CINXE.COM

Search results for: targeting

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: targeting</title> <meta name="description" content="Search results for: targeting"> <meta name="keywords" content="targeting"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="targeting" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="targeting"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 668</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: targeting</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> The Lethal Autonomy and Military Targeting Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serdal%20Aky%C3%BCz">Serdal Akyüz</a>, <a href="https://publications.waset.org/abstracts/search?q=Halit%20Turan"> Halit Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20%C3%96zt%C3%BCrk"> Mehmet Öztürk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The future security environment will have new battlefield and enemies. The boundaries of battlefield and the identity of enemies cannot be noticed easily. The politicians may not want to lose their soldiers in very risky operations. This approach will pave the way for smart machines like war robots and new drones. These machines will have the decision-making ability and act simultaneously. This ability can change the military targeting process. Military targeting process (MTP) benefits from a wide scope of lethal and non-lethal weapons to reach an intended end-state. This process is now managed by people but in the future smart machines can do it by themselves. At first sight, this development seems useful for humanity owing to decrease the casualties in war. Using robots -which can decide, detect, deliver and asses without human support- for homeland security and against terrorist has very crucial risks and threats. Besides, it can decrease the havoc but also increase the collateral damages. This paper examines the current use of smart war machines, military targeting process and presents a new approach to MTP from lethal autonomy concept's point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20autonomous%20weapon%20systems" title="the autonomous weapon systems">the autonomous weapon systems</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20lethal%20autonomy" title=" the lethal autonomy"> the lethal autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20targeting%20process%20%28MTP%29" title=" military targeting process (MTP)"> military targeting process (MTP)</a> </p> <a href="https://publications.waset.org/abstracts/39562/the-lethal-autonomy-and-military-targeting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Crespo">Cristian Crespo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conditional%20cash%20transfers" title="conditional cash transfers">conditional cash transfers</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=poverty" title=" poverty"> poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=proxy%20means%20tests" title=" proxy means tests"> proxy means tests</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20dropout%20prediction" title=" school dropout prediction"> school dropout prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting" title=" targeting"> targeting</a> </p> <a href="https://publications.waset.org/abstracts/89474/machine-learning-for-targeting-of-conditional-cash-transfers-improving-the-effectiveness-of-proxy-means-tests-to-identify-future-school-dropouts-and-the-poor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> A Platform to Screen Targeting Molecules of Ligand-EGFR Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Kuo">Wei-Ting Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Huei%20Lin"> Feng-Huei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epidermal growth factor receptor (EGFR) is often constitutively stimulated in cancer owing to the binding of ligands such as epidermal growth factor (EGF), so it is necessary to investigate the interaction between EGFR and its targeting biomolecules which were over ligands binding. This study would focus on the binding affinity and adhesion force of two targeting products anti-EGFR monoclonal antibody (mAb) and peptide A to EGFR comparing with EGF. Surface plasmon resonance (SPR) was used to obtain the equilibrium dissociation constant to evaluate the binding affinity. Atomic force microscopy (AFM) was performed to detect adhesion force. The result showed that binding affinity of mAb to EGFR was higher than that of EGF to EGFR, and peptide A to EGFR was lowest. The adhesion force between EGFR and mAb that was higher than EGF and peptide A to EGFR was lowest. From the studies, we could conclude that mAb had better adhesion force and binding affinity to EGFR than that of EGF and peptide A. SPR and AFM could confirm the interaction between receptor and targeting ligand easily and carefully. It provide a platform to screen ligands for receptor targeting and drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20force" title="adhesion force">adhesion force</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20affinity" title=" binding affinity"> binding affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=epidermal%20growth%20factor%20receptor" title=" epidermal growth factor receptor"> epidermal growth factor receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20molecule" title=" target molecule"> target molecule</a> </p> <a href="https://publications.waset.org/abstracts/27370/a-platform-to-screen-targeting-molecules-of-ligand-egfr-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> The Using of Smart Power Concepts in Military Targeting Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serdal%20AKYUZ">Serdal AKYUZ</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The smart power is the use of soft and hard power together in consideration of existing circumstances. Soft power can be defined as the capability of changing perception of any target mass by employing policies based on legality. The hard power, generally, uses military and economic instruments which are the concrete indicator of general power comprehension. More than providing a balance between soft and hard power, smart power creates a proactive combination by assessing existing resources. Military targeting process (MTP), as stated in smart power methodology, benefits from a wide scope of lethal and non-lethal weapons to reach intended end state. The Smart powers components can be used in military targeting process similar to using of lethal or non-lethal weapons. This paper investigates the current use of Smart power concept, MTP and presents a new approach to MTP from smart power concept point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=future%20security%20environment" title="future security environment">future security environment</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20power" title=" hard power"> hard power</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20targeting%20process" title=" military targeting process"> military targeting process</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20power" title=" soft power"> soft power</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20power" title=" smart power"> smart power</a> </p> <a href="https://publications.waset.org/abstracts/32050/the-using-of-smart-power-concepts-in-military-targeting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Evaluating Contextually Targeted Advertising with Attention Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Hawkins">John Hawkins</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Burton"> Graham Burton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contextual targeting is a common strategy for advertising that places marketing messages in media locations that are expected to be aligned with the target audience. There are multiple major challenges to contextual targeting: the ideal categorisation scheme needs to be known, as well as the most appropriate subsections of that scheme for a given campaign or creative. In addition, the campaign reach is typically limited when targeting becomes narrow, so a balance must be struck between requirements. Finally, refinement of the process is limited by the use of evaluation methods that are either rapid but non-specific (click through rates), or reliable but slow and costly (conversions or brand recall studies). In this study we evaluate the use of attention measurement as a technique for understanding the performance of targeting on the basis of specific contextual topics. We perform the analysis using a large scale dataset of impressions categorised using the iAB V2.0 taxonomy. We evaluate multiple levels of the categorisation hierarchy, using categories at different positions within an initial creative specific ranking. The results illustrate that measuring attention time is an affective signal for the performance of a specific creative within a specific context. Performance is sustained across a ranking of categories from one period to another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contextual%20targeting" title="contextual targeting">contextual targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20advertising" title=" digital advertising"> digital advertising</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%20measurement" title=" attention measurement"> attention measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing%20performance" title=" marketing performance"> marketing performance</a> </p> <a href="https://publications.waset.org/abstracts/148942/evaluating-contextually-targeted-advertising-with-attention-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> Ultrasound Enhanced Release of Active Targeting Liposomes Used for Cancer Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najla%20M.%20Salkho">Najla M. Salkho</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Paul"> Vinod Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Kawak"> Pierre Kawak</a>, <a href="https://publications.waset.org/abstracts/search?q=Rute%20F.%20Vitor"> Rute F. Vitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20M.%20Martin"> Ana M. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Awad"> Nahid Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Al%20Sayah"> Mohammad Al Sayah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghaleb%20A.%20Husseini"> Ghaleb A. Husseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liposomes are popular lipid bilayer nanoparticles that are highly efficient in encapsulating both hydrophilic and hydrophobic therapeutic drugs. Liposomes promote a low risk controlled release of the drug avoiding the side effects of the conventional chemotherapy. One of the great potentials of liposomes is the ability to attach a wide range of ligands to their surface producing ligand-mediated active targeting of cancer tumour with limited adverse off-target effects. Ultrasound can also aid in the controlled and specified release of the drug from the liposomes by breaking it apart and releasing the drug in the specific location where the ultrasound is applied. Our research focuses on the synthesis of PEGylated liposomes (contain poly-ethylene glycol) encapsulated with the model drug calcein and studying the effect of low frequency ultrasound applied at different power densities on calcein release. In addition, moieties are attached to the surface of the liposomes for specific targeting of the cancerous cells which over-express the receptors of these moieties, ultrasound is then applied and the release results are compared with the moiety free liposomes. The results showed that attaching these moieties to the surface of the PEGylated liposomes not only enhance their active targeting but also stimulate calcein release from these liposomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20targeting" title="active targeting">active targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=moieties" title=" moieties"> moieties</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/78619/ultrasound-enhanced-release-of-active-targeting-liposomes-used-for-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Demographics Are Not Enough! Targeting and Segmentation of Anti-Obesity Campaigns in Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dagmara%20Wrzecionkowska">Dagmara Wrzecionkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mass media campaigns against obesity are often designed to impact large audiences. This usually means that their audience is defined based on general demographic characteristics like age, gender, occupation etc., not taking into account psychographics like behavior, motivations, wants, etc. Using psychographics, as the base for the audience segmentation, is a common practice in case of successful campaigns, as it allows developing more relevant messages. It also serves a purpose of identifying key segments, those that generate the best return on investment. For a health campaign, that would be segments that have the best chance of being converted into healthy lifestyle at the lowest cost. This paper presents the limitations of the demographic targeting, based on the findings from the reception study of IMSS anti-obesity TV commercials and proposes mothers as the first level of segmentation, in the process of identifying the key segment for these campaigns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-obesity%20campaigns" title="anti-obesity campaigns">anti-obesity campaigns</a>, <a href="https://publications.waset.org/abstracts/search?q=mothers" title=" mothers"> mothers</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting" title=" targeting"> targeting</a> </p> <a href="https://publications.waset.org/abstracts/21087/demographics-are-not-enough-targeting-and-segmentation-of-anti-obesity-campaigns-in-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> Development of pH Responsive Nanoparticles for Colon Targeted Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Balamuralidhara">V. Balamuralidhara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work was to develop Paclitaxel loaded polyacrylamide grafted guar gum nanoparticles as pH responsive nanoparticle systems for targeting colon. The pH sensitive nanoparticles were prepared by modified ionotropic gelation technique. The prepared nanoparticles showed mean diameters in the range of 264±0.676 nm to 726±0.671nm, and a negative net charge 10.8 mV to 35.4mV. Fourier Transformed Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) studies suggested that there was no chemical interaction between drug and polymers. The encapsulation efficiency of the drug was found to be 40.92% to 48.14%. The suitability of the polyacrylamide grafted guar gum ERN’s for the release of Paclitaxel was studied by in vitro release at pH 1.2 and 7.4. It was observed that, there was no significant amount of drug release at gastric pH and 97.63% of drug release at pH 7.4 was obtained for optimized formulation F3 at the end of 12 hrs. In vivo drug targeting performance for the prepared optimized formulation (F3) and pure drug Paclitaxel was evaluated by HPLC. It was observed that the polyacrylamide grafted guar gum can be used to prepare nanoparticles for targeting the drug to the colon. The release performance was greatly affected by the materials used in ERN’s preparation, which allows maximum release at colon’s pH. It may be concluded that polyacrylamide grafted guar gum nanoparticles loaded with paclitaxel have desirable release responsive to specific pH. Hence it is a unique approach for colonic delivery of drug having appropriate site specificity and feasibility and controlled release of drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colon%20targeting" title="colon targeting">colon targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylamide%20grafted%20guar%20gum%20nanoparticles" title=" polyacrylamide grafted guar gum nanoparticles"> polyacrylamide grafted guar gum nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=paclitaxel" title=" paclitaxel"> paclitaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/8472/development-of-ph-responsive-nanoparticles-for-colon-targeted-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> Faculty and Students Perspectives of E-Learning at the University of Bahrain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Abdulrazzaq">Amira Abdulrazzaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is studying the opinion of faculty members and students about the future of education (e-learning) at the University of Bahrain. Through quantitative analysis a distribution of two surveys, one targeting students of IT College, and College of Arts and the other targeting Faculty members of both Colleges. Through the above survey, the paper measures the following factors: awareness and acceptance, satisfaction, usability, and usefulness. Results indicate positive reactions of all above factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-learning" title="e-learning">e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=moodle" title=" moodle"> moodle</a>, <a href="https://publications.waset.org/abstracts/search?q=WebCT" title=" WebCT "> WebCT </a> </p> <a href="https://publications.waset.org/abstracts/20273/faculty-and-students-perspectives-of-e-learning-at-the-university-of-bahrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> An Analysis on Aid for Migrants: A Descriptive Analysis on Official Development Assistance During the Migration Crisis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Masi">Elena Masi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adolfo%20Morrone"> Adolfo Morrone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Migration has recently become a mainstream development sector and is currently at the forefront in institutional and civil society context. However, no consensus exists on how the link between migration and development operates, that is how development is related to migration and how migration can promote development. On one hand, Official Development Assistance is recognized to be one of the levers to development. On the other hand, the debate is focusing on what should be the scope of aid programs targeting migrants groups and in general the migration process. This paper provides a descriptive analysis on how development aid for migration was allocated in the recent past, focusing on the actions that were funded and implemented by the international donor community. In the absence of an internationally shared methodology for defining the boundaries of development aid on migration, the analysis based on lexical hypotheses on the title or on the short description of initiatives funded by several Organization for Economic Co-operation and Development (OECD) countries. Moreover, the research describes and quantifies aid flows for each country according to different criteria. The terms migrant and refugee are used to identify the projects in accordance with the most internationally agreed definitions and only actions in countries of transit or of origin are considered eligible, thus excluding the amount sustained for refugees in donor countries. The results show that the percentage of projects targeting migrants, in terms of amount, has followed a growing trend from 2009 to 2016 in several European countries, and is positively correlated with the flows of migrants. Distinguishing between programs targeting migrants and programs targeting refugees, some specific national features emerge more clearly. A focus is devoted to actions targeting the root causes of migration, showing an inter-sectoral approach in international aid allocation. The analysis gives some tentative solutions to the lack of consensus on language on migration and development aid, and emphasizes the need to internationally agree on a criterion for identifying programs targeting both migrants and refugees, to make action more transparent and in order to develop effective strategies at the global level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=migration" title="migration">migration</a>, <a href="https://publications.waset.org/abstracts/search?q=official%20development%20assistance" title=" official development assistance"> official development assistance</a>, <a href="https://publications.waset.org/abstracts/search?q=ODA" title=" ODA"> ODA</a>, <a href="https://publications.waset.org/abstracts/search?q=refugees" title=" refugees"> refugees</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/95395/an-analysis-on-aid-for-migrants-a-descriptive-analysis-on-official-development-assistance-during-the-migration-crisis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> Mannosylated Oral Amphotericin B Nanocrystals for Macrophage Targeting: In vitro and Cell Uptake Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudra%20Vaghela">Rudra Vaghela</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Kulkarni"> P. K. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present research was to develop oral Amphotericin B (AmB) nanocrystals (Nc) grafted with suitable ligand in order to enhance drug transport across the intestinal epithelial barrier and subsequently, active uptake by macrophages. AmB Nc were prepared by liquid anti-solvent precipitation technique (LAS). Poloxamer 188 was used to stabilize the prepared AmB Nc and grafted with mannose for actively targeting M cells in Peyer’s patches. To prevent shedding of the stabilizer and ligand, N,N’-Dicyclohexylcarbodiimide (DCC) was used as a cross-linker. The prepared AmB Nc were characterized for particle size, PDI, zeta potential, X-ray diffraction (XRD) and surface morphology using scanning electron microscope (SEM) and evaluated for drug content, in vitro drug release and cell uptake studies using caco-2 cells. The particle size of stabilized AmB Nc grafted with WGA was in the range of 287-417 nm with negative zeta potential between -18 to -25 mV. XRD studies revealed crystalline nature of AmB Nc. SEM studies revealed that ungrafted AmB Nc were irregular in shape with rough surface whereas, grafted AmB Nc were found to be rod-shaped with smooth surface. In vitro drug release of AmB Nc was found to be 86% at the end of one hour. Cellular studies revealed higher invasion and uptake of AmB Nc towards caco-2 cell membrane when compared to ungrafted AmB Nc. Our findings emphasize scope on developing oral delivery system for passively targeting M cells in Peyer’s patches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title="leishmaniasis">leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=amphotericin%20b%20nanocrystals" title=" amphotericin b nanocrystals"> amphotericin b nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage%20targeting" title=" macrophage targeting"> macrophage targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=LAS%20technique" title=" LAS technique"> LAS technique</a> </p> <a href="https://publications.waset.org/abstracts/43883/mannosylated-oral-amphotericin-b-nanocrystals-for-macrophage-targeting-in-vitro-and-cell-uptake-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elad%20Arad">Elad Arad</a>, <a href="https://publications.waset.org/abstracts/search?q=Raz%20Jelinek"> Raz Jelinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Rapaport"> Hanna Rapaport</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20treatment" title=" photothermal treatment"> photothermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol" title=" catechol"> catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo-red" title=" Congo-red"> Congo-red</a> </p> <a href="https://publications.waset.org/abstracts/109975/functionalized-titanium-dioxide-nanoparticles-for-targeting-and-disrupting-amyloid-fibrils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simona%20Dostalova">Simona Dostalova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Kopel"> Pavel Kopel</a>, <a href="https://publications.waset.org/abstracts/search?q=Marketa%20Vaculovicova"> Marketa Vaculovicova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojtech%20Adam"> Vojtech Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Kizek"> Rene Kizek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoferritin" title="apoferritin">apoferritin</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting%20antibodies" title=" targeting antibodies "> targeting antibodies </a> </p> <a href="https://publications.waset.org/abstracts/24932/gold-mediated-modification-of-apoferritin-surface-with-targeting-antibodies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Development and Characterization of Double Liposomes Based Dual Drug Delivery System for H. Pylori Targeting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar%20Jain">Ashish Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Mishra"> Deepak Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present investigation was to prepare and evaluate a vesicular dual drug delivery system for effective management of mucosal ulcer. Inner encapsulating and Double liposomes were prepared by glass bead and reverse phase evaporation method respectively. The formulation consisted of inner liposomes bearing Ranitidine Bismuth Citrate (RBC) and outer liposomes encapsulating Amoxicillin trihydrate (AMOX). The optimized inner liposomes and double liposomes were extensively characterized for vesicle size, morphology, zeta potential, vesicles count, entrapment efficiency and in vitro drug release. In vitro, the double liposomes demonstrated a sustained release of AMOX and RBC viz 91.4±1.8% and 77.2±2.1% respectively at the end of 72 hr. Furthermore binding specificity and targeting propensity toward H. pylori (SKP-56) was confirmed by agglutination and in situ adherence assay. Reduction of the absolute alcohol induced ulcerogenic index from 3.01 ± 0.25 to 0.31 ± 0.09 and 100% H. pylori clearance rate was observed. These results suggested that double liposomes are potential vector for the development of dual drug delivery for effective treatment of H. pylori-associated peptic ulcer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20liposomes" title="double liposomes">double liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20pylori%20targeting" title=" H. pylori targeting"> H. pylori targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=PE%20liposomes" title=" PE liposomes"> PE liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-beads%20method" title=" glass-beads method"> glass-beads method</a>, <a href="https://publications.waset.org/abstracts/search?q=peptic%20ulcers" title=" peptic ulcers"> peptic ulcers</a> </p> <a href="https://publications.waset.org/abstracts/18114/development-and-characterization-of-double-liposomes-based-dual-drug-delivery-system-for-h-pylori-targeting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> The Targeting Logic of Terrorist Groups in the Sahel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Bere">Mathieu Bere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al-Qaeda and Islamic State-affiliated groups such as Ja’amat Nusra al Islam Wal Muslimim (JNIM) and the Islamic State-Greater Sahara Faction, which is now part of the Boko Haram splinter group, Islamic State in West Africa, were responsible, between 2018 and 2020, for at least 1.333 violent incidents against both military and civilian targets, including the assassination and kidnapping for ransom of Western citizens in Mali, Burkina Faso and Niger, the Central Sahel. Protecting civilians from the terrorist violence that is now spreading from the Sahel to the coastal countries of West Africa has been very challenging, mainly because of the many unknowns that surround the perpetrators. To contribute to a better protection of civilians in the region, this paper aims to shed light on the motivations and targeting logic of jihadist perpetrators of terrorist violence against civilians in the central Sahel region. To that end, it draws on relevant secondary data retrieved from datasets, the media, and the existing literature, but also on primary data collected through interviews and surveys in Burkina Faso. An analysis of the data with the support of qualitative and statistical analysis software shows that military and rational strategic motives, more than purely ideological or religious motives, have been the main drivers of terrorist violence that strategically targeted government symbols and representatives as well as local leaders in the central Sahel. Behind this targeting logic, the jihadist grand strategy emerges: wiping out the Western-inspired legal, education and governance system in order to replace it with an Islamic, sharia-based political, legal, and educational system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrorism" title="terrorism">terrorism</a>, <a href="https://publications.waset.org/abstracts/search?q=jihadism" title=" jihadism"> jihadism</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahel" title=" Sahel"> Sahel</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting%20logic" title=" targeting logic"> targeting logic</a> </p> <a href="https://publications.waset.org/abstracts/147717/the-targeting-logic-of-terrorist-groups-in-the-sahel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Cyclic NGR Peptide Anchored Block Co-Polymeric Nanoparticles as Dual Targeting Drug Delivery System for Solid Tumor Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Gupta">Madhu Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Agrawa"> G. P. Agrawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20P.%20Vyas"> Suresh P. Vyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Certain tumor cells overexpress a membrane-spanning molecule aminopeptidase N (CD13) isoform, which is the receptor for peptides containing the NGR motif. NGR-modified Docetaxel (DTX)-loaded PEG-b-PLGA polymeric nanoparticles (cNGR-DNB-NPs) were developed and evaluated for their in vitro potential in HT-1080 cell line. The cNGR-DNB-NPs containing particles were about 148 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake was confirmed both qualitatively and quantitatively by Confocal Laser Scanning Microscopy (CLSM) and flow cytometry. Both quantitatively and qualitatively results confirmed the NGR conjugated nanoparticles revealed the higher uptake of nanoparticles by CD13-overexpressed tumor cells. Free NGR inhibited the cellular uptake of cNGR-DNB-NPs, revealing the mechanism of receptor mediated endocytosis. In vitro cytotoxicity studies demonstrated that cNGR-DNB-NPs, formulation was more cytotoxic than unconjugated one, which were consistent well with the observation of cellular uptake. Hence, the selective delivery of cNGR-DNB-NPs formulation in CD13-overexpressing tumors represents a potential approach for the design of nanocarrier-based dual targeted delivery systems for targeting the tumor cells and vasculature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20Tumor" title="solid Tumor">solid Tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=docetaxel" title=" docetaxel"> docetaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting" title=" targeting"> targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=NGR%20ligand" title=" NGR ligand"> NGR ligand</a> </p> <a href="https://publications.waset.org/abstracts/30516/cyclic-ngr-peptide-anchored-block-co-polymeric-nanoparticles-as-dual-targeting-drug-delivery-system-for-solid-tumor-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">652</span> Targeted Delivery of Docetaxel Drug Using Cetuximab Conjugated Vitamin E TPGS Micelles Increases the Anti-Tumor Efficacy and Inhibit Migration of MDA-MB-231 Triple Negative Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Rajaletchumy">V. K. Rajaletchumy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Chia"> S. L. Chia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Setyawati"> M. I. Setyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Muthu"> M. S. Muthu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Feng"> S. S. Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20T.%20Leong"> D. T. Leong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Triple negative breast cancers (TNBC) can be classified as one of the most aggressive with a high rate of local recurrences and systematic metastases. TNBCs are insensitive to existing hormonal therapy or targeted therapies such as the use of monoclonal antibodies, due to the lack of oestrogen receptor (ER) and progesterone receptor (PR) and the absence of overexpression of human epidermal growth factor receptor 2 (HER2) compared with other types of breast cancers. The absence of targeted therapies for selective delivery of therapeutic agents into tumours, led to the search for druggable targets in TNBC. In this study, we developed a targeted micellar system of cetuximab-conjugated micelles of D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) for targeted delivery of docetaxel as a model anticancer drug for the treatment of TNBCs. We examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. The targeting micelles were found preferentially accumulated in tumours immediately after the administration of the micelles compare to normal tissue. The fluorescence signal gradually increased up to 12 h at the tumour site and sustained for up to 24 h, reflecting the increases in targeted micelles (TPFC) micelles in MDA-MB-231/Luc cells. In comparison, for the non-targeting micelles (TPF), the fluorescence signal was evenly distributed all over the body of the mice. Only a slight increase in fluorescence at the chest area was observed after 24 h post-injection, reflecting the moderate uptake of micelles by the tumour. The successful delivery of docetaxel into tumour by the targeted micelles (TPDC) exhibited a greater degree of tumour growth inhibition than Taxotere® after 15 days of treatment. The ex vivo study has demonstrated that tumours treated with targeting micelles exhibit enhanced cell cycle arrest and attenuated proliferation compared with the control and with those treated non-targeting micelles. Furthermore, the ex vivo investigation revealed that both the targeting and non-targeting micellar formulations shows significant inhibition of cell migration with migration indices reduced by 0.098- and 0.28-fold, respectively, relative to the control. Overall, both the in vivo and ex vivo data increased the confidence that our micellar formulations effectively targeted and inhibited EGF-overexpressing MDA-MB-231 tumours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title="biodegradable polymers">biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20nanotechnology" title=" cancer nanotechnology"> cancer nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20targeting" title=" drug targeting"> drug targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biomaterials" title=" molecular biomaterials"> molecular biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a> </p> <a href="https://publications.waset.org/abstracts/50350/targeted-delivery-of-docetaxel-drug-using-cetuximab-conjugated-vitamin-e-tpgs-micelles-increases-the-anti-tumor-efficacy-and-inhibit-migration-of-mda-mb-231-triple-negative-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">651</span> Structural Transformation after 2000 in Turkey Economy Evaluation as Theoretical in the Context of Inflation and Foreign Trade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadife%20G%C3%BCng%C3%B6r">Sadife Güngör</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevilay%20Konya"> Sevilay Konya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Kara%C3%A7or"> Zeynep Karaçor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inflation and foreign trade are the most important economic indicator of a country. In this study, Turkey&#39;s economy with the policies adopted after 2000, given how performs an economic transformation. This transformation of the economy is discussed with inflation and foreign trade. In this context, attention is drawn to 2001 Strong Economy and Transition Program and 2006 Inflation Targeting Regime. The evaluation was performed of after the year 2000 inflation and foreign trade figures in Turkey economy. When we looked the progress, after 2000 in Turkey economy, we can say a new process was built up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflation" title="inflation">inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20trade" title=" foreign trade"> foreign trade</a>, <a href="https://publications.waset.org/abstracts/search?q=2001%20strong%20economy%20programme" title=" 2001 strong economy programme"> 2001 strong economy programme</a>, <a href="https://publications.waset.org/abstracts/search?q=2006%20inflation%20targeting%20regime" title=" 2006 inflation targeting regime"> 2006 inflation targeting regime</a> </p> <a href="https://publications.waset.org/abstracts/38275/structural-transformation-after-2000-in-turkey-economy-evaluation-as-theoretical-in-the-context-of-inflation-and-foreign-trade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">650</span> Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huafeng%20Wei">Huafeng Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer" title="alzheimer">alzheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20dysfunction" title=" cognitive dysfunction"> cognitive dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=dementia" title=" dementia"> dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neurogenesis" title=" neurogenesis"> neurogenesis</a> </p> <a href="https://publications.waset.org/abstracts/136963/targeting-calcium-dysregulation-for-treatment-of-dementia-in-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">649</span> Comparative Analysis of Single vs. Multiple gRNA on NGN3 Expression Using a Controllable dCas9-VP192 Activator (CRISPRa)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Abdilmasih">Nicholas Abdilmasih</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Rezanejad"> Habib Rezanejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the gene expression induction efficiency of single versus multiple guide RNAs (gRNAs) targeting the NGN3 gene using the CRISPR activation system in HEK293 cells. Our study aimed to contribute to optimizing the use of gRNAs in gene therapy applications, particularly in treating diseases like diabetes, where precise gene regulation is essential. The experimental design involves culturing HEK293 cells, and once they reach approximately 70-80% confluence, cells were transfected with specific gRNAs targeting the NGN3 gene promoter. Specific gRNAs targeting the NGN3 promoter that was previously designed, incorporated into plasmid clone cassettes and introduced into HEK293 cells through co-transfection using pCAG-DDdCas9-VP192-EGFP transactivator. Post-transfection, cell viability, and fluorescence were monitored to assess transfection efficiency. RNA was extracted, converted to cDNA, and analyzed via qPCR to measure NGN3 expression levels. Results indicated that specific combinations of fewer gRNAs led to higher NGN3 activation compared to multiple gRNAs, challenging the assumption that more gRNAs result in synergistic gene activation. These findings suggest that optimized gRNA combinations can enhance gene therapy efficiency, potentially leading to more effective treatments for conditions like diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR%20activation" title="CRISPR activation">CRISPR activation</a>, <a href="https://publications.waset.org/abstracts/search?q=Diabetes%20mellitus" title=" Diabetes mellitus"> Diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title=" gene therapy"> gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20RNA" title=" guide RNA"> guide RNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Neurogenin3" title=" Neurogenin3"> Neurogenin3</a> </p> <a href="https://publications.waset.org/abstracts/191083/comparative-analysis-of-single-vs-multiple-grna-on-ngn3-expression-using-a-controllable-dcas9-vp192-activator-crispra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> MiRNA Regulation of CXCL12β during Inflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raju%20Ranjha">Raju Ranjha</a>, <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Aggarwal"> Surbhi Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Inflammation plays an important role in infectious and non-infectious diseases. MiRNA is also reported to play role in inflammation and associated cancers. Chemokine CXCL12 is also known to play role in inflammation and various cancers. CXCL12/CXCR4 chemokine axis was involved in pathogenesis of IBD specially UC. Supplementation of CXCL12 induces homing of dendritic cells to spleen and enhances control of plasmodium parasite in BALB/c mice. We looked at the regulation of CXCL12β by miRNA in UC colitis. Prolonged inflammation of colon in UC patient increases the risk of developing colorectal cancer. We looked at the expression differences of CXCl12β and its targeting miRNA in cancer susceptible area of colon of UC patients. Aim: Aim of this study was to find out the expression regulation of CXCL12β by miRNA in inflammation. Materials and Methods: Biopsy samples and blood samples were collected from UC patients and non-IBD controls. mRNA expression was analyzed using microarray and real-time PCR. CXCL12β targeting miRNA were looked by using online target prediction tools. Expression of CXCL12β in blood samples and cell line supernatant was analyzed using ELISA. miRNA target was validated using dual luciferase assay. Results and conclusion: We found miR-200a regulate the expression of CXCL12β in UC. Expression of CXCL12β was increased in cancer susceptible part of colon and expression of its targeting miRNA was decreased in the same part of colon. miR-200a regulate CXCL12β expression in inflammation and may be an important therapeutic target in inflammation associated cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammation" title="inflammation">inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=CXCL12" title=" CXCL12"> CXCL12</a> </p> <a href="https://publications.waset.org/abstracts/69823/mirna-regulation-of-cxcl12v-during-inflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Commodity Price Shocks and Monetary Policy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Algosair">Faisal Algosair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We examine the role of monetary policy in the presence of commodity price shocks using a Dynamic stochastic general equilibrium (DSGE) model with price and wage rigidities. The model characterizes a commodity exporter by its degree of export diversification, and explores the following monetary regimes: flexible domestic inflation targeting; flexible Consumer Price Index inflation targeting; exchange rate peg; and optimal rule. An increase in the degree of diversification is found to mitigate responses to commodity shocks. The welfare comparison suggests that a flexible exchange rate regime under the optimal rule is preferred to an exchange rate peg. However, monetary policy provides limited stabilization effects in an economy with low degree of export diversification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20cycle" title="business cycle">business cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=commodity%20price" title=" commodity price"> commodity price</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20rate" title=" exchange rate"> exchange rate</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20financial%20cycle" title=" global financial cycle"> global financial cycle</a> </p> <a href="https://publications.waset.org/abstracts/165579/commodity-price-shocks-and-monetary-policy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> A Precision Medicine Approach to Sickle Cell Disease by Targeting the Adhesion Interactome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthara%20Vivek">Anthara Vivek</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Shukla"> Manisha Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Narayan"> Mahesh Narayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Narayan"> Prakash Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sickle cell disease disproportionately affects sub-Saharan Africa and certain tribal populaces in India and has consequently drawn little intertest from Pharma. In sickle cell patients, adhesion of erythrocytes or reticulocytes to one another and the vessel wall results in painful ischemic episodes with few, if any, effective treatments for vaso-occlusive crises. Identification of disease-associated adhesion markers on erythrocytes or reticulocytes might inform the use of more effective therapies against vaso-occlusive crises. Increased expression of one or more of bcam, itga4, cd44, cd47, rap1a, vcam1, or icam4 has been reported in sickle cell subjects. Using the miRNet ontology knowledgebase, peripheral blood interactomes were generated by seeding various combinations of the afore-referenced mRNA. These interactomes yielded an array of miR targets. As examples, targeting hsa-miR-155-5p can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 erythrocyte/reticulocyte adhesion interactome whereas targeting hsa-miRs-103a-3p or 107 can potentially neutralize adhesion in cells overexpressing icam4-cd47-bcam-itga4-cd36. AM3380 (MIRacle™) is an off-the shelf hsa-miR-155-5p agomiR that can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 signaling axis. Phlebotomy coupled with transcriptomics represents a potentially feasible and effective precision medicine strategy to mitigate vaso-occlusive crises in sickle cell patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=interactome" title=" interactome"> interactome</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a> </p> <a href="https://publications.waset.org/abstracts/169504/a-precision-medicine-approach-to-sickle-cell-disease-by-targeting-the-adhesion-interactome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> Targeted Photoactivatable Multiagent Nanoconjugates for Imaging and Photodynamic Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Bano">Shazia Bano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoconjugates that integrate photo-based therapeutics and diagnostics within a single platform promise great advances in revolutionizing cancer treatments. However, to achieve high therapeutic efficacy, designing functionally efficacious nanocarriers to tightly retain the drug, promoting selective drug localization and release, and the validation of the efficacy of these nanoconjugates is a great challenge. Here we have designed smart multiagent, liposome based targeted photoactivatable multiagent nanoconjugates, doped with a photoactivatable chromophore benzoporphyrin derivative (BPD) labelled with an active targeting ligand cetuximab to target the EGFR receptor (over expressed in various cancer cells) to deliver a combination of therapeutic agents. This study establishes a tunable nanoplatform for the delivery of the photoactivatable multiagent nanoconjugates for tumor-specific accumulation and targeted destruction of cancer cells in complex cancer model to enhance the therapeutic index of the administrated drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=targeting" title="targeting">targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=photoactivatable" title=" photoactivatable"> photoactivatable</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoconjugates" title=" nanoconjugates"> nanoconjugates</a> </p> <a href="https://publications.waset.org/abstracts/111067/targeted-photoactivatable-multiagent-nanoconjugates-for-imaging-and-photodynamic-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achraf%20Al%20Faraj">Achraf Al Faraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sultana%20Shaik"> Asma Sultana Shaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Baraa%20Al%20Sayed"> Baraa Al Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotubes" title="single-walled carbon nanotubes">single-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20diagnosis%20and%20therapy" title=" cancer diagnosis and therapy"> cancer diagnosis and therapy</a> </p> <a href="https://publications.waset.org/abstracts/19881/magnetic-single-walled-carbon-nanotubes-swcnts-as-novel-theranostic-nanocarriers-enhanced-targeting-and-noninvasive-mri-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> Anticancer Effects of MicroRNA-1275 in Human Nasopharyngeal Carcinoma by Targeting HOXB5 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Cao%20Sun">Cheng-Cao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Jun%20Li"> Shu-Jun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=De-Jia%20Li"> De-Jia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through analysis of a published micro-array-based high-throughput assessment, we discovered that miR-1275 was markedly down-regulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its effect and mechanism involved in NPC development and progression. In this study, we investigated the role of miR-1275 on the development of NPC. The results indicated that miR-1275 was significantly down-regulated in primary NPC tissues, and very low levels were found in NPC cell lines. Ectopic expression of miR-1275 in NPC cell lines significantly suppressed cell growth as evidenced by cell viability assay and colony formation assay, through inhibition of HOXB5. In addition, miR-1275 suppresses G1/S transition through inhibition of HOXB5. Further, oncogene HOXB5 was revealed to be a putative target of miR-1275, which was inversely correlated with miR-1275 expression in NPC. Collectively, our study demonstrates that as a tumor suppressor, miR-1275 played a pivotal role on NPC through inhibiting cell proliferation, and suppressing G1/S transition by targeting oncogenic HOXB5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microRNA-1275%20%28miR-1275%29" title="microRNA-1275 (miR-1275)">microRNA-1275 (miR-1275)</a>, <a href="https://publications.waset.org/abstracts/search?q=HOXB5" title=" HOXB5"> HOXB5</a>, <a href="https://publications.waset.org/abstracts/search?q=nasopharyngeal%20carcinoma" title=" nasopharyngeal carcinoma"> nasopharyngeal carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a> </p> <a href="https://publications.waset.org/abstracts/54943/anticancer-effects-of-microrna-1275-in-human-nasopharyngeal-carcinoma-by-targeting-hoxb5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Topical Delivery of Griseofulvin via Lipid Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yann%20Jean%20Tan">Yann Jean Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Meng%20Er"> Hui Meng Er</a>, <a href="https://publications.waset.org/abstracts/search?q=Choy%20Sin%20Lee"> Choy Sin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shew%20Fung%20Wong"> Shew Fung Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Huei%20Lim"> Wen Huei Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid%20nanoparticles" title="lipid nanoparticles">lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=griseofulvin" title=" griseofulvin"> griseofulvin</a>, <a href="https://publications.waset.org/abstracts/search?q=topical" title=" topical"> topical</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatophytosis" title=" dermatophytosis"> dermatophytosis</a> </p> <a href="https://publications.waset.org/abstracts/18028/topical-delivery-of-griseofulvin-via-lipid-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Sharma">Shashi Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Katiyar"> V. K. Katiyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Uaday%20Singh"> Uaday Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to manipulate magnetic particles in fluid flows by means of inhomogeneous magnetic fields is used in a wide range of biomedical applications including magnetic drug targeting (MDT). In MDT, magnetic carrier particles bounded with drug molecules are injected into the vascular system up-stream from the malignant tissue and attracted or retained at the specific region in the body with the help of an external magnetic field. Although the concept of MDT has been around for many years, however, wide spread acceptance of the technique is still looming despite the fact that it has shown some promise in both in vivo and clinical studies. This is because traditional MDT has some inherent limitations. Typically, the magnetic force is not very strong and it is also very short ranged. Since the magnetic force must overcome rather large hydrodynamic forces in the body, MDT applications have been limited to sites located close to the surface of the skin. Even in this most favorable situation, studies have shown that it is difficult to collect appreciable amounts of the MDCPs at the target site. To overcome these limitations of the traditional MDT approach, Ritter and co-workers reported the implant assisted magnetic drug targeting (IA-MDT). In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing in a fluid in an implant assisted cylindrical channel under the magnetic field. A coil of ferromagnetic SS 430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under the magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases from 23 to 51 % as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capture%20efficiency" title="capture efficiency">capture efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=implant%20assisted-magnetic%20drug%20targeting%20%28IA-MDT%29" title=" implant assisted-magnetic drug targeting (IA-MDT)"> implant assisted-magnetic drug targeting (IA-MDT)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/32100/mathematical-modeling-on-capturing-of-magnetic-nanoparticles-in-an-implant-assisted-channel-for-magnetic-drug-targeting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Chung%20Tsai">Yuan-Chung Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Masao%20Kamimura"> Masao Kamimura</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Soga"> Kohei Soga</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Cheng%20Chiu"> Hsin-Cheng Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title="drug delivery">drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotopic%20brain%20tumor" title=" orthotopic brain tumor"> orthotopic brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%2Fphotothermal%20therapies" title=" photodynamic/photothermal therapies"> photodynamic/photothermal therapies</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion%20nanoparticles" title=" upconversion nanoparticles"> upconversion nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/78103/site-specific-delivery-of-hybrid-upconversion-nanoparticles-for-photo-activated-multimodal-therapies-of-glioblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Hardy">John Hardy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=countering%20violent%20extremism" title="countering violent extremism">countering violent extremism</a>, <a href="https://publications.waset.org/abstracts/search?q=counter%20terrorism" title=" counter terrorism"> counter terrorism</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligence" title=" intelligence"> intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=terrorism" title=" terrorism"> terrorism</a>, <a href="https://publications.waset.org/abstracts/search?q=violent%20extremism" title=" violent extremism"> violent extremism</a> </p> <a href="https://publications.waset.org/abstracts/94232/targeting-violent-extremist-narratives-applying-network-targeting-techniques-to-the-communication-functions-of-terrorist-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=targeting&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10