CINXE.COM
Mia Villar Villarica - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Mia Villar Villarica - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="ofCvVJX05/GhPfgMXHnLFPgHxZyJgv55gscAacD79jEkKU5CtJPoW7zhYDAJ7GY68eToYCs9YOexWqvQQF2lIw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="mia villar villarica" /> <meta name="description" content="Mia Villar Villarica: 3 Following, 12 Research papers. Research interests: International Mangement, Publisher, and Electronics & Telecommunication Engineering." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15275,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277136914,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732399337000); window.Aedu.timeDifference = new Date().getTime() - 1732399337000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/MiaVillarVillarica" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica","photo":"https://0.academia-photos.com/171427082/65382602/53717990/s65_mia.villar_villarica.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":16153,"name":"International Mangement","url":"https://www.academia.edu/Documents/in/International_Mangement"},{"id":101626,"name":"Publisher","url":"https://www.academia.edu/Documents/in/Publisher"},{"id":6203,"name":"Electronics \u0026 Telecommunication Engineering","url":"https://www.academia.edu/Documents/in/Electronics_and_Telecommunication_Engineering"},{"id":2345,"name":"Wireless Communications","url":"https://www.academia.edu/Documents/in/Wireless_Communications"},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/MiaVillarVillarica","location":"/MiaVillarVillarica","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/MiaVillarVillarica","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-35098cef-2c5f-4374-b79a-1b6c40bc1bbc"></div> <div id="ProfileCheckPaperUpdate-react-component-35098cef-2c5f-4374-b79a-1b6c40bc1bbc"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Mia Villar Villarica" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/171427082/65382602/53717990/s200_mia.villar_villarica.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Mia Villar Villarica</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Mia" data-follow-user-id="171427082" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="171427082"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">0</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="171427082" href="https://www.academia.edu/Documents/in/International_Mangement"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/MiaVillarVillarica","location":"/MiaVillarVillarica","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/MiaVillarVillarica","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["International Mangement"]}" data-trace="false" data-dom-id="Pill-react-component-82946a20-5261-45d0-990f-1170d27f1555"></div> <div id="Pill-react-component-82946a20-5261-45d0-990f-1170d27f1555"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="171427082" href="https://www.academia.edu/Documents/in/Publisher"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Publisher"]}" data-trace="false" data-dom-id="Pill-react-component-c472e3d0-26c4-481d-b667-81b49aca0e52"></div> <div id="Pill-react-component-c472e3d0-26c4-481d-b667-81b49aca0e52"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="171427082" href="https://www.academia.edu/Documents/in/Electronics_and_Telecommunication_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Electronics \u0026 Telecommunication Engineering"]}" data-trace="false" data-dom-id="Pill-react-component-c78e6dbe-41f7-4146-9da3-46d59d048dfb"></div> <div id="Pill-react-component-c78e6dbe-41f7-4146-9da3-46d59d048dfb"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="171427082" href="https://www.academia.edu/Documents/in/Wireless_Communications"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Wireless Communications"]}" data-trace="false" data-dom-id="Pill-react-component-27ea1057-2abf-4b08-905a-56f117784099"></div> <div id="Pill-react-component-27ea1057-2abf-4b08-905a-56f117784099"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="171427082" href="https://www.academia.edu/Documents/in/Computer_Networks"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computer Networks"]}" data-trace="false" data-dom-id="Pill-react-component-39c44ef6-6f03-4691-8cff-61ab44af0e8f"></div> <div id="Pill-react-component-39c44ef6-6f03-4691-8cff-61ab44af0e8f"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Mia Villar Villarica</h3></div><div class="js-work-strip profile--work_container" data-work-id="90145146"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90145146/Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations"><img alt="Research paper thumbnail of Correlation Analysis between Sensors for Sensing Coffee Variations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/90145146/Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations">Correlation Analysis between Sensors for Sensing Coffee Variations</a></div><div class="wp-workCard_item"><span>2022 IEEE 18th International Colloquium on Signal Processing &amp; Applications (CSPA)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90145146"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90145146"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90145146; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90145146]").text(description); $(".js-view-count[data-work-id=90145146]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90145146; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90145146']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 90145146, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90145146]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90145146,"title":"Correlation Analysis between Sensors for Sensing Coffee Variations","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2022 IEEE 18th International Colloquium on Signal Processing \u0026amp; Applications (CSPA)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/90145146/Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations","translated_internal_url":"","created_at":"2022-11-06T18:47:52.951-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":100842,"name":"Electronic Nose","url":"https://www.academia.edu/Documents/in/Electronic_Nose"},{"id":192302,"name":"Aroma","url":"https://www.academia.edu/Documents/in/Aroma"}],"urls":[{"id":25633696,"url":"http://xplorestaging.ieee.org/ielx7/9781838/9781823/09781998.pdf?arnumber=9781998"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="90134431"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90134431/Classification_of_Coffee_Variety_using_Electronic_Nose"><img alt="Research paper thumbnail of Classification of Coffee Variety using Electronic Nose" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/90134431/Classification_of_Coffee_Variety_using_Electronic_Nose">Classification of Coffee Variety using Electronic Nose</a></div><div class="wp-workCard_item"><span>2022 IEEE 18th International Colloquium on Signal Processing &amp; Applications (CSPA)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90134431"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90134431"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90134431; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90134431]").text(description); $(".js-view-count[data-work-id=90134431]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90134431; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90134431']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 90134431, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90134431]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90134431,"title":"Classification of Coffee Variety using Electronic Nose","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2022 IEEE 18th International Colloquium on Signal Processing \u0026amp; Applications (CSPA)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/90134431/Classification_of_Coffee_Variety_using_Electronic_Nose","translated_internal_url":"","created_at":"2022-11-06T14:43:58.722-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Classification_of_Coffee_Variety_using_Electronic_Nose","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":100842,"name":"Electronic Nose","url":"https://www.academia.edu/Documents/in/Electronic_Nose"}],"urls":[{"id":25627900,"url":"http://xplorestaging.ieee.org/ielx7/9781838/9781823/09782056.pdf?arnumber=9782056"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430229"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430229/Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics"><img alt="Research paper thumbnail of Building Model for Crime Pattern Analysis Through Machine Learning Using Predictive Analytics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430229/Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics">Building Model for Crime Pattern Analysis Through Machine Learning Using Predictive Analytics</a></div><div class="wp-workCard_item"><span>International Journal of Science, Technology, Engineering and Mathematics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addres...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addressed and controlled. Machine learning algorithms as the fanciest technology to assist decision makers in policy making has proven its reliability in showing unseen patterns in crime. This research aims to examine the capability of trees and ensemble trees in classifying crime through model development. Experiments were done to enhance the capability of the ensembles in both classification and regression. Feature extraction like synthetic minority oversampling technique was applied in order to address the problem in the imbalanced data. Different metrics relevant to classification and regression were considered in evaluating the performance of each model used. With the use of different metrics, Gradient boosted tree was found to have better classification capability in crime dataset after outperforming decision tree and random forest in both classification and regression problem. Furthermo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430229"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430229"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430229; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430229]").text(description); $(".js-view-count[data-work-id=83430229]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430229; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430229']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430229, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430229]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430229,"title":"Building Model for Crime Pattern Analysis Through Machine Learning Using Predictive Analytics","translated_title":"","metadata":{"abstract":"Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addressed and controlled. Machine learning algorithms as the fanciest technology to assist decision makers in policy making has proven its reliability in showing unseen patterns in crime. This research aims to examine the capability of trees and ensemble trees in classifying crime through model development. Experiments were done to enhance the capability of the ensembles in both classification and regression. Feature extraction like synthetic minority oversampling technique was applied in order to address the problem in the imbalanced data. Different metrics relevant to classification and regression were considered in evaluating the performance of each model used. With the use of different metrics, Gradient boosted tree was found to have better classification capability in crime dataset after outperforming decision tree and random forest in both classification and regression problem. Furthermo...","publisher":"Institute of Industry and Academic Research Incorporated","publication_name":"International Journal of Science, Technology, Engineering and Mathematics"},"translated_abstract":"Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addressed and controlled. Machine learning algorithms as the fanciest technology to assist decision makers in policy making has proven its reliability in showing unseen patterns in crime. This research aims to examine the capability of trees and ensemble trees in classifying crime through model development. Experiments were done to enhance the capability of the ensembles in both classification and regression. Feature extraction like synthetic minority oversampling technique was applied in order to address the problem in the imbalanced data. Different metrics relevant to classification and regression were considered in evaluating the performance of each model used. With the use of different metrics, Gradient boosted tree was found to have better classification capability in crime dataset after outperforming decision tree and random forest in both classification and regression problem. Furthermo...","internal_url":"https://www.academia.edu/83430229/Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics","translated_internal_url":"","created_at":"2022-07-19T17:31:05.677-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430208"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430208/International_Science_Community_Association"><img alt="Research paper thumbnail of International Science Community Association" class="work-thumbnail" src="https://attachments.academia-assets.com/88774633/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430208/International_Science_Community_Association">International Science Community Association</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d0608fc7870fe7ba767f3a26a36c546" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88774633,"asset_id":83430208,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88774633/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430208"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430208"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430208; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430208]").text(description); $(".js-view-count[data-work-id=83430208]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430208; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430208']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430208, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d0608fc7870fe7ba767f3a26a36c546" } } $('.js-work-strip[data-work-id=83430208]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430208,"title":"International Science Community Association","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/83430208/International_Science_Community_Association","translated_internal_url":"","created_at":"2022-07-19T17:30:31.729-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88774633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774633/thumbnails/1.jpg","file_name":"1.ISCA-RJCS-2017-079.pdf","download_url":"https://www.academia.edu/attachments/88774633/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"International_Science_Community_Associat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774633/1.ISCA-RJCS-2017-079-libre.pdf?1658278870=\u0026response-content-disposition=attachment%3B+filename%3DInternational_Science_Community_Associat.pdf\u0026Expires=1732402937\u0026Signature=QL6r684mWUxjnV1zzQmsu3KdAc1AsPOaCOSoO8MIGpDSRPhzRe7Vfl1EX0NmtrBoEb~hmHOp3S6aGZcBm4tDG4qrqy~hmboxXg2Q4XspraPQdpDr0EiMKl-8vlcgn~KhCW0cT-AgRNH7cvaMBKEDYD4M7gAtxD1icZEqkwtLCvkLiZg1JUsgrTwhSj2RIqTsHBl3T9-p4gNSMz4mv5-tYHADtHfLyGV9DvjeyiGIypw2IM6AK3PoBJStz9qZDhl4xirBrijKOioD-a6qJDzLruzAOmREWPmP1fs0x2GE0jTJ3D8GKh3kvUwv4u9K7rK5meiujJNL30niBQNl03RovQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"International_Science_Community_Association","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":88774633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774633/thumbnails/1.jpg","file_name":"1.ISCA-RJCS-2017-079.pdf","download_url":"https://www.academia.edu/attachments/88774633/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"International_Science_Community_Associat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774633/1.ISCA-RJCS-2017-079-libre.pdf?1658278870=\u0026response-content-disposition=attachment%3B+filename%3DInternational_Science_Community_Associat.pdf\u0026Expires=1732402937\u0026Signature=QL6r684mWUxjnV1zzQmsu3KdAc1AsPOaCOSoO8MIGpDSRPhzRe7Vfl1EX0NmtrBoEb~hmHOp3S6aGZcBm4tDG4qrqy~hmboxXg2Q4XspraPQdpDr0EiMKl-8vlcgn~KhCW0cT-AgRNH7cvaMBKEDYD4M7gAtxD1icZEqkwtLCvkLiZg1JUsgrTwhSj2RIqTsHBl3T9-p4gNSMz4mv5-tYHADtHfLyGV9DvjeyiGIypw2IM6AK3PoBJStz9qZDhl4xirBrijKOioD-a6qJDzLruzAOmREWPmP1fs0x2GE0jTJ3D8GKh3kvUwv4u9K7rK5meiujJNL30niBQNl03RovQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1041,"name":"Forestry","url":"https://www.academia.edu/Documents/in/Forestry"},{"id":2549,"name":"Hydrology","url":"https://www.academia.edu/Documents/in/Hydrology"},{"id":7252,"name":"Silviculture","url":"https://www.academia.edu/Documents/in/Silviculture"},{"id":7653,"name":"Forest Ecology And Management","url":"https://www.academia.edu/Documents/in/Forest_Ecology_And_Management"},{"id":10225,"name":"Agriculture","url":"https://www.academia.edu/Documents/in/Agriculture"},{"id":17829,"name":"Forest Ecology","url":"https://www.academia.edu/Documents/in/Forest_Ecology"},{"id":21296,"name":"Non Timber Forest Products (NTFP)","url":"https://www.academia.edu/Documents/in/Non_Timber_Forest_Products_NTFP_"},{"id":108112,"name":"Tropical forest","url":"https://www.academia.edu/Documents/in/Tropical_forest"},{"id":140024,"name":"Wood science and technology","url":"https://www.academia.edu/Documents/in/Wood_science_and_technology"},{"id":932001,"name":"Remote Sensing and GIS applications in Forestry","url":"https://www.academia.edu/Documents/in/Remote_Sensing_and_GIS_applications_in_Forestry"},{"id":1459285,"name":"Eco-hydrology of Rivers","url":"https://www.academia.edu/Documents/in/Eco-hydrology_of_Rivers"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430191"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430191/Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons"><img alt="Research paper thumbnail of Analysis of Membership Function in the Implementation of Neuro-Fuzzy System for Prediction of Depressive Lexicons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430191/Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons">Analysis of Membership Function in the Implementation of Neuro-Fuzzy System for Prediction of Depressive Lexicons</a></div><div class="wp-workCard_item"><span>2021 4th International Conference on Data Science and Information Technology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The soft computing environment does not stop making predictions to save lives. Its calculations, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The soft computing environment does not stop making predictions to save lives. Its calculations, though not precise can still provide solutions to the complex scenarios of computational problems. Over the years, robustness and the accuracy of results became the remarkable challenge despite of the huge number of studies relating to it. In this case, the Neuro fuzzy system is one amongst the model proven to be used for prediction and has been applied to various fields of education, business, engineering and even in health. The Neuro fuzzy has its capability to adopt various strategies like the mix and match approach with different parameters involved during the experimentation. However, there is still a lack of support as to how this membership function could be able to produce a precise result that leads to different views towards soft computing. In this work, we gave emphasize on how the membership function works with NFS, which is essential in preparing data towards the prediction of depressive lexicons. Classifiers like Na茂ve Bayes, Simple Logistics, and Neuro fuzzy through the Multilayer Perceptron (MLP) of Weka tool have been used for the experimentation of the study. This study recommends to use the process of the analysis of membership function and carefully validate parameters from the first layer towards the third layer of the NFS since the strength of the membership function actively happens here.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430191"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430191"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430191; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430191]").text(description); $(".js-view-count[data-work-id=83430191]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430191; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430191']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430191, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430191]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430191,"title":"Analysis of Membership Function in the Implementation of Neuro-Fuzzy System for Prediction of Depressive Lexicons","translated_title":"","metadata":{"abstract":"The soft computing environment does not stop making predictions to save lives. Its calculations, though not precise can still provide solutions to the complex scenarios of computational problems. Over the years, robustness and the accuracy of results became the remarkable challenge despite of the huge number of studies relating to it. In this case, the Neuro fuzzy system is one amongst the model proven to be used for prediction and has been applied to various fields of education, business, engineering and even in health. The Neuro fuzzy has its capability to adopt various strategies like the mix and match approach with different parameters involved during the experimentation. However, there is still a lack of support as to how this membership function could be able to produce a precise result that leads to different views towards soft computing. In this work, we gave emphasize on how the membership function works with NFS, which is essential in preparing data towards the prediction of depressive lexicons. Classifiers like Na茂ve Bayes, Simple Logistics, and Neuro fuzzy through the Multilayer Perceptron (MLP) of Weka tool have been used for the experimentation of the study. This study recommends to use the process of the analysis of membership function and carefully validate parameters from the first layer towards the third layer of the NFS since the strength of the membership function actively happens here.","publisher":"ACM","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"2021 4th International Conference on Data Science and Information Technology"},"translated_abstract":"The soft computing environment does not stop making predictions to save lives. Its calculations, though not precise can still provide solutions to the complex scenarios of computational problems. Over the years, robustness and the accuracy of results became the remarkable challenge despite of the huge number of studies relating to it. In this case, the Neuro fuzzy system is one amongst the model proven to be used for prediction and has been applied to various fields of education, business, engineering and even in health. The Neuro fuzzy has its capability to adopt various strategies like the mix and match approach with different parameters involved during the experimentation. However, there is still a lack of support as to how this membership function could be able to produce a precise result that leads to different views towards soft computing. In this work, we gave emphasize on how the membership function works with NFS, which is essential in preparing data towards the prediction of depressive lexicons. Classifiers like Na茂ve Bayes, Simple Logistics, and Neuro fuzzy through the Multilayer Perceptron (MLP) of Weka tool have been used for the experimentation of the study. This study recommends to use the process of the analysis of membership function and carefully validate parameters from the first layer towards the third layer of the NFS since the strength of the membership function actively happens here.","internal_url":"https://www.academia.edu/83430191/Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons","translated_internal_url":"","created_at":"2022-07-19T17:30:04.995-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"}],"urls":[{"id":22301737,"url":"https://dl.acm.org/doi/pdf/10.1145/3478905.3478929"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430181"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430181/Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm"><img alt="Research paper thumbnail of Technical Analysis of Twitter Data in Preparation of Prediction using Multilayer Perceptron Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430181/Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm">Technical Analysis of Twitter Data in Preparation of Prediction using Multilayer Perceptron Algorithm</a></div><div class="wp-workCard_item"><span>2021 4th International Conference on Data Science and Information Technology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Social networking sites have been the partner of everyone today to express feelings and emotions,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Social networking sites have been the partner of everyone today to express feelings and emotions, especially that physical communication has been a bit prohibited caused by the pandemic. The platforms like Twitter, Facebook, etc., has been the choice to express words relating to stress, anxieties, and depressions to which the World Health Organization states that once not paid with enough attention may lead to mental health issues. A depression today stands out to be the leading problem known as mental health disorders that if not to anticipate earlier may also lead to this so called self-harming. In this regard, this study wants to illustrate the technical analysis of twitter data in preparation of prediction using the Multilayer Perceptron (MLP) in Weka algorithms to help the data mining community to dig knowledge from the stored historical data. The technical analysis has been made through the process of extraction, validation, and preparation of the model ready for interpretation and evaluation of predicted model. The legality of data has been permitted by twitter developer&#39;s account that permits the study to extract 1000 tweets and eventually validated 931 tweets necessary for exploration. Optimization was made by setting the epoch to 200 and by testing the eight attributes to 70:30 split of test. The initial result of 79.9141% was optimized to 82.0789% accuracy rate and found reliable based on the result of kappa statistics. However, the study still suggests to explore on varied parameters to increase the reliability of data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430181"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430181"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430181; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430181]").text(description); $(".js-view-count[data-work-id=83430181]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430181; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430181']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430181, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430181]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430181,"title":"Technical Analysis of Twitter Data in Preparation of Prediction using Multilayer Perceptron Algorithm","translated_title":"","metadata":{"abstract":"Social networking sites have been the partner of everyone today to express feelings and emotions, especially that physical communication has been a bit prohibited caused by the pandemic. The platforms like Twitter, Facebook, etc., has been the choice to express words relating to stress, anxieties, and depressions to which the World Health Organization states that once not paid with enough attention may lead to mental health issues. A depression today stands out to be the leading problem known as mental health disorders that if not to anticipate earlier may also lead to this so called self-harming. In this regard, this study wants to illustrate the technical analysis of twitter data in preparation of prediction using the Multilayer Perceptron (MLP) in Weka algorithms to help the data mining community to dig knowledge from the stored historical data. The technical analysis has been made through the process of extraction, validation, and preparation of the model ready for interpretation and evaluation of predicted model. The legality of data has been permitted by twitter developer\u0026#39;s account that permits the study to extract 1000 tweets and eventually validated 931 tweets necessary for exploration. Optimization was made by setting the epoch to 200 and by testing the eight attributes to 70:30 split of test. The initial result of 79.9141% was optimized to 82.0789% accuracy rate and found reliable based on the result of kappa statistics. However, the study still suggests to explore on varied parameters to increase the reliability of data.","publisher":"ACM","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"2021 4th International Conference on Data Science and Information Technology"},"translated_abstract":"Social networking sites have been the partner of everyone today to express feelings and emotions, especially that physical communication has been a bit prohibited caused by the pandemic. The platforms like Twitter, Facebook, etc., has been the choice to express words relating to stress, anxieties, and depressions to which the World Health Organization states that once not paid with enough attention may lead to mental health issues. A depression today stands out to be the leading problem known as mental health disorders that if not to anticipate earlier may also lead to this so called self-harming. In this regard, this study wants to illustrate the technical analysis of twitter data in preparation of prediction using the Multilayer Perceptron (MLP) in Weka algorithms to help the data mining community to dig knowledge from the stored historical data. The technical analysis has been made through the process of extraction, validation, and preparation of the model ready for interpretation and evaluation of predicted model. The legality of data has been permitted by twitter developer\u0026#39;s account that permits the study to extract 1000 tweets and eventually validated 931 tweets necessary for exploration. Optimization was made by setting the epoch to 200 and by testing the eight attributes to 70:30 split of test. The initial result of 79.9141% was optimized to 82.0789% accuracy rate and found reliable based on the result of kappa statistics. However, the study still suggests to explore on varied parameters to increase the reliability of data.","internal_url":"https://www.academia.edu/83430181/Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm","translated_internal_url":"","created_at":"2022-07-19T17:29:42.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":22301735,"url":"https://dl.acm.org/doi/pdf/10.1145/3478905.3478928"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430174"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430174/A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon"><img alt="Research paper thumbnail of A Study of E-Readiness Assessment: The Case of Two State Universities in Luzon" class="work-thumbnail" src="https://attachments.academia-assets.com/88774609/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430174/A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon">A Study of E-Readiness Assessment: The Case of Two State Universities in Luzon</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Research</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="006ade01167948e8337e077214baeeac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88774609,"asset_id":83430174,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88774609/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430174"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430174"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430174; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430174]").text(description); $(".js-view-count[data-work-id=83430174]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430174; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430174']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430174, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "006ade01167948e8337e077214baeeac" } } $('.js-work-strip[data-work-id=83430174]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430174,"title":"A Study of E-Readiness Assessment: The Case of Two State Universities in Luzon","translated_title":"","metadata":{"publisher":"International Journal Of Advanced Research","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Advanced Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83430174/A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon","translated_internal_url":"","created_at":"2022-07-19T17:29:20.681-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88774609,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774609/thumbnails/1.jpg","file_name":"155.pdf","download_url":"https://www.academia.edu/attachments/88774609/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Study_of_E_Readiness_Assessment_The_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774609/155-libre.pdf?1658278868=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_of_E_Readiness_Assessment_The_Ca.pdf\u0026Expires=1732402937\u0026Signature=dxVaR54U7slMOagm712WLiqXI5ek-0lpDW265rgKIIfPwz43Xk7EHohdjk5GnpnVx9Mggx~d19RudiFS50E05M-ZY8Rhvv3LSiLpqTimvORBy87aOrIQOcjOk2wNKtgv9xDAl-JOmPwXFiCigWEffm-xvWYcoNXibsIybkAyogzYWGonp~OVj90~xH-QTw0tgc5zINkjpayrZopSBRPmn95UKLvwtCZQU0usuF5iNyEpVbsKgbukQuNdedOxFyY5LNE6wlbgZMqyt~SGCJPQpRO9JoyOqyidN4Ishg3LqLr1A3tT6nrHDRRDC-4r694EvZ1MLbA0SfGCiXCzIrUPlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":88774609,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774609/thumbnails/1.jpg","file_name":"155.pdf","download_url":"https://www.academia.edu/attachments/88774609/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Study_of_E_Readiness_Assessment_The_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774609/155-libre.pdf?1658278868=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_of_E_Readiness_Assessment_The_Ca.pdf\u0026Expires=1732402937\u0026Signature=dxVaR54U7slMOagm712WLiqXI5ek-0lpDW265rgKIIfPwz43Xk7EHohdjk5GnpnVx9Mggx~d19RudiFS50E05M-ZY8Rhvv3LSiLpqTimvORBy87aOrIQOcjOk2wNKtgv9xDAl-JOmPwXFiCigWEffm-xvWYcoNXibsIybkAyogzYWGonp~OVj90~xH-QTw0tgc5zINkjpayrZopSBRPmn95UKLvwtCZQU0usuF5iNyEpVbsKgbukQuNdedOxFyY5LNE6wlbgZMqyt~SGCJPQpRO9JoyOqyidN4Ishg3LqLr1A3tT6nrHDRRDC-4r694EvZ1MLbA0SfGCiXCzIrUPlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"},{"id":492767,"name":"Approximate Reasoning","url":"https://www.academia.edu/Documents/in/Approximate_Reasoning"},{"id":555965,"name":"Advanced","url":"https://www.academia.edu/Documents/in/Advanced"},{"id":1193280,"name":"Elearning","url":"https://www.academia.edu/Documents/in/Elearning"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430165/Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development"><img alt="Research paper thumbnail of Intelligent Investigation on Crime Incident Reports in the Province of Laguna through Predictive Model Development" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430165/Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development">Intelligent Investigation on Crime Incident Reports in the Province of Laguna through Predictive Model Development</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Trends in Computer Science and Engineering</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the past years, crime becomes one of the main concerns in the Philippines for it affects drast...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the past years, crime becomes one of the main concerns in the Philippines for it affects drastically in the economic growth of the country. Awareness was one of the key factors that a police officer must possessed to effectively reduced crime in particular location. Many criminologists study on the number or occurrence of a crime to resolve the problem, however, number vagueness and possible source are often encountered that compromises the possible real effects or pattern. Machine learning is well-known to produce new knowledge and discover hidden pattern intelligently in particular database which can be used to produce data-driven reasoning or policy recommendation. The key objective of this research is to develop a predictive model in investigating crime records in the province of Laguna. Following the famous concept of knowledge discovery in databases, the researchers found out that decision tree algorithm is the best machine learning algorithm in classifying crime occurrence. Furthermore, date, time and place have a significant correlation in crime occurrence. Also shown in this paper, that the bigger district in the province of Laguna is more vulnerable in different crime.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430165]").text(description); $(".js-view-count[data-work-id=83430165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430165, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430165,"title":"Intelligent Investigation on Crime Incident Reports in the Province of Laguna through Predictive Model Development","translated_title":"","metadata":{"abstract":"In the past years, crime becomes one of the main concerns in the Philippines for it affects drastically in the economic growth of the country. Awareness was one of the key factors that a police officer must possessed to effectively reduced crime in particular location. Many criminologists study on the number or occurrence of a crime to resolve the problem, however, number vagueness and possible source are often encountered that compromises the possible real effects or pattern. Machine learning is well-known to produce new knowledge and discover hidden pattern intelligently in particular database which can be used to produce data-driven reasoning or policy recommendation. The key objective of this research is to develop a predictive model in investigating crime records in the province of Laguna. Following the famous concept of knowledge discovery in databases, the researchers found out that decision tree algorithm is the best machine learning algorithm in classifying crime occurrence. Furthermore, date, time and place have a significant correlation in crime occurrence. Also shown in this paper, that the bigger district in the province of Laguna is more vulnerable in different crime.","publisher":"The World Academy of Research in Science and Engineering","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Advanced Trends in Computer Science and Engineering"},"translated_abstract":"In the past years, crime becomes one of the main concerns in the Philippines for it affects drastically in the economic growth of the country. Awareness was one of the key factors that a police officer must possessed to effectively reduced crime in particular location. Many criminologists study on the number or occurrence of a crime to resolve the problem, however, number vagueness and possible source are often encountered that compromises the possible real effects or pattern. Machine learning is well-known to produce new knowledge and discover hidden pattern intelligently in particular database which can be used to produce data-driven reasoning or policy recommendation. The key objective of this research is to develop a predictive model in investigating crime records in the province of Laguna. Following the famous concept of knowledge discovery in databases, the researchers found out that decision tree algorithm is the best machine learning algorithm in classifying crime occurrence. Furthermore, date, time and place have a significant correlation in crime occurrence. Also shown in this paper, that the bigger district in the province of Laguna is more vulnerable in different crime.","internal_url":"https://www.academia.edu/83430165/Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development","translated_internal_url":"","created_at":"2022-07-19T17:29:05.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430151"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430151/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System"><img alt="Research paper thumbnail of The Use of Data Mining to Model Personalized Learning Management System" class="work-thumbnail" src="https://attachments.academia-assets.com/88774594/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430151/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System">The Use of Data Mining to Model Personalized Learning Management System</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Research</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c10ff601fc3c3143a27c1952a8871a59" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88774594,"asset_id":83430151,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88774594/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430151"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430151"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430151; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430151]").text(description); $(".js-view-count[data-work-id=83430151]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430151; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430151']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430151, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c10ff601fc3c3143a27c1952a8871a59" } } $('.js-work-strip[data-work-id=83430151]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430151,"title":"The Use of Data Mining to Model Personalized Learning Management System","translated_title":"","metadata":{"publisher":"International Journal Of Advanced Research","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Advanced Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83430151/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_internal_url":"","created_at":"2022-07-19T17:28:50.402-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88774594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774594/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/88774594/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774594/463_IJAR-26100-libre.pdf?1658278866=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=eCa8swXYofT79voRsH96P4miU3DNIDRxlsM3iFcoY1iSKU1JcGzdo6GqF3YT1GAXMb9uSo1XJxQogbXDZGUQ82mCp8w5fuVAjOP3AZg5Rs71MvxaTjlrpDjYi4ZWRASQY8latJCvfB2fG4uYziKI9lT44~VRjxEixckqqCqhkBvlMUW5i7aoPQwlvebXwmr5Ap2I7f3Z0x0xdEp8o78NNx2F2V2Qgaw0sE883ykYs4peZw5kNsAHi9q-YBN8xlfg5ssgxhji8gIvSHApsVX8LFcO1nQMFh0VSplXNqy8Sz8wPkEzNSIj1qsHEACZ4vCEVcWo3~7WZjvLFIC-yl7A2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":88774594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774594/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/88774594/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774594/463_IJAR-26100-libre.pdf?1658278866=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=eCa8swXYofT79voRsH96P4miU3DNIDRxlsM3iFcoY1iSKU1JcGzdo6GqF3YT1GAXMb9uSo1XJxQogbXDZGUQ82mCp8w5fuVAjOP3AZg5Rs71MvxaTjlrpDjYi4ZWRASQY8latJCvfB2fG4uYziKI9lT44~VRjxEixckqqCqhkBvlMUW5i7aoPQwlvebXwmr5Ap2I7f3Z0x0xdEp8o78NNx2F2V2Qgaw0sE883ykYs4peZw5kNsAHi9q-YBN8xlfg5ssgxhji8gIvSHApsVX8LFcO1nQMFh0VSplXNqy8Sz8wPkEzNSIj1qsHEACZ4vCEVcWo3~7WZjvLFIC-yl7A2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"},{"id":23995,"name":"Educational Data Mining","url":"https://www.academia.edu/Documents/in/Educational_Data_Mining"},{"id":492767,"name":"Approximate Reasoning","url":"https://www.academia.edu/Documents/in/Approximate_Reasoning"},{"id":555965,"name":"Advanced","url":"https://www.academia.edu/Documents/in/Advanced"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77178583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77178583/Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir"><img alt="Research paper thumbnail of Pattern Extraction of Water Quality Prediction Using Machine Learning Algorithms of Water Reservoir" class="work-thumbnail" src="https://attachments.academia-assets.com/84618241/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77178583/Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir">Pattern Extraction of Water Quality Prediction Using Machine Learning Algorithms of Water Reservoir</a></div><div class="wp-workCard_item"><span>International Journal of Mechanical Engineering and Robotics Research</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4af0fa932c16af5324154e228282fb22" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84618241,"asset_id":77178583,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84618241/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77178583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77178583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77178583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77178583]").text(description); $(".js-view-count[data-work-id=77178583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77178583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77178583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77178583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4af0fa932c16af5324154e228282fb22" } } $('.js-work-strip[data-work-id=77178583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77178583,"title":"Pattern Extraction of Water Quality Prediction Using Machine Learning Algorithms of Water Reservoir","translated_title":"","metadata":{"publisher":"EJournal Publishing","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Mechanical Engineering and Robotics Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77178583/Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir","translated_internal_url":"","created_at":"2022-04-21T06:00:33.012-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84618241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84618241/thumbnails/1.jpg","file_name":"20190923043755240.pdf","download_url":"https://www.academia.edu/attachments/84618241/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pattern_Extraction_of_Water_Quality_Pred.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84618241/20190923043755240-libre.pdf?1650546863=\u0026response-content-disposition=attachment%3B+filename%3DPattern_Extraction_of_Water_Quality_Pred.pdf\u0026Expires=1732402937\u0026Signature=FuJnVCNN77hyxfz3EesC5i3pUJpdEULjZg8XrcqeOee0Ve~drlGWr8nSS3o7k6Ho2P9HlCAGlrMiT9Wm5DYf~g5HRkD1HnHJN~NptwGEGQvS54uRABcNINU3GDWV0MHNbgRl2yoQ71ZNVLyRNaZiBb6FUIaK3jLhrL9vvKagsfRxKyyOYg6M-RT0JfRW0JAT1yMLpVtXax24LjR~9Aphoq9sDttxMD96qwpEtMGAuBYV3HhpirgAM0rkPkleLj2~ZO2VusQAbZjxp9qk8HlO65CpuK2BDO3w7haGRM4JDKrU0yDme29GItqkmQSJMC9iEeQAHYIX8giqntZKpGsceQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":84618241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84618241/thumbnails/1.jpg","file_name":"20190923043755240.pdf","download_url":"https://www.academia.edu/attachments/84618241/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pattern_Extraction_of_Water_Quality_Pred.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84618241/20190923043755240-libre.pdf?1650546863=\u0026response-content-disposition=attachment%3B+filename%3DPattern_Extraction_of_Water_Quality_Pred.pdf\u0026Expires=1732402937\u0026Signature=FuJnVCNN77hyxfz3EesC5i3pUJpdEULjZg8XrcqeOee0Ve~drlGWr8nSS3o7k6Ho2P9HlCAGlrMiT9Wm5DYf~g5HRkD1HnHJN~NptwGEGQvS54uRABcNINU3GDWV0MHNbgRl2yoQ71ZNVLyRNaZiBb6FUIaK3jLhrL9vvKagsfRxKyyOYg6M-RT0JfRW0JAT1yMLpVtXax24LjR~9Aphoq9sDttxMD96qwpEtMGAuBYV3HhpirgAM0rkPkleLj2~ZO2VusQAbZjxp9qk8HlO65CpuK2BDO3w7haGRM4JDKrU0yDme29GItqkmQSJMC9iEeQAHYIX8giqntZKpGsceQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84618240,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84618240/thumbnails/1.jpg","file_name":"20190923043755240.pdf","download_url":"https://www.academia.edu/attachments/84618240/download_file","bulk_download_file_name":"Pattern_Extraction_of_Water_Quality_Pred.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84618240/20190923043755240-libre.pdf?1650546865=\u0026response-content-disposition=attachment%3B+filename%3DPattern_Extraction_of_Water_Quality_Pred.pdf\u0026Expires=1732402937\u0026Signature=FnsPewMvy5VMcW7vet8rQwoBq0aE~grvso38PXu4EFJ8RnvZ~93zyPPk49gwGJJ~84~8gRJ1acusWNobelkMMTzs4L7n0AonHpIQvLMaGkI~vT6CYZMxK9uE6gAeE9PUCRz3vPnK1NRNcyOL7rZx5gI8sJgsNhjLBdK9VvkY8r0yRXmWotKamksAQP5Fnf9KInrCQF2xwT6XagxmjXzv-32rdbrBhwsJtluijTToKh7HG0ELDVnIkmxSSiYvkvQqLcw7l07GXBIV~IUXBVxkgKokNE5sLn9-fN2~DtERQdBdYsSS8dnCDJ0qMFn3z34N3Snjzixuew94IH~CPs69Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":19750166,"url":"http://www.ijmerr.com/uploadfile/2019/0923/20190923043755240.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73693490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73693490/E_Learning_Adapting_to_Rapid_Pedagogical_Changes"><img alt="Research paper thumbnail of E-Learning: Adapting to Rapid Pedagogical Changes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/73693490/E_Learning_Adapting_to_Rapid_Pedagogical_Changes">E-Learning: Adapting to Rapid Pedagogical Changes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A model for the mathematical description of diffusion process is presented through this work and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A model for the mathematical description of diffusion process is presented through this work and an attempt is also made for the applicability of Green?s function method for solving the one dimensional diffusion equation within the desired limits. From this process the required solution to this diffusion equation by considering the initial condition t = 0 will be obtained. This equation describes the rate of change of concentrations of substances to its own lattice or may be in different substances with a constant diffusion coefficient. At last a computational approach will also be used for getting the numerical solutions. While solving the equation we throughout consider t = 0, so that the result may also be applicable in an isothermal diffusion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73693490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73693490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73693490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73693490]").text(description); $(".js-view-count[data-work-id=73693490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73693490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73693490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73693490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73693490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73693490,"title":"E-Learning: Adapting to Rapid Pedagogical Changes","translated_title":"","metadata":{"abstract":"A model for the mathematical description of diffusion process is presented through this work and an attempt is also made for the applicability of Green?s function method for solving the one dimensional diffusion equation within the desired limits. From this process the required solution to this diffusion equation by considering the initial condition t = 0 will be obtained. This equation describes the rate of change of concentrations of substances to its own lattice or may be in different substances with a constant diffusion coefficient. At last a computational approach will also be used for getting the numerical solutions. While solving the equation we throughout consider t = 0, so that the result may also be applicable in an isothermal diffusion.","publisher":"Zenodo","publication_date":{"day":15,"month":4,"year":2019,"errors":{}}},"translated_abstract":"A model for the mathematical description of diffusion process is presented through this work and an attempt is also made for the applicability of Green?s function method for solving the one dimensional diffusion equation within the desired limits. From this process the required solution to this diffusion equation by considering the initial condition t = 0 will be obtained. This equation describes the rate of change of concentrations of substances to its own lattice or may be in different substances with a constant diffusion coefficient. At last a computational approach will also be used for getting the numerical solutions. While solving the equation we throughout consider t = 0, so that the result may also be applicable in an isothermal diffusion.","internal_url":"https://www.academia.edu/73693490/E_Learning_Adapting_to_Rapid_Pedagogical_Changes","translated_internal_url":"","created_at":"2022-03-13T17:12:41.372-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":37874469,"work_id":73693490,"tagging_user_id":171427082,"tagged_user_id":67280165,"co_author_invite_id":null,"email":"b***a@unp.edu.ph","display_order":0,"name":"Bryan Irvin Lamarca","title":"E-Learning: Adapting to Rapid Pedagogical Changes"},{"id":37874470,"work_id":73693490,"tagging_user_id":171427082,"tagged_user_id":39246530,"co_author_invite_id":null,"email":"j***r@gmail.com","display_order":4194304,"name":"IJAR Indexing","title":"E-Learning: Adapting to Rapid Pedagogical Changes"}],"downloadable_attachments":[],"slug":"E_Learning_Adapting_to_Rapid_Pedagogical_Changes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56405948"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56405948/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System"><img alt="Research paper thumbnail of The Use of Data Mining to Model Personalized Learning Management System" class="work-thumbnail" src="https://attachments.academia-assets.com/71808707/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56405948/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System">The Use of Data Mining to Model Personalized Learning Management System</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Research (IJAR)</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Licensure Examination performance is a growing concern of most of the educational institution bec...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Licensure Examination performance is a growing concern of most of the educational institution because it is one of the determinants of quality education and validates high quality instruction. Educational institution is focused on monitoring and improving the Licensure Examination performance particularly in Teacher Education Institution (TEI). The study intends to offer a possible solution to most TEIs apprehensions regarding LET performance by providing the students of Teacher Education a student support service in the form of a personalized Learning Management System with performance prediction and recommendation capability. This can be developed through drawing data model using several data mining techniques and tools. Previous literature suggested using data mining to classify students, predict student performance, improve student retention, enhanced student achievement and assess complex students? behavior to name a few. This research project will provide the groundwork for th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3a95fb29d781d385ce8bbc2070199342" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":71808707,"asset_id":56405948,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/71808707/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56405948"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56405948"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56405948; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56405948]").text(description); $(".js-view-count[data-work-id=56405948]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56405948; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56405948']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56405948, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3a95fb29d781d385ce8bbc2070199342" } } $('.js-work-strip[data-work-id=56405948]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56405948,"title":"The Use of Data Mining to Model Personalized Learning Management System","translated_title":"","metadata":{"abstract":"Licensure Examination performance is a growing concern of most of the educational institution because it is one of the determinants of quality education and validates high quality instruction. Educational institution is focused on monitoring and improving the Licensure Examination performance particularly in Teacher Education Institution (TEI). The study intends to offer a possible solution to most TEIs apprehensions regarding LET performance by providing the students of Teacher Education a student support service in the form of a personalized Learning Management System with performance prediction and recommendation capability. This can be developed through drawing data model using several data mining techniques and tools. Previous literature suggested using data mining to classify students, predict student performance, improve student retention, enhanced student achievement and assess complex students? behavior to name a few. This research project will provide the groundwork for th...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Advanced Research (IJAR)"},"translated_abstract":"Licensure Examination performance is a growing concern of most of the educational institution because it is one of the determinants of quality education and validates high quality instruction. Educational institution is focused on monitoring and improving the Licensure Examination performance particularly in Teacher Education Institution (TEI). The study intends to offer a possible solution to most TEIs apprehensions regarding LET performance by providing the students of Teacher Education a student support service in the form of a personalized Learning Management System with performance prediction and recommendation capability. This can be developed through drawing data model using several data mining techniques and tools. Previous literature suggested using data mining to classify students, predict student performance, improve student retention, enhanced student achievement and assess complex students? behavior to name a few. This research project will provide the groundwork for th...","internal_url":"https://www.academia.edu/56405948/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_internal_url":"","created_at":"2021-10-07T17:22:31.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71808707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71808707/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/71808707/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71808707/463_IJAR-26100-libre.pdf?1633659423=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=NABI27JGU~vv0P1Vug~3OleMLkEUPsqtdO5l-r2lc7YGSr-86zQGZqPV5FOIPHry5fX6~Xpb6Op7GqJbHXxWkM1PVbTOYeTcbHumywBJc5m8zlPdnYBKK98nBjX02ASZluiXUXPQ7NBXWxdLbSVDrYtMzQyACM7NIYWIGVzpIclrernCBHAJbL5WCK9esN6vPulvLquOMyknx0K6GaI0~dU-0L9P6CazoCadWZILXa3Rw4cNDfxhhuACEQpq0iqKX5JnAVaAgvu~WDqDdBAO2MR~9qj3P682jwCST2M7c95rMSoVx1VMZ4QafzUBwuYfVvysZbyeJ5CA9OOUykTEbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":71808707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71808707/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/71808707/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71808707/463_IJAR-26100-libre.pdf?1633659423=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=NABI27JGU~vv0P1Vug~3OleMLkEUPsqtdO5l-r2lc7YGSr-86zQGZqPV5FOIPHry5fX6~Xpb6Op7GqJbHXxWkM1PVbTOYeTcbHumywBJc5m8zlPdnYBKK98nBjX02ASZluiXUXPQ7NBXWxdLbSVDrYtMzQyACM7NIYWIGVzpIclrernCBHAJbL5WCK9esN6vPulvLquOMyknx0K6GaI0~dU-0L9P6CazoCadWZILXa3Rw4cNDfxhhuACEQpq0iqKX5JnAVaAgvu~WDqDdBAO2MR~9qj3P682jwCST2M7c95rMSoVx1VMZ4QafzUBwuYfVvysZbyeJ5CA9OOUykTEbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"},{"id":23995,"name":"Educational Data Mining","url":"https://www.academia.edu/Documents/in/Educational_Data_Mining"},{"id":555965,"name":"Advanced","url":"https://www.academia.edu/Documents/in/Advanced"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12355708" id="papers"><div class="js-work-strip profile--work_container" data-work-id="90145146"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90145146/Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations"><img alt="Research paper thumbnail of Correlation Analysis between Sensors for Sensing Coffee Variations" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/90145146/Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations">Correlation Analysis between Sensors for Sensing Coffee Variations</a></div><div class="wp-workCard_item"><span>2022 IEEE 18th International Colloquium on Signal Processing &amp; Applications (CSPA)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90145146"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90145146"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90145146; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90145146]").text(description); $(".js-view-count[data-work-id=90145146]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90145146; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90145146']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 90145146, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90145146]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90145146,"title":"Correlation Analysis between Sensors for Sensing Coffee Variations","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2022 IEEE 18th International Colloquium on Signal Processing \u0026amp; Applications (CSPA)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/90145146/Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations","translated_internal_url":"","created_at":"2022-11-06T18:47:52.951-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Correlation_Analysis_between_Sensors_for_Sensing_Coffee_Variations","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":100842,"name":"Electronic Nose","url":"https://www.academia.edu/Documents/in/Electronic_Nose"},{"id":192302,"name":"Aroma","url":"https://www.academia.edu/Documents/in/Aroma"}],"urls":[{"id":25633696,"url":"http://xplorestaging.ieee.org/ielx7/9781838/9781823/09781998.pdf?arnumber=9781998"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="90134431"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/90134431/Classification_of_Coffee_Variety_using_Electronic_Nose"><img alt="Research paper thumbnail of Classification of Coffee Variety using Electronic Nose" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/90134431/Classification_of_Coffee_Variety_using_Electronic_Nose">Classification of Coffee Variety using Electronic Nose</a></div><div class="wp-workCard_item"><span>2022 IEEE 18th International Colloquium on Signal Processing &amp; Applications (CSPA)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="90134431"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="90134431"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 90134431; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=90134431]").text(description); $(".js-view-count[data-work-id=90134431]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 90134431; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='90134431']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 90134431, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=90134431]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":90134431,"title":"Classification of Coffee Variety using Electronic Nose","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2022 IEEE 18th International Colloquium on Signal Processing \u0026amp; Applications (CSPA)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/90134431/Classification_of_Coffee_Variety_using_Electronic_Nose","translated_internal_url":"","created_at":"2022-11-06T14:43:58.722-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Classification_of_Coffee_Variety_using_Electronic_Nose","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":100842,"name":"Electronic Nose","url":"https://www.academia.edu/Documents/in/Electronic_Nose"}],"urls":[{"id":25627900,"url":"http://xplorestaging.ieee.org/ielx7/9781838/9781823/09782056.pdf?arnumber=9782056"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430229"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430229/Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics"><img alt="Research paper thumbnail of Building Model for Crime Pattern Analysis Through Machine Learning Using Predictive Analytics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430229/Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics">Building Model for Crime Pattern Analysis Through Machine Learning Using Predictive Analytics</a></div><div class="wp-workCard_item"><span>International Journal of Science, Technology, Engineering and Mathematics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addres...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addressed and controlled. Machine learning algorithms as the fanciest technology to assist decision makers in policy making has proven its reliability in showing unseen patterns in crime. This research aims to examine the capability of trees and ensemble trees in classifying crime through model development. Experiments were done to enhance the capability of the ensembles in both classification and regression. Feature extraction like synthetic minority oversampling technique was applied in order to address the problem in the imbalanced data. Different metrics relevant to classification and regression were considered in evaluating the performance of each model used. With the use of different metrics, Gradient boosted tree was found to have better classification capability in crime dataset after outperforming decision tree and random forest in both classification and regression problem. Furthermo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430229"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430229"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430229; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430229]").text(description); $(".js-view-count[data-work-id=83430229]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430229; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430229']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430229, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430229]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430229,"title":"Building Model for Crime Pattern Analysis Through Machine Learning Using Predictive Analytics","translated_title":"","metadata":{"abstract":"Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addressed and controlled. Machine learning algorithms as the fanciest technology to assist decision makers in policy making has proven its reliability in showing unseen patterns in crime. This research aims to examine the capability of trees and ensemble trees in classifying crime through model development. Experiments were done to enhance the capability of the ensembles in both classification and regression. Feature extraction like synthetic minority oversampling technique was applied in order to address the problem in the imbalanced data. Different metrics relevant to classification and regression were considered in evaluating the performance of each model used. With the use of different metrics, Gradient boosted tree was found to have better classification capability in crime dataset after outperforming decision tree and random forest in both classification and regression problem. Furthermo...","publisher":"Institute of Industry and Academic Research Incorporated","publication_name":"International Journal of Science, Technology, Engineering and Mathematics"},"translated_abstract":"Crime has a big impact in both the human lives and the society鈥檚 growth, which needs to be addressed and controlled. Machine learning algorithms as the fanciest technology to assist decision makers in policy making has proven its reliability in showing unseen patterns in crime. This research aims to examine the capability of trees and ensemble trees in classifying crime through model development. Experiments were done to enhance the capability of the ensembles in both classification and regression. Feature extraction like synthetic minority oversampling technique was applied in order to address the problem in the imbalanced data. Different metrics relevant to classification and regression were considered in evaluating the performance of each model used. With the use of different metrics, Gradient boosted tree was found to have better classification capability in crime dataset after outperforming decision tree and random forest in both classification and regression problem. Furthermo...","internal_url":"https://www.academia.edu/83430229/Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics","translated_internal_url":"","created_at":"2022-07-19T17:31:05.677-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Building_Model_for_Crime_Pattern_Analysis_Through_Machine_Learning_Using_Predictive_Analytics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430208"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430208/International_Science_Community_Association"><img alt="Research paper thumbnail of International Science Community Association" class="work-thumbnail" src="https://attachments.academia-assets.com/88774633/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430208/International_Science_Community_Association">International Science Community Association</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d0608fc7870fe7ba767f3a26a36c546" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88774633,"asset_id":83430208,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88774633/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430208"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430208"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430208; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430208]").text(description); $(".js-view-count[data-work-id=83430208]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430208; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430208']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430208, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d0608fc7870fe7ba767f3a26a36c546" } } $('.js-work-strip[data-work-id=83430208]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430208,"title":"International Science Community Association","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/83430208/International_Science_Community_Association","translated_internal_url":"","created_at":"2022-07-19T17:30:31.729-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88774633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774633/thumbnails/1.jpg","file_name":"1.ISCA-RJCS-2017-079.pdf","download_url":"https://www.academia.edu/attachments/88774633/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"International_Science_Community_Associat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774633/1.ISCA-RJCS-2017-079-libre.pdf?1658278870=\u0026response-content-disposition=attachment%3B+filename%3DInternational_Science_Community_Associat.pdf\u0026Expires=1732402937\u0026Signature=QL6r684mWUxjnV1zzQmsu3KdAc1AsPOaCOSoO8MIGpDSRPhzRe7Vfl1EX0NmtrBoEb~hmHOp3S6aGZcBm4tDG4qrqy~hmboxXg2Q4XspraPQdpDr0EiMKl-8vlcgn~KhCW0cT-AgRNH7cvaMBKEDYD4M7gAtxD1icZEqkwtLCvkLiZg1JUsgrTwhSj2RIqTsHBl3T9-p4gNSMz4mv5-tYHADtHfLyGV9DvjeyiGIypw2IM6AK3PoBJStz9qZDhl4xirBrijKOioD-a6qJDzLruzAOmREWPmP1fs0x2GE0jTJ3D8GKh3kvUwv4u9K7rK5meiujJNL30niBQNl03RovQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"International_Science_Community_Association","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":88774633,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774633/thumbnails/1.jpg","file_name":"1.ISCA-RJCS-2017-079.pdf","download_url":"https://www.academia.edu/attachments/88774633/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"International_Science_Community_Associat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774633/1.ISCA-RJCS-2017-079-libre.pdf?1658278870=\u0026response-content-disposition=attachment%3B+filename%3DInternational_Science_Community_Associat.pdf\u0026Expires=1732402937\u0026Signature=QL6r684mWUxjnV1zzQmsu3KdAc1AsPOaCOSoO8MIGpDSRPhzRe7Vfl1EX0NmtrBoEb~hmHOp3S6aGZcBm4tDG4qrqy~hmboxXg2Q4XspraPQdpDr0EiMKl-8vlcgn~KhCW0cT-AgRNH7cvaMBKEDYD4M7gAtxD1icZEqkwtLCvkLiZg1JUsgrTwhSj2RIqTsHBl3T9-p4gNSMz4mv5-tYHADtHfLyGV9DvjeyiGIypw2IM6AK3PoBJStz9qZDhl4xirBrijKOioD-a6qJDzLruzAOmREWPmP1fs0x2GE0jTJ3D8GKh3kvUwv4u9K7rK5meiujJNL30niBQNl03RovQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":1041,"name":"Forestry","url":"https://www.academia.edu/Documents/in/Forestry"},{"id":2549,"name":"Hydrology","url":"https://www.academia.edu/Documents/in/Hydrology"},{"id":7252,"name":"Silviculture","url":"https://www.academia.edu/Documents/in/Silviculture"},{"id":7653,"name":"Forest Ecology And Management","url":"https://www.academia.edu/Documents/in/Forest_Ecology_And_Management"},{"id":10225,"name":"Agriculture","url":"https://www.academia.edu/Documents/in/Agriculture"},{"id":17829,"name":"Forest Ecology","url":"https://www.academia.edu/Documents/in/Forest_Ecology"},{"id":21296,"name":"Non Timber Forest Products (NTFP)","url":"https://www.academia.edu/Documents/in/Non_Timber_Forest_Products_NTFP_"},{"id":108112,"name":"Tropical forest","url":"https://www.academia.edu/Documents/in/Tropical_forest"},{"id":140024,"name":"Wood science and technology","url":"https://www.academia.edu/Documents/in/Wood_science_and_technology"},{"id":932001,"name":"Remote Sensing and GIS applications in Forestry","url":"https://www.academia.edu/Documents/in/Remote_Sensing_and_GIS_applications_in_Forestry"},{"id":1459285,"name":"Eco-hydrology of Rivers","url":"https://www.academia.edu/Documents/in/Eco-hydrology_of_Rivers"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430191"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430191/Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons"><img alt="Research paper thumbnail of Analysis of Membership Function in the Implementation of Neuro-Fuzzy System for Prediction of Depressive Lexicons" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430191/Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons">Analysis of Membership Function in the Implementation of Neuro-Fuzzy System for Prediction of Depressive Lexicons</a></div><div class="wp-workCard_item"><span>2021 4th International Conference on Data Science and Information Technology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The soft computing environment does not stop making predictions to save lives. Its calculations, ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The soft computing environment does not stop making predictions to save lives. Its calculations, though not precise can still provide solutions to the complex scenarios of computational problems. Over the years, robustness and the accuracy of results became the remarkable challenge despite of the huge number of studies relating to it. In this case, the Neuro fuzzy system is one amongst the model proven to be used for prediction and has been applied to various fields of education, business, engineering and even in health. The Neuro fuzzy has its capability to adopt various strategies like the mix and match approach with different parameters involved during the experimentation. However, there is still a lack of support as to how this membership function could be able to produce a precise result that leads to different views towards soft computing. In this work, we gave emphasize on how the membership function works with NFS, which is essential in preparing data towards the prediction of depressive lexicons. Classifiers like Na茂ve Bayes, Simple Logistics, and Neuro fuzzy through the Multilayer Perceptron (MLP) of Weka tool have been used for the experimentation of the study. This study recommends to use the process of the analysis of membership function and carefully validate parameters from the first layer towards the third layer of the NFS since the strength of the membership function actively happens here.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430191"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430191"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430191; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430191]").text(description); $(".js-view-count[data-work-id=83430191]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430191; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430191']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430191, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430191]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430191,"title":"Analysis of Membership Function in the Implementation of Neuro-Fuzzy System for Prediction of Depressive Lexicons","translated_title":"","metadata":{"abstract":"The soft computing environment does not stop making predictions to save lives. Its calculations, though not precise can still provide solutions to the complex scenarios of computational problems. Over the years, robustness and the accuracy of results became the remarkable challenge despite of the huge number of studies relating to it. In this case, the Neuro fuzzy system is one amongst the model proven to be used for prediction and has been applied to various fields of education, business, engineering and even in health. The Neuro fuzzy has its capability to adopt various strategies like the mix and match approach with different parameters involved during the experimentation. However, there is still a lack of support as to how this membership function could be able to produce a precise result that leads to different views towards soft computing. In this work, we gave emphasize on how the membership function works with NFS, which is essential in preparing data towards the prediction of depressive lexicons. Classifiers like Na茂ve Bayes, Simple Logistics, and Neuro fuzzy through the Multilayer Perceptron (MLP) of Weka tool have been used for the experimentation of the study. This study recommends to use the process of the analysis of membership function and carefully validate parameters from the first layer towards the third layer of the NFS since the strength of the membership function actively happens here.","publisher":"ACM","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"2021 4th International Conference on Data Science and Information Technology"},"translated_abstract":"The soft computing environment does not stop making predictions to save lives. Its calculations, though not precise can still provide solutions to the complex scenarios of computational problems. Over the years, robustness and the accuracy of results became the remarkable challenge despite of the huge number of studies relating to it. In this case, the Neuro fuzzy system is one amongst the model proven to be used for prediction and has been applied to various fields of education, business, engineering and even in health. The Neuro fuzzy has its capability to adopt various strategies like the mix and match approach with different parameters involved during the experimentation. However, there is still a lack of support as to how this membership function could be able to produce a precise result that leads to different views towards soft computing. In this work, we gave emphasize on how the membership function works with NFS, which is essential in preparing data towards the prediction of depressive lexicons. Classifiers like Na茂ve Bayes, Simple Logistics, and Neuro fuzzy through the Multilayer Perceptron (MLP) of Weka tool have been used for the experimentation of the study. This study recommends to use the process of the analysis of membership function and carefully validate parameters from the first layer towards the third layer of the NFS since the strength of the membership function actively happens here.","internal_url":"https://www.academia.edu/83430191/Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons","translated_internal_url":"","created_at":"2022-07-19T17:30:04.995-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Analysis_of_Membership_Function_in_the_Implementation_of_Neuro_Fuzzy_System_for_Prediction_of_Depressive_Lexicons","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"}],"urls":[{"id":22301737,"url":"https://dl.acm.org/doi/pdf/10.1145/3478905.3478929"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430181"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430181/Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm"><img alt="Research paper thumbnail of Technical Analysis of Twitter Data in Preparation of Prediction using Multilayer Perceptron Algorithm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430181/Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm">Technical Analysis of Twitter Data in Preparation of Prediction using Multilayer Perceptron Algorithm</a></div><div class="wp-workCard_item"><span>2021 4th International Conference on Data Science and Information Technology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Social networking sites have been the partner of everyone today to express feelings and emotions,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Social networking sites have been the partner of everyone today to express feelings and emotions, especially that physical communication has been a bit prohibited caused by the pandemic. The platforms like Twitter, Facebook, etc., has been the choice to express words relating to stress, anxieties, and depressions to which the World Health Organization states that once not paid with enough attention may lead to mental health issues. A depression today stands out to be the leading problem known as mental health disorders that if not to anticipate earlier may also lead to this so called self-harming. In this regard, this study wants to illustrate the technical analysis of twitter data in preparation of prediction using the Multilayer Perceptron (MLP) in Weka algorithms to help the data mining community to dig knowledge from the stored historical data. The technical analysis has been made through the process of extraction, validation, and preparation of the model ready for interpretation and evaluation of predicted model. The legality of data has been permitted by twitter developer&#39;s account that permits the study to extract 1000 tweets and eventually validated 931 tweets necessary for exploration. Optimization was made by setting the epoch to 200 and by testing the eight attributes to 70:30 split of test. The initial result of 79.9141% was optimized to 82.0789% accuracy rate and found reliable based on the result of kappa statistics. However, the study still suggests to explore on varied parameters to increase the reliability of data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430181"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430181"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430181; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430181]").text(description); $(".js-view-count[data-work-id=83430181]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430181; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430181']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430181, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430181]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430181,"title":"Technical Analysis of Twitter Data in Preparation of Prediction using Multilayer Perceptron Algorithm","translated_title":"","metadata":{"abstract":"Social networking sites have been the partner of everyone today to express feelings and emotions, especially that physical communication has been a bit prohibited caused by the pandemic. The platforms like Twitter, Facebook, etc., has been the choice to express words relating to stress, anxieties, and depressions to which the World Health Organization states that once not paid with enough attention may lead to mental health issues. A depression today stands out to be the leading problem known as mental health disorders that if not to anticipate earlier may also lead to this so called self-harming. In this regard, this study wants to illustrate the technical analysis of twitter data in preparation of prediction using the Multilayer Perceptron (MLP) in Weka algorithms to help the data mining community to dig knowledge from the stored historical data. The technical analysis has been made through the process of extraction, validation, and preparation of the model ready for interpretation and evaluation of predicted model. The legality of data has been permitted by twitter developer\u0026#39;s account that permits the study to extract 1000 tweets and eventually validated 931 tweets necessary for exploration. Optimization was made by setting the epoch to 200 and by testing the eight attributes to 70:30 split of test. The initial result of 79.9141% was optimized to 82.0789% accuracy rate and found reliable based on the result of kappa statistics. However, the study still suggests to explore on varied parameters to increase the reliability of data.","publisher":"ACM","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"2021 4th International Conference on Data Science and Information Technology"},"translated_abstract":"Social networking sites have been the partner of everyone today to express feelings and emotions, especially that physical communication has been a bit prohibited caused by the pandemic. The platforms like Twitter, Facebook, etc., has been the choice to express words relating to stress, anxieties, and depressions to which the World Health Organization states that once not paid with enough attention may lead to mental health issues. A depression today stands out to be the leading problem known as mental health disorders that if not to anticipate earlier may also lead to this so called self-harming. In this regard, this study wants to illustrate the technical analysis of twitter data in preparation of prediction using the Multilayer Perceptron (MLP) in Weka algorithms to help the data mining community to dig knowledge from the stored historical data. The technical analysis has been made through the process of extraction, validation, and preparation of the model ready for interpretation and evaluation of predicted model. The legality of data has been permitted by twitter developer\u0026#39;s account that permits the study to extract 1000 tweets and eventually validated 931 tweets necessary for exploration. Optimization was made by setting the epoch to 200 and by testing the eight attributes to 70:30 split of test. The initial result of 79.9141% was optimized to 82.0789% accuracy rate and found reliable based on the result of kappa statistics. However, the study still suggests to explore on varied parameters to increase the reliability of data.","internal_url":"https://www.academia.edu/83430181/Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm","translated_internal_url":"","created_at":"2022-07-19T17:29:42.092-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Technical_Analysis_of_Twitter_Data_in_Preparation_of_Prediction_using_Multilayer_Perceptron_Algorithm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":22301735,"url":"https://dl.acm.org/doi/pdf/10.1145/3478905.3478928"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430174"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430174/A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon"><img alt="Research paper thumbnail of A Study of E-Readiness Assessment: The Case of Two State Universities in Luzon" class="work-thumbnail" src="https://attachments.academia-assets.com/88774609/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430174/A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon">A Study of E-Readiness Assessment: The Case of Two State Universities in Luzon</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Research</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="006ade01167948e8337e077214baeeac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88774609,"asset_id":83430174,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88774609/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430174"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430174"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430174; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430174]").text(description); $(".js-view-count[data-work-id=83430174]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430174; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430174']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430174, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "006ade01167948e8337e077214baeeac" } } $('.js-work-strip[data-work-id=83430174]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430174,"title":"A Study of E-Readiness Assessment: The Case of Two State Universities in Luzon","translated_title":"","metadata":{"publisher":"International Journal Of Advanced Research","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Advanced Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83430174/A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon","translated_internal_url":"","created_at":"2022-07-19T17:29:20.681-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88774609,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774609/thumbnails/1.jpg","file_name":"155.pdf","download_url":"https://www.academia.edu/attachments/88774609/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Study_of_E_Readiness_Assessment_The_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774609/155-libre.pdf?1658278868=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_of_E_Readiness_Assessment_The_Ca.pdf\u0026Expires=1732402937\u0026Signature=dxVaR54U7slMOagm712WLiqXI5ek-0lpDW265rgKIIfPwz43Xk7EHohdjk5GnpnVx9Mggx~d19RudiFS50E05M-ZY8Rhvv3LSiLpqTimvORBy87aOrIQOcjOk2wNKtgv9xDAl-JOmPwXFiCigWEffm-xvWYcoNXibsIybkAyogzYWGonp~OVj90~xH-QTw0tgc5zINkjpayrZopSBRPmn95UKLvwtCZQU0usuF5iNyEpVbsKgbukQuNdedOxFyY5LNE6wlbgZMqyt~SGCJPQpRO9JoyOqyidN4Ishg3LqLr1A3tT6nrHDRRDC-4r694EvZ1MLbA0SfGCiXCzIrUPlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Study_of_E_Readiness_Assessment_The_Case_of_Two_State_Universities_in_Luzon","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":88774609,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774609/thumbnails/1.jpg","file_name":"155.pdf","download_url":"https://www.academia.edu/attachments/88774609/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Study_of_E_Readiness_Assessment_The_Ca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774609/155-libre.pdf?1658278868=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_of_E_Readiness_Assessment_The_Ca.pdf\u0026Expires=1732402937\u0026Signature=dxVaR54U7slMOagm712WLiqXI5ek-0lpDW265rgKIIfPwz43Xk7EHohdjk5GnpnVx9Mggx~d19RudiFS50E05M-ZY8Rhvv3LSiLpqTimvORBy87aOrIQOcjOk2wNKtgv9xDAl-JOmPwXFiCigWEffm-xvWYcoNXibsIybkAyogzYWGonp~OVj90~xH-QTw0tgc5zINkjpayrZopSBRPmn95UKLvwtCZQU0usuF5iNyEpVbsKgbukQuNdedOxFyY5LNE6wlbgZMqyt~SGCJPQpRO9JoyOqyidN4Ishg3LqLr1A3tT6nrHDRRDC-4r694EvZ1MLbA0SfGCiXCzIrUPlw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"},{"id":492767,"name":"Approximate Reasoning","url":"https://www.academia.edu/Documents/in/Approximate_Reasoning"},{"id":555965,"name":"Advanced","url":"https://www.academia.edu/Documents/in/Advanced"},{"id":1193280,"name":"Elearning","url":"https://www.academia.edu/Documents/in/Elearning"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430165/Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development"><img alt="Research paper thumbnail of Intelligent Investigation on Crime Incident Reports in the Province of Laguna through Predictive Model Development" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430165/Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development">Intelligent Investigation on Crime Incident Reports in the Province of Laguna through Predictive Model Development</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Trends in Computer Science and Engineering</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the past years, crime becomes one of the main concerns in the Philippines for it affects drast...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the past years, crime becomes one of the main concerns in the Philippines for it affects drastically in the economic growth of the country. Awareness was one of the key factors that a police officer must possessed to effectively reduced crime in particular location. Many criminologists study on the number or occurrence of a crime to resolve the problem, however, number vagueness and possible source are often encountered that compromises the possible real effects or pattern. Machine learning is well-known to produce new knowledge and discover hidden pattern intelligently in particular database which can be used to produce data-driven reasoning or policy recommendation. The key objective of this research is to develop a predictive model in investigating crime records in the province of Laguna. Following the famous concept of knowledge discovery in databases, the researchers found out that decision tree algorithm is the best machine learning algorithm in classifying crime occurrence. Furthermore, date, time and place have a significant correlation in crime occurrence. Also shown in this paper, that the bigger district in the province of Laguna is more vulnerable in different crime.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430165]").text(description); $(".js-view-count[data-work-id=83430165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430165, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83430165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430165,"title":"Intelligent Investigation on Crime Incident Reports in the Province of Laguna through Predictive Model Development","translated_title":"","metadata":{"abstract":"In the past years, crime becomes one of the main concerns in the Philippines for it affects drastically in the economic growth of the country. Awareness was one of the key factors that a police officer must possessed to effectively reduced crime in particular location. Many criminologists study on the number or occurrence of a crime to resolve the problem, however, number vagueness and possible source are often encountered that compromises the possible real effects or pattern. Machine learning is well-known to produce new knowledge and discover hidden pattern intelligently in particular database which can be used to produce data-driven reasoning or policy recommendation. The key objective of this research is to develop a predictive model in investigating crime records in the province of Laguna. Following the famous concept of knowledge discovery in databases, the researchers found out that decision tree algorithm is the best machine learning algorithm in classifying crime occurrence. Furthermore, date, time and place have a significant correlation in crime occurrence. Also shown in this paper, that the bigger district in the province of Laguna is more vulnerable in different crime.","publisher":"The World Academy of Research in Science and Engineering","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Advanced Trends in Computer Science and Engineering"},"translated_abstract":"In the past years, crime becomes one of the main concerns in the Philippines for it affects drastically in the economic growth of the country. Awareness was one of the key factors that a police officer must possessed to effectively reduced crime in particular location. Many criminologists study on the number or occurrence of a crime to resolve the problem, however, number vagueness and possible source are often encountered that compromises the possible real effects or pattern. Machine learning is well-known to produce new knowledge and discover hidden pattern intelligently in particular database which can be used to produce data-driven reasoning or policy recommendation. The key objective of this research is to develop a predictive model in investigating crime records in the province of Laguna. Following the famous concept of knowledge discovery in databases, the researchers found out that decision tree algorithm is the best machine learning algorithm in classifying crime occurrence. Furthermore, date, time and place have a significant correlation in crime occurrence. Also shown in this paper, that the bigger district in the province of Laguna is more vulnerable in different crime.","internal_url":"https://www.academia.edu/83430165/Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development","translated_internal_url":"","created_at":"2022-07-19T17:29:05.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Intelligent_Investigation_on_Crime_Incident_Reports_in_the_Province_of_Laguna_through_Predictive_Model_Development","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":261,"name":"Geography","url":"https://www.academia.edu/Documents/in/Geography"},{"id":14305,"name":"Industrial Engineering","url":"https://www.academia.edu/Documents/in/Industrial_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83430151"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83430151/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System"><img alt="Research paper thumbnail of The Use of Data Mining to Model Personalized Learning Management System" class="work-thumbnail" src="https://attachments.academia-assets.com/88774594/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83430151/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System">The Use of Data Mining to Model Personalized Learning Management System</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Research</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c10ff601fc3c3143a27c1952a8871a59" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88774594,"asset_id":83430151,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88774594/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83430151"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83430151"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83430151; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83430151]").text(description); $(".js-view-count[data-work-id=83430151]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83430151; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83430151']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83430151, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c10ff601fc3c3143a27c1952a8871a59" } } $('.js-work-strip[data-work-id=83430151]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83430151,"title":"The Use of Data Mining to Model Personalized Learning Management System","translated_title":"","metadata":{"publisher":"International Journal Of Advanced Research","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Advanced Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83430151/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_internal_url":"","created_at":"2022-07-19T17:28:50.402-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88774594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774594/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/88774594/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774594/463_IJAR-26100-libre.pdf?1658278866=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=eCa8swXYofT79voRsH96P4miU3DNIDRxlsM3iFcoY1iSKU1JcGzdo6GqF3YT1GAXMb9uSo1XJxQogbXDZGUQ82mCp8w5fuVAjOP3AZg5Rs71MvxaTjlrpDjYi4ZWRASQY8latJCvfB2fG4uYziKI9lT44~VRjxEixckqqCqhkBvlMUW5i7aoPQwlvebXwmr5Ap2I7f3Z0x0xdEp8o78NNx2F2V2Qgaw0sE883ykYs4peZw5kNsAHi9q-YBN8xlfg5ssgxhji8gIvSHApsVX8LFcO1nQMFh0VSplXNqy8Sz8wPkEzNSIj1qsHEACZ4vCEVcWo3~7WZjvLFIC-yl7A2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":88774594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88774594/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/88774594/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88774594/463_IJAR-26100-libre.pdf?1658278866=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=eCa8swXYofT79voRsH96P4miU3DNIDRxlsM3iFcoY1iSKU1JcGzdo6GqF3YT1GAXMb9uSo1XJxQogbXDZGUQ82mCp8w5fuVAjOP3AZg5Rs71MvxaTjlrpDjYi4ZWRASQY8latJCvfB2fG4uYziKI9lT44~VRjxEixckqqCqhkBvlMUW5i7aoPQwlvebXwmr5Ap2I7f3Z0x0xdEp8o78NNx2F2V2Qgaw0sE883ykYs4peZw5kNsAHi9q-YBN8xlfg5ssgxhji8gIvSHApsVX8LFcO1nQMFh0VSplXNqy8Sz8wPkEzNSIj1qsHEACZ4vCEVcWo3~7WZjvLFIC-yl7A2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"},{"id":23995,"name":"Educational Data Mining","url":"https://www.academia.edu/Documents/in/Educational_Data_Mining"},{"id":492767,"name":"Approximate Reasoning","url":"https://www.academia.edu/Documents/in/Approximate_Reasoning"},{"id":555965,"name":"Advanced","url":"https://www.academia.edu/Documents/in/Advanced"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77178583"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77178583/Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir"><img alt="Research paper thumbnail of Pattern Extraction of Water Quality Prediction Using Machine Learning Algorithms of Water Reservoir" class="work-thumbnail" src="https://attachments.academia-assets.com/84618241/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77178583/Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir">Pattern Extraction of Water Quality Prediction Using Machine Learning Algorithms of Water Reservoir</a></div><div class="wp-workCard_item"><span>International Journal of Mechanical Engineering and Robotics Research</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4af0fa932c16af5324154e228282fb22" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":84618241,"asset_id":77178583,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/84618241/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77178583"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77178583"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77178583; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77178583]").text(description); $(".js-view-count[data-work-id=77178583]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77178583; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77178583']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77178583, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4af0fa932c16af5324154e228282fb22" } } $('.js-work-strip[data-work-id=77178583]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77178583,"title":"Pattern Extraction of Water Quality Prediction Using Machine Learning Algorithms of Water Reservoir","translated_title":"","metadata":{"publisher":"EJournal Publishing","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Mechanical Engineering and Robotics Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/77178583/Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir","translated_internal_url":"","created_at":"2022-04-21T06:00:33.012-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84618241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84618241/thumbnails/1.jpg","file_name":"20190923043755240.pdf","download_url":"https://www.academia.edu/attachments/84618241/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pattern_Extraction_of_Water_Quality_Pred.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84618241/20190923043755240-libre.pdf?1650546863=\u0026response-content-disposition=attachment%3B+filename%3DPattern_Extraction_of_Water_Quality_Pred.pdf\u0026Expires=1732402937\u0026Signature=FuJnVCNN77hyxfz3EesC5i3pUJpdEULjZg8XrcqeOee0Ve~drlGWr8nSS3o7k6Ho2P9HlCAGlrMiT9Wm5DYf~g5HRkD1HnHJN~NptwGEGQvS54uRABcNINU3GDWV0MHNbgRl2yoQ71ZNVLyRNaZiBb6FUIaK3jLhrL9vvKagsfRxKyyOYg6M-RT0JfRW0JAT1yMLpVtXax24LjR~9Aphoq9sDttxMD96qwpEtMGAuBYV3HhpirgAM0rkPkleLj2~ZO2VusQAbZjxp9qk8HlO65CpuK2BDO3w7haGRM4JDKrU0yDme29GItqkmQSJMC9iEeQAHYIX8giqntZKpGsceQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pattern_Extraction_of_Water_Quality_Prediction_Using_Machine_Learning_Algorithms_of_Water_Reservoir","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":84618241,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84618241/thumbnails/1.jpg","file_name":"20190923043755240.pdf","download_url":"https://www.academia.edu/attachments/84618241/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pattern_Extraction_of_Water_Quality_Pred.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84618241/20190923043755240-libre.pdf?1650546863=\u0026response-content-disposition=attachment%3B+filename%3DPattern_Extraction_of_Water_Quality_Pred.pdf\u0026Expires=1732402937\u0026Signature=FuJnVCNN77hyxfz3EesC5i3pUJpdEULjZg8XrcqeOee0Ve~drlGWr8nSS3o7k6Ho2P9HlCAGlrMiT9Wm5DYf~g5HRkD1HnHJN~NptwGEGQvS54uRABcNINU3GDWV0MHNbgRl2yoQ71ZNVLyRNaZiBb6FUIaK3jLhrL9vvKagsfRxKyyOYg6M-RT0JfRW0JAT1yMLpVtXax24LjR~9Aphoq9sDttxMD96qwpEtMGAuBYV3HhpirgAM0rkPkleLj2~ZO2VusQAbZjxp9qk8HlO65CpuK2BDO3w7haGRM4JDKrU0yDme29GItqkmQSJMC9iEeQAHYIX8giqntZKpGsceQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84618240,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84618240/thumbnails/1.jpg","file_name":"20190923043755240.pdf","download_url":"https://www.academia.edu/attachments/84618240/download_file","bulk_download_file_name":"Pattern_Extraction_of_Water_Quality_Pred.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84618240/20190923043755240-libre.pdf?1650546865=\u0026response-content-disposition=attachment%3B+filename%3DPattern_Extraction_of_Water_Quality_Pred.pdf\u0026Expires=1732402937\u0026Signature=FnsPewMvy5VMcW7vet8rQwoBq0aE~grvso38PXu4EFJ8RnvZ~93zyPPk49gwGJJ~84~8gRJ1acusWNobelkMMTzs4L7n0AonHpIQvLMaGkI~vT6CYZMxK9uE6gAeE9PUCRz3vPnK1NRNcyOL7rZx5gI8sJgsNhjLBdK9VvkY8r0yRXmWotKamksAQP5Fnf9KInrCQF2xwT6XagxmjXzv-32rdbrBhwsJtluijTToKh7HG0ELDVnIkmxSSiYvkvQqLcw7l07GXBIV~IUXBVxkgKokNE5sLn9-fN2~DtERQdBdYsSS8dnCDJ0qMFn3z34N3Snjzixuew94IH~CPs69Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":19750166,"url":"http://www.ijmerr.com/uploadfile/2019/0923/20190923043755240.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73693490"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/73693490/E_Learning_Adapting_to_Rapid_Pedagogical_Changes"><img alt="Research paper thumbnail of E-Learning: Adapting to Rapid Pedagogical Changes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/73693490/E_Learning_Adapting_to_Rapid_Pedagogical_Changes">E-Learning: Adapting to Rapid Pedagogical Changes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A model for the mathematical description of diffusion process is presented through this work and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A model for the mathematical description of diffusion process is presented through this work and an attempt is also made for the applicability of Green?s function method for solving the one dimensional diffusion equation within the desired limits. From this process the required solution to this diffusion equation by considering the initial condition t = 0 will be obtained. This equation describes the rate of change of concentrations of substances to its own lattice or may be in different substances with a constant diffusion coefficient. At last a computational approach will also be used for getting the numerical solutions. While solving the equation we throughout consider t = 0, so that the result may also be applicable in an isothermal diffusion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73693490"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73693490"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73693490; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73693490]").text(description); $(".js-view-count[data-work-id=73693490]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73693490; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73693490']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 73693490, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=73693490]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73693490,"title":"E-Learning: Adapting to Rapid Pedagogical Changes","translated_title":"","metadata":{"abstract":"A model for the mathematical description of diffusion process is presented through this work and an attempt is also made for the applicability of Green?s function method for solving the one dimensional diffusion equation within the desired limits. From this process the required solution to this diffusion equation by considering the initial condition t = 0 will be obtained. This equation describes the rate of change of concentrations of substances to its own lattice or may be in different substances with a constant diffusion coefficient. At last a computational approach will also be used for getting the numerical solutions. While solving the equation we throughout consider t = 0, so that the result may also be applicable in an isothermal diffusion.","publisher":"Zenodo","publication_date":{"day":15,"month":4,"year":2019,"errors":{}}},"translated_abstract":"A model for the mathematical description of diffusion process is presented through this work and an attempt is also made for the applicability of Green?s function method for solving the one dimensional diffusion equation within the desired limits. From this process the required solution to this diffusion equation by considering the initial condition t = 0 will be obtained. This equation describes the rate of change of concentrations of substances to its own lattice or may be in different substances with a constant diffusion coefficient. At last a computational approach will also be used for getting the numerical solutions. While solving the equation we throughout consider t = 0, so that the result may also be applicable in an isothermal diffusion.","internal_url":"https://www.academia.edu/73693490/E_Learning_Adapting_to_Rapid_Pedagogical_Changes","translated_internal_url":"","created_at":"2022-03-13T17:12:41.372-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":37874469,"work_id":73693490,"tagging_user_id":171427082,"tagged_user_id":67280165,"co_author_invite_id":null,"email":"b***a@unp.edu.ph","display_order":0,"name":"Bryan Irvin Lamarca","title":"E-Learning: Adapting to Rapid Pedagogical Changes"},{"id":37874470,"work_id":73693490,"tagging_user_id":171427082,"tagged_user_id":39246530,"co_author_invite_id":null,"email":"j***r@gmail.com","display_order":4194304,"name":"IJAR Indexing","title":"E-Learning: Adapting to Rapid Pedagogical Changes"}],"downloadable_attachments":[],"slug":"E_Learning_Adapting_to_Rapid_Pedagogical_Changes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[],"research_interests":[{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="56405948"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/56405948/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System"><img alt="Research paper thumbnail of The Use of Data Mining to Model Personalized Learning Management System" class="work-thumbnail" src="https://attachments.academia-assets.com/71808707/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/56405948/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System">The Use of Data Mining to Model Personalized Learning Management System</a></div><div class="wp-workCard_item"><span>International Journal of Advanced Research (IJAR)</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Licensure Examination performance is a growing concern of most of the educational institution bec...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Licensure Examination performance is a growing concern of most of the educational institution because it is one of the determinants of quality education and validates high quality instruction. Educational institution is focused on monitoring and improving the Licensure Examination performance particularly in Teacher Education Institution (TEI). The study intends to offer a possible solution to most TEIs apprehensions regarding LET performance by providing the students of Teacher Education a student support service in the form of a personalized Learning Management System with performance prediction and recommendation capability. This can be developed through drawing data model using several data mining techniques and tools. Previous literature suggested using data mining to classify students, predict student performance, improve student retention, enhanced student achievement and assess complex students? behavior to name a few. This research project will provide the groundwork for th...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3a95fb29d781d385ce8bbc2070199342" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":71808707,"asset_id":56405948,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/71808707/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="56405948"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="56405948"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56405948; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56405948]").text(description); $(".js-view-count[data-work-id=56405948]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56405948; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='56405948']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 56405948, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3a95fb29d781d385ce8bbc2070199342" } } $('.js-work-strip[data-work-id=56405948]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":56405948,"title":"The Use of Data Mining to Model Personalized Learning Management System","translated_title":"","metadata":{"abstract":"Licensure Examination performance is a growing concern of most of the educational institution because it is one of the determinants of quality education and validates high quality instruction. Educational institution is focused on monitoring and improving the Licensure Examination performance particularly in Teacher Education Institution (TEI). The study intends to offer a possible solution to most TEIs apprehensions regarding LET performance by providing the students of Teacher Education a student support service in the form of a personalized Learning Management System with performance prediction and recommendation capability. This can be developed through drawing data model using several data mining techniques and tools. Previous literature suggested using data mining to classify students, predict student performance, improve student retention, enhanced student achievement and assess complex students? behavior to name a few. This research project will provide the groundwork for th...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"International Journal of Advanced Research (IJAR)"},"translated_abstract":"Licensure Examination performance is a growing concern of most of the educational institution because it is one of the determinants of quality education and validates high quality instruction. Educational institution is focused on monitoring and improving the Licensure Examination performance particularly in Teacher Education Institution (TEI). The study intends to offer a possible solution to most TEIs apprehensions regarding LET performance by providing the students of Teacher Education a student support service in the form of a personalized Learning Management System with performance prediction and recommendation capability. This can be developed through drawing data model using several data mining techniques and tools. Previous literature suggested using data mining to classify students, predict student performance, improve student retention, enhanced student achievement and assess complex students? behavior to name a few. This research project will provide the groundwork for th...","internal_url":"https://www.academia.edu/56405948/The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_internal_url":"","created_at":"2021-10-07T17:22:31.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":171427082,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":71808707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71808707/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/71808707/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71808707/463_IJAR-26100-libre.pdf?1633659423=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=NABI27JGU~vv0P1Vug~3OleMLkEUPsqtdO5l-r2lc7YGSr-86zQGZqPV5FOIPHry5fX6~Xpb6Op7GqJbHXxWkM1PVbTOYeTcbHumywBJc5m8zlPdnYBKK98nBjX02ASZluiXUXPQ7NBXWxdLbSVDrYtMzQyACM7NIYWIGVzpIclrernCBHAJbL5WCK9esN6vPulvLquOMyknx0K6GaI0~dU-0L9P6CazoCadWZILXa3Rw4cNDfxhhuACEQpq0iqKX5JnAVaAgvu~WDqDdBAO2MR~9qj3P682jwCST2M7c95rMSoVx1VMZ4QafzUBwuYfVvysZbyeJ5CA9OOUykTEbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Use_of_Data_Mining_to_Model_Personalized_Learning_Management_System","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":171427082,"first_name":"Mia","middle_initials":null,"last_name":"Villar Villarica","page_name":"MiaVillarVillarica","domain_name":"independent","created_at":"2020-09-22T20:07:13.929-07:00","display_name":"Mia Villar Villarica","url":"https://independent.academia.edu/MiaVillarVillarica"},"attachments":[{"id":71808707,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/71808707/thumbnails/1.jpg","file_name":"463_IJAR-26100.pdf","download_url":"https://www.academia.edu/attachments/71808707/download_file?st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&st=MTczMjM5OTMzNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Use_of_Data_Mining_to_Model_Personal.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/71808707/463_IJAR-26100-libre.pdf?1633659423=\u0026response-content-disposition=attachment%3B+filename%3DThe_Use_of_Data_Mining_to_Model_Personal.pdf\u0026Expires=1732402937\u0026Signature=NABI27JGU~vv0P1Vug~3OleMLkEUPsqtdO5l-r2lc7YGSr-86zQGZqPV5FOIPHry5fX6~Xpb6Op7GqJbHXxWkM1PVbTOYeTcbHumywBJc5m8zlPdnYBKK98nBjX02ASZluiXUXPQ7NBXWxdLbSVDrYtMzQyACM7NIYWIGVzpIclrernCBHAJbL5WCK9esN6vPulvLquOMyknx0K6GaI0~dU-0L9P6CazoCadWZILXa3Rw4cNDfxhhuACEQpq0iqKX5JnAVaAgvu~WDqDdBAO2MR~9qj3P682jwCST2M7c95rMSoVx1VMZ4QafzUBwuYfVvysZbyeJ5CA9OOUykTEbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":19870,"name":"Research","url":"https://www.academia.edu/Documents/in/Research"},{"id":23995,"name":"Educational Data Mining","url":"https://www.academia.edu/Documents/in/Educational_Data_Mining"},{"id":555965,"name":"Advanced","url":"https://www.academia.edu/Documents/in/Advanced"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "635bd0a4736e9f6144b5b935ea6f72a556a183da38a5892f6539e9c95699ab96", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="3R7Rt9LwF8PgxToCrwTKoIpNB7JCxW8B7PWIlp0A1nxYxzCh85cYaf0Zoj76kWeOg64qTuB68Z/faCMvHaaFbg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/MiaVillarVillarica" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="+7EBgJyQXDrQ+HfVIJdMTWL6ihEA/sY2h57HjLMaLtx+aOCWvfdTkM0k7+l1AuFjaxmn7aJBWKi0A2w1M7x9zg==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>