environmental Risk from the Co-Deposition of Waste Rock Material and Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mavrikos">A. Mavrikos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Petsas"> N. Petsas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kaltsi"> E. Kaltsi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kaliampakos"> D. Kaliampakos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lignite-fired power plants in the Western Macedonia Lignite Center produce more than 8 106 t of fly ash per year. Approximately 90% of this quantity is used for restoration-reclamation of exhausted open-cast lignite mines and slope stabilization of the overburden. The purpose of this work is to evaluate the environmental behavior of the mixture of waste rock and fly ash that is being used in the external deposition site of the South Field lignite mine. For this reason, a borehole was made within the site and 86 samples were taken and subjected to chemical analyses and leaching tests. The results showed very limited leaching of trace elements and heavy metals from this mixture. Moreover, when compared to the limit values set for waste acceptable in inert waste landfills, only few excesses were observed, indicating only minor risk for groundwater pollution. However, due to the complexity of both the leaching process and the contaminant pathway, more boreholes and analyses should be made in nearby locations and a systematic groundwater monitoring program should be implemented both downstream and within the external deposition site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-deposition" title="co-deposition">co-deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20tests" title=" leaching tests"> leaching tests</a>, <a href="https://publications.waset.org/abstracts/search?q=lignite" title=" lignite"> lignite</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20rock" title=" waste rock"> waste rock</a> </p> <a href="https://publications.waset.org/abstracts/9875/evaluation-of-the-environmental-risk-from-the-co-deposition-of-waste-rock-material-and-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6603</span> Effect of Substrate Concentration and Pulp Density on Bioleaching of Metals from as Received Spent Refinery Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan">Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak"> Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Jin%20Kim"> Dong Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoung-Won%20Lee"> Seoung-Won Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with bioleaching of spent refinery catalyst (as received) using At. thiooxidans. The effect of substrate concentration and pulp density was studied. XPS analysis concluded that the metals in spent catalyst were present as both sulfide and oxides. The dissolution behavior of metals during bioleaching was different. During bioleaching, higher dissolution of Ni and lower dissolution of Mo, V and Al was observed. An increase in pulp density from 1% to 10% led to a decrease in leaching yields of all the metals. This was due to the substantial increase in medium pH at higher pulp densities. The maximum negative impact of pulp density was observed on the leaching yield of V. An increase in sulfur concentration from 0.5% to 2.5% didn’t bring positive impact on metal leaching yield. 0.5% sulfur was found to be the optimum above which no significant increase in leaching yields of metals was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.%20thiooxidans" title="At. thiooxidans">At. thiooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20density" title=" pulp density"> pulp density</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20catalyst" title=" spent catalyst"> spent catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title=" bioleaching"> bioleaching</a> </p> <a href="https://publications.waset.org/abstracts/13314/effect-of-substrate-concentration-and-pulp-density-on-bioleaching-of-metals-from-as-received-spent-refinery-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6602</span> Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Sousa">Rui Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurora%20Futuro"> Aurora Futuro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20Fi%C3%BAza"> António Fiúza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-treatment" title=" pre-treatment"> pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=thiosulfate" title=" thiosulfate"> thiosulfate</a> </p> <a href="https://publications.waset.org/abstracts/46831/thiosulfate-leaching-of-the-auriferous-ore-from-castromil-deposit-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6601</span> Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Keith%20Caamino">Adrian Keith Caamino</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Shakibania"> Sina Shakibania</a>, <a href="https://publications.waset.org/abstracts/search?q=Lena%20Sunqvist-%C3%96qvist"> Lena Sunqvist-Öqvist</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Rosenkranz"> Jan Rosenkranz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Ghorbani"> Yousef Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery procedures <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K-feldspar" title="K-feldspar">K-feldspar</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20mineralogy" title=" automated mineralogy"> automated mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=impurity" title=" impurity"> impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a> </p> <a href="https://publications.waset.org/abstracts/161198/correlation-between-ore-mineralogy-and-the-dissolution-behavior-of-k-feldspar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6600</span> Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamalesh%20Kumar%20Singh">Kamalesh Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20boards" title="printed circuit boards">printed circuit boards</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/180218/recovery-of-copper-and-gold-by-delamination-of-printed-circuit-boards-followed-by-leaching-and-solvent-extraction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6599</span> The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silindile%20Gumede">Silindile Gumede</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Mohammadi"> Amir Hossein Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mbuyu%20Germain%20Ntunka"> Mbuyu Germain Ntunka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20leaching" title="eco-friendly leaching">eco-friendly leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a> </p> <a href="https://publications.waset.org/abstracts/173528/the-optimization-of-the-parameters-for-eco-friendly-leaching-of-precious-metals-from-waste-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6598</span> Optimization of Titanium Leaching Process Using Experimental Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Rafiei">Arash Rafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Carroll%20Moore"> Carroll Moore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20leaching" title="titanium leaching">titanium leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title=" experimental design"> experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20analysis" title=" performance analysis"> performance analysis</a> </p> <a href="https://publications.waset.org/abstracts/71800/optimization-of-titanium-leaching-process-using-experimental-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6597</span> Feasibilities for Recovering of Precious Metals from Printed Circuit Board Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simona%20Ziukaite">Simona Ziukaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Remigijus%20Ivanauskas"> Remigijus Ivanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintaras%20Denafas"> Gintaras Denafas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Market development of electrical and electronic equipment and a short life cycle is driven by the increasing waste streams. Gold Au, copper Cu, silver Ag and palladium Pd can be found on printed circuit board. These metals make up the largest value of printed circuit board. Therefore, the printed circuit boards scrap is valuable as potential raw material for precious metals recovery. A comparison of Cu, Au, Ag, Pd recovery from waste printed circuit techniques was selected metals leaching of chemical reagents. The study was conducted using the selected multistage technique for Au, Cu, Ag, Pd recovery of printed circuit board. In the first and second metals leaching stages, as the elution reagent, 2M H2SO4 and H2O2 (35%) was used. In the third stage, leaching of precious metals used solution of 20 g/l of thiourea and 6 g/l of Fe2 (SO4)3. Verify the efficiency of the method was carried out the metals leaching test with aqua regia. Based on the experimental study, the leaching efficiency, using the preferred methodology, 60 % of Au and 85,5 % of Cu dissolution was achieved. Metals leaching efficiency after waste mechanical crushing and thermal treatment have been increased by 1,7 times (40 %) for copper, 1,6 times (37 %) for gold and 1,8 times (44 %) for silver. It was noticed that, the Au amount in old (> 20 years) waste is 17 times more, Cu amount - 4 times more, and Ag - 2 times more than in the new (< 1 years) waste. Palladium in the new printed circuit board waste has not been found, however, it was established that from 1 t of old printed circuit board waste can be recovered 1,064 g of Pd (leaching with aqua regia). It was found that from 1 t of old printed circuit board waste can be recovered 1,064 g of Ag. Precious metals recovery in Lithuania was estimated in this study. Given the amounts of generated printed circuit board waste, the limits for recovery of precious metals were identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching%20efficiency" title="leaching efficiency">leaching efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=limits%20for%20recovery" title=" limits for recovery"> limits for recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=precious%20metals%20recovery" title=" precious metals recovery"> precious metals recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board%20waste" title=" printed circuit board waste"> printed circuit board waste</a> </p> <a href="https://publications.waset.org/abstracts/56918/feasibilities-for-recovering-of-precious-metals-from-printed-circuit-board-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6596</span> Influence of Extractives Leaching from Larch Wood on Durability of Semi-Transparent Oil-Based Coating during Accelerated Weathering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Dvorak">O. Dvorak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Panek"> M. Panek</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Oberhofnerova"> E. Oberhofnerova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sterbova"> I. Sterbova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extractives contained in larch wood (Larix decidua, Mill.) reduce the service-life of exterior coating systems, especially transparent and semi-transparent. The aim of this work was to find out whether the initial several-week leaching of extractives from untreated wood in the exterior will positively affect the selected characteristics and the overall life of the semi-transparent oil-based coating. Samples exposed to exterior leaching for 10 or 20 weeks, and the reference samples without leaching were then treated with a coating system. Testing was performed by the method of artificial accelerated weathering in the UV chamber combined with thermal cycling during 6 weeks. The changes of colour, gloss, surface wetting, microscopic analyses of surfaces, and visual damage of paint were evaluated. Only 20-week initial leaching had a positive effect. Both to increase the color stability during aging, but also to slightly increase the overall life of the tested semi-transparent coating system on larch wood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=larch%20wood" title="larch wood">larch wood</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=durability.%20extractives" title=" durability. extractives"> durability. extractives</a> </p> <a href="https://publications.waset.org/abstracts/107884/influence-of-extractives-leaching-from-larch-wood-on-durability-of-semi-transparent-oil-based-coating-during-accelerated-weathering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6595</span> Leaching Losses of Fertilizer Nitrogen as Affected by Sulfur and Nitrification Inhibitor Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Khalek%20Selim">Abdel Khalek Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa%20Mahmoud"> Safaa Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments were designed to study nitrogen loss through leaching in soil columns treated with different nitrogen sources and elemental sulfur. The soil material (3 kg alluvial or calcareous soil) were packed in Plexiglas columns (10 cm diameter). The soil columns were treated with 2 g N in the form of Ca(NO3)2, urea, urea + inhibitor (Nitrapyrin), another set of these treatments was prepared to add elemental sulfur. During incubation period, leaching was performed by applying a volume of water that allows the percolation of 250-ml water throughout the soil column. The leachates were analyzed for NH4-N and N03-N. After 10 weeks, soil columns were cut into four equal segments and analyzed for ammonium, nitrate, and total nitrogen. Results indicated the following: Ca(NO3)2 treatment showed a rapid NO3 leaching, especially in the first 3 weeks, in both clay and calcareous soils. This means that soil texture did not play any role in this respect. Sulfur addition also did not affect the rate of NO3 leaching. In urea treatment, there was a steady increase of NH4- and NO3–N from one leachate to another. Addition of sulfur with urea slowed down the nitrification process and decreased N losses. Clay soil contained residual N much more than calcareous soil. Almost one-third of added nitrogen might have been immobilized by soil microorganisms or lost through other loss paths. Nitrification inhibitor can play a role in preserving added nitrogen from being lost through leaching. Combining the inhibitor with elemental sulfur may help to stabilize certain preferred ratio of NH4 to NO3 in the soil for the benefit of the growing plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alluvial%20soil" title="alluvial soil">alluvial soil</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20soil" title=" calcareous soil"> calcareous soil</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title=" elemental sulfur"> elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20leaching" title=" nitrate leaching"> nitrate leaching</a> </p> <a href="https://publications.waset.org/abstracts/62101/leaching-losses-of-fertilizer-nitrogen-as-affected-by-sulfur-and-nitrification-inhibitor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6594</span> Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20%C3%96zgen%C3%A7">Betül Özgenç</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Ku%C5%9Flu"> Soner Kuşlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabri%20%C3%87olak"> Sabri Çolak</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ulexite" title="ulexite">ulexite</a>, <a href="https://publications.waset.org/abstracts/search?q=disodium%20hydrogen%20phosphate" title=" disodium hydrogen phosphate"> disodium hydrogen phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20kinetics" title=" leaching kinetics"> leaching kinetics</a> </p> <a href="https://publications.waset.org/abstracts/27457/dissolution-leaching-kinetics-of-ulexite-in-disodium-hydrogen-phosphate-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6593</span> Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Alias">N. H. Alias</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Aziz"> S. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdullah"> Y. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Kamari"> H. M. Kamari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sani"> S. Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Ismail"> M. P. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20U.%20Saidin"> N. U. Saidin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20A.%20Salim"> N. A. A. Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20E.%20E.%20Abdullah"> N. E. E. Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title="gamma irradiation">gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20glass" title=" lead glass"> lead glass</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a> </p> <a href="https://publications.waset.org/abstracts/41896/structural-and-leaching-properties-of-irradiated-lead-commercial-glass-by-using-xrd-ultrasonic-uv-vis-and-aas-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6592</span> Environmental Risk Assessment for Beneficiary Use of Coal Combustion Residues Using Leaching Environmental Assessment Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20S.%20Praneeth">D. V. S. Praneeth</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sankar%20Cheela"> V. R. Sankar Cheela</a>, <a href="https://publications.waset.org/abstracts/search?q=Brajesh%20Dubey"> Brajesh Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal Combustion (CC) residues are the major by-products from thermal power plants. The disposal of ash on to land creates havoc to environment and humans. The leaching of the constituent elements pollutes ground water. Beneficiary use of coal combustion residues in structural components is being investigated as a part of this study. This application reduces stress on the convention materials in the construction industry. The present study involves determination of leaching parameters of the CC residues. Batch and column studies are performed based on Leaching Environmental Assessment Framework (LEAF) protocol. The column studies are conducted to simulate the real time percolation conditions in the field. The structural and environmental studies are performed to determine the usability of CC residues as bricks. The physical, chemical, geo environmental and mechanical properties of the alternate materials are investigated. Scanning electron microscopy (SEM), X-Ray Diffraction analysis (XRD), X-ray fluorescence (XRF) and Energy Dispersive X-ray Spectroscopy tests were conducted to determine the characteristics of CC residue ash and bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20combustion%20residues" title="coal combustion residues">coal combustion residues</a>, <a href="https://publications.waset.org/abstracts/search?q=LEAF" title=" LEAF"> LEAF</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/58931/environmental-risk-assessment-for-beneficiary-use-of-coal-combustion-residues-using-leaching-environmental-assessment-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6591</span> Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Plo%C5%A1ek">Lukáš Plošek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Hyn%C5%A1t"> Jaroslav Hynšt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Z%C3%A1hora"> Jaroslav Záhora</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elbl"> Jakub Elbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%C3%ADn%20Kintl"> Antonín Kintl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Charousov%C3%A1"> Ivana Charousová</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Kov%C3%A1csov%C3%A1"> Silvia Kovácsová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20production" title=" biomass production"> biomass production</a>, <a href="https://publications.waset.org/abstracts/search?q=lysimeter" title=" lysimeter "> lysimeter </a> </p> <a href="https://publications.waset.org/abstracts/7531/mineral-nitrogen-retention-nitrogen-availability-and-plant-growth-in-the-soil-influenced-by-addition-of-organic-and-mineral-fertilizers-lysimetric-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6590</span> Recovery of Zn from Different Çinkur Leach Residues by Acidic Leaching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ali%20Top%C3%A7u">Mehmet Ali Topçu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayd%C4%B1n%20Ru%C5%9Fen"> Aydın Ruşen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Çinkur is the only plant in Turkey that produces zinc from primary ore containing zinc carbonate from its establishment until 1997. After this year, zinc concentrate coming from Iran was used in this plant. Therefore, there are two different leach residues namely Turkish leach residue (TLR) and Iranian leach residue (ILR), in Çinkur stock piles. This paper describes zinc recovery by sulphuric acid (H2SO4) treatment for each leach residue and includes comparison of blended of TLR and ILR. Before leach experiments; chemical, mineralogical and thermal analysis of three different leach residues was carried out by using atomic absorption spectrometry (AAS), X-Ray diffraction (XRD) and differential thermal analysis (DTA), respectively. Leaching experiments were conducted at optimum conditions; 100 oC, 150 g/L H2SO4 and 2 hours. In the experiments, stirring rate was kept constant at 600 r/min which ensures complete mixing in leaching solution. Results show that zinc recovery for Iranian LR was higher than Turkish LR due to having different chemical composition from each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrometallurgy" title="hydrometallurgy">hydrometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20extraction" title=" metal extraction"> metal extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery "> metal recovery </a> </p> <a href="https://publications.waset.org/abstracts/37077/recovery-of-zn-from-different-cinkur-leach-residues-by-acidic-leaching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6589</span> Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Paul%20Montalvo%20Andia">Javier Paul Montalvo Andia</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Larrea%20Valdivia"> Adriana Larrea Valdivia</a>, <a href="https://publications.waset.org/abstracts/search?q=Adolfo%20Pillihuaman%20Zambrano"> Adolfo Pillihuaman Zambrano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrate" title="ammonium nitrate">ammonium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite" title=" malachite"> malachite</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a> </p> <a href="https://publications.waset.org/abstracts/77305/determination-of-optimum-conditions-for-the-leaching-of-oxidized-copper-ores-with-ammonium-nitrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6588</span> Modeling of Physico-Chemical Characteristics of Concrete for Filling Trenches in Radioactive Waste Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilija%20Plecas">Ilija Plecas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalibor%20Arbutina"> Dalibor Arbutina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leaching rate of 60Co from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source, an equation for diffusion coupled to a first order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/14368/modeling-of-physico-chemical-characteristics-of-concrete-for-filling-trenches-in-radioactive-waste-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6587</span> The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Zhao">Lixin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Genmao%20Zhou"> Genmao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%2BO%E2%82%82%20ISL" title="CO₂+O₂ ISL">CO₂+O₂ ISL</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20production" title=" industrial production"> industrial production</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20field%20layout" title=" well field layout"> well field layout</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium%20processing" title=" uranium processing"> uranium processing</a> </p> <a href="https://publications.waset.org/abstracts/100421/the-fundamental-research-and-industrial-application-on-co2o2-in-situ-leaching-process-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6586</span> Cesium 137 Leaching from Soils of Territories, Polluted by Radionuclides </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Vasilenkov">S. V. Vasilenkov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Demina"> O. N. Demina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chernobyl NPP accident is the biggest in history of nuclear energetic. Bryansk region of Russia was exposed by the most intensive radiation pollution. For that, we made some researches in order to find the methods of soil rehabilitation on territories, polluted by radionuclides with the means of Cesium 137 leaching by watering. For experiments we took the soil from the upper more polluted 10 cm layer of different species. Cesium 137 leaching was made by different methods in washing columns. Washout of Cesium was made by periodical cycles in terms of 4-6 days. In experiments with easy argillaceous soil with start specific radioactivity 4158 bk/kg through 17 cycles the effective reducing was achieved and contained 1512 bk/kg. Besides, results of researches showed, that in the first 6-10 cycles we can see reducing of washing rate but after application of intensificators: ultrasound water processing, aerification, application of fertilizers (KCl), lime, freezing, we can see increasing of Cesium 137 leaching. The experimental investigations in washout of Cesium (Cs) – 137 from the soil were carried out in the field and laboratorial conditions during its freezing and melting. The experiments showed, that washout of Cesium (Cs) – 137 from the soil is rather high after freezing, than non-frozen soil is. And it conforms to washout of Cesium, made under the influence of the intensificaters. This fact allows to recommend chip and easy to construct technically arrangement for regulation of the snow-melt runoff for rehabilitation of the radioactive impoundment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesium%20137%20leaching" title=" Cesium 137 leaching"> Cesium 137 leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/2351/cesium-137-leaching-from-soils-of-territories-polluted-by-radionuclides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=220">220</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=221">221</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=leaching%20behavior&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10