CINXE.COM
Search results for: Neural Network Analysis.
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Neural Network Analysis.</title> <meta name="description" content="Search results for: Neural Network Analysis."> <meta name="keywords" content="Neural Network Analysis."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Neural Network Analysis." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Neural Network Analysis."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10983</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Neural Network Analysis.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10983</span> A Combined Neural Network Approach to Soccer Player Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wenbin%20Zhang">Wenbin Zhang</a>, <a href="https://publications.waset.org/search?q=Hantian%20Wu"> Hantian Wu</a>, <a href="https://publications.waset.org/search?q=Jian%20Tang"> Jian Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=General%20Regression%20Neural%20Network" title="General Regression Neural Network">General Regression Neural Network</a>, <a href="https://publications.waset.org/search?q=Probabilistic%20Neural%20Networks" title=" Probabilistic Neural Networks"> Probabilistic Neural Networks</a>, <a href="https://publications.waset.org/search?q=Neural%20function." title=" Neural function."> Neural function.</a> </p> <a href="https://publications.waset.org/10001122/a-combined-neural-network-approach-to-soccer-player-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001122/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001122/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001122/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001122/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001122/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001122/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001122/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001122/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001122/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001122/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3763</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10982</span> Applications of Cascade Correlation Neural Networks for Cipher System Identification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Chandra">B. Chandra</a>, <a href="https://publications.waset.org/search?q=P.%20Paul%20Varghese"> P. Paul Varghese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Back%20Propagation%20Neural%20Networks" title="Back Propagation Neural Networks">Back Propagation Neural Networks</a>, <a href="https://publications.waset.org/search?q=CascadeCorrelation%20Neural%20Network" title=" CascadeCorrelation Neural Network"> CascadeCorrelation Neural Network</a>, <a href="https://publications.waset.org/search?q=Crypto%20systems" title=" Crypto systems"> Crypto systems</a>, <a href="https://publications.waset.org/search?q=Block%20Cipher" title=" Block Cipher"> Block Cipher</a>, <a href="https://publications.waset.org/search?q=StreamCipher." title=" StreamCipher."> StreamCipher.</a> </p> <a href="https://publications.waset.org/11895/applications-of-cascade-correlation-neural-networks-for-cipher-system-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11895/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11895/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11895/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11895/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11895/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11895/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11895/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11895/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11895/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11895/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2444</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10981</span> Face Recognition with PCA and KPCA using Elman Neural Network and SVM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hossein%20Esbati">Hossein Esbati</a>, <a href="https://publications.waset.org/search?q=Jalil%20Shirazi"> Jalil Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=Principal%20Component%20Analysis" title=" Principal Component Analysis"> Principal Component Analysis</a>, <a href="https://publications.waset.org/search?q=Kernel%20Principal%20Component%20Analysis" title=" Kernel Principal Component Analysis"> Kernel Principal Component Analysis</a>, <a href="https://publications.waset.org/search?q=Neural%20network" title=" Neural network"> Neural network</a>, <a href="https://publications.waset.org/search?q=Support%0AVector%20Machine." title=" Support Vector Machine."> Support Vector Machine.</a> </p> <a href="https://publications.waset.org/3148/face-recognition-with-pca-and-kpca-using-elman-neural-network-and-svm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3148/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3148/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3148/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3148/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3148/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3148/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3148/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3148/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3148/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3148/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1930</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10980</span> Application of Functional Network to Solving Classification Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yong-Quan%20Zhou">Yong-Quan Zhou</a>, <a href="https://publications.waset.org/search?q=Deng-Xu%20He"> Deng-Xu He</a>, <a href="https://publications.waset.org/search?q=Zheng%20Nong"> Zheng Nong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Functional%20network" title="Functional network">Functional network</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=XOR%20problem" title=" XOR problem"> XOR problem</a>, <a href="https://publications.waset.org/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/search?q=numerical%20analysis%20method." title=" numerical analysis method."> numerical analysis method.</a> </p> <a href="https://publications.waset.org/8860/application-of-functional-network-to-solving-classification-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8860/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8860/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8860/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8860/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8860/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8860/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8860/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8860/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8860/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8860/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1310</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10979</span> Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Pollar">M. Pollar</a>, <a href="https://publications.waset.org/search?q=M.%20Jaroensutasinee"> M. Jaroensutasinee</a>, <a href="https://publications.waset.org/search?q=K.%20Jaroensutasinee"> K. Jaroensutasinee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Morphometric" title="Morphometric">Morphometric</a>, <a href="https://publications.waset.org/search?q=Tor%20tambroides" title=" Tor tambroides"> Tor tambroides</a>, <a href="https://publications.waset.org/search?q=Stepwise%0ADiscriminant%20Analysis" title=" Stepwise Discriminant Analysis "> Stepwise Discriminant Analysis </a>, <a href="https://publications.waset.org/search?q=Neural%20Network%20Analysis." title=" Neural Network Analysis."> Neural Network Analysis.</a> </p> <a href="https://publications.waset.org/7530/morphometric-analysis-of-tor-tambroides-by-stepwise-discriminant-and-neural-network-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7530/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7530/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7530/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7530/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7530/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7530/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7530/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7530/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7530/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7530/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2150</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10978</span> A Literature Survey of Neural Network Applications for Shunt Active Power Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Janpong">S. Janpong</a>, <a href="https://publications.waset.org/search?q=K-L.%20Areerak"> K-L. Areerak</a>, <a href="https://publications.waset.org/search?q=K-N.%20Areerak"> K-N. Areerak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Active%20power%20filter" title="Active power filter">Active power filter</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=harmonic%0Adistortion" title=" harmonic distortion"> harmonic distortion</a>, <a href="https://publications.waset.org/search?q=harmonic%20detection%20and%20compensation" title=" harmonic detection and compensation"> harmonic detection and compensation</a>, <a href="https://publications.waset.org/search?q=non-linear%20load." title=" non-linear load."> non-linear load.</a> </p> <a href="https://publications.waset.org/2035/a-literature-survey-of-neural-network-applications-for-shunt-active-power-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2035/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2035/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2035/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2035/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2035/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2035/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2035/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2035/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2035/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2035/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3065</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10977</span> Identify Features and Parameters to Devise an Accurate Intrusion Detection System Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saman%20M.%20Abdulla">Saman M. Abdulla</a>, <a href="https://publications.waset.org/search?q=Najla%20B.%20Al-Dabagh"> Najla B. Al-Dabagh</a>, <a href="https://publications.waset.org/search?q=Omar%20Zakaria"> Omar Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this article is to explain how features of attacks could be extracted from the packets. It also explains how vectors could be built and then applied to the input of any analysis stage. For analyzing, the work deploys the Feedforward-Back propagation neural network to act as misuse intrusion detection system. It uses ten types if attacks as example for training and testing the neural network. It explains how the packets are analyzed to extract features. The work shows how selecting the right features, building correct vectors and how correct identification of the training methods with nodes- number in hidden layer of any neural network affecting the accuracy of system. In addition, the work shows how to get values of optimal weights and use them to initialize the Artificial Neural Network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/search?q=Attack%20Features" title=" Attack Features"> Attack Features</a>, <a href="https://publications.waset.org/search?q=MisuseIntrusion%20Detection%20System" title=" MisuseIntrusion Detection System"> MisuseIntrusion Detection System</a>, <a href="https://publications.waset.org/search?q=Training%20Parameters." title=" Training Parameters."> Training Parameters.</a> </p> <a href="https://publications.waset.org/7009/identify-features-and-parameters-to-devise-an-accurate-intrusion-detection-system-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7009/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7009/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7009/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7009/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7009/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7009/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7009/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7009/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7009/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7009/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2282</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10976</span> Multi-Context Recurrent Neural Network for Time Series Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Q.%20Huang">B. Q. Huang</a>, <a href="https://publications.waset.org/search?q=Tarik%20Rashid"> Tarik Rashid</a>, <a href="https://publications.waset.org/search?q=M-T.%20Kechadi"> M-T. Kechadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gradient%20descent%20method" title="Gradient descent method">Gradient descent method</a>, <a href="https://publications.waset.org/search?q=recurrent%20neural%20network" title=" recurrent neural network"> recurrent neural network</a>, <a href="https://publications.waset.org/search?q=learning%20algorithms" title=" learning algorithms"> learning algorithms</a>, <a href="https://publications.waset.org/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/search?q=BP" title=" BP"> BP</a> </p> <a href="https://publications.waset.org/3524/multi-context-recurrent-neural-network-for-time-series-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3524/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3524/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3524/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3524/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3524/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3524/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3524/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3524/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3524/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3524/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3043</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10975</span> Comparative Analysis of the Software Effort Estimation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jaswinder%20Kaur">Jaswinder Kaur</a>, <a href="https://publications.waset.org/search?q=Satwinder%20Singh"> Satwinder Singh</a>, <a href="https://publications.waset.org/search?q=Karanjeet%20Singh%20Kahlon"> Karanjeet Singh Kahlon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate software cost estimates are critical to both developers and customers. They can be used for generating request for proposals, contract negotiations, scheduling, monitoring and control. The exact relationship between the attributes of the effort estimation is difficult to establish. A neural network is good at discovering relationships and pattern in the data. So, in this paper a comparative analysis among existing Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model and Neural Network Based Model is performed. Neural Network has outperformed the other considered models. Hence, we proposed Neural Network system as a soft computing approach to model the effort estimation of the software systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Effort%20Estimation" title="Effort Estimation">Effort Estimation</a>, <a href="https://publications.waset.org/search?q=Neural%20Network" title=" Neural Network"> Neural Network</a>, <a href="https://publications.waset.org/search?q=Halstead%20Model" title=" Halstead Model"> Halstead Model</a>, <a href="https://publications.waset.org/search?q=Walston-Felix%20Model" title="Walston-Felix Model">Walston-Felix Model</a>, <a href="https://publications.waset.org/search?q=Bailey-Basili%20Model" title=" Bailey-Basili Model"> Bailey-Basili Model</a>, <a href="https://publications.waset.org/search?q=Doty%20Model." title=" Doty Model."> Doty Model.</a> </p> <a href="https://publications.waset.org/15566/comparative-analysis-of-the-software-effort-estimation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15566/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15566/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15566/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15566/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15566/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15566/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15566/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15566/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15566/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15566/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2221</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10974</span> Predicting Extrusion Process Parameters Using Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sachin%20Man%20Bajimaya"> Sachin Man Bajimaya</a>, <a href="https://publications.waset.org/search?q=SangChul%20Park"> SangChul Park</a>, <a href="https://publications.waset.org/search?q=Gi-Nam%20Wang"> Gi-Nam Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network%20%28ANN%29" title="Artificial Neural Network (ANN)">Artificial Neural Network (ANN)</a>, <a href="https://publications.waset.org/search?q=Indirect%0AExtrusion" title=" Indirect Extrusion"> Indirect Extrusion</a>, <a href="https://publications.waset.org/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a>, <a href="https://publications.waset.org/search?q=MES." title=" MES."> MES.</a> </p> <a href="https://publications.waset.org/5742/predicting-extrusion-process-parameters-using-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5742/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5742/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5742/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5742/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5742/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5742/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5742/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5742/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5742/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5742/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2368</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10973</span> Spline Basis Neural Network Algorithm for Numerical Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lina%20Yan">Lina Yan</a>, <a href="https://publications.waset.org/search?q=Jingjing%20Di"> Jingjing Di</a>, <a href="https://publications.waset.org/search?q=Ke%20Wang"> Ke Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A new basis function neural network algorithm is proposed for numerical integration. The main idea is to construct neural network model based on spline basis functions, which is used to approximate the integrand by training neural network weights. The convergence theorem of the neural network algorithm, the theorem for numerical integration and one corollary are presented and proved. The numerical examples, compared with other methods, show that the algorithm is effective and has the characteristics such as high precision and the integrand not required known. Thus, the algorithm presented in this paper can be widely applied in many engineering fields.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20integration" title="Numerical integration">Numerical integration</a>, <a href="https://publications.waset.org/search?q=Spline%20basis%20function" title=" Spline basis function"> Spline basis function</a>, <a href="https://publications.waset.org/search?q=Neural%0D%0Anetwork%20algorithm" title=" Neural network algorithm"> Neural network algorithm</a> </p> <a href="https://publications.waset.org/16991/spline-basis-neural-network-algorithm-for-numerical-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16991/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16991/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16991/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16991/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16991/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16991/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16991/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16991/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16991/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16991/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2928</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10972</span> Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.Mala">K.Mala</a>, <a href="https://publications.waset.org/search?q=V.Sadasivam"> V.Sadasivam</a>, <a href="https://publications.waset.org/search?q=S.Alagappan"> S.Alagappan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20c%20means%20clustering" title="Fuzzy c means clustering">Fuzzy c means clustering</a>, <a href="https://publications.waset.org/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a>, <a href="https://publications.waset.org/search?q=probabilistic%20neural%20network" title=" probabilistic neural network"> probabilistic neural network</a>, <a href="https://publications.waset.org/search?q=LVQ%20neural%20network." title=" LVQ neural network."> LVQ neural network.</a> </p> <a href="https://publications.waset.org/5630/neural-network-based-texture-analysis-of-liver-tumor-from-computed-tomography-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5630/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5630/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5630/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5630/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5630/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5630/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5630/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5630/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5630/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5630/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2988</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10971</span> Neural Network Imputation in Complex Survey Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Safaa%20R.%20Amer">Safaa R. Amer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Complex%20survey" title="Complex survey">Complex survey</a>, <a href="https://publications.waset.org/search?q=estimate" title=" estimate"> estimate</a>, <a href="https://publications.waset.org/search?q=imputation" title=" imputation"> imputation</a>, <a href="https://publications.waset.org/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/search?q=variance." title=" variance."> variance.</a> </p> <a href="https://publications.waset.org/14932/neural-network-imputation-in-complex-survey-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14932/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14932/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14932/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14932/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14932/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14932/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14932/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14932/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14932/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14932/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1972</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10970</span> Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mousavian">Mousavian</a>, <a href="https://publications.waset.org/search?q=M.%20Moghimi%20Mofrad"> M. Moghimi Mofrad</a>, <a href="https://publications.waset.org/search?q=M.%20H.%20Vakili"> M. H. Vakili</a>, <a href="https://publications.waset.org/search?q=D.%20Ashouri"> D. Ashouri</a>, <a href="https://publications.waset.org/search?q=R.%20Alizadeh"> R. Alizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20Network" title="Neural Network">Neural Network</a>, <a href="https://publications.waset.org/search?q=Net%20Heating%20Value" title=" Net Heating Value"> Net Heating Value</a>, <a href="https://publications.waset.org/search?q=Crude%20Oil" title=" Crude Oil"> Crude Oil</a>, <a href="https://publications.waset.org/search?q=Experimental" title=" Experimental"> Experimental</a>, <a href="https://publications.waset.org/search?q=Modeling." title=" Modeling."> Modeling.</a> </p> <a href="https://publications.waset.org/518/investigation-of-artificial-neural-networks-performance-to-predict-net-heating-value-of-crude-oil-by-its-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/518/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/518/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/518/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/518/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/518/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/518/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/518/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/518/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/518/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/518/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1588</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10969</span> Person Re-Identification Using Siamese Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sello%20Mokwena">Sello Mokwena</a>, <a href="https://publications.waset.org/search?q=Monyepao%20Thabang"> Monyepao Thabang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis of benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Camera%20network" title="Camera network">Camera network</a>, <a href="https://publications.waset.org/search?q=convolutional%20neural%20network%20topology" title=" convolutional neural network topology"> convolutional neural network topology</a>, <a href="https://publications.waset.org/search?q=person%20tracking" title=" person tracking"> person tracking</a>, <a href="https://publications.waset.org/search?q=person%20re-identification" title=" person re-identification"> person re-identification</a>, <a href="https://publications.waset.org/search?q=Siamese." title=" Siamese."> Siamese.</a> </p> <a href="https://publications.waset.org/10013681/person-re-identification-using-siamese-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013681/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013681/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013681/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013681/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013681/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013681/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013681/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013681/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013681/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013681/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10968</span> A New Face Recognition Method using PCA, LDA and Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Hossein%20Sahoolizadeh">A. Hossein Sahoolizadeh</a>, <a href="https://publications.waset.org/search?q=B.%20Zargham%20Heidari"> B. Zargham Heidari</a>, <a href="https://publications.waset.org/search?q=C.%20Hamid%20Dehghani"> C. Hamid Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition%20Principal%20component%20analysis" title="Face recognition Principal component analysis">Face recognition Principal component analysis</a>, <a href="https://publications.waset.org/search?q=Linear%20discriminant%20analysis" title=" Linear discriminant analysis"> Linear discriminant analysis</a>, <a href="https://publications.waset.org/search?q=Neural%20networks." title=" Neural networks."> Neural networks.</a> </p> <a href="https://publications.waset.org/13908/a-new-face-recognition-method-using-pca-lda-and-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13908/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13908/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13908/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13908/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13908/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13908/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13908/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13908/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13908/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13908/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3213</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10967</span> Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Motonobu%20Hattori">Motonobu Hattori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=catastrophic%20forgetting" title="catastrophic forgetting">catastrophic forgetting</a>, <a href="https://publications.waset.org/search?q=chaotic%20neural%20network" title=" chaotic neural network"> chaotic neural network</a>, <a href="https://publications.waset.org/search?q=complementary%20learning%20systems" title=" complementary learning systems"> complementary learning systems</a>, <a href="https://publications.waset.org/search?q=dual-network" title=" dual-network"> dual-network</a> </p> <a href="https://publications.waset.org/15270/avoiding-catastrophic-forgetting-by-a-dual-network-memory-model-using-a-chaotic-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15270/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15270/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15270/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15270/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15270/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15270/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15270/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15270/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15270/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15270/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2102</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10966</span> Optimum Neural Network Architecture for Precipitation Prediction of Myanmar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaing%20Win%20Mar">Khaing Win Mar</a>, <a href="https://publications.waset.org/search?q=Thinn%20Thu%20Naing"> Thinn Thu Naing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a suitable neural network model for monthly precipitation mapping of Myanmar. Using 3-layerd neural network models, 100 cases are tested by changing the number of input and hidden nodes from 1 to 10 nodes, respectively, and only one outputnode used. The optimum model with the suitable number of nodes is selected in accordance with the minimum forecast error. In measuring network performance using Root Mean Square Error (RMSE), experimental results significantly show that 3 inputs-10 hiddens-1 output architecture model gives the best prediction result for monthly precipitation in Myanmar.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Precipitation%20prediction" title="Precipitation prediction">Precipitation prediction</a>, <a href="https://publications.waset.org/search?q=monthly%20precipitation" title=" monthly precipitation"> monthly precipitation</a>, <a href="https://publications.waset.org/search?q=neural%20network%20models" title="neural network models">neural network models</a>, <a href="https://publications.waset.org/search?q=Myanmar." title=" Myanmar."> Myanmar.</a> </p> <a href="https://publications.waset.org/13861/optimum-neural-network-architecture-for-precipitation-prediction-of-myanmar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13861/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13861/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13861/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13861/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13861/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13861/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13861/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13861/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13861/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13861/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1749</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10965</span> Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20Reza%20Ghasemi">Mohammad Reza Ghasemi</a>, <a href="https://publications.waset.org/search?q=Amin%20Ghorbani"> Amin Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Weight%20Minimization" title="Weight Minimization">Weight Minimization</a>, <a href="https://publications.waset.org/search?q=Frequency%20Constraints" title=" Frequency Constraints"> Frequency Constraints</a>, <a href="https://publications.waset.org/search?q=Steel%0AFrames" title=" Steel Frames"> Steel Frames</a>, <a href="https://publications.waset.org/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/search?q=WNN" title=" WNN"> WNN</a>, <a href="https://publications.waset.org/search?q=RASP%20Function." title=" RASP Function."> RASP Function.</a> </p> <a href="https://publications.waset.org/3606/application-of-wavelet-neural-networks-in-optimization-of-skeletal-buildings-under-frequency-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3606/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3606/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3606/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3606/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3606/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3606/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3606/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3606/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3606/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3606/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1740</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10964</span> Application of Neural Network on the Loading of Copper onto Clinoptilolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=John%20Kabuba">John Kabuba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ionexchange.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clinoptilolite" title="Clinoptilolite">Clinoptilolite</a>, <a href="https://publications.waset.org/search?q=loading" title=" loading"> loading</a>, <a href="https://publications.waset.org/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/search?q=Neural%20network." title=" Neural network."> Neural network.</a> </p> <a href="https://publications.waset.org/9999212/application-of-neural-network-on-the-loading-of-copper-onto-clinoptilolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999212/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999212/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999212/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999212/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999212/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999212/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999212/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999212/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999212/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999212/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1573</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10963</span> A Survey of Sentiment Analysis Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pingping%20Lin">Pingping Lin</a>, <a href="https://publications.waset.org/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/search?q=Yifan%20Fan"> Yifan Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20language%20processing" title="Natural language processing">Natural language processing</a>, <a href="https://publications.waset.org/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/search?q=document%20analysis" title=" document analysis"> document analysis</a>, <a href="https://publications.waset.org/search?q=multimodal%20sentiment%20analysis" title=" multimodal sentiment analysis"> multimodal sentiment analysis</a>, <a href="https://publications.waset.org/search?q=deep%20learning." title=" deep learning."> deep learning.</a> </p> <a href="https://publications.waset.org/10011630/a-survey-of-sentiment-analysis-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011630/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011630/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011630/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011630/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011630/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011630/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011630/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011630/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011630/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011630/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2004</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10962</span> Some Remarkable Properties of a Hopfield Neural Network with Time Delay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kelvin%20Rozier">Kelvin Rozier</a>, <a href="https://publications.waset.org/search?q=Vladimir%20E.%20Bondarenko"> Vladimir E. Bondarenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chaos" title="Chaos">Chaos</a>, <a href="https://publications.waset.org/search?q=Hopfield%20neural%20network" title=" Hopfield neural network"> Hopfield neural network</a>, <a href="https://publications.waset.org/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/search?q=synchronization" title=" synchronization"> synchronization</a> </p> <a href="https://publications.waset.org/2754/some-remarkable-properties-of-a-hopfield-neural-network-with-time-delay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2754/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2754/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2754/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2754/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2754/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2754/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2754/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2754/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2754/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2754/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1890</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10961</span> Development of Gas Chromatography Model: Propylene Concentration Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Areej%20Babiker%20Idris%20Babiker">Areej Babiker Idris Babiker</a>, <a href="https://publications.waset.org/search?q=Rosdiazli%20Ibrahim"> Rosdiazli Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Analyzer" title="Analyzer">Analyzer</a>, <a href="https://publications.waset.org/search?q=Levenberg-Marquardt" title=" Levenberg-Marquardt"> Levenberg-Marquardt</a>, <a href="https://publications.waset.org/search?q=Gas%0Achromatography" title=" Gas chromatography"> Gas chromatography</a>, <a href="https://publications.waset.org/search?q=Neural%20network" title=" Neural network"> Neural network</a> </p> <a href="https://publications.waset.org/10018/development-of-gas-chromatography-model-propylene-concentration-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10018/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10018/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10018/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10018/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10018/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10018/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10018/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10018/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10018/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10018/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1767</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10960</span> Analysis of Combined Use of NN and MFCC for Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Safdar%20Tanweer">Safdar Tanweer</a>, <a href="https://publications.waset.org/search?q=Abdul%20Mobin"> Abdul Mobin</a>, <a href="https://publications.waset.org/search?q=Afshar%20Alam"> Afshar Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Speech%20Recognition" title="Speech Recognition">Speech Recognition</a>, <a href="https://publications.waset.org/search?q=MFCC" title=" MFCC"> MFCC</a>, <a href="https://publications.waset.org/search?q=Neural%20Network" title=" Neural Network"> Neural Network</a>, <a href="https://publications.waset.org/search?q=classifier." title=" classifier. "> classifier. </a> </p> <a href="https://publications.waset.org/10000797/analysis-of-combined-use-of-nn-and-mfcc-for-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000797/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000797/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000797/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000797/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000797/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000797/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000797/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000797/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000797/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000797/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3268</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10959</span> Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zongyan%20Li">Zongyan Li</a>, <a href="https://publications.waset.org/search?q=Matt%20Best"> Matt Best</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Correlation%20analysis" title="Correlation analysis">Correlation analysis</a>, <a href="https://publications.waset.org/search?q=F-ratio" title=" F-ratio"> F-ratio</a>, <a href="https://publications.waset.org/search?q=Levenberg-Marquardt" title=" Levenberg-Marquardt"> Levenberg-Marquardt</a>, <a href="https://publications.waset.org/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/search?q=NARX" title=" NARX"> NARX</a>, <a href="https://publications.waset.org/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=optimisation." title=" optimisation."> optimisation.</a> </p> <a href="https://publications.waset.org/10001639/optimization-of-the-input-layer-structure-for-feed-forward-narx-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001639/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001639/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001639/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001639/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001639/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001639/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001639/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001639/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001639/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001639/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2189</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10958</span> Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Sendhilkumar">S. Sendhilkumar</a>, <a href="https://publications.waset.org/search?q=N.%20Mohanasundaram"> N. Mohanasundaram</a>, <a href="https://publications.waset.org/search?q=M.%20Senthilkumar"> M. Senthilkumar</a>, <a href="https://publications.waset.org/search?q=S.%20N.%20Sivanandam"> S. N. Sivanandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elman%20neural%20network" title="Elman neural network">Elman neural network</a>, <a href="https://publications.waset.org/search?q=fault%20detection" title=" fault detection"> fault detection</a>, <a href="https://publications.waset.org/search?q=rotating%20machines" title=" rotating machines"> rotating machines</a>, <a href="https://publications.waset.org/search?q=unbalance" title=" unbalance"> unbalance</a>, <a href="https://publications.waset.org/search?q=vibration%20analysis." title=" vibration analysis."> vibration analysis.</a> </p> <a href="https://publications.waset.org/10004647/elman-neural-network-for-diagnosis-of-unbalance-in-a-rotor-bearing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004647/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004647/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004647/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004647/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004647/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004647/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004647/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004647/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004647/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004647/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1470</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10957</span> Efficient System for Speech Recognition using General Regression Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abderrahmane%20Amrouche">Abderrahmane Amrouche</a>, <a href="https://publications.waset.org/search?q=Jean%20Michel%20Rouvaen"> Jean Michel Rouvaen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Speech%20Recognition" title="Speech Recognition">Speech Recognition</a>, <a href="https://publications.waset.org/search?q=General%20Regression%20NeuralNetwork" title=" General Regression NeuralNetwork"> General Regression NeuralNetwork</a>, <a href="https://publications.waset.org/search?q=Hidden%20Markov%20Model" title=" Hidden Markov Model"> Hidden Markov Model</a>, <a href="https://publications.waset.org/search?q=Recurrent%20Neural%20Network" title=" Recurrent Neural Network"> Recurrent Neural Network</a>, <a href="https://publications.waset.org/search?q=ArabicDigits." title=" ArabicDigits."> ArabicDigits.</a> </p> <a href="https://publications.waset.org/43/efficient-system-for-speech-recognition-using-general-regression-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/43/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/43/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/43/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/43/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/43/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/43/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/43/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/43/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/43/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/43/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/43.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2185</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10956</span> Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Edward%20Guill%C3%A9n">Edward Guill茅n</a>, <a href="https://publications.waset.org/search?q=Jhordany%20Rodriguez"> Jhordany Rodriguez</a>, <a href="https://publications.waset.org/search?q=Rafael%20P%C3%A1ez"> Rafael P谩ez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Network%20Intrusion%20Detection" title="Network Intrusion Detection">Network Intrusion Detection</a>, <a href="https://publications.waset.org/search?q=Machine%20learning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network." title=" Artificial Neural Network."> Artificial Neural Network.</a> </p> <a href="https://publications.waset.org/9996779/evaluating-performance-of-an-anomaly-detection-module-with-artificial-neural-network-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996779/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996779/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996779/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996779/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996779/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996779/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996779/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996779/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996779/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996779/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2078</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10955</span> Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Khatami%20Rad">M. Khatami Rad</a>, <a href="https://publications.waset.org/search?q=N.%20Jamali"> N. Jamali</a>, <a href="https://publications.waset.org/search?q=M.%20Torabizadeh"> M. Torabizadeh</a>, <a href="https://publications.waset.org/search?q=A.%20Noshadi"> A. Noshadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Condition%20based%20monitoring" title="Condition based monitoring">Condition based monitoring</a>, <a href="https://publications.waset.org/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/search?q=neural%0Anetwork" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/search?q=fault%20detection" title=" fault detection"> fault detection</a>, <a href="https://publications.waset.org/search?q=vibration%20monitoring." title=" vibration monitoring."> vibration monitoring.</a> </p> <a href="https://publications.waset.org/9552/performance-analysis-of-expert-systems-incorporating-neural-network-for-fault-detection-of-an-electric-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9552/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9552/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9552/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9552/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9552/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9552/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9552/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9552/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9552/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9552/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1990</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10954</span> Development of Neural Network Prediction Model of Energy Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Maryam%20Jamela%20Ismail">Maryam Jamela Ismail</a>, <a href="https://publications.waset.org/search?q=Rosdiazli%20Ibrahim"> Rosdiazli Ibrahim</a>, <a href="https://publications.waset.org/search?q=Idris%20Ismail"> Idris Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Energy%20Prediction" title="Energy Prediction">Energy Prediction</a>, <a href="https://publications.waset.org/search?q=Multilayer%20Feedforward" title=" Multilayer Feedforward"> Multilayer Feedforward</a>, <a href="https://publications.waset.org/search?q=Levenberg-Marquardt" title=" Levenberg-Marquardt"> Levenberg-Marquardt</a>, <a href="https://publications.waset.org/search?q=Root%20Mean%20Square%20Error%20%28RMSE%29" title=" Root Mean Square Error (RMSE)"> Root Mean Square Error (RMSE)</a> </p> <a href="https://publications.waset.org/12881/development-of-neural-network-prediction-model-of-energy-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12881/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12881/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12881/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12881/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12881/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12881/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12881/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12881/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12881/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12881/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2643</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=366">366</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=367">367</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Neural%20Network%20Analysis.&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>