CINXE.COM

Hydrogen-Bonded Mesoporous Frameworks with Tunable Pore Sizes and Architectures from Nanocluster Assembly Units - Peeref

<!DOCTYPE html> <html lang="zh-cn"> <head> <link rel="dns-prefetch" href="//www.peeref.com"> <link rel="dns-prefetch" href="//peeref-open.s3.amazonaws.com"> <link rel="dns-prefetch" href="//www.w3.org"> <link rel="dns-prefetch" href="//doi.org"> <link rel="dns-prefetch" href="//www.linkedin.com"> <link rel="dns-prefetch" href="//twitter.com"> <link rel="dns-prefetch" href="//api.qrserver.com"> <link rel="dns-prefetch" href="//www.facebook.com"> <link rel="dns-prefetch" href="//www.googletagmanager.com"> <meta charset="utf-8"> <title>Hydrogen-Bonded Mesoporous Frameworks with Tunable Pore Sizes and Architectures from Nanocluster Assembly Units - Peeref</title> <meta http-equiv="X-UA-Compatible" content="IE=edge, chrome=1"> <meta name="keywords" content="文章、文章评论、研究论文"> <meta name="description" content=""> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" /> <meta property="og:locale" content="zh"> <meta property="og:title" content="Hydrogen-Bonded Mesoporous Frameworks with Tunable Pore Sizes and Architectures from Nanocluster Assembly Units - Peeref"> <meta property="og:description" content=""> <meta property="og:url" content="https://www.peeref.com/zh/works/83158310"> <meta property="og:site_name" content="Peeref"> <meta property="og:image" content=""> <meta name="csrf-token" content="XvCdyGJkycqjSRsCaT0Mbg2PtrQeG9yZnWwN8H3m"> <meta http-equiv="Cache-Control" content="no-transform" /> <meta http-equiv="Cache-Control" content="no-siteapp" /> <link rel="shortcut icon" href="https://www.peeref.com/favicon.ico"> <link href="https://peeref-open.s3.amazonaws.com/css/frameworks.f126215c4d22b328086c.css" rel="stylesheet"> <link href="https://peeref-open.s3.amazonaws.com/css/app.6d48e91925108fb40388.css" rel="stylesheet"> <script> if(window.self !== window.top) { location.href = '/static/html/forbidden.html'; } </script> <script> window.Config = { token: "XvCdyGJkycqjSRsCaT0Mbg2PtrQeG9yZnWwN8H3m", url: "https://www.peeref.com/zh/works/83158310", lang: "zh", prefix: "/zh", isMobile: "", assetDomain: "https://peeref-open.s3.amazonaws.com/" }; </script> </head> <body> <div id="app"> <div class="bg-warning position-relative w-100 text-center py-2" style="top: 0; z-index: 100000;"> <strong class="text-danger">Peeref no longer supports Internet Explorer. </strong> <a href="/static/html/browser.html">Please upgrade your browser.</a> </div> <nav id="nav" class="navbar navbar-default navbar-static-top navbar-inverse"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#app-navbar-collapse" aria-expanded="false"> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand p-3" href="https://www.peeref.com/zh"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="108px" viewBox="0 0 1052 302"><g fill="#FFF"><path d="M227.6,92.9c5.2,13,17.9,22.1,32.7,22.1c19.4,0,35.2-15.8,35.2-35.2s-15.8-35.2-35.2-35.2 c-19.4,0-35.2,15.8-35.2,35.2c0,2.3,0.2,4.5,0.6,6.7l-98.1,24.6L154,59c3.2,1.1,6.6,1.8,10.1,1.8c16.4,0,29.7-13.3,29.7-29.7c0-16.4-13.3-29.7-29.7-29.7s-29.7,13.3-29.7,29.7c0,10.5,5.4,19.7,13.6,25l-27.9,55.1L90.5,94.2c1.4-3.2,2.1-6.8,2.1-10.6 c0-14.9-12.1-27-27-27c-14.9,0-27,12.1-27,27c0,14.9,12.1,27,27,27c8.8,0,16.6-4.2,21.6-10.7l28.5,16.3l-62.2,49.9 c-5.6-5.3-13.1-8.6-21.4-8.6c-17.1,0-30.9,13.8-30.9,30.9c0,17.1,13.8,30.9,30.9,30.9S63,205.4,63,188.4c0-6.3-1.9-12.3-5.2-17.2 l60-48.1l-7.5,106.4c-19.1,0.6-34.4,16.2-34.4,35.5c0,19.6,15.9,35.5,35.5,35.5c19.6,0,35.5-15.9,35.5-35.5c0-17.7-13-32.4-30-35.1 l7.6-107.5l87,67.9c-4.1,6.1-6.4,13.5-6.4,21.4c0,21.4,17.4,38.8,38.8,38.8s38.8-17.4,38.8-38.8c0-21.4-17.4-38.8-38.8-38.8 c-11.1,0-21.2,4.7-28.2,12.2L129,117.6L227.6,92.9z"></path></g><g fill="#FFF"><path d="M368.2,232.3V70.6h52.4c19.9,0,32.8,0.8,38.8,2.4c9.3,2.4,17,7.7,23.3,15.8c6.2,8.1,9.4,18.6,9.4,31.5c0,9.9-1.8,18.3-5.4,25c-3.6,6.8-8.2,12.1-13.7,15.9c-5.6,3.9-11.2,6.4-16.9,7.7c-7.8,1.5-19.1,2.3-33.9,2.3h-21.3v61H368.2z M400.8,98v45.9h17.9c12.9,0,21.5-0.8,25.8-2.5c4.3-1.7,7.7-4.3,10.2-7.9c2.5-3.6,3.7-7.8,3.7-12.6c0-5.9-1.7-10.7-5.2-14.6c-3.5-3.8-7.8-6.2-13.1-7.2c-3.9-0.7-11.7-1.1-23.5-1.1H400.8z"></path><path d="M586.5,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9h-77.7c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S584.8,200.9,586.5,195z M588.3,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H588.3z"></path><path d="M712.2,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9H667c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S710.5,200.9,712.2,195z M713.9,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H713.9z"></path><path d="M799.6,232.3h-31V115.2h28.8v16.7c4.9-7.9,9.4-13.1,13.3-15.6c3.9-2.5,8.4-3.8,13.4-3.8c7.1,0,13.9,1.9,20.4,5.8l-9.6,27c-5.2-3.4-10.1-5.1-14.6-5.1c-4.3,0-8,1.2-11,3.6c-3,2.4-5.4,6.7-7.1,13c-1.7,6.3-2.6,19.3-2.6,39.3V232.3z"></path><path d="M925.7,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9h-77.7c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S924,200.9,925.7,195z M927.5,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H927.5z"></path><path d="M970,115.2h17.2v-8.8c0-9.9,1-17.2,3.1-22.1c2.1-4.9,6-8.8,11.6-11.9c5.6-3.1,12.7-4.6,21.3-4.6c8.8,0,17.5,1.3,25.9,4l-4.2,21.6c-4.9-1.2-9.7-1.8-14.2-1.8c-4.5,0-7.7,1-9.7,3.1c-1.9,2.1-2.9,6.1-2.9,12.1v8.3h23.2v24.4h-23.2v92.8h-31v-92.8H970V115.2z"></path></g></svg> </a> </div> <ul class="collapse navbar-collapse mb-0" id="app-navbar-collapse"> <ul class="nav navbar-nav"> <li><a href="https://www.peeref.com/zh/works">论文</a></li> <li><a href="https://www.peeref.com/zh/posters">海报</a></li> <li><a href="https://www.peeref.com/zh/webinars">研讨会</a></li> <li><a href="https://www.peeref.com/zh/funding">基金</a></li> <li class="dropdown dropdown-hover"> <a href="javascript:">讨论 <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/zh/hubs">讨论圈</a></li> <li><a href="https://www.peeref.com/zh/questions">问题</a></li> </ul> </li> <li class="dropdown dropdown-hover"> <a href="javascript:">出版工具 <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/zh/journals">期刊</a></li> <li><a href="https://www.peeref.com/zh/connect">科研社交</a></li> <li><a href="https://www.peeref.com/zh/e-collections">资讯集成</a></li> <li><a href="https://www.peeref.com/zh/reviewer">审稿人</a></li> </ul> </li> </ul> <ul id="auth-menu" class="nav navbar-nav navbar-right" style="display: inline-flex; align-items: center;"> <li> <a href="https://www.peeref.com/zh/login"> <strong>我的账户</strong> </a> </li> </ul> <ul class="nav navbar-nav navbar-right" style="display: inline-flex; align-items: center; margin-left: 20px;"> <li id="language"> <a href="javascript:"> <div class="current"> <i class="ivu-icon ivu-icon-md-globe"></i> 中文 </div> </a> <div class="selection"> <a rel="alternate" hreflang="en" href="https://www.peeref.com/works/83158310" > <span>English</span> </a> <a rel="alternate" hreflang="zh" href="https://www.peeref.com/zh/works/83158310" > <span>中文</span> </a> </div> </li> </ul> </ul> </div> </nav> <main> <div id="top-info-banner" class="container-fluid mb-0"> <div class="container"> <div class="d-flex align-items-center" style="margin-top: 30px;"> <span class="text-white"> <strong class="f18">☆</strong> <span class="f16">4.9</span> </span> <span class="mx-3"></span> <span class="tag">Article</span> </div> <h1 class="title title-for-article"> Hydrogen-Bonded Mesoporous Frameworks with Tunable Pore Sizes and Architectures from Nanocluster Assembly Units </h1> <div class="help-links-left"> <p class="pub-info"> JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2024) </p> </div> </div> </div> <div id="article-sticky-navbar"> <div class="container"> <div class="d-flex justify-content-between flex-wrap flex-md-nowrap"> <div class="d-flex align-items-center mb-2"> <ul class="nav nav-underline f16 font-weight-bold"> <li class="active"> <a href="javascript:;"> 总览 </a> </li> <li class=""> <a href="https://www.peeref.com/zh/works/83158310/comments"> 撰写评论 </a> </li> </ul> </div> <div class="d-flex align-items-center justify-content-md-end flex-wrap flex-md-nowrap"> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <a href="https://doi.org/10.1021/jacs.4c03538" target="_blank" class="btn btn-warning btn-circle"> <i class="ivu-icon ivu-icon-md-copy f16"></i> <strong>获取全文</strong> </a> </div> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <a href="https://www.peeref.com/zh/works/83158310/add-to-collection" class="btn btn-success btn-circle"> <strong>添加到收藏夹</strong> </a> </div> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <button class="btn btn-success btn-circle" id="reading-btn"> <strong>更多阅读</strong> </button> </div> <div class="flex-shrink-0 mt-3 mt-md-0"> <div class="dropdown"> <button class="font-weight-bold f24 ivu-btn ivu-btn-default ivu-btn-circle ivu-btn-large ivu-btn-icon-only dropdown-toggle" data-toggle="dropdown"> <i class="ivu-icon ivu-icon-md-more"></i> </button> <ul class="dropdown-menu dropdown-menu-right"> <li> <a href="#" data-target="#export-citation" data-toggle="modal"> <i class="ivu-icon ivu-icon-md-quote text-muted mr-1"></i> 导出引文 </a> </li> <li> <a href="#" data-target="#share-paper" data-toggle="modal"> <i class="ivu-icon ivu-icon-md-share-alt text-muted mr-1"></i> 分享论文 </a> </li> <li> <a href="https://www.peeref.com/zh/works/83158310/references"> <i class="ivu-icon ivu-icon-md-list text-muted mr-1"></i> 参考文献 </a> </li> </ul> </div> </div> </div> </div> </div> </div> <div id="article-details" class="container"> <div class="col-md-4 px-0 pr-md-3"> <div class="f15 panel-box rounded shadow-none border"> <div class="mb-3 pb-3"> <h4 class="mt-0">期刊</h4> <div class="f16"> <h5 class="title f16"> <a href="https://www.peeref.com/zh/journals/5235/journal-of-the-american-chemical-society"> JOURNAL OF THE AMERICAN CHEMICAL SOCIETY </a> </h5> <span> 卷 146, 期 26, 页码 17866-17877 </span> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">出版社</h4> <div class="f16"> <h5 class="title f16 text-primary"> AMER CHEMICAL SOC </h5> <div class="my-2"> DOI: 10.1021/jacs.4c03538 </div> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">关键词</h4> <div class="f16"> - </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">类别</h4> <div class="f16"> <span class="d-block"> <a href="https://www.peeref.com/zh/works/list?category=Chemistry%2C+Multidisciplinary" target="_blank" class="text-dark btn btn-link p-0 text-left"> Chemistry, Multidisciplinary </a> </span> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">资金</h4> <div class="f16"> <ol class=""> <li>National Natural Science Foundation of China [22175039, 22088101]</li> <li>National Key Research and Development Program of China [2023YFA1507600]</li> <li>Key Basic Research Program of Science and Technology Commission of Shanghai Municipality [22JC1410200]</li> </ol> </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 text-center">向作者/读者索取更多资源</h4> <div class="requests"> <div class="requests-item"> <div class="icon"> <img src="https://peeref-open.s3.amazonaws.com/images/file.png" alt=""> </div> <h4>Protocol</h4> <p> <a href="https://www.peeref.com/zh/works/83158310/resource" class="btn btn-outline-primary btn-sm"> 社区支持 </a> </p> </div> <div class="requests-item"> <div class="icon"> <img src="https://peeref-open.s3.amazonaws.com/images/experiment.png" alt=""> </div> <h4>Reagent</h4> <p> <a href="https://www.peeref.com/zh/works/83158310/resource" class="btn btn-outline-primary btn-sm"> 社区支持 </a> </p> </div> </div> </div> </div> <div class="col-md-8 px-0 pl-md-3"> <div id="article-summary-panel" class="mb-4"> <ul class="nav nav-tabs" style="list-style: none; padding-left: 0;"> <li class="active"> <a href="#ai_summary" data-toggle="tab" class="summary-tab mx-0 f16 text-dark"> <strong>智能总结</strong> <strong class="text-danger ml-1"><i>New</i></strong> </a> </li> <li class=""> <a href="#raw_abstract" data-toggle="tab" class="abstract-tab mx-0 f16 text-dark"> <strong>摘要</strong> </a> </li> </ul> <div class="tab-content border border-top-0"> <div id="ai_summary" class="tab-pane active"> <div class="summary-panel panel-box mb-0 rounded shadow-none"> <div class="f16">This study reports a micelle-directed nanocluster modular self-assembly approach for the synthesis of two-dimensional hydrogen-bonded mesoporous frameworks (HMFs). The method is based on nanoscale cluster units, which can form uniform hexagonal arrays. By controlling the block lengths and concentrations of the micelles, the size and shape of the mesopores can be precisely controlled. This method is versatile and can be used to synthesize various HMFs with different configurations and compositions. The titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution, with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters.</div> </div> </div> <div id="raw_abstract" class="tab-pane "> <div class="abstract-panel panel-box mb-0 rounded shadow-none"> <div class="f16">Construction of mesoporous frameworks by noncovalent bonding still remains a great challenge. Here, we report a micelle-directed nanocluster modular self-assembly approach to synthesize a novel type of two-dimensional (2-D) hydrogen-bonded mesoporous frameworks (HMFs) for the first time based on nanoscale cluster units (1.0-3.0 nm in size). In this 2-D structure, a mesoporous cluster plate with similar to 100 nm in thickness and several micrometers in size can be stably formed into uniform hexagonal arrays. Meanwhile, such a porous plate consists of several (3-4) dozens of layers of ultrathin mesoporous cluster nanosheets. The size of the mesopores can be precisely controlled from 11.6 to 18.5 nm by utilizing the amphiphilic diblock copolymer micelles with tunable block lengths. Additionally, the pore configuration of the HMFs can be changed from spherical to cylindrical by manipulating the concentration of the micelles. As a general approach, various new HMFs have been achieved successfully via a modular self-assembly of nanoclusters with switchable configurations (nanoring, Keggin-type, and cubane-like) and components (titanium-oxo, polyoxometalate, and organometallic clusters). As a demonstration, the titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution (3.6 mmol g-1h-1), with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters (1.5 mmol g-1h-1). This demonstrates that HMFs exhibited enhanced photocatalytic activity compared with unassembled titanium-oxo clusters units.</div> </div> </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">作者</h4> <div class="mb-3"> <article-authors tid="83158310" list="[{&quot;name&quot;:&quot;Jie Zhang&quot;,&quot;sequence&quot;:1},{&quot;name&quot;:&quot;LiangLiang Liu&quot;,&quot;sequence&quot;:2},{&quot;name&quot;:&quot;Zaiwang Zhao&quot;,&quot;sequence&quot;:3},{&quot;name&quot;:&quot;Chin-Te Hung&quot;,&quot;sequence&quot;:4},{&quot;name&quot;:&quot;Binhang Wang&quot;,&quot;sequence&quot;:5},{&quot;name&quot;:&quot;Linlin Duan&quot;,&quot;sequence&quot;:6},{&quot;name&quot;:&quot;Kexin Lv&quot;,&quot;sequence&quot;:7},{&quot;name&quot;:&quot;Xiao-Ming Cao&quot;,&quot;sequence&quot;:8},{&quot;name&quot;:&quot;Yun Tang&quot;,&quot;sequence&quot;:9},{&quot;name&quot;:&quot;Dongyuan Zhao&quot;,&quot;sequence&quot;:10}]" verified="[]" page="work" ></article-authors> </div> <div class="alert alert-warning mb-0"> <h5 class="mt-0 bg-warning text-dark px-3 rounded d-inline-block"> 我是这篇论文的作者 </h5> <div class="font-weight-bold f13"> 点击您的名字以认领此论文并将其添加到您的个人资料中。 </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">评论</h4> <div class="d-flex flex-wrap flex-md-nowrap"> <div class="flex-grow-1"> <h4 class="f16"> 主要评分 <a href="javascript:;" data-toggle="tooltip" data-placement="right" title="主要评分表示论文的整体质量水平。"> <i class="ivu-icon ivu-icon-md-help-circle f18 ml-2"></i> </a> </h4> <div class="d-flex flex-wrap flex-md-nowrap align-items-center alert mb-0"> <div class="d-flex align-items-center justify-content-center"> <Rate disabled allow-half value="4.9" style="font-size: 28px;"></Rate> <strong class="f20 m-3" style="color: #f5a623;">4.9</strong> </div> <div class="text-muted mx-4"> 评分不足 </div> </div> <h4 class="f16"> 次要评分 <a href="javascript:;" data-toggle="tooltip" data-placement="right" title="次要评分独立反映论文的优点或缺点。"> <i class="ivu-icon ivu-icon-md-help-circle f18 ml-2"></i> </a> </h4> <div class="d-flex flex-wrap flex-md-nowrap alert"> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">新颖性</h5> <strong class="mx-4">-</strong> </div> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">重要性</h5> <strong class="mx-4">-</strong> </div> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">科学严谨性</h5> <strong class="mx-4">-</strong> </div> </div> </div> <div class="flex-shrink-0"> <div class="border bg-light py-2 px-4"> <h5 class="mb-1">评价这篇论文</h5> <Rate class="f24" @on-change="function(value){ location.href='https://www.peeref.com/zh/works/83158310/comments?rating='+value }"></Rate> </div> </div> </div> </div> <div id="collection" class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">推荐</h4> <div class="my-3"> <ul class="nav nav-pills border-bottom pb-3" style="list-style: none; padding-left: 0;"> <li class="active"> <a href="#articles_from_related" data-toggle="tab" class="mx-0 f15"> <strong>相关</strong> </a> </li> <li class=""> <a href="#articles_from_authors" data-toggle="tab" class="mx-0 f15"> <strong>来自同一作者</strong> </a> </li> <li class=""> <a href="#articles_from_journal" data-toggle="tab" class="mx-0 f15"> <strong>来自同一期刊</strong> </a> </li> </ul> <div class="tab-content"> <div id="articles_from_related" class="tab-pane active"> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/35098275" class="text-dark hover-underline">Designable assembly of atomically precise Al4O4 cubane supported mesoporous heterometallic architectures</a> </h4> <p class="text-ellipsis-2">Ya-Jie Liu, Yinghua Yu, Yi-Fan Sun, Wei-Hui Fang, Jian Zhang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/8276.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Heterometallic cluster-based framework materials have great research value due to their porous structures and multi-metallic reactivity. In this study, we successfully designed a controllable synthesis of atomically precise heterometallic cluster-based framework compounds and explored their application as catalysts in aldol reactions. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMICAL SCIENCE</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/35098275/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/34672243" class="text-dark hover-underline">Interfacial-assembly engineering of asymmetric magnetic-mesoporous organosilica nanocomposites with tunable architectures</a> </h4> <p class="text-ellipsis-2">Yue Wu, Yangyi Sun, Chengyu Zhang, Mengyao He, Dongming Qi</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/6037.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> The controllable preparation of asymmetric nanoarchitectures on magnetic Fe3O4 nanoparticles is achieved using an interfacial-assembly strategy. This study demonstrates the potential applications of these asymmetric nanoarchitectures in nanomaterial assembly, nanoreactors, biosensing, drug delivery, and beyond. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">NANOSCALE</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/34672243/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/21924008" class="text-dark hover-underline">Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures</a> </h4> <p class="text-ellipsis-2">Liang Peng, Huarong Peng, Chin-Te Hung, Dingyi Guo, Linlin Duan, Bing Ma, Liangliang Liu, Wei Li, Dongyuan Zhao</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/10340.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A programmable shear-induced dynamic assembly approach was developed to synthesize mesoporous carbon nanospheres with tunable core-shell structures and gradient pore systems. The micelle structures in the system can be adjusted by changing shear force and a programmatically proceeded synthesis process results in intelligent assembly of multimodal mesostructures. The resultant carbon nanospheres exhibit high capacity and ultra-long cyclic life for sodium-ion storage, showing potential for innovative applications. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEM</span> (2021) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/21924008/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83107535" class="text-dark hover-underline">Enhancing Substrate Channeling with Multi-Enzyme Architectures in Hydrogen-Bonded Organic Frameworks</a> </h4> <p class="text-ellipsis-2">Vahide Oskoei, Motilal Mathesh, Wenrong Yang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1678.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A hydrogen-bonded organic framework (HOF) is introduced, which is stable under extreme conditions and can encapsulate and stabilize enzymes, enhancing substrate channeling. Experiments show that the HOF-encapsulated enzymes can maintain high activity under high temperature and extreme pH conditions, and the catalytic activity of the bienzyme cascade reaction system is significantly improved. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMISTRY-A EUROPEAN JOURNAL</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83107535/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26395710" class="text-dark hover-underline">Pore-Environment-Dependent Photoresponsive Oxidase-Like Activity in Hydrogen-Bonded Organic Frameworks</a> </h4> <p class="text-ellipsis-2">Linjing Tong, Yuhong Lin, Xiaoxue Kou, Yujian Shen, Yong Shen, Siming Huang, Fang Zhu, Guosheng Chen, Gangfeng Ouyang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/534.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Mimicking bioactivity of native enzymes through synthetic chemistry is an efficient strategy for enhancing biocatalysts in a cell-free environment, but faces persistent challenges. In this study, we demonstrate the use of structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase and reveal the significant role of pore environments in mediating oxidase-like activity. Based on the desirable oxidase-like activity, a visual and sensitive HOFs biosensor for detecting phosphatase, an important biomarker of skeletal and hepatobiliary diseases, is established. Our work highlights the influence of pore environments on the activity of nanozymes in addition to the active center. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26395710/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/25770731" class="text-dark hover-underline">Hierarchical Assembly of a Micro- and Macroporous Hydrogen-Bonded Organic Framework with Tailored Single-Crystal Size</a> </h4> <p class="text-ellipsis-2">Christopher A. Halliwell, Sandra E. Dann, Jesus Ferrando-Soria, Felix Plasser, Keith Yendall, Enrique Ramos-Fernandez, Mark R. J. Elsegood, Antonio Fernandez, Goran T. Vladisavljevie</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/534.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In this study, a hydrogen-bonded organic framework with hierarchical porosity was reported, and the crystal size could be controlled in a single step. The hierarchical porosity was used for the co-recognition of molecular species and microparticles. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/25770731/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/28201617" class="text-dark hover-underline">Multivariate Hydrogen-Bonded Organic Frameworks with Tunable Permanent Porosities for Capture of a Mustard Gas Simulant</a> </h4> <p class="text-ellipsis-2">Xiang Yu Gao, Yao Wang, Enyu Wu, Chen Wang, Bin Li, Yaming Zhou, Banglin Chen, Peng Li</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/534.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A series of isoreticular multivariate hydrogen-bonded organic frameworks (MTV-HOFs) were successfully synthesized, which exhibited tunable hydrophobicity and the ability to capture a mustard gas simulant. This work is an important advance in the development of porous molecular materials for various applications. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/28201617/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Ceramics </span> </div> <h4> <a href="https://www.peeref.com/zh/works/27236329" class="text-dark hover-underline">A boric acid-assisted hydrothermal process for preparation of mesoporous silica nanoparticles with ultra-large mesopores and tunable particle sizes</a> </h4> <p class="text-ellipsis-2">Rui Sun, Jiugong Zhou, Wei Wang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1610.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This work presents a simple and effective method, boric-assisted hydrothermal process, to prepare monodispersed ultra-large mesopore mesoporous silica nanoparticles (LP-MSNs) with tunable structure and mesopore size. By varying synthesis conditions, the particle sizes of LP-MSNs can be controlled from 98 nm to 278 nm. It was discovered that the ethanol added in the synthesis step, boric acid, and ethanol added during the hydrothermal process, as well as the temperature, play important roles in the preparation of LP-MSNs with variable mesopore sizes and particle sizes. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CERAMICS INTERNATIONAL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/27236329/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Environmental </span> </div> <h4> <a href="https://www.peeref.com/zh/works/28272671" class="text-dark hover-underline">Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization</a> </h4> <p class="text-ellipsis-2">Wenping Li, Jiafu Shi, Yu Chen, Xinyue Liu, Xiangxuan Meng, Zheyuan Guo, Shihao Li, Boyu Zhang, Zhongyi Jiang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1639.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In this study, nano-sized mesoporous hydrogen-bonded organic frameworks (nmHOFs) were developed for in situ enzyme immobilization. The assembly of tetrakis(4-amidiniumphenyl) methane (TAM) and 1,3,6,8-tetrakis(p-benzoic acid) pyrene (H4TBAPy) induced by enzymes in aqueous solution resulted in the formation of enzyme@TaTb nmHOFs with a pore aperture of 2.4 nm. The TaTb nmHOFs showed excellent activity and stability for immobilizing lactate dehydrogenase (LDH), α-amylase, and horseradish peroxidase, making them potential platform carriers for enzyme immobilization. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMICAL ENGINEERING JOURNAL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/28272671/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/20942747" class="text-dark hover-underline">Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process</a> </h4> <p class="text-ellipsis-2">Dongfang Ren, Jiaqiong Xu, Ning Chen, Zixin Ye, Xiaofeng Li, Qiming Chen, Shiyu Ma</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1892.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Mesoporous silica nanoparticles (MSNs) with various morphologies and adjustable particle sizes can be synthesized using a simple microemulsion assembly approach, with the amount of pentanol playing a crucial role in particle morphology. MSNs with visible voids in the center can be obtained during synthesis and exhibit superior catalytic performance in reduction reactions. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS</span> (2021) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/20942747/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/23283692" class="text-dark hover-underline">Binary Solvent Regulated Architecture of Ultra-Microporous Hydrogen-Bonded Organic Frameworks with Tunable Polarization for Highly-Selective Gas Separation</a> </h4> <p class="text-ellipsis-2">Xiaojun Ding, Zeyu Liu, Yusheng Zhang, Gang Ye, Jianfeng Jia, Jing Chen</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/534.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A binary solvent synthetic strategy is proposed to construct molecule-based hydrogen-bonded organic frameworks (HOFs) with permanent ultra-micropores and surface polarization. The activated HOFs showed highly selective separation of CO2/N-2 under ambient temperature and pressure, making them potentially useful for gas separation applications. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/23283692/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Environmental </span> </div> <h4> <a href="https://www.peeref.com/zh/works/28492162" class="text-dark hover-underline">Removal of typical PFAS from water by covalent organic frameworks with different pore sizes</a> </h4> <p class="text-ellipsis-2">Wei Wang, Ye Jia, Shuangxi Zhou, Shubo Deng</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/4610.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> The correlation between the pore size of covalent organic frameworks (COFs) and the efficient adsorption of per- and polyfluoroalkyl substances (PFAS) was investigated in this study. COFs with a pore size ranging from 2.5 to 4.0 times of the PFAS molecular size demonstrated the most suitable for PFAS adsorption. Nanobubbles on hydrophobic COFs were found to play a crucial role in PFAS adsorption, and long-chain PFAS showed higher adsorption capacity than short-chain PFAS. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF HAZARDOUS MATERIALS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/28492162/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/81832882" class="text-dark hover-underline">Partitioning of pore space in hydrogen-bonded organic frameworks for enhanced CO2 photoreduction</a> </h4> <p class="text-ellipsis-2">Zi-Xiang Wang, Ying Zou, Zhi-Bin Fang, Jin-Lin Li, Yafeng Li, An-An Zhang, Tian-Fu Liu</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/10207.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study designs a stable and efficient photocatalyst based on HOFs for CO2 photoreduction in pure water. By introducing 1,3,6,8-tetra(4-carboxyphenyl)pyrene (H(4)TBAPy) molecules, the structural stability and electron transport efficiency of HOF are improved, thereby enhancing the catalytic activity. This work provides a new idea for designing high-performance HOF photocatalysts. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE CHINA-MATERIALS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/81832882/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83433966" class="text-dark hover-underline">Inclusion of halobenzene in water-mediated hydrogen-bonded architectures built from a V-shaped host molecule</a> </h4> <p class="text-ellipsis-2">Masatoshi Kawahata, Tadashi Hyodo, Rina Kondo, Masahide Tominaga, Kentaro Yamaguchi</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/2107.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> We developed a water-mediated hydrogen-bonded architecture containing guest molecules, in which water molecules are incorporated into the hydrogen-bonded organic framework. By crystallizing V-shaped host disubstituted adamantane with dimethoxyphenol moieties in halobenzene, four inclusion crystals with a stoichiometric ratio of approximately 1:1:1 host/halobenzene/water were obtained. The study also found that V-shaped host disubstituted adamantane combines with water molecules to form a cavity that can accommodate guest molecules. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CRYSTENGCOMM</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83433966/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/27568107" class="text-dark hover-underline">Coercing assembly of donor-acceptor complexes with hydrogen-bonded frameworks</a> </h4> <p class="text-ellipsis-2">Anna Yusov, Alexandra M. Dillon, Chunhua T. Hu, Stephanie S. Lee, Michael D. Ward</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/6415.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Guanidinium organosulfonate hydrogen-bonded frameworks (HBFs) incorporating tetracyanoquinodimethane (TCNQ) as a guest molecule were constructed from three different naphthalenesulfonates. The framework architectures reflect a synergy between the 2D hydrogen-bonded GS network and donor-acceptor interactions. Spectroscopic and computational results confirm weak charge-transfer interactions in the mixed stacks formed by naphthalene donors and TCNQ acceptors enforced by the GS framework, suggesting potential for the synthesis of new optoelectronic materials through molecular and crystal design. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ORGANIC ELECTRONICS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/27568107/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> </div> <div id="articles_from_authors" class="tab-pane "> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/81858404" class="text-dark hover-underline">Over-Reduced Core-Shell Au@CoO x -Co with Strong Interfacial Interactions for Photoassisted Peroxymonosulfate Activation</a> </h4> <p class="text-ellipsis-2">Wenhao Xu, Yujie Cao, Binhang Wang, Zitao Zhang, Xiang Li, Libo Sun, Guangnan Liu, Yun Tang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study designed and fabricated an over-reduced Au@CoOx-Co core-shell nanostructure by improving the seed growth process. The Au core promotes the over-reduction of the CoOx-Co shell, and the interfacial interaction introduces oxygen vacancies to provide reaction sites. The Au core generates excitons under light irradiation, which enhances the activation of peroxymonosulfate for degrading fluorine-containing pollutants. This design integrates structural design, photoelectronic regulation, and catalytic enhancement, and has application prospects. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF PHYSICAL CHEMISTRY C</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/81858404/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/33753510" class="text-dark hover-underline">Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting</a> </h4> <p class="text-ellipsis-2">Luyao Zheng, Cong Liu, Wenbiao Zhang, Boxu Gao, Tianlan Yan, Yahong Zhang, Xiaoming Cao, Qingsheng Gao, Yi Tang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study successfully improves the efficiency and stability of water splitting by constructing a heterostructured electrocatalyst. The catalyst shows extraordinary performance and could offer an effective approach for the sustainable production of hydrogen. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/33753510/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/81856724" class="text-dark hover-underline">Multifunctional Hierarchical Nanoplatform with Anisotropic Bimodal Mesopores for Effective Neural Circuit Reconstruction after Spinal Cord Injury</a> </h4> <p class="text-ellipsis-2">Fanqi Kong, Hongyue Yu, Lifei Gao, Enyun Xing, Yan Yu, Xiaofei Sun, Wenxing Wang, Dongyuan Zhao, Xiaomin Li</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> After spinal cord injury, restoration of motor function is hindered by persistent inflammation, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors. A versatile treatment platform is urgently needed. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction. The platform features a Janus structure with distinct compartments for controlled co-delivery of dual drugs. The nanoformulation can alleviate neuronal apoptosis, enhance microtubule stability, promote axonal regeneration, and diminish the inhibitory effect. This functional dual-mesoporous nanoplatform holds great potential for combination therapy in treating severe multifaceted diseases. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS NANO</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/81856724/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Nanoscience &amp; Nanotechnology </span> </div> <h4> <a href="https://www.peeref.com/zh/works/81811088" class="text-dark hover-underline">Solvent-Free Synthesis Enables Encapsulation of Subnanometric FeO x Clusters in Pure Siliceous Zeolites for Efficient Catalytic Oxidation Reactions</a> </h4> <p class="text-ellipsis-2">Jiajie Ye, Xuan Tang, Lu Cheng, Shoujie Zhang, Wangcheng Zhan, Yanglong Guo, Li Wang, Xiao-Ming Cao, Kuan-Wen Wang, Sheng Dai, Yun Guo</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper presents a method for encapsulating FeOx clusters in pure siliceous MFI zeolites, which solves the challenge of encapsulating stable FeOx clusters in zeolites. The encapsulated Fe@MFI catalyst shows excellent catalytic performance and recycle stability in the direct oxidation of methane and cyclohexane, and has broad application prospects. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS APPLIED MATERIALS &amp; INTERFACES</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/81811088/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/81951672" class="text-dark hover-underline">Ultrasmall Inorganic Mesoporous Nanoparticles: Preparation, Functionalization, and Application</a> </h4> <p class="text-ellipsis-2">Jie Wang, Xiankai Fan, Xiao Han, Kangle Lv, Yujuan Zhao, Zaiwang Zhao, Dongyuan Zhao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper reviews the recent progress in the preparation, functionalization, and applications of ultrasmall inorganic mesoporous nanoparticles. The soft monomicelle-directed method is more flexible in synthesis, and monomicelles can be classified into four types. Functionalization of the inner mesopores and outer surfaces includes constructing yolk-shell structures. Representative applications are presented, and the prospects and challenges are foreseen. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADVANCED MATERIALS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/81951672/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Multidisciplinary Sciences </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82091890" class="text-dark hover-underline">Dealuminated Beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts</a> </h4> <p class="text-ellipsis-2">Lujie Liu, Jiaye Lu, Yahui Yang, Wolfgang Ruettinger, Xinhua Gao, Ming Wang, Hao Lou, Zhandong Wang, Yifeng Liu, Xin Tao, Lina Li, Yong Wang, Hangjie Li, Hang Zhou, Chengtao Wang, Qingsong Luo, Huixin Wu, Kaidi Zhang, Jiabi Ma, Xiaoming Cao, Liang Wang, Feng-Shou Xiao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Copper nanoparticle-based catalysts are widely used in industry, but nanoparticles tend to sinter and grow larger in chemical atmospheres, affecting catalyst performance. In this study, it was found that copper nanoparticles supported on dealuminated Beta zeolite become smaller in methanol vapor at 200°C, contrary to the general sintering phenomenon. In this process, migratory copper sites are captured by silanol nests, and the copper species in the nests act as new nucleation sites for the formation of small nanoparticles, reversing the general sintering process and providing a robust catalyst for industrial applications. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82091890/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82195240" class="text-dark hover-underline">Three-Dimensionally Nanometallic Superstructure Synthesized via a Single-Particle Soft-Enveloping Strategy</a> </h4> <p class="text-ellipsis-2">Rui Hao, Yonghui Deng, Jixiang Fang, Dongyuan Zhao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A novel strategy for the synthesis of 3D nanomaterials using core-shell Au NP@mSiO(2) particles as templates is presented, and its application in photocatalytic 4-nitrophenol hydrogenation is demonstrated. The material takes advantage of the synergistic plasmonic coupling of the outer Au NPs and inner Au nanorods to enhance the catalytic performance. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">NANO LETTERS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82195240/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82278561" class="text-dark hover-underline">Sterically controllable adsorption on nickel surface for selective reductive amination</a> </h4> <p class="text-ellipsis-2">Hai Wang, Qian Xiang, Yiming Niu, Liang Wang, Bingsen Zhang, Shengqi Chu, Yu Hui, Jiabao Yang, Yucai Qin, Lijuan Song, Song Qin, Junyi Zhang, Xionghou Gao, Xiao-Ming Cao, Feng-Shou Xiao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In this study, Ni nanoparticles were used as a model to demonstrate the effectiveness of modifying supported metal catalysts with silica and ammonia. The results showed that the modified Ni catalyst exhibited high selectivity for specific compounds in reductive aminations, while the general Ni catalyst underwent deep hydrogenation. Mechanism studies revealed that silica and ammonia modifications can adjust the adsorption configurations of molecules, thereby altering product selectivity. This strategy can be applied to develop highly active and selective practical catalysts for reductive aminations. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEM CATALYSIS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82278561/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82591079" class="text-dark hover-underline">Spatially Asymmetric Nanoparticles for Boosting Ferroptosis in Tumor Therapy</a> </h4> <p class="text-ellipsis-2">Mengmeng Hou, Minchao Liu, Hongyue Yu, Yufang Kou, Jia Jia, Qiaoyu Zhou, Fan Zhang, Dongyuan Zhao, Tiancong Zhao, Xiaomin Li</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study developed a spatially asymmetric nanoparticle, Fe3O4@DMS&amp;PDA@MnO2-SRF, for enhanced ferroptosis. The nanoparticle consists of two subunits, which enhance the synergistic effect between GSH scavengers and ferroptosis-related components through spatial isolation. It can effectively deplete GSH, thereby inducing ferroptosis and increasing the ferroptosis of tumor cells by inactivating glutathione-dependent peroxidases 4. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">NANO LETTERS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82591079/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82938287" class="text-dark hover-underline">Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting</a> </h4> <p class="text-ellipsis-2">Yi Yang, Shan Zhou, Zirui Lv, Chin-Te Hung, Zaiwang Zhao, Tiancong Zhao, Dongliang Chao, Biao Kong, Dongyuan Zhao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study developed a kind of ionic diode membrane with asymmetric structure, which can be used for salinity gradient energy harvesting. The membrane has the advantages of reducing ion concentration polarization and promoting ion permeability. Compared with symmetric membrane and bipolar ionic diode membrane, the unipolar ionic diode membrane has a significant improvement in power output. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82938287/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83489887" class="text-dark hover-underline">Surface hydroxyl group dominating aerobic oxidation of methane below room temperature</a> </h4> <p class="text-ellipsis-2">Baiyang Yu, Lu Cheng, Jiaju Wu, Bing Yang, Hong Li, Jing Xu, Ying Zhang, Chengsi Pan, Xiao-Ming Cao, Yongfa Zhu, Yang Lou</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> The study proposes a new catalytic mechanism for the direct oxidation of methane to methanol, in which hydroxyl radicals (·OH) formed in situ on the surface of a titanium silicate-supported single-atom palladium catalyst are used to directly oxidize methane. This study provides new ideas and strategies for the design of catalysts for the direct oxidation of methane to methanol, and is expected to promote the development of this technology. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ENERGY &amp; ENVIRONMENTAL SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83489887/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83570613" class="text-dark hover-underline">Polymer-Supported Pd Nanoparticles for Solvent-Free Hydrogenation</a> </h4> <p class="text-ellipsis-2">Qingsong Luo, Hai Wang, Qian Xiang, Yating Lv, Jiabao Yang, Lijuan Song, Xiaoming Cao, Liang Wang, Feng-Shou Xiao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study reports a porous poly(divinylbenzene) polymer-supported Pd NP catalyst (Pd/PDVB) that exhibits high activity and excellent stability in the solvent-free hydrogenation of nitrobenzene. The catalyst&#039;s activity exceeds that of the classic Pd/C catalyst, and it effectively hinders Pd leaching during the reaction. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83570613/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> </div> <div id="articles_from_journal" class="tab-pane "> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83511163" class="text-dark hover-underline">Synthesis of Mesoporous Catechin Nanoparticles as Biocompatible Drug-Free Antibacterial Mesoformulation</a> </h4> <p class="text-ellipsis-2">Runfeng Lin, Gaoyang Li, Qianfeng He, Junfeng Song, Yanming Ma, Yating Zhan, Minjia Yuan, Qi Li, Dongliang Chao, Xiaomin Li, Peiyuan Wang, Tiancong Zhao, Dongyuan Zhao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Mesoporous catechin nanoparticles were fabricated successfully by a balanced multivariate interaction approach. They have a uniform spherical structure, open mesopores, and high surface area. The nanoparticles show good biocompatibility and negative surface charge, as well as excellent antibacterial ability. In a mouse wound model, they can accelerate wound healing. Proteomics of bacteria reveals that the excellent antibacterial property is due to the synergetic effect of the mesostructure and the catechin molecule. This work provides a new way for the future exploration of polymer nanomaterials and antibiotic formulations. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83511163/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82923427" class="text-dark hover-underline">Atomically Precise Regulation of the N-Heterocyclic Microenvironment in Triazine Covalent Organic Frameworks for Coenzyme Photocatalytic Regeneration</a> </h4> <p class="text-ellipsis-2">Linjing Tong, Zeyu Gong, Yidong Wang, Jiaxuan Luo, Siming Huang, Rui Gao, Guosheng Chen, Gangfeng Ouyang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study reports a series of isostructural triazine covalent organic frameworks and explores their photocatalytic activity for NADH regeneration. By altering the N-heterocyclic species, the electron band structure and planarity of the COF layer are regulated, affecting the separation efficiency of photoinduced electron-hole pairs and electron transfer behavior. The optimal COF catalyst achieves 89% NADH regeneration capacity within 20 minutes, outperforming most nanomaterial photocatalysts. Based on this, an artificial photosynthesis system is constructed for the green synthesis of L-glutamate, with a significantly higher conversion efficiency than the enzymatic approach. This work provides new insights into coenzyme regeneration by regulating the distal heterocyclic microenvironment of the COF skeleton. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82923427/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83031266" class="text-dark hover-underline">Electrocatalytic Coupling of Nitrate and Formaldehyde for Hexamethylenetetramine Synthesis via C-N Bond Construction and Ring Formation</a> </h4> <p class="text-ellipsis-2">Yuping Pan, Yuqin Zou, Chongyang Ma, Ta Thi Thuy Nga, Qizheng An, Rong Miao, Zhongcheng Xia, Yun Fan, Chung-Li Dong, Qinghua Liu, Shuangyin Wang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> HMTA is widely used in many fields, and the traditional synthesis method relies on ammonia produced by the Haber process. The electrochemical method can synthesize HMTA in one pot, but there are challenges. In this study, HMTA was efficiently synthesized by electrochemical oxidation-derived copper, and the catalytic mechanism and reaction pathway were studied. The results showed that the method involved a tandem reaction, and the presence of Cu vacancies enhanced substrate adsorption and inhibited further hydrogenation. This study provides an electrocatalytic method for HMTA synthesis and an electrochemical strategy for constructing multiple C-N bonds. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83031266/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83570508" class="text-dark hover-underline">Isolated Octahedral Pt-Induced Electron Transfer to Ultralow-Content Ruthenium-Doped Spinel Co3O4 for Enhanced Acidic Overall Water Splitting</a> </h4> <p class="text-ellipsis-2">Di Li, Danyun Xu, Yuhou Pei, Qicheng Zhang, Yingying Lu, Bing Zhang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper reports an ultrasmall precious metal-loaded Pt/Ru-codoped spinel cobalt oxide electrocatalyst for acidic overall water splitting, which exhibits excellent catalytic activity and stability. Experimental analysis and theoretical calculations show that Pt doping can enhance the catalytic performance through an adsorbate-evolving mechanism. This study provides a new idea and method for hydrogen production using non-iridium-based catalysts with low precious metal content. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83570508/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83027757" class="text-dark hover-underline">Enzymatic Activation and Continuous Electrochemical Production of Methane from Dilute CO2 Sources with a Self-Healing Capsule</a> </h4> <p class="text-ellipsis-2">Jinfeng Wang, Xu Jing, Yang Yang, Baijie Xu, Ruiming Jia, Chunying Duan</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study demonstrates a self-healing metal-organic macrocycle as an electrochemical catalyst to selectively produce methane from flue gas and air with the lowest applied potential. The capsule mimics the enzyme&#039;s pocket to combine CO2 capture with electroreduction for thorough CO2 reduction. The system maintains high methane Faraday efficiency and selectivity for over 200 hours of continuous operation and produces a high methane turnover number in a consecutive working laboratory. This study provides a departure from existing electrochemical catalytic techniques. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83027757/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83089262" class="text-dark hover-underline">Hard Emulsion-Induced Interface Super-Assembly: A General Strategy for Two-Dimensional Hierarchically Porous Metal-Organic Framework Nanoarchitectures</a> </h4> <p class="text-ellipsis-2">Ji Han, Haidong Xu, Bin Zhao, Ruigang Sun, Guangrui Chen, Tianyu Wu, Guiyuan Zhong, Yanjing Gao, Song Lin Zhang, Yusuke Yamauchi, Buyuan Guan</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study presents a hard emulsion-induced interface super-assembly strategy for the preparation of 2D hierarchically porous MOF nanosheets. The strategy involves transforming the geometric shape of oil droplet templates from 0D soft liquid spheres to 2D hard solid sheets, which promotes the heterogeneous nucleation and interfacial super-assembly of in situ formed mesostructured MOF nanocomposites, resulting in 2D MOF nanosheets with multimodal micro/meso-/macroporous systems. The resulting 2D hierarchically porous UiO-66-NH2 nanosheets exhibit excellent catalytic performance in the CO2 cycloaddition reaction. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83089262/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83569170" class="text-dark hover-underline">Constructing Asymmetric Fe-Nb Diatomic Sites to Enhance ORR Activity and Durability</a> </h4> <p class="text-ellipsis-2">Rui Sui, Bo Liu, Chang Chen, Xin Tan, Chang He, Dongyue Xin, Bowen Chen, Zhiyuan Xu, Jiazhan Li, Wenxing Chen, Zhongbin Zhuang, Zhenbo Wang, Chen Chen</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper presents an Fe-Nb diatomic site catalyst (FeNb/c-SNC) that demonstrates superior performance and stability in the oxygen reduction reaction (ORR) compared to Fe single-atom catalysts (SACs). By modulating the active microstructure, the catalyst optimizes the binding energy of key intermediates and effectively suppresses the dissolution and oxidation of Fe atoms. When applied in zinc-air batteries (ZAB) and hydroxide exchange membrane fuel cells (HEMFC), it significantly enhances the peak power density and stable operation time. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83569170/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83030524" class="text-dark hover-underline">Two-Dimensional Covalent Organic Frameworks with Pentagonal Pores</a> </h4> <p class="text-ellipsis-2">Fuxiang Wen, Kai Xu, Yaoqian Feng, Ning Huang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study developed pentagonal COFs with the mcm topological structure for the first time by rationally combining C-4 and C-2 symmetric building blocks. The resulting pentagonal COFs exhibit high crystallinity, excellent porosity, and strong robustness. The built-in porphyrin units make these COFs efficient electrocatalysts for the oxygen reduction reaction, with a half-wave potential of up to 0.81 V. This work verified the possibility of constructing 2D COFs with pentagonal pores and developed a strategy for the construction of functional 2D COFs. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83030524/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82988157" class="text-dark hover-underline">Polynuclear Cobalt Cluster-Based Coordination Polymers for Efficient Nitrate-to-Ammonia Electroreduction</a> </h4> <p class="text-ellipsis-2">Miao Wang, Shufan Li, Yuming Gu, Wenjie Xu, Huaizhu Wang, Jingjie Sun, Shuangming Chen, Zuoxiu Tie, Jing-Lin Zuo, Jing Ma, Jian Su, Zhong Jin</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study reports the design and synthesis of two polynuclear Co-cluster-based coordination polymers, NJUZ-2 and NJUZ-3, which possess distinct multicore metal-organic coordination framework structures and exhibit remarkable electrocatalytic nitrate reduction reaction activity and high selectivity for ammonia production. In H-type cells, they achieve an optimal Faradaic efficiency of approximately 98.5% and high long-term durability for selective NH3 production at a potential of -0.8 V (vs. RHE). In flow cells, a high NH3 yield rate of up to 3370.6 mmol h(-1) g(cat.)(-1) is observed at -0.5 V (vs. RHE) under an industrially relevant current density of 469.9 mA cm(-2). </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82988157/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82993688" class="text-dark hover-underline">Atomic-Layer IrO x Enabling Ligand Effect Boosts Water Oxidation Electrocatalysis</a> </h4> <p class="text-ellipsis-2">Heng Luo, Fangxu Lin, Qinghua Zhang, Dawei Wang, Kai Wang, Lin Gu, Mingchuan Luo, Fan Lv, Shaojun Guo</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In situ formation of an ultrathin IrOx layer is achieved using intermetallic IrVMn nanoparticles, which enables the ligand effect for enhanced OER electrocatalysis. The material shows excellent acidic OER performance with low overpotential and high mass activity, as well as good catalytic stability. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82993688/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83736406" class="text-dark hover-underline">Spatially Separated Cu/Ru on Ordered Mesoporous Carbon for Superior Ammonia Electrosynthesis from Nitrate over a Wide Potential Window</a> </h4> <p class="text-ellipsis-2">Jia-Jia Zhang, Yao-Yin Lou, Zhangxiong Wu, Xiaoyang Jerry Huang, Shi-Gang Sun</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A spatially separated dual-metal tandem electrocatalyst Ru/Cu@NOMC is designed for electrocatalytic nitrate reduction to ammonia. The catalyst shows high Faradaic efficiency and stability in a wide potential window, benefiting from the synergy between Cu and Ru sites and the confinement effect of the mesoporous framework. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83736406/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82923586" class="text-dark hover-underline">Thiourea as a Polar Hydrophobic Hydrogen-Bonding Motif: Application to Highly Durable All-Underwater Adhesion</a> </h4> <p class="text-ellipsis-2">Kohei Kikkawa, Yosuke Sumiya, Kazuki Okazawa, Kazunari Yoshizawa, Yoshimitsu Itoh, Takuzo Aida</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study shows that thiourea is a polar hydrophobic hydrogen-bonding motif that exchanges protons with water more slowly than urea and has a lower degree of hydration in an aqueous environment. Based on this finding, the researchers developed a durable all-underwater adhesive that can maintain a large adhesive force in seawater for more than one year. The adhesive exploits the hydrophobicity of thiourea to dehydrate its hydrogen-bonding networks, thereby overcoming the inhibitory effect of the hydration layer on adhesion. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82923586/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/84093140" class="text-dark hover-underline">ClickRNA-PROTAC for Tumor-Selective Protein Degradation and Targeted Cancer Therapy</a> </h4> <p class="text-ellipsis-2">Xucong Teng, Xuan Zhao, Yicong Dai, Xiangdong Zhang, Qiushuang Zhang, Yuncong Wu, Difei Hu, Jinghong Li</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study introduces the ClickRNA-PROTAC system, which expresses a fusion protein via mRNA transfection and recruits POI using click chemistry, capable of degrading various proteins. The system shows tumor specificity, selectively degrading POIs in tumor cells, and demonstrates strong efficacy in a mouse model of adrenocortical carcinoma. This approach offers advantages such as independence from endogenous E3 ligases, tumor specificity, and programmability, providing a new path for the development of PROTAC drugs. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/84093140/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/84045753" class="text-dark hover-underline">Molecular Design of Solid Polymer Electrolytes with Enthalpy-Entropy Manipulation for Li Metal Batteries with Aggressive Cathode Chemistry</a> </h4> <p class="text-ellipsis-2">Guo Ye, Lujun Zhu, Yue Ma, Mengxue He, Chenxi Zheng, Kaier Shen, Xufeng Hong, Zhitong Xiao, Yongfeng Jia, Peng Gao, Quanquan Pang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A novel enthalpy-entropy manipulation strategy is proposed to design high-performance solid polymer electrolytes (SPEs) for high-energy lithium metal batteries (LMBs). By introducing different carbonate segments into the polymer backbone, weak solvation and rapid diffusion of Li+ ions are achieved, while the migration of anions is restricted. This strategy provides a new perspective for the molecular design of SPEs. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/84045753/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83086746" class="text-dark hover-underline">Mechanochemical Fabrication of Full-Color Luminescent Materials from Aggregation-Induced Emission Prefluorophores for Information Storage and Encryption</a> </h4> <p class="text-ellipsis-2">Huilin Xie, Jingchun Wang, Zhenchen Lou, Lianrui Hu, Shinsuke Segawa, Xiaowo Kang, Weijun Wu, Zhi Luo, Ryan T. K. Kwok, Jacky W. Y. Lam, Jianquan Zhang, Ben Zhong Tang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper presents a method for synthesizing highly luminescent polymers via mechanochemistry, achieved by coupling AIE prefluorophores with generic polymers. The prefluorophores initially have weak fluorescence, but it is significantly enhanced after mechanical coupling, covering a broad spectrum from visible to near-infrared. This study demonstrates the potential of these materials in stimuli-responsive systems and provides a new paradigm for the field of AIE-based polymers. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83086746/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="modal fade" id="export-citation" tabindex="-1"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span>&times;</span></button> <h4 class="modal-title">导出引文 <b class="text-primary"></b></h4> </div> <div class="modal-body"> <div class="my-3 px-4 f16"> <form action="https://www.peeref.com/zh/works/citation/download" method="GET" target="_blank"> <div class="radio"> <label> <input type="radio" name="fileType" value="PlainText" checked> <strong>纯文本</strong> </label> </div> <div class="radio"> <label> <input type="radio" name="fileType" value="RIS"> <strong>RIS</strong> <span>- 导出格式兼容大多数主要的参考管理软件,如Endnote和Zotero</span> </label> </div> <div class="radio"> <label> <input type="radio" name="fileType" value="BibTeX"> <strong>BibTeX</strong> <span>- 导出格式兼容LaTeX</span> </label> </div> <input type="hidden" name="articleId" value="83158310"> <div class="mt-lg-4 text-center"> <button class="citation-download-btn btn btn-primary"> 导出 </button> </div> </form> </div> </div> </div> </div> </div> <div class="modal fade" id="share-paper" tabindex="-1"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span>&times;</span></button> <h4 class="modal-title">分享论文 <b class="text-primary"></b></h4> </div> <div class="modal-body"> <div class="my-4"> <div class="social-share"> <a class="social-share-item email" href="mailto:?subject=Hydrogen-Bonded Mesoporous Frameworks with Tunable Pore Sizes and Architectures from Nanocluster Assembly Units&amp;body=https://www.peeref.com/zh/works/83158310" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-email.svg" height="16"> </a> <a class="social-share-item linkedin" href="https://www.linkedin.com/shareArticle/?url=https://www.peeref.com/zh/works/83158310" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-linkedin.svg" height="16"> </a> <a class="social-share-item twitter" href="https://twitter.com/share?url=https://www.peeref.com/zh/works/83158310" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-twitter.svg" height="16"> </a> <a class="social-share-item wechat" href="javascipt:;" onclick="window.open('https://api.qrserver.com/v1/create-qr-code/?size=154x154&data=https://www.peeref.com/zh/works/83158310', 'newwindow', 'height=300, width=300')"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-wechat.svg" height="16"> </a> <a class="social-share-item facebook" href="https://www.facebook.com/sharer/sharer.php?u=https://www.peeref.com/zh/works/83158310" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-facebook.svg" height="16"> </a> </div> </div> </div> </div> </div> </div> <back-top-button></back-top-button> </main> <div class="container"> <div class="footer"> <div class="col-md-10"> <div class="d-flex flex-wrap" style="font-size: 15px;"> <a href="https://www.peeref.com/zh/webinars" class="mx-3 px-2"> 研讨会 </a> <a href="https://www.peeref.com/zh/posters" class="mx-3 px-2"> 海报 </a> <a href="https://www.peeref.com/zh/questions" class="mx-3 px-2"> 问题 </a> <a href="https://www.peeref.com/zh/hubs" class="mx-3 px-2"> 讨论圈 </a> <a href="https://www.peeref.com/zh/funding" class="mx-3 px-2"> 基金 </a> <a href="https://www.peeref.com/zh/journals" class="mx-3 px-2"> 期刊 </a> <a href="https://www.peeref.com/zh/works" class="mx-3 px-2"> 论文 </a> <a href="https://www.peeref.com/zh/connect" class="mx-3 px-2"> 科研社交 </a> <a href="https://www.peeref.com/zh/e-collections" class="mx-3 px-2"> 资讯集成 </a> <a href="https://www.peeref.com/zh/reviewer" class="mx-3 px-2"> 审稿人 </a> <a href="https://www.peeref.com/zh/about" class="mx-3 px-2"> 关于我们 </a> <a href="https://www.peeref.com/zh/about/faq" class="mx-3 px-2"> 常见问题 </a> <a href="https://www.peeref.com/zh/mobile-app" class="mx-3 px-2"> 移动App </a> <a href="https://www.peeref.com/zh/about/privacy" class="mx-3 px-2"> 隐私条款 </a> <a href="https://www.peeref.com/zh/about/terms-of-use" class="mx-3 px-2"> 使用条款 </a> </div> </div> <div class="col-md-2"> <div class="d-flex justify-content-end"> <div class="sns"> <a href="https://www.facebook.com/Peeref-113216326987528" target="_blank"> <i class="ivu-icon ivu-icon-logo-facebook"></i> </a> <a href="https://twitter.com/Peeref1" target="_blank"> <i class="ivu-icon ivu-icon-logo-twitter"></i> </a> </div> </div> </div> </div> <div class="copyright"> © Peeref 2019-2024. All rights reserved. </div> </div> </div> <script src="https://peeref-open.s3.amazonaws.com/js/manifest.67eafd9867e36d42d1cc.js"></script> <script src="https://peeref-open.s3.amazonaws.com/js/vendor.6fa15e83ed55bb851873.js"></script> <script src="https://peeref-open.s3.amazonaws.com/js/app.fed128cc2083a53c4af4.js"></script> <script> $(function() { $('#reading-btn').click(function() { const navHeight = $("#article-sticky-navbar").height(); const readingAreaTop = $("#collection").offset().top; const readingAreaHeight = readingAreaTop - navHeight - 30; $("html, body").animate( { scrollTop: readingAreaHeight }, 400 ); return false; }) }); </script> <script src="https://peeref-open.s3.amazonaws.com/vendor/MathJax-274/MathJax.js?config=default" async></script> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-152048790-1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-152048790-1'); </script> <script type="text/javascript" id="cookiebanner" src="https://peeref-open.s3.amazonaws.com/js/cookiebanner.min.js" data-position="bottom" data-cookie="_uc_" data-expires="Wed, 31 Dec 2025 00:00:00 GMT" data-font-size="15px" data-close-text="接受" data-close-precedes="false" data-close-style="border-radius: 5px; margin: 3px 15px; padding: 3px 10px; display: inline-block; font-weight: bold; background: rgb(245, 207, 71); color: rgb(16, 75, 125);" data-linkmsg="" data-moreinfo-decoration="underline" data-moreinfo="https://www.peeref.com/zh/about/privacy" data-bg="rgb(16, 75, 125)" data-link="rgb(255, 255, 255)" data-message="Peeref 使用 cookies 改善你的使用体验。请阅读 &lt;a&gt;隐私条款&lt;/a&gt; 获取更多信息。"> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10