CINXE.COM

Klein-Gordon equation in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Klein-Gordon equation in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Klein-Gordon equation </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/7956/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="variational_calculus">Variational calculus</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/variational+calculus">variational calculus</a></strong></p> <h2 id="differential_geometric_version">Differential geometric version</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/variational+bicomplex">variational bicomplex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+Lagrangian">local Lagrangian</a>, <a class="existingWikiWord" href="/nlab/show/local+action+functional">local action functional</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Euler-Lagrange+form">Euler-Lagrange form</a>, <a class="existingWikiWord" href="/nlab/show/source+form">source form</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lepage+form">Lepage form</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principle+of+extremal+action">principle of extremal action</a>, <a class="existingWikiWord" href="/nlab/show/Euler-Lagrange+equations">Euler-Lagrange equations</a>, <a class="existingWikiWord" href="/nlab/show/de+Donder-Weyl+formalism">de Donder-Weyl formalism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/covariant+phase+space">covariant phase space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Noether%27s+theorem">Noether's theorem</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/conserved+current">conserved current</a>, <a class="existingWikiWord" href="/nlab/show/charge">charge</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetry">symmetry</a></p> </li> </ul> </li> </ul> <h2 id="derived_differential_geometric_version">Derived differential geometric version</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/BV-BRST+complex">BV-BRST complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/D-module">D-module</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/variational+calculus+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="riemannian_geometry">Riemannian geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/Riemannian+geometry">Riemannian geometry</a></strong></p> <h2 id="basic_definitions">Basic definitions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Riemannian+manifold">Riemannian manifold</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/metric">metric</a>, <a class="existingWikiWord" href="/nlab/show/isometry">isometry</a>, <a class="existingWikiWord" href="/nlab/show/isometry+group">isometry group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/moduli+space+of+Riemannian+metrics">moduli space of Riemannian metrics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudo-Riemannian+manifold">pseudo-Riemannian manifold</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lorentzian+manifold">Lorentzian manifold</a>, <a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geodesic">geodesic</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/geodesic+convexity">geodesic convexity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geodesic+flow">geodesic flow</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Levi-Civita+connection">Levi-Civita connection</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Riemann+curvature">Riemann curvature</a>, <a class="existingWikiWord" href="/nlab/show/torsion+of+a+metric+connection">torsion of a metric connection</a></li> </ul> </li> </ul> <h2 id="further_concepts">Further concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+inner+product">Hodge inner product</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+star+operator">Hodge star operator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gradient">gradient</a>, <a class="existingWikiWord" href="/nlab/show/gradient+flow">gradient flow</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/Poincar%C3%A9+conjecture">Poincaré conjecture</a>-theorem</li> </ul> <h2 id="applications">Applications</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/gravity">gravity</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Einstein-Hilbert+action">Einstein-Hilbert action</a>, <a class="existingWikiWord" href="/nlab/show/Einstein+equations">Einstein equations</a>, <a class="existingWikiWord" href="/nlab/show/supergravity">supergravity</a></li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/Riemannian+geometry+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#formal_selfadjointness'>Formal self-adjointness</a></li> <li><a href='#bicharacteristic_flow_and_propagation_of_singularities'>Bicharacteristic flow and propagation of singularities</a></li> <li><a href='#FundamentalSolutions'>Fundamental solutions</a></li> <li><a href='#relation_to_schrdinger_equation'>Relation to Schrödinger equation</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The <em>Klein-Gordon equation</em> is the <a class="existingWikiWord" href="/nlab/show/linear+differential+equation">linear</a> <a class="existingWikiWord" href="/nlab/show/partial+differential+equation">partial differential equation</a> which is the <a class="existingWikiWord" href="/nlab/show/equation+of+motion">equation of motion</a> of a <a class="existingWikiWord" href="/nlab/show/free+field">free</a> <a class="existingWikiWord" href="/nlab/show/scalar+field">scalar</a> <a class="existingWikiWord" href="/nlab/show/field+%28physics%29">field</a> of possibly non-vanishing <a class="existingWikiWord" href="/nlab/show/mass">mass</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> on some (possibly <a class="existingWikiWord" href="/nlab/show/curved+spacetime">curved</a>) <a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a> (<a class="existingWikiWord" href="/nlab/show/Lorentzian+manifold">Lorentzian manifold</a>): it is the relativistic <a class="existingWikiWord" href="/nlab/show/wave+equation">wave equation</a> with inhomogeneity the mass <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>m</mi> <mn>2</mn></msup></mrow><annotation encoding="application/x-tex">m^2</annotation></semantics></math>.</p> <p>The structure of the Klein-Gordon equation appears also in the <a class="existingWikiWord" href="/nlab/show/equations+of+motion">equations of motion</a> of richer <a class="existingWikiWord" href="/nlab/show/field+%28physics%29">fields</a> than just <a class="existingWikiWord" href="/nlab/show/scalar+fields">scalar fields</a>, where now the underlying <a class="existingWikiWord" href="/nlab/show/field+bundle">field bundle</a> may more generally be some <a class="existingWikiWord" href="/nlab/show/vector+bundle">vector bundle</a>. Therefore the <a class="existingWikiWord" href="/nlab/show/fundamental+solutions">fundamental solutions</a> of the Klein-Gordon equation, called the <em><a class="existingWikiWord" href="/nlab/show/propagators">propagators</a></em> (see <a href="#FundamentalSolutions">below</a>) pervades all of relativistic <a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">perturbative quantum field theory</a>.</p> <h2 id="definition">Definition</h2> <p>Given a <a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,g)</annotation></semantics></math> (a <a class="existingWikiWord" href="/nlab/show/pseudo-Riemannian+manifold">pseudo-Riemannian manifold</a>) and a <a class="existingWikiWord" href="/nlab/show/real+number">real number</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>∈</mo><msub><mi>ℝ</mi> <mrow><mo>≥</mo><mn>0</mn></mrow></msub></mrow><annotation encoding="application/x-tex">m \in \mathbb{R}_{\geq 0}</annotation></semantics></math>, then the <em>Klein-Gordon equation</em> is the <a class="existingWikiWord" href="/nlab/show/differential+equation">differential equation</a> on <a class="existingWikiWord" href="/nlab/show/smooth+functions">smooth functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">\phi \colon X \to \mathbb{R}</annotation></semantics></math> given by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><msub><mo>□</mo> <mi>g</mi></msub><mo>−</mo><msup><mrow><mo>(</mo><mstyle displaystyle="false"><mfrac><mrow><mi>m</mi><mi>c</mi></mrow><mi>ℏ</mi></mfrac></mstyle><mo>)</mo></mrow> <mn>2</mn></msup><mo>)</mo></mrow><mi>ϕ</mi><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mn>0</mn><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \left( \Box_g - \left( \tfrac{m c}{\hbar} \right)^2 \right) \phi \;=\; 0 \,, </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>□</mo> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">\Box_g</annotation></semantics></math> denotes the <em><a class="existingWikiWord" href="/nlab/show/wave+operator">wave operator</a></em> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,g)</annotation></semantics></math> (the analog of the <a class="existingWikiWord" href="/nlab/show/Laplace+operator">Laplace operator</a> in <a class="existingWikiWord" href="/nlab/show/Lorentzian+geometry">Lorentzian geometry</a>) and where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle displaystyle="false"><mfrac><mrow><mi>m</mi><mi>c</mi></mrow><mi>ℏ</mi></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\tfrac{m c }{\hbar}</annotation></semantics></math> is for the purpose of pure <a class="existingWikiWord" href="/nlab/show/PDE">PDE</a> theory just a <a class="existingWikiWord" href="/nlab/show/real+number">real number</a>, while regarded as equipped with <a class="existingWikiWord" href="/nlab/show/physical+units">physical units</a> it is the inverse <em><a class="existingWikiWord" href="/nlab/show/Compton+wavelength">Compton wavelength</a></em> for <a class="existingWikiWord" href="/nlab/show/mass">mass</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math>.</p> <p>This is the <a class="existingWikiWord" href="/nlab/show/equation+of+motion">equation of motion</a> of the <a class="existingWikiWord" href="/nlab/show/free+field">free</a> <a class="existingWikiWord" href="/nlab/show/scalar+field">scalar field</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, of <a class="existingWikiWord" href="/nlab/show/mass">mass</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> and subject to a <a class="existingWikiWord" href="/nlab/show/background+field">background field</a> of <a class="existingWikiWord" href="/nlab/show/gravity">gravity</a> as encoded in the metric <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math>.</p> <h2 id="examples">Examples</h2> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>ℝ</mi> <mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">(X,g) = \mathbb{R}^{p,1}</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/Minkowski+spacetime">Minkowski spacetime</a> equipped with its canonical <a class="existingWikiWord" href="/nlab/show/coordinate+functions">coordinate functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>x</mi> <mn>0</mn></msup><mo>=</mo><mi>c</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">x^0 = c t</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msup><mi>x</mi> <mi>i</mi></msup><msubsup><mo stretchy="false">}</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>p</mi></msubsup></mrow><annotation encoding="application/x-tex">\{x^i\}_{i = 1}^p</annotation></semantics></math>, then the Klein-Gordon equation reads as follows (using <a class="existingWikiWord" href="/nlab/show/Einstein+summation+convention">Einstein summation convention</a>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mfrac><mo>∂</mo><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><mfrac><mo>∂</mo><mrow><mo>∂</mo><msup><mi>x</mi> <mi>ν</mi></msup></mrow></mfrac><mo>−</mo><msup><mrow><mo>(</mo><mstyle displaystyle="false"><mfrac><mrow><mi>m</mi><mi>c</mi></mrow><mi>ℏ</mi></mfrac></mstyle><mo>)</mo></mrow> <mn>2</mn></msup><mo>)</mo></mrow><mi>ϕ</mi><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mn>0</mn></mrow><annotation encoding="application/x-tex"> \left( \eta^{\mu \nu} \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x^\nu} - \left( \tfrac{m c}{\hbar} \right)^2 \right) \phi \;=\; 0 </annotation></semantics></math></div> <p>hence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><msup><mi>c</mi> <mn>2</mn></msup></mrow></mfrac></mstyle><mfrac><mrow><msup><mo>∂</mo> <mn>2</mn></msup></mrow><mrow><mo>∂</mo><msup><mi>t</mi> <mn>2</mn></msup></mrow></mfrac><mo>+</mo><munderover><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></munderover><mfrac><mo>∂</mo><mrow><mo>∂</mo><msup><mi>x</mi> <mi>i</mi></msup></mrow></mfrac><mfrac><mo>∂</mo><mrow><mo>∂</mo><msup><mi>x</mi> <mi>i</mi></msup></mrow></mfrac><mo>−</mo><msup><mrow><mo>(</mo><mstyle displaystyle="false"><mfrac><mrow><mi>m</mi><mi>c</mi></mrow><mi>ℏ</mi></mfrac></mstyle><mo>)</mo></mrow> <mn>2</mn></msup><mo>)</mo></mrow><mi>ϕ</mi><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mn>0</mn></mrow><annotation encoding="application/x-tex"> \left( -\tfrac{1}{c^2} \frac{\partial^2}{\partial t^2} + \underoverset{i = 1}{p}{\sum}\frac{\partial}{\partial x^i} \frac{\partial}{\partial x^i} - \left( \tfrac{m c}{\hbar} \right)^2 \right) \phi \;=\; 0 </annotation></semantics></math></div> <h2 id="properties">Properties</h2> <h3 id="formal_selfadjointness">Formal self-adjointness</h3> <div class="num_example" id="FormallySelfAdjointKleinGordonOperator"> <h6 id="example">Example</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/Klein-Gordon+operator">Klein-Gordon operator</a> is <a class="existingWikiWord" href="/nlab/show/formal+adjoint+differential+operator">formally self-adjoint</a>)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi><mo>=</mo><msup><mi>ℝ</mi> <mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">\Sigma = \mathbb{R}^{p,1}</annotation></semantics></math> be <a class="existingWikiWord" href="/nlab/show/Minkowski+spacetime">Minkowski spacetime</a> with <a class="existingWikiWord" href="/nlab/show/Minkowski+metric">Minkowski metric</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi></mrow><annotation encoding="application/x-tex">\eta</annotation></semantics></math> and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>≔</mo><mi>Σ</mi><mo>×</mo><mi>ℝ</mi></mrow><annotation encoding="application/x-tex">E \coloneqq \Sigma \times \mathbb{R}</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/trivial+line+bundle">trivial line bundle</a>. The canonical <a class="existingWikiWord" href="/nlab/show/volume+form">volume form</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>dvol</mi> <mi>Σ</mi></msub></mrow><annotation encoding="application/x-tex">dvol_\Sigma</annotation></semantics></math> induces an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mover><mi>E</mi><mo stretchy="false">˜</mo></mover> <mo>*</mo></msup><mo>≃</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">\tilde E^\ast \simeq E</annotation></semantics></math>.</p> <p>Consider then the <a class="existingWikiWord" href="/nlab/show/Klein-Gordon+operator">Klein-Gordon operator</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo>□</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mi>m</mi> <mn>2</mn></msup><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><msub><mi>Γ</mi> <mi>Σ</mi></msub><mo stretchy="false">(</mo><mi>Σ</mi><mo>×</mo><mi>ℝ</mi><mo stretchy="false">)</mo><mo>⟶</mo><msub><mi>Γ</mi> <mi>Σ</mi></msub><mo stretchy="false">(</mo><mi>Σ</mi><mo>×</mo><mi>ℝ</mi><mo stretchy="false">)</mo><mo>⊗</mo><mo stretchy="false">⟨</mo><msub><mi>dvol</mi> <mi>Σ</mi></msub><mo stretchy="false">⟩</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> (\Box - m^2) \;\colon\; \Gamma_\Sigma(\Sigma \times \mathbb{R}) \longrightarrow \Gamma_\Sigma(\Sigma \times \mathbb{R}) \otimes \langle dvol_\Sigma\rangle \,. </annotation></semantics></math></div> <p>This is its own <a class="existingWikiWord" href="/nlab/show/formal+adjoint+differential+operator">formal adjoint</a> witnessed by the bilinear differential operator given by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><msub><mi>Φ</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>Φ</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>≔</mo><mspace width="thickmathspace"></mspace><mrow><mo>(</mo><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>1</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><msub><mi>Φ</mi> <mn>2</mn></msub><mo>−</mo><msub><mi>Φ</mi> <mn>1</mn></msub><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>2</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><mo>)</mo></mrow><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><msub><mi>ι</mi> <mrow><msub><mo>∂</mo> <mi>ν</mi></msub></mrow></msub><msub><mi>dvol</mi> <mi>Σ</mi></msub><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> K(\Phi_1, \Phi_2) \;\coloneqq\; \left( \frac{\partial \Phi_1}{\partial x^\mu} \Phi_2 - \Phi_1 \frac{\partial \Phi_2}{\partial x^\mu} \right) \eta^{\mu \nu}\iota_{\partial_\nu} dvol_\Sigma \,. </annotation></semantics></math></div></div> <div class="proof"> <h6 id="proof">Proof</h6> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mi>d</mi><mi>K</mi><mo stretchy="false">(</mo><msub><mi>Φ</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>Φ</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mtd> <mtd><mo>=</mo><mi>d</mi><mrow><mo>(</mo><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>1</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><msub><mi>Φ</mi> <mn>2</mn></msub><mo>−</mo><msub><mi>Φ</mi> <mn>1</mn></msub><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>2</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><mo>)</mo></mrow><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><msub><mi>ι</mi> <mrow><msub><mo>∂</mo> <mi>ν</mi></msub></mrow></msub><msub><mi>dvol</mi> <mi>Σ</mi></msub></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mrow><mo>(</mo><mrow><mo>(</mo><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mfrac><mrow><msup><mo>∂</mo> <mn>2</mn></msup><msub><mi>Φ</mi> <mn>1</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup><mo>∂</mo><msup><mi>x</mi> <mi>ν</mi></msup></mrow></mfrac><msub><mi>Φ</mi> <mn>2</mn></msub><mo>+</mo><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>1</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>2</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>ν</mi></msup></mrow></mfrac><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>1</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>ν</mi></msup></mrow></mfrac><mfrac><mrow><mo>∂</mo><msub><mi>Φ</mi> <mn>2</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><mo>+</mo><msub><mi>Φ</mi> <mn>1</mn></msub><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mfrac><mrow><msup><mo>∂</mo> <mn>2</mn></msup><msub><mi>Φ</mi> <mn>2</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>ν</mi></msup><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><mo>)</mo></mrow><mo>)</mo></mrow><msub><mi>dvol</mi> <mi>Σ</mi></msub></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mrow><mo>(</mo><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mfrac><mrow><msup><mo>∂</mo> <mn>2</mn></msup><msub><mi>Φ</mi> <mn>1</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup><mo>∂</mo><msup><mi>x</mi> <mi>ν</mi></msup></mrow></mfrac><msub><mi>Φ</mi> <mn>2</mn></msub><mo>−</mo><msub><mi>Φ</mi> <mn>1</mn></msub><msup><mi>η</mi> <mrow><mi>μ</mi><mi>ν</mi></mrow></msup><mfrac><mrow><msup><mo>∂</mo> <mn>2</mn></msup><msub><mi>Φ</mi> <mn>2</mn></msub></mrow><mrow><mo>∂</mo><msup><mi>x</mi> <mi>ν</mi></msup><mo>∂</mo><msup><mi>x</mi> <mi>μ</mi></msup></mrow></mfrac><mo>)</mo></mrow><msub><mi>dvol</mi> <mi>Σ</mi></msub></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mo>□</mo><mo stretchy="false">(</mo><msub><mi>Φ</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><msub><mi>Φ</mi> <mn>2</mn></msub><mo>−</mo><msub><mi>Φ</mi> <mn>1</mn></msub><mo>□</mo><mo stretchy="false">(</mo><msub><mi>Φ</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \begin{aligned} d K(\Phi_1, \Phi_2) &amp; = d \left( \frac{\partial \Phi_1}{\partial x^\mu} \Phi_2 - \Phi_1 \frac{\partial \Phi_2}{\partial x^\mu} \right) \eta^{\mu \nu}\iota_{\partial_\nu} dvol_\Sigma \\ &amp;= \left( \left( \eta^{\mu \nu}\frac{\partial^2 \Phi_1}{\partial x^\mu \partial x^\nu} \Phi_2 + \eta^{\mu \nu} \frac{\partial \Phi_1}{\partial x^\mu} \frac{\partial \Phi_2}{\partial x^\nu} \right) - \left( \eta^{\mu \nu} \frac{\partial \Phi_1}{\partial x^\nu} \frac{\partial \Phi_2}{\partial x^\mu} + \Phi_1 \eta^{\mu \nu} \frac{\partial^2 \Phi_2}{\partial x^\nu \partial x^\mu} \right) \right) dvol_\Sigma \\ &amp; = \left( \eta^{\mu \nu}\frac{\partial^2 \Phi_1}{\partial x^\mu \partial x^\nu} \Phi_2 - \Phi_1 \eta^{\mu \nu} \frac{\partial^2 \Phi_2}{\partial x^\nu \partial x^\mu} \right) dvol_\Sigma \\ &amp; = \Box(\Phi_1) \Phi_2 - \Phi_1 \Box (\Phi_2) \end{aligned} </annotation></semantics></math></div></div> <h3 id="bicharacteristic_flow_and_propagation_of_singularities">Bicharacteristic flow and propagation of singularities</h3> <p>The <a class="existingWikiWord" href="/nlab/show/bicharacteristic+strips">bicharacteristic strips</a> of the Klein-Gordon operator are <a class="existingWikiWord" href="/nlab/show/cotangent+vectors">cotangent vectors</a> along <a class="existingWikiWord" href="/nlab/show/lightlike">lightlike</a> <a class="existingWikiWord" href="/nlab/show/geodesics">geodesics</a> (<a href="bicharacteristic+flow#BicharachteristicFlowOfKleinGordonOperator">this example</a>).</p> <h3 id="FundamentalSolutions">Fundamental solutions</h3> <p>On a <a class="existingWikiWord" href="/nlab/show/globally+hyperbolic+spacetime">globally hyperbolic spacetime</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> the Klein-Gordon equation has unique advanced and retarded <a class="existingWikiWord" href="/nlab/show/Green+functions">Green functions</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>R</mi></msub><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><mi>M</mi><mo>×</mo><mi>M</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Delta_R \in \mathcal{D}'(M\times M)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>A</mi></msub><mo>∈</mo><mi>𝒟</mi><mo>′</mo><mo stretchy="false">(</mo><mi>M</mi><mo>×</mo><mi>M</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Delta_A \in \mathcal{D}'(M\times M)</annotation></semantics></math> respectively.</p> <p>The <a class="existingWikiWord" href="/nlab/show/advanced+and+retarded+Green+functions">advanced and retarded Green functions</a> are uniquely distinguished by their <a class="existingWikiWord" href="/nlab/show/support+of+a+distribution">support</a> properties. Namely, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><msub><mi>Δ</mi> <mi>R</mi></msub></mrow><annotation encoding="application/x-tex">(x,y) \in \operatorname{supp} \Delta_R</annotation></semantics></math> only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> is in the <a class="existingWikiWord" href="/nlab/show/causal+future">causal future</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math>, while <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><msub><mi>Δ</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">(x,y) \in \operatorname{supp} \Delta_A</annotation></semantics></math> only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> is in the <a class="existingWikiWord" href="/nlab/show/causal+past">causal past</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math>.</p> <p>Their difference <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>S</mi></msub><mo>=</mo><msub><mi>Δ</mi> <mi>R</mi></msub><mo>−</mo><msub><mi>Δ</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">\Delta_S = \Delta_R - \Delta_A</annotation></semantics></math> is a bisolution known as the <a class="existingWikiWord" href="/nlab/show/causal+propagator">causal propagator</a>, which is the <a class="existingWikiWord" href="/nlab/show/Peierls+bracket">Peierls bracket</a> which gives the <a class="existingWikiWord" href="/nlab/show/Poisson+bracket">Poisson bracket</a> on the <a class="existingWikiWord" href="/nlab/show/covariant+phase+space">covariant phase space</a> of the <a class="existingWikiWord" href="/nlab/show/free+field">free</a> <a class="existingWikiWord" href="/nlab/show/scalar+field">scalar field</a>. This in turn defines the <a class="existingWikiWord" href="/nlab/show/Wick+algebra">Wick algebra</a> of the free scalar field, which yields the <a class="existingWikiWord" href="/nlab/show/quantization">quantization</a> of the free scalar field to a <a class="existingWikiWord" href="/nlab/show/quantum+field+theory">quantum field theory</a>.</p> <p>Other important Green functions or bisolutions include any (anti-)<a class="existingWikiWord" href="/nlab/show/Feynman+propagator">Feynman propagator</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mover><mi>F</mi><mo stretchy="false">¯</mo></mover></msub></mrow><annotation encoding="application/x-tex">\Delta_{\bar{F}}</annotation></semantics></math>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>F</mi></msub></mrow><annotation encoding="application/x-tex">\Delta_F</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/Hadamard+propagator">Hadamard propagator</a>. Unfortunately, it is not possible to identify them by a simple support condition. On Minkowski space, they are identified by the support of their Fourier transform. On curved spacetimes, there are two possibilities. One specifies the asymptotic expansion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Delta(x,y)</annotation></semantics></math> in a geodesically convex neighborhood of the diagonal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x=y</annotation></semantics></math> to be of a special <em>Hadamard form</em>. The other specifies constraints on the <a class="existingWikiWord" href="/nlab/show/wavefront+set">wavefront set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo stretchy="false">(</mo><mi>Δ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">WF(\Delta)</annotation></semantics></math>. The possibilities were proven to be equivalent in <a href="#Radzikowski96">Radzikowski 96</a>, which made essential use of the relevant notions of microlocal analysis and of <em>distinguished parametrices</em> introduced in <a href="#DuistermaatHoermander72">DuistermaatHörmander 72</a>.</p> <p>According to <a href="#Radzikowski96">Radzikowski 96</a>, the constraints on the wavefront sets of important Green functions and bisolutions can be diagrammatically illustrated as follows below. Note that the primed <a class="existingWikiWord" href="/nlab/show/wavefront+set">wavefront set</a> of a distribution on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mo>×</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">M\times M</annotation></semantics></math> is defined as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>WF</mi><mo>′</mo><mo stretchy="false">(</mo><mi>Δ</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>;</mo><mi>p</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>q</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi>T</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>M</mi><mo>×</mo><mi>M</mi><mo stretchy="false">)</mo><mo lspace="mediummathspace" rspace="mediummathspace">∣</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>WF</mi><mo stretchy="false">(</mo><mi>Δ</mi><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">WF'(\Delta) = \{ (x,y;p,-q) \in T^*(M\times M) \mid (x,y;p,q) \in WF(\Delta) \}</annotation></semantics></math>. The diagrams illustrate tuples <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi>T</mi> <mo>*</mo></msup><mo stretchy="false">(</mo><mi>M</mi><mo>×</mo><mi>M</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x,y; p,q) \in T^*(M\times M)</annotation></semantics></math>, where the vertex of a cone corresponds to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math> and the cone illustrates all points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> linked to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math> by null geodesics; the arrows illustrate the allowed directions of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>, with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> linked by parallel transport and both tangent to null geodesic linking <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math>.</p> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/propagators">propagators</a> (i.e. <a class="existingWikiWord" href="/nlab/show/integral+kernels">integral kernels</a> of <a class="existingWikiWord" href="/nlab/show/Green+functions">Green functions</a>)</strong> <br /> <strong>for the <a class="existingWikiWord" href="/nlab/show/wave+operator">wave operator</a> and <a class="existingWikiWord" href="/nlab/show/Klein-Gordon+operator">Klein-Gordon operator</a></strong> <br /> <strong>on a <a class="existingWikiWord" href="/nlab/show/globally+hyperbolic+spacetime">globally hyperbolic spacetime</a> such as <a class="existingWikiWord" href="/nlab/show/Minkowski+spacetime">Minkowski spacetime</a>:</strong></p> <table><thead><tr><th>name</th><th>symbol</th><th><a class="existingWikiWord" href="/nlab/show/wave+front+set">wave front set</a></th><th>as <a class="existingWikiWord" href="/nlab/show/vacuum+expectation+value">vacuum exp. value</a> <br /> of <a class="existingWikiWord" href="/nlab/show/operator-valued+distribution">field operators</a></th><th>as a <a class="existingWikiWord" href="/nlab/show/nonassociative+algebra">product</a> of <br /> <a class="existingWikiWord" href="/nlab/show/operator-valued+distribution">field operators</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/causal+propagator">causal propagator</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_1"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd><msub><mi>Δ</mi> <mi>S</mi></msub></mtd> <mtd><mo>=</mo><msub><mi>Δ</mi> <mo>+</mo></msub><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>Δ</mi> <mo>−</mo></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned}\Delta_S &amp; = \Delta_+ - \Delta_- \end{aligned}</annotation></semantics></math></td><td style="text-align: left;"><img src="https://ncatlab.org/nlab/files/RetGreenFunction.png" width="60" /> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_2"><semantics><mrow><mphantom><mi>A</mi></mphantom><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>−</mo></mrow><annotation encoding="application/x-tex">\phantom{A}\,\,\,-</annotation></semantics></math> <br /> <img src="https://ncatlab.org/nlab/files/AdvancedGreenFunction.png" width="60" /></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_3"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd></mtd> <mtd><mi>i</mi><mi>ℏ</mi><mspace width="thinmathspace"></mspace><msub><mi>Δ</mi> <mi>S</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mrow><mo>[</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>]</mo></mrow><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned} &amp; i \hbar \, \Delta_S(x,y) = \\ &amp; \left\langle \;\left[\mathbf{\Phi}(x),\mathbf{\Phi}(y)\right]\; \right\rangle \end{aligned} </annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Peierls+bracket">Peierls-Poisson bracket</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/advanced+propagator">advanced propagator</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_4"><semantics><mrow><msub><mi>Δ</mi> <mo>+</mo></msub></mrow><annotation encoding="application/x-tex">\Delta_+</annotation></semantics></math></td><td style="text-align: left;"><img src="https://ncatlab.org/nlab/files/RetGreenFunction.png" width="60" /></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_5"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd></mtd> <mtd><mi>i</mi><mi>ℏ</mi><mspace width="thinmathspace"></mspace><msub><mi>Δ</mi> <mo>+</mo></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mrow><mo>[</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>]</mo></mrow><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>x</mi><mo>≥</mo><mi>y</mi></mtd></mtr> <mtr><mtd><mn>0</mn></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>y</mi><mo>≥</mo><mi>x</mi></mtd></mtr></mtable></mrow></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned} &amp; i \hbar \, \Delta_+(x,y) = \\ &amp; \left\{ \array{ \left\langle \; \left[ \mathbf{\Phi}(x),\mathbf{\Phi}(y) \right] \; \right\rangle &amp;\vert&amp; x \geq y \\ 0 &amp;\vert&amp; y \geq x } \right. \end{aligned} </annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/future">future</a> part of <br /> <a class="existingWikiWord" href="/nlab/show/Peierls-Poisson+bracket">Peierls-Poisson bracket</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/retarded+propagator">retarded propagator</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_6"><semantics><mrow><msub><mi>Δ</mi> <mo>−</mo></msub></mrow><annotation encoding="application/x-tex">\Delta_-</annotation></semantics></math></td><td style="text-align: left;"><img src="https://ncatlab.org/nlab/files/AdvancedGreenFunction.png" width="60" /></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_7"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd></mtd> <mtd><mi>i</mi><mi>ℏ</mi><mspace width="thinmathspace"></mspace><msub><mi>Δ</mi> <mo>−</mo></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mrow><mo>[</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>]</mo></mrow><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>y</mi><mo>≥</mo><mi>x</mi></mtd></mtr> <mtr><mtd><mn>0</mn></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>x</mi><mo>≥</mo><mi>y</mi></mtd></mtr></mtable></mrow></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned} &amp; i \hbar \, \Delta_-(x,y) = \\ &amp; \left\{ \array{ \left\langle \; \left[\mathbf{\Phi}(x),\mathbf{\Phi}(y) \right] \; \right\rangle &amp;\vert&amp; y \geq x \\ 0 &amp;\vert&amp; x \geq y } \right. \end{aligned}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/past">past</a> part of <br /> <a class="existingWikiWord" href="/nlab/show/Peierls-Poisson+bracket">Peierls-Poisson bracket</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Wightman+propagator">Wightman propagator</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_8"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd><msub><mi>Δ</mi> <mi>H</mi></msub></mtd> <mtd><mo>=</mo><mstyle displaystyle="false"><mfrac><mi>i</mi><mn>2</mn></mfrac></mstyle><mrow><mo>(</mo><msub><mi>Δ</mi> <mo>+</mo></msub><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>Δ</mi> <mo>−</mo></msub><mo>)</mo></mrow><mo>+</mo><mi>H</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mstyle displaystyle="false"><mfrac><mi>i</mi><mn>2</mn></mfrac></mstyle><msub><mi>Δ</mi> <mi>S</mi></msub><mo>+</mo><mi>H</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><msub><mi>Δ</mi> <mi>F</mi></msub><mo>−</mo><mi>i</mi><msub><mi>Δ</mi> <mo>−</mo></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned} \Delta_H &amp;= \tfrac{i}{2}\left( \Delta_+ - \Delta_-\right) + H\\ &amp; = \tfrac{i}{2}\Delta_S + H \\ &amp; = \Delta_F - i \Delta_- \end{aligned}</annotation></semantics></math></td><td style="text-align: left;"><img src="https://ncatlab.org/nlab/files/HadamardPropagator.png" width="60" /></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_9"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd></mtd> <mtd><mi>ℏ</mi><mspace width="thinmathspace"></mspace><msub><mi>Δ</mi> <mi>H</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><munder><munder><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mo>:</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>:</mo><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow><mo>⏟</mo></munder><mrow><mo>=</mo><mn>0</mn></mrow></munder></mtd></mtr> <mtr><mtd></mtd> <mtd><mphantom><mo>=</mo></mphantom><mo>+</mo><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mrow><mo>[</mo><msup><mstyle mathvariant="bold"><mi>Φ</mi></mstyle> <mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><msup><mstyle mathvariant="bold"><mi>Φ</mi></mstyle> <mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>]</mo></mrow><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned} &amp; \hbar \, \Delta_H(x,y) \\ &amp; = \left\langle \; \mathbf{\Phi}(x) \mathbf{\Phi}(y) \; \right\rangle \\ &amp; = \underset{ = 0 }{\underbrace{\left\langle \; : \mathbf{\Phi}(x) \mathbf{\Phi}(y) : \; \right\rangle}} \\ &amp; \phantom{=} + \left\langle \; \left[ \mathbf{\Phi}^{(-)}(x), \mathbf{\Phi}^{(+)}(y) \right] \; \right\rangle \end{aligned} </annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/positive+real+number">positive</a> <a class="existingWikiWord" href="/nlab/show/frequency">frequency</a> of <br /> <a class="existingWikiWord" href="/nlab/show/Peierls-Poisson+bracket">Peierls-Poisson bracket</a>, <br /> <a class="existingWikiWord" href="/nlab/show/Wick+algebra">Wick algebra</a>-product, <br /> <a class="existingWikiWord" href="/nlab/show/2-point+function">2-point function</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_10"><semantics><mrow><mphantom><mo>=</mo></mphantom></mrow><annotation encoding="application/x-tex">\phantom{=}</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/vacuum+state">vacuum state</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_11"><semantics><mrow><mphantom><mo>=</mo></mphantom></mrow><annotation encoding="application/x-tex">\phantom{=}</annotation></semantics></math> or generally of <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_12"><semantics><mrow><mphantom><mo>=</mo></mphantom></mrow><annotation encoding="application/x-tex">\phantom{=}</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Hadamard+state">Hadamard state</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Feynman+propagator">Feynman propagator</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_13"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd><msub><mi>Δ</mi> <mi>F</mi></msub></mtd> <mtd><mo>=</mo><mstyle displaystyle="false"><mfrac><mi>i</mi><mn>2</mn></mfrac></mstyle><mrow><mo>(</mo><msub><mi>Δ</mi> <mo>+</mo></msub><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>Δ</mi> <mo>−</mo></msub><mo>)</mo></mrow><mo>+</mo><mi>H</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mi>i</mi><msub><mi>Δ</mi> <mi>D</mi></msub><mo>+</mo><mi>H</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><msub><mi>Δ</mi> <mi>H</mi></msub><mo>+</mo><mi>i</mi><msub><mi>Δ</mi> <mo>−</mo></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned}\Delta_F &amp; = \tfrac{i}{2}\left( \Delta_+ + \Delta_- \right) + H \\ &amp; = i \Delta_D + H \\ &amp; = \Delta_H + i \Delta_- \end{aligned}</annotation></semantics></math></td><td style="text-align: left;"><img src="https://ncatlab.org/nlab/files/FeynmanPropagator.png" width="60" /></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_8ad2292c16e949c06e1578ff9cf7d277b6dcdf97_14"><semantics><mrow><mrow><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd></mtd> <mtd><mi>ℏ</mi><mspace width="thinmathspace"></mspace><msub><mi>Δ</mi> <mi>F</mi></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mi>T</mi><mrow><mo>(</mo><mspace width="thickmathspace"></mspace><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>)</mo></mrow><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>x</mi><mo>≥</mo><mi>y</mi></mtd></mtr> <mtr><mtd><mrow><mo>⟨</mo><mspace width="thickmathspace"></mspace><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mstyle mathvariant="bold"><mi>Φ</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⟩</mo></mrow></mtd> <mtd><mo stretchy="false">|</mo></mtd> <mtd><mi>y</mi><mo>≥</mo><mi>x</mi></mtd></mtr></mtable></mrow></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\begin{aligned} &amp; \hbar \, \Delta_F(x,y) \\ &amp; = \left\langle \; T\left( \; \mathbf{\Phi}(x)\mathbf{\Phi}(y) \;\right) \; \right\rangle \\ &amp; = \left\{ \array{ \left\langle \; \mathbf{\Phi}(x)\mathbf{\Phi}(x) \; \right\rangle &amp;\vert&amp; x \geq y \\ \left\langle \; \mathbf{\Phi}(y) \mathbf{\Phi}(x) \; \right\rangle &amp;\vert&amp; y \geq x } \right.\end{aligned}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/time-ordered+product">time-ordered product</a></td></tr> </tbody></table> <p>(see also <a class="existingWikiWord" href="/nlab/show/Mikica+Kocic">Kocic</a>‘s overview: <a class="existingWikiWord" href="/nlab/files/KGPropagatorsOnMinkowskiTable.pdf" title="pdf">pdf</a>)</p></div> <p>These propagators govern the construction of the <a class="existingWikiWord" href="/nlab/show/Wick+algebra">Wick algebra</a> of <a class="existingWikiWord" href="/nlab/show/quantum+observables">quantum observables</a> of the <a class="existingWikiWord" href="/nlab/show/free+field">free</a> <a class="existingWikiWord" href="/nlab/show/scalar+field">scalar field</a> on the given <a class="existingWikiWord" href="/nlab/show/globally+hyperbolic+spacetime">globally hyperbolic spacetime</a>, as well as the further <a class="existingWikiWord" href="/nlab/show/deformation+quantization">deformation quantization</a> to <a class="existingWikiWord" href="/nlab/show/interaction">interacting</a> <a class="existingWikiWord" href="/nlab/show/perturbative+quantum+field+theory">perturbative quantum field theory</a> <a class="existingWikiWord" href="/nlab/show/quantum+field+theory+on+curved+spacetimes">on curved spacetimes</a> via <a class="existingWikiWord" href="/nlab/show/causal+perturbation+theory">causal perturbation theory</a>. See at <em><a class="existingWikiWord" href="/nlab/show/locally+covariant+perturbative+quantum+field+theory">locally covariant perturbative quantum field theory</a></em> for more on this.</p> <h3 id="relation_to_schrdinger_equation">Relation to Schrödinger equation</h3> <p>Sometimes the Klein-Gordon equation is thought of as a <a class="existingWikiWord" href="/nlab/show/general+relativity">relativistic</a> refinement of the <a class="existingWikiWord" href="/nlab/show/Schr%C3%B6dinger+equation">Schrödinger equation</a> (as one passes from the non-relativistic to the <a class="existingWikiWord" href="/nlab/show/relativistic+particle">relativistic particle</a>). But this requires some care. A priori the Klein-Gordon equation takes as arguments a <a class="existingWikiWord" href="/nlab/show/field+%28physics%29">field</a> on <a class="existingWikiWord" href="/nlab/show/spacetime">spacetime</a>, whereas the Schrödinger equation takes as argument a <a class="existingWikiWord" href="/nlab/show/wave+function">wave function</a> on <a class="existingWikiWord" href="/nlab/show/phase+space">phase space</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/wave+equation">wave equation</a>, <a class="existingWikiWord" href="/nlab/show/wave">wave</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/plane+wave">plane wave</a></p> <p><a class="existingWikiWord" href="/nlab/show/wave+vector">wave vector</a>, <a class="existingWikiWord" href="/nlab/show/wavelength">wavelength</a>, <a class="existingWikiWord" href="/nlab/show/frequency">frequency</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fourier+analysis">Fourier analysis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/heat+equation">heat equation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/wave+equation">wave equation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Schr%C3%B6dinger+equation">Schrödinger equation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dirac+equation">Dirac equation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sine-Gordon+equation">sine-Gordon equation</a></p> </li> </ul> <h2 id="references">References</h2> <p>The Klein-Gordon equation is named after <a class="existingWikiWord" href="/nlab/show/Oskar+Klein">Oskar Klein</a> and <a class="existingWikiWord" href="/nlab/show/Walter+Gordon">Walter Gordon</a>.</p> <p>Textbook account:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/James+D.+Bjorken">James D. Bjorken</a>, <a class="existingWikiWord" href="/nlab/show/Sidney+D.+Drell">Sidney D. Drell</a>: <em>Relativistic Quantum Mechanics</em>, McGrawHill (1964) &lbrack;<a href="https://archive.org/details/relativisticquan0000bjor/page/n1/mode/2up">ark:/13960/t5fc2v05h</a>, <a href="https://emineter.wordpress.com/wp-content/uploads/2018/10/james-d-bjorken-sidney-d-drell-relativistic-quantum-mechanics-1964.pdf">pdf</a>, <a href="http://www.mmmut.ac.in/News_content/14331tpnews_11122020.pdf">pdf</a>&rbrack;</li> </ul> <p>An overview over the KG <a class="existingWikiWord" href="/nlab/show/propagators">propagators</a> on <a class="existingWikiWord" href="/nlab/show/Minkowski+spacetime">Minkowski spacetime</a> is given in</p> <ul> <li id="Kocic16"><a class="existingWikiWord" href="/nlab/show/Mikica+Kocic">Mikica Kocic</a>, <em>Invariant Commutation and Propagation Functions Invariant Commutation and Propagation Functions</em> (2016) &lbrack;<a class="existingWikiWord" href="/nlab/files/KGPropagatorsOnMinkowskiTable.pdf" title="pdf">pdf</a>&rbrack;</li> </ul> <p>The <a class="existingWikiWord" href="/nlab/show/Hadamard+propagator">Hadamard propagator</a> for the Klein-Gordon equation on general <a class="existingWikiWord" href="/nlab/show/globally+hyperbolic+spacetimes">globally hyperbolic spacetimes</a> was found in</p> <ul> <li id="Radzikowski96"><a class="existingWikiWord" href="/nlab/show/Marek+Radzikowski">Marek Radzikowski</a>, <em>Micro-local approach to the Hadamard condition in quantum field theory on curved space-time</em>, Commun. Math. Phys. 179 (1996), 529–553 (<a href="http://projecteuclid.org/euclid.cmp/1104287114">Euclid</a>)</li> </ul> <p>The original reference on the relevant notions of microlocal analysis and distinguished parametrices of the Klein-Gordon equation is</p> <ul> <li id="DuistermaatHoermander72"><a class="existingWikiWord" href="/nlab/show/Johann+Duistermaat">Johann Duistermaat</a>, <a class="existingWikiWord" href="/nlab/show/Lars+H%C3%B6rmander">Lars Hörmander</a>, <em>Fourier integral operators. II</em>, Acta Mathematica 128 (1972), 183-269 (<a href="http://dx.doi.org/10.1007/bf02392165">doi</a>)</li> </ul> <p>Textbook accounts include</p> <ul> <li id="BaerGinouxPfaeffle07"> <p><a class="existingWikiWord" href="/nlab/show/Christian+B%C3%A4r">Christian Bär</a>, <a class="existingWikiWord" href="/nlab/show/Nicolas+Ginoux">Nicolas Ginoux</a>, <a class="existingWikiWord" href="/nlab/show/Frank+Pf%C3%A4ffle">Frank Pfäffle</a>, <em>Wave Equations on Lorentzian Manifolds and Quantization</em>, ESI Lectures in Mathematics and Physics, European Mathematical Society Publishing House, ISBN 978-3-03719-037-1, March 2007, Softcover (<a href="https://arxiv.org/abs/0806.1036">arXiv:0806.1036</a>)</p> </li> <li id="Ginoux08"> <p><a class="existingWikiWord" href="/nlab/show/Nicolas+Ginoux">Nicolas Ginoux</a>, <em>Linear wave equations</em>, Ch. 3 in <a class="existingWikiWord" href="/nlab/show/Christian+B%C3%A4r">Christian Bär</a>, <a class="existingWikiWord" href="/nlab/show/Klaus+Fredenhagen">Klaus Fredenhagen</a>, <em>Quantum Field Theory on Curved Spacetimes: Concepts and Methods</em>, Lecture Notes in Physics, Vol. 786, Springer, 2009</p> </li> </ul> <p>See also</p> <ul> <li>Wikipedia, <em><a href="https://en.wikipedia.org/wiki/Klein%E2%80%93Gordon_equation">Klein-Gordon equation</a></em></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on August 16, 2024 at 06:44:18. See the <a href="/nlab/history/Klein-Gordon+equation" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Klein-Gordon+equation" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/7956/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/Klein-Gordon+equation/19" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Klein-Gordon+equation" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Klein-Gordon+equation" accesskey="S" class="navlink" id="history" rel="nofollow">History (19 revisions)</a> <a href="/nlab/show/Klein-Gordon+equation/cite" style="color: black">Cite</a> <a href="/nlab/print/Klein-Gordon+equation" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Klein-Gordon+equation" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10